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Multifractal analysis and modeling of rainfall and river
flows and scaling, causal transfer functions

Yves Tessier,l Shaun Lovejoy,! Pierre Hubert,2 Daniel Schertzer,3

and Sean Pecknold!

Abstract. River flows have been known to be scaling for over 40 years and scaling notions
have developed rapidly since the 1980s. Using the framework of universal multifractals and time
series of rainfall and river runoff for 30 French catchments (basin sizes of 40 km? to 200 km?)
from 1 day to 30 years, we quantify types and extent of the scaling regimes. For both flow and
rain series, we observed a scale break at roughly 16 days, which we associate with the "synoptic
-maximum"; the time scale of structures of planetary spatial extent. For the two scaling regimes
in both series, we estimate the universal multifractal parameters as well as the critical exponents
associated with multifractal phase transitions. Using these exponents, we perform (causal)
multifractal time series simulations and show how a simple (linear) scaling transfer function can
be used to relate the low-frequency rainfall series to the corresponding river flow series. The high-

frequency regime requires nonlinear transforms.

Introduction

A Multifractal Scaling Framework for Rain
and River Flows

In a celebrated paper, Hurst [1951] showed that the stream
flows of various rivers exhibit long-range statistical
dependencies indicating that water storage and runoff

processes occur over a wide range of scales; i.e., they are

scaling. In spite of this observation, it took over 30 years for
its significance to be fully appreciated. On the contrary, the
1970s witnessed the widespread development of nonscaling
autoregressive moving average (ARMA) type processes for
modeling runoff, and the closely related compound Poisson
point process models [e.g., Bras and Rodriguez-Iturbe, 1976;
Rodriguez-Iturbe et al., 1984] were used for rainfall itself. Not
only were these models incompatible with the observed
scaling, they usually involved only weak variability (e.g.,
exponential probability tails). Because of the existence of
“outliers”, this lead to various problems including recourse to
subjective best fit criteria. In this framework, two or more
different distributions are necessary to fit different regimes
such as the "regular" and the "extreme" events. An early
exception was the (mono)-scaling approach followed by
Mandelbrot and Wallis [1968, 1969] who introduced the
Biblical terms "Noah" and "Joseph" effects to denote
nonclassical extreme (algebraic) probability tails and
persistent (algebraically correlated) fluctuations, respectively,
observed in river flow time series. The corresponding
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theoretical framework was that of scaling additive stochastic
processes, essentially generalizations of Brownian motion. :
These involved two basic parameters: a scaling exponent H
characterizing the persistence, and a probability exponent g,
(<2 for these additive models) characterizing the extreme
events. In modern parlance, graphs of the corresponding time
series were fractal sets having a single fractal dimension
D =2-H.

The fundamental source term driving runoff processes and
hence river flow fluctuations is the rain field. The scaling
properties of this field have indeed been the subject of
considerable investigation in the last 15 years. At first,
several attempts were made to estimate the (supposedly unique)
fractal dimension of rainfall [e.g. Lovejoy, 1981; Lovejoy and
Mandelbrot, 1985; Hubert and Carbonnel, 1988, 1989, 1991;
Olsson et al., 1990; Bouquillon and Moussa, 1991]. However,
during the early 1980's it became clear that while the
appropriate theoretical framework for scaling geometric sets
was fractals, the framework for the more relevant scaling fields
was multifractals. Since then, over 20 geophysical fields have
been shown to be multifractal over various range of scales (see
e.g. Lovejoy and Schertzer [1995a] for a review). Of specific
relevance to rainfall and runoff were the studies using radar rain
reflectivities [Schertzer and Lovejoy, 1985b; Lovejoy et al.,
1987; Lovejoy and Schertzer, 1990a; Gupta and Waymire,
1993], lidar reflectivities [Lovejoy and Schertzer, 1991], rain
gauge series [Duncan, 1993; Tessier, 1993; Tessier et al.,
1993], in clouds [Gabriel et al., 1988; Lovejoy and Schertzer,
1990a; Tessier et al., 1993], and in topography [Lovejoy and
Schertzer, 1990b; Lavallée et al., 1993; Lovejoy et al.,
1995a].

One of the still underappreciated generic consequences of
multifractality is that it leads to probability distributions with
algebraic tails (with exponent -gp). Contrary to the
monofractal models where qp < 2 (such as Lovejoy and
Mandelbrot [1985]) or of runoff where g, < 1 [Rodriguez-
Tturbe et al, 1992], g, can take any positive value. While this
feature - characteristic of scaling fields exhibiting sudden,
violent extreme events was originally termed "hyperbolic
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intermittency" [Schertzer and Lovejoy, 1987b], it has more
recently [Schertzer and Lovejoy, 1994, 1996b] become
theorized as a multifractal phase transition route to self-
organized criticality (SOC) [Bak et al., 1987, 1988], the
extreme events being self-organized critical events. Empirical
confirmation of such strong intermittency in rain has come
from many sources, see section on multifractal phase
transitions below and the review by Lovejoy and Schertzer
[1995b]. In river flows, similar behavior was reported by
Turcotte and Greene [1993] (although they misleadingly call
the probability exponent gp a fractal dimension). Some
authors [e.g. Rodriguez-Iturbe et al, 1992] have termed weakly
varying gaussian processes SOC because the latter have power
law distributions of zero-crossing lengths. We reserve the
term for power law intensity fluctuations which corresponds to
strongly varying avalanche like events.

The Statistical Relation Between Rainfall and
River Flow and Implications for Runoff Processes

The physical basis of multifractality in rain is the
dynamical turbulent cascade process which causes various
conserved fluxes to be concentrated in smaller and smaller
fractions of space, hence building extreme intermittency.
Schertzer and Lovejoy [1987a), Gupta and Waymire [1993] and
Tessier et al. [1993] discuss the corresponding multifractal
rain models. However, other scaling fields are important for
determining runoff and streamflows; the topography and
porosity are also important. This has lead to the study of
transport processes on multifractals (see Lovejoy et al.
[1995a] for relevant diffusive and kinetic transport
respectively). Also relevant are the findings by Gupta et al.,
1994 that streamflows are multiscaling functions of basin
size. It is therefore now possible, at least in principle, to
model river flows starting with the topography, (space-time)
multifractal rain, and soil permeabilities fields as inputs. Such
modeling will probably be indispensable in solving basic
runoff problems.

However, before developing such sophisticated models, it
is important to (1) empirically investigate the statistical
properties of river flows in a multifractal framework (including
the basic types and limits of (multi) scaling regimes, (2)
empirically determine the statistical relations between the
river flows and the corresponding rainfall (including possible
transfer functions), and (3) to produce (multifractal)
simulations of both rain and river flow which respect the
directionality of time (i.e., which are causal). These three
related points are the subject of the present paper; in
particular, we determine under what conditions a linear transfer
function connecting river flows and rainfall is possible, and
we determine its form. The existence of a linear transfer
function has been hypothesized for some time [e.g., Sherman,
1932; Clark, 1945; Minshall, 1960; Nash, 1960; Dooge,
1973]; this work gives it some empirical justification
(although for longer time periods than usually considered).
We will see that the transfer function must respect not only
scale invariance (as in the space time rain models discussed by
Tessier et al. [1993)), but, as developed in Marsan et al. [this
issue], causality.

Data Description

We first concentrate on a multifractal analysis of river
flows. River flows have several peculiarities that must be
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taken into account. For example, since we are interested in the
natural variability, a system with minimal human intervention
is highly desirable. Hence we chose a database of 30 time
series of daily river flows with small basins (40 to 200 km?)
without artificial dams or reservoirs. The mean flow rates
varied between 0.5 and 8.0 m3/s and the mean daily rainfall
accumulations varied between 1.8 and 5.5 mm/d. These data
have been gathered by the hydrological division of the Centre
National du Machinisme Agricole, du Génie Rural, des Eaux et
des Foréts (CEMAGREF) as a contribution to the Flow
Regimes from International Experimental and Network Data -
Alpine Mediterranean Hydrology (FRIEND-AMHY) UNESCO
regional hydrology project. In each of the basins we also
disposed of daily rainfall accumulations as estimated by a
single rain gauge. Each time series covered a period of time
varying between 11 and 30 years. The rivers are located in
different regions distributed all over France. An example of
the daily stream flow records along with a corresponding daily
rainfall accumulation record from a rain gauge situated in the
basin is shown in Figure 1. Note that the individual spikes in
river flow (and to a lesser extent in the rain series) are not
symmetric under inversions of the time axis, and that the river
flow seems to be roughly a "smoothed" version of the rain
series. The former is a consequense of causality in rainfall and
the latter suggests that the storage can be modelled by a
transfer function between the rainfall field and the runoff field.
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Figure 1. Simultaneous daily rainfall accumulation and river
flow for the Le Gardon St-Jean river and the nearby station of
Corbes Roc Courbes (France).
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Paper Overview

In the next section we investigate the basic scaling
properties of the time series using the standard and quite
sensitive method of spectral analysis. This enables us to
determine the basic scaling regimes. The section on universal
multifractals presents a review of universal multifractals and
the double trace moment technique that is used to estimate the
universal multifractal exponents o and C, which characterize
.the type of scaling. We then proceed in the following section
to the determination of a third parameter H which measures the
degree of (scale by scale) conservation of the fields. In the
section on multifractal phase transitions we investigate the
divergence of statistical moments of the series and show the
relations of these divergences (treated as multifractal phase
transitions) with self organized criticality. In the final section
we introduce causal scaling transfer functions and show their
potential use in the derivation of river runoff from rain records
and in the simulation of both series.

The Scaling Ranges and Spectral Exponents of
Rain and River Flows

We now attempt to empirically estimate the scaling ranges
of the observed rain and river flow time series. This is
conveniently done by calculating the power spectrum E(®) (in
one dimension, ensemble average of the square of the Fourier
amplitudes as a function of the frequency ®) and estimating the
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Figure 2. Power spectra for daily river flows for three
different rivers in France.
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Figure 3. Power spectra for daily rainfall accumulations for
three stations: Toucy, Florac, and Corbes Roc Courbes
(France).

spectral exponent P in the scaling relation E(®)=nB.
Although the spectrum is defined as an ensemble average
quantity, if the series is long enough, it may be possible to
get some idea of the scaling range and exponent on individual
realizations. If the spectra are not too different from each
other, this gives support to the hypothesis that the various
series are indeed from the same statistical ensemble. Scaling is
only an ensemble statistical property. Furthermore, due to the
extreme intermittency characterizing these generally
nonergodic processes, the scaling can be badly broken on
individual realizations, even if the latter are very long. We
therefore first estimated spectra on individual time series of
daily river flows for all 30 rivers. The results for a few typical
records are shown in Figure 2. Figure 3 presents the
corresponding analysis for rain. Bearing in mind the above
caveat that scaling is only a statistical symmetry, and that
large numbers of realizations may be required to obtain
adequate estimates of the ensemble statistics, a few features are
readily observed on these graphs. All the spectra have broad
scaling regions, although there appears to be a break, which is
not always very pronounced, separating two regions with
different B. In the rainfall records, this transition, when
present, was always found at around 2 weeks. Such a break is
presumably a manifestation of the "synoptic maximum"
[Kolesnikov and Monin, 1965; Lovejoy and Schertzer, 1986;
Ladoy et al., 1991; Fraedrich and Larnder, 1993; Tessier et al.,
1993]. The synoptic maximum arises because in most
geophysical systems, and especially in geophysical fluid
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dynamical systems, there is a fundamental dynamical velocity
field which connects the spatial and temporal statistics. Larger
and larger structures evolve, on average, more and more slowly
and have longer and longer lifetimes. Indeed, Lovejoy and
Schertzer, [1991] and Tessier et al. [1993] argued that for rain,
the corresponding velocity is a turbulent (scale dependent)
velocity whose scaling exponent was empirically estimated.
The appropriate theoretical space-time framework called
generalized scale invariance ([Schertzer and Lovejoy, 1985a,
b] is essentially a statistical and anisotropic generalization of
Taylor's [1938] hypothesis of "frozen turbulence", (i.e., “that
the sequence of changes... at a fixed point are simply due to
the passage of an unchanging pattern of turbulent motion over
the point...”). The synoptic maximum is therefore the
timescale associated with the evolution of structures of
planetary spatial extents. This would imply that the typical
velocity of the large-scale motions is roughly
107 m/10° s=10 m/s, which is indeed compatible with usual
meteorological estimates [e.g., Petterssen, 1969]. Note that,
owing to the wide range scaling of the velocity field, we do
not expect this velocity to be independent of scale [see Tessier
et al., 1993].

We note that since the rain field itself is the source of the
river flow, typical scales in the former will also be present in
the latter. It is possible that a timescale analogous to the
synoptic maximum exists for the field of rainfall
runoff/surface water flow, associated with the spatial scales
characteristic of the basin. In that case the main difference
between the rain field and runoff water fields is the magnitudes
of the corresponding velocities and the spatial scales. For
surface/runoff water the largest spatial scale of relevance is the
basin scale. Here, the basins ranged from 40 km?2 to
200 km2; about 103 times smaller than planetary scales
(10*m /107! m/s). However, the corresponding velocity is
the much smaller one associated with runoff processes;
perhaps of the order of only 10°! m/s. In this case, the
corresponding timescale at which the river flow responds to
the rain input will be of the order of a day or less. A timescale
this short is indeed compatible with the observation that on
the aggregation scales used here (a day or longer), the river
flow is observed to increase essentially immediately with rain
events. The corresponding high frequency break would thus
not be observable with the daily series at our disposal. We
therefore anticipate a transition time scale which will not
depend noticeably on the river basin size, nor much on the
geology or topology (which is scaling); - it would primarily
modify the mean runoff water velocity used in the space-time
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Figure 4. Power spectrum for daily river flow average for all '
stations.
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Figure 5. Power spectrum for daily rainfall accumulations
average for all stations.

relation. Ultimately, these relationships should be clarified
with the help of multifractal models of the rain field [Tessier et
al., 1993], coupled with topography [Lavallée et al., 1993]
and transport [Lovejoy et al., 1995a]. Studying the spectra of
streamflows for the 30 rivers described above, we found that
the transition time (break in the scaling) varies from roughly
16 to 90 days (although only in three cases out of 30 were
transition times greater than 30 days observed). We then
attempted to confirm that the variation in the transition times
was not caused by obvious variations in the size of the basins,

-or of the topology of the river network and the geology or

topography of the region.

Using a 16-day break, the estimated value of B for a low-
frequency river flow regime was estimated as p = 0.7+0.3 and
B = 1.6 £0.5 for the high-frequency regime. The cited errors
correspond to 1 standard deviation from the values estimated
from the individual series. For comparison, in rainfall we
obtained P =~ 0.2+0.1 for the low frequencies and § = 0.310.1
for the high frequencies. We see below, by examining higher
order statistics that the break in the scaling in the rain data is
actually quite strong at this scale even though it is not so
obvious from the spectrum. These results are very close to
those obtained by Ladoy et al. [1991, 1993] at Nimes (France)
and for the mean of the global rain gauge network (for 1-64
days, B = 0.240.3 [Tessier et al., 1993]). Making the
assumption that there are common physical processes
operating at the various locations under study, we averaged the
spectrum of normalized time series for all locations and
obtained Figure 4 for river flows and Figure 5 for rainfall. It is
interesting to note that for rainfall a small annual peak begins
to emerge above the background fluctuations. The peak in
river records is probably stronger because of the seasonal
variations in temperatures resulting in the accumulation of
"nonflowing" water such as snow or ice and a reduced capacity
of soils to absorb water during winter months. The amount of
evaporation will also vary seasonally. We also note that as
anticipated above, after averaging, the scale breaks occur at
roughly the same timescale for rain and river flows. The 16-
day period seems to be associated with a fundamental change
in the scaling properties, but the 1-year cycle seems to be
primarily a "regular" oscillation superposed on an otherwise
scaling background, since on both sides of the peak the
spectral slope remains unchanged (this is true at each site as
well as for the average spectrum). Because spectral analysis
separates the statistics so well according to frequency, this
annual cycle does not seriously affect our spectral slope
estimate. However, it does cause a significant break in the
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scaling when other (real space) scaling analyses are
performed.

From the power spectrum we obtained the values of B
presented in Table 1. The ensemble values of B will later be
used to estimate the multifractal parameter H, which quantifies
the degree of nonconservation in the cascade process and

which is necessary to obtain the exponent of the transfer-

function. For the reasons given above, we decided to divide
the following analyses in two regions: one from 1 to 16 days
and one from 1 month to 30 years using monthly averages of
daily records. '

Universal Multifractals

The scaling of time series can be investigated by two
equivalent routes: the probability distribution and the
statistical moments. First, the resolution is expressed by a
dimensionless ratio A=7/7, where T is the longest duration
of interest and T is duration of the observation. In the case of
multifractals, the probability distribution is given by
Schertzer and Lovejoy [1987a]:

Pr(q);» > 7\.7) ~c(v) ey

where v is the order of singularity and c(y) the codimension
function of the singularities and ¢, is the “conserved”
multifractal process associated with rain or flow (see below) at
resolution A (normalized by the ensemble/climatological
mean). Similarly, the statistical moments are given by

(0f)=2%@ a>1 @)

where K(q) is the multiple scaling exponent for moments; the
two are related to each other via a Legendre transform [Parisi
and Frisch, 1985]:

C(Y)=m;X(qY-K(q))

3)
K(q)= me(qY—c(Y))

The only restriction on c(Y) and K(gq) is that they are
convex. In actual dynamical systems involving nonlinear
interactions over a continuum of scales (and/or involving
multiplicative "mixing" of different processes), we generally
obtain a considerable simplification. Schertzer and Lovejoy
[1987a, 1991, 1996a] show that cascade processes possess
stable (attractive) universal generators irrespective of the
details of the dynamics [see also Brax and Pechanski [1991];
Kida, [1991]. Recently, it has been suggested that a weaker
form of universality involving log-Poisson distribution
might also be relevant [e.g., She and Waymire, 1995;

Table 1. A Comparison of Estimates
of the Spectral Exponent ’

<16 Days >1 Month
Averaged B B of the Averaged B B of the
Average Average
Rain 0.3+0.1 0.430.1 0.2+0.1 - 0.140.1
Rivers 1.610.5 1.340.1 0.7+0.3 0.540.1

Note that the mean of individual exponent estimates (given by the
standard deviations of the "avéraged B" values) are compatible with
the exponent estimate of the ensemble.
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Schertzer et al., 1995]. The universal K(gq) functions for
conservative processes are of the following forms:

1)) axl
K(g)= o-1 4)
Gig log(q) a=1

where 0< <2 is the multifractal index, which quantifies the
distance of the process from monofractality; o =0 is the
monofractal B model of turbulence [Novikov and Stewart,
1964; Mandelbrot, 1974; Frisch et al., 1978], o =2 (the
maximum) is the lognormal model. 0<C; < dimension of
space is the codimension of the mean of the process; it
quantifies the sparseness of the mean.

In order to directly test the universality hypothesis, and
estimate o, C,, we used the double trace moment (DTM)
technique [Lavallée, 1991; Lavallée et al., 1993]. The g, n
double-trace moment at resolutions A and A is defined as:

q\

Tr(o})' = { Z| [o}dP
i\ B; )

o« )K(aM)~(g=1)D

where the sum is over all the disjoint balls B,; (dimension D,
indexed by i) required to cover the multifractal, K(q,n) is the
double-scaling exponent, and K(g,1) = K(q) is the usual scaling
exponent. Although it looks complicated, applying (4) to the
field of interest simply consists of taking various powers 1 of
the field at its highest resolution (A), then degrading the result
to a lower resolution (M), finally averaging the gth power of
the result.

The scaling exponent K(g,m) is related to K(n,1)=K(q)
by :

K(g,m)=K(qn,1)-gK(n,1) (6)

The advantage of the DTM over other techniques is that in
the case of universal multifractals, applying (6) to the form in
(5), we find that K(g,n) has a particularly simple dependence
onn:

K(g.m)=n"K(q) @)

Therefore, o can be estimated on a simple plot of log K(g,n)
versus log 1 for fixed g. .
The above applies to processes which are the direct resuit of
a multiplicative cascade process in which some quantity
(analogous to the energy flux in turbulent cascades) is
conserved from scale to scale. However, a priori, there is no
reason to expect the observed processes (rain, river flow) to be
conserved, they will more generally be related to a
conservative process by integrations of various (generally
fractional) orders denoted H (differentiations are obtained for
H<0; see Schertzer and Lovejoy [1987a] for more on this
general multifractal geophysical framework, for a related
problem, see Naud et al. [1996]). If the process is
nonconserved (H #0), it suffices to perform the inverse
fractional integration or differentiation so as to return to the
underlying conservative process. Since fractional integration
of order H corresponds to power law filtering, this is
conveniently done by Fourier methods (note that different
types of fractional integration exist; see below).
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Figure 6. Log of the trace moments versus log A, using
g =2 for daily rainfall accumulations for 30 stations in
France. From top to bottom, | = 1.8, 1.5, 1.0, 0.5. The arrow
points to the 'scaling break occurring at 16 days.

Alternatively, since in practice it suffices to differentiate by
an amount —H [see Lavallée et al., 1993], if H<1, one can use a
first-order denvatlve approximated by using the (absolute)
gradient of the series (roughly equivalent to filtering by a
factor ® and taking the absolute value of the result).

We now consider the result of performing these analyses on
the data. In conformity with the spectral results above, for
rainfall, the double-trace moments (Figure 6) show a break at
approximately 16 days. Estimating K(g,n) (shown in Figure
7) over the period of 1 to 16 days yields o = 0.7+0.2 and
C,; =0.410.1 in reasonable agreement with other ‘estimates
({[Hubert and Carbonnel, 1991, Hubert et al., 1993; Ladoy et
al., 1993; Tessier et al., 1993; Olsson, 1995]. Performing the
analysis on monthly averages (i.e., the low-frequency regime)
leads to a different result. For rainfall, we obtained the values
o =1.620.2 and C, =0.120.05 (figure 7). In river flows we
obtained (Figure 8) o = 1.45£0.25 and C; = 0.210.1 for the 1

0.0
-0.51
-1.01

-1.5-

Log, ,Kig,n)

-2.01

-2.51

.3.0 V_" v RJ M L] i 1
-1.5 -0.5 0.0 0.5

Log,on

Figure 7. Log K(gmn) vs log m, using ¢ =2 for rainfall
accumulation for 30 stations in France. Values are computéed
for scales of 1 to 16 days (solid c1rcles) and for monthly
averaged series (open squares).
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Figure 8. Log of the trace moments versus log A, using -
q =2 for normalized daily river flows of 30 rivers in France.
From top to bottom n = 1.8, 1.5, 1.0, 0.5.

to 16 day period and virtually identical values for monthly
averages (i.e. o = 1.45+0.2 and C, = 0.210.1; see Table 2 for
a comparison of the various values).  In this case there is
apparently no break in the double-trace moments (Figure 9;
the series has been normalized by their respective means).
This is compatible with the hypothesis that spectral break is
purely caused by a change in the order of fractional integration
(see the next section).

Before continuing, one comment is necessary. The DTM is
particularly sensitive to the weak events (which dominate the
low 1, low g statistics); o is the order of nonanalyticity of
K(g) at g =0. It will therefore be quite sensitive to biases or
errors in estimating low values. Only the rain in the 1- to 16-
day regime confains nominal zero values; this indeed
corresp()nds to the estimate of o which is significantly lower
than the others. Since many of the nominal zero rain rates
were in actual fact simply below a minimum detection
threshold, but were not true zero values, a model of rain and
corresponding instrument -response will be needed to fully
resolve this problem. For example, Larnder [1995] showed
that thresholding the values of a multifractal field (bringing to
zero low values) can modify the scaling and thus influence the
estimation of o and C,. The problem is presently under study
but since no clear cut answer has yet emerged we chose here to
accept | the zeroes as real

Determination of H

We mentioned that a priori, the observed multifractal
processes are not expected to be the direct results of cascade ,
processes, but rather to be related to such a process by
fractional integration/differentiation. Denoting the
underlying (scale by scale) conservative cascade quantity by
¢, such conservation implies ((px) const (independent of
scale). This type of ensemble average conservation is called
"canonical" conservation; more restrictive types of
conservation (especially microcanonical conservation) are
also possible, although they are artificial and are unlikely to
be relevant here. In the scaling regime, the rain (or river)
series (R, ) is thus related to this series by

ARy =, \7H ®
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Table 2. The Different Multifractal Parameters Estimated

From Ensembles of 30 Time Series

o C H qg an
River 1-16 days 1.45+0.25 0.240.1 0.4+0.3 5.3+0.5 2741
River 30-4096 days 1.4510.2 0.240.1 -0.05+0.2 42405 3.2+1.5
Rain 1-16 days 0.740.2 0.4+0.1 -0.140.1 13.040.5 3.6+0.7
_Rain 30-4096 days 1.6+0.2 0.10.05 -0.35+0.2 5.240.5 3.6+0.7

The single best fit parameters to the ensemble, the error estimates are the dispersions of the
corresponding parameter estimates from individual series. The H values were estimated from a,
C, and the ensemble averaged P values in Table 1. Note that with the exception of the rain <16
days, a, C, are compatible with the common values 1.5, 0.15, respectively. The columns g, gp

are explained in section 5.

In hydrodynamic turbulence, standard theory based on the
nonlinear dynamical equations shows that the energy flux to
smaller scales is conserved and that H=1/3 (the famous
Kolmogorov [1941] value). However, at least for the moment,
no corresponding theory of rainfall tells us which physical
field ¢, represents, nor the value of H. Various powers of ¢
can also be used, this is not fundamental [see Schertzer and
Lovejoy, 1994]. However, the related cloud liquid water
apparently has an exponent close to that predicted for passive
scalars by Corrsin [1951] and Obukhov [1949] (see Lovejoy
and Schertzer [1995a]). Since this parameter characterizes the
long-term statistical dependency of the mean |AR|)~) ~NH e
has been denoted H in honor of Hurst. Hurst's original
exponent is actually slightly different from this; indeed, it is
not obvious how his original exponent is related to the
multifractal exponents.

A direct method of estimating H is to use generalized
structure functions [e.g., Schmitt et al., 1995]. However,
unfortunately, the latter are very sensitive to the presence of
strong periodicities (such as the annual cycle found here). For
this reason, a different technique called the spectral slope
method was also used. This method uses the values of o and C,
obtained from the DTM in order to estimate the spectral slope

of the conserved process B, from the formula [Monin and
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Figure 9. Log K(q,n) vs log 1, using g =2 for daily river
flows of the Le Volp river (France). Values are shown for
scales of 1 to 16 days (top), 1 month to 30 years (bottom) and
1 day to 30 years (middle).

0.5

Yaglom, 1975] Bcon=1-K(2). The order of fractional
integration needed to obtain the non-conserved process from
the conserved one is then given by

H= B"Bcon - B_1+K(2)
2 2

The value of K(2) can be estimated from o and C,; using (4).
The results of this analysis are shown in Table 2. Given the
large statistical scatter (typical of multifractals, especially
when relatively small sample sizes are analyzed), it is quite
possible (with the exception of rain less than 16 days; see
above comment about low values) that the results are
compatible with a=1.5 and C;=0.15 (median values of
monthly rainfall and river flows). In this case, K(2)=0.25,
and, using the ensemble average 3 values from Table 1, we find
for rivers and rain for periods longer than 1 month, H = -0.05,
-0.35, respectively (and H=0.4 for rivers for periods less than
16 days). With these parameters, for periods of 1 month to 30
years, river flow. statistics are the same as the statistics of
fractionally integrated rainfall of order AH = H; . - H ..,
= (-0.05) - (-0.35) = 0.3. However, for timescales of 1 to 16
days the rainfall and the river flows belong to two different
multifractal classes (different o and C,) but are both more or
less compatible with quantities conserved by the cascade
process (H=0; although note that for the high frequencies, AH
is roughly the same).

We can now compare our empirical results with those of
Gupta et al [1994]. These authors assumed (without comment)
that the river flow was the direct outcome of a multiplicative
process (i.e. H = 0). They then fitted the log of the flow to
various Levy distributions (including non-extremal Levy’s
which do not have any convergent statistical moments for the
corresponding flows!) concluding that while a value of o in
the range 1.5 to 2.0 provided the best fits (i.e. close to ours),
that the fits were poor. Since we find H # 0 (especially for
rivers for periods less than 16 days) and theoretically H
characterizes the long range correlations (hence storage), we
do not expect the log of the flow to have a Levy distribution.
We suspect that their results can be explained by the fact that
H > 0.

(C))

Multifractal Phase Transitions

Before turning to the multifractal time series simulations

" and the transfer function, we will consider a final empirical

aspect of the data; the statistics .of the extremes. We have
shown that high resolution (e.g., daily or less) rain or flow
measurements and aggregated (monthly or yearly)
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measurements have different statistics. For multifractal
processes the statistics of ¢, resulting purely from dynamics
at larger scales (smaller A) are very different from those
averaged at the same scale but whose dynamics continue to
much smaller scales. The former are called the bare quantities,
and the latter the dressed quantities. The main difference
between the two is that the statistical moments of the bare
field ¢, will all converge, whereas the moments of the
"dressed” @, ; will generally diverge if q is large enough:
(014)> a2ap (10)
This divergence corresponds to hyperbolic falloff of the
probability distribution, i.e.,
Pr(gy 4 25)=s"® (s>>1) (11)

The combination of divergence of statistical moments with
spatial scaling can be taken as the defining property of self-
organized criticality [Bak et al., 1987, 1988]. Since finite
samples will always yield finite moments, the divergence can
be observed either via the divergence of empirical moments
with increasing sample size, or via discontinuities in the
derivatives of the observed scaling exponents K(q) and c(Y).
Since there is a formal analogy between multifractals and
classical thermodynamics ([Schuster, 1988; Schertzer et
al.,1993; Schertzer and Lovejoy, 1994, 1996b], these
discontinuities can be considered as multifractal phase
transitions.

The basic idea behind the multifractal phase transitions is
that estimates of high enough order statistical moments will
be dominated by the largest (most extreme) events in the
sample, this leads to linear rather than convex K(gq). With
more realizations (the number being denoted Ng) a larger and
larger portion of the probability space will be explored and
more extreme singularities will be encountered. D= log N,/
log A is the corresponding sampling dimension (Schertzer and
Lovejoy, 1992; Lavallée et al., 1991). For g < qp the
maximum order of moment that will not be dominated by
extremes (g,) can then be estimated for universal multifractals
as

Iog1 0 Pr (P' > P)

'
()]

log 10 P
Figure 10. Log of the probability of getting a daily rainfall
accumulation P’ greater than a threshold p against the log of
the threshold composed of 30 time series in different locations
over France. The straight line has a slope gp= 3.6.
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Figure 11. Log of the probability of getting a normalized
daily river flow Q' greater than a threshold g against the log of
the threshold composed of 30 time series in different rivers in
France. The straight line has a slope g, = 2.7. :

Y
qs=[—D+Ds] (12)

G

When g < g, the divergence is not observable and we obtain a
second order phase transition; this becomes first order when
Ny is large enough that g, > qp,,

The probability distribution is shown for daily rainfall in
Figure 10 and for daily river flows in Figure 11. In both cases
each time series was normalized by its mean. In Table 2 we
give the different estimates of g, from (12) and the estimates of
qp from the algebraic falloff of the probability distributions.
This tells us that the maximum statistical moments that can be
reliably estimated with the available data vary between 4 and
13, depending on the scaling "regime" for both rain and river
flows. Although more samples would be highly desirable, a
quick glance at Table 2 shows that N (and hence q,) was large
enough so that these first-order transitions were indeed
observable in both cases (since gp = 3 which is < g, in all
cases).

Another way to study phase transitions is to calculate K(g)
for a different number of samples. Figure 12 shows K(q) for 1
and 30 samples for the 1- to 16- day regime of rain, and Figure
13 shows the same graph for river flows. We see that in both
cases for g > g, we obtain an asymptote that does not follow
the tangent of K(g) but which becomes steeper as the number
of samples is increased starting at a specific point. This is
direct evidence for a discontinuity in the first derivative at the
corresponding value of g. This conclusion is in agreement
with the results of Ladoy et al. [1993], who estimated that
qp =3 for rainfall in the 1- to 16- day regime, and Segal
[1979] who found gp= 2- 3 in 10-s rain gauge rates, and
Lovejoy [1981] who found gp=1.7 for radar rain rates of
isolated storms. It should also be mentioned that Olsson,
[1995] obtained g, = 2.0 for 8-min rainfall accumulations in
Sweden and that Fraedrich and Larnder, 1993 obtained g, = 1.7
with 1-min rainfall data in Germany. At present it is not
known if the variations in these estimates are due to more
extreme rain events in these regions, to the better sensitivity
of their instruments, the process of obtaining rain rates from
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Figure 12. Log K(gq) vs g for 1-to 16- day rainfall
accumulation over various stations in France. The empty
squares were obtained considering 30 realizations (one per
site) and the crosses were obtained from just one site. The
continuous line is the theoretical curve calculated from the
values of o and C, obtained by the DTM method (i.e. a = 0.7
and C, =0.4). For g > gqp, the assymptotes are straight,
however , as predicted, they are steeper for the larger sample
sizes. v

tipping bucket records, or to different scaling regimes. In
comparison, in river flows, the only other estimates of g, of
which we are aware are those of Turcotte and Greene [1993],
who found values mostly in the range 3-6 for various U.S.
river flows. The multifractal model can accommodate any value
of g, but monofractal models cannot. In particular since all the
empirical results have g5, > 1 and all river flows have g, > 2 the
geometric monofractal model of Rodriguez-Iturbe et al [1992]
can be excluded because it predicts g, < 1.

Causal Simulations of Rain Series, River Flows,
and Transfer Functions

Causality and Causal Multifractal Models

We have already mentioned that the natural framework for
dynamical, space-time scaling processes is generalized scale
invariance. By dimensional analysis, space and time are
related by a velocity. Isotropic (self-similar) space-time
corresponds to a generalization of Taylor's hypothesis
involving a constant scale-independent velocity whereas a
scale-dependent (e.g., turbulent ) velocity involves
anisotropic space-time (see Tessier et -al. [1993] for a
discussion), involving a group of scale changing operators
(T;3=A"C changes scale by ratio A, G is the corresponding semi-
group generator). While knowledge of G places significant
constraints on the process, it is not sufficient for a complete
characterization. Indeed, the basic framework proposed by
Schertzer and Lovejoy [1987a] for rain (and other turbulent
atmospheric processes) was that of coupled cascade processes
characterized by G as well as a second probability semigroup
(discussed implicitly above) involving a generator
characterized by H, o, C;. However, in addition to these
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generators, dynamical models must also satisfy the basic
physical principle of causality, which for stochastic models
means that the statistical properties of the future state of any
realization of the process must depend only on the past of the
process. This causality principle is specifically violated by
stochastic processes which (implicitly or explicitly) treat the
time axis (i.e., past and future) symmetrically.

While the implementation of the causality constraint is
somewhat involved in full space-time models [see Marsan et
al., this issue], here we will limit our discussion to
simulations of time series, the discussion of which is much
simpler. To illustrate our ideas, we recapitulate the basic steps
involved in producing multifractal time series using
continuous (in scale) cascade processes. The first step in the
multifractal simulation procedure is to produce the
subgenerator using a (white) Lévy-stable noise on the time
axis, with the appropriate o and C,. This noise is then
fractionally integrated to produce a generator (log ¢) with a
logarithmic divergence with scale. The generator is then
exponentiated to give the series corresponding to the
conserved process. Finally, a further fractional integration of
order H is performed to yield a simulation of the observed
(nonconserved) process (see (8)).

We therefore generally require two fractional integrations.
However, many different definitions of fractional integral
exist. Up until now for simplicity, symmetric "Riemann-
Liouville fractional integrals" (IHRL) were used (see Schertzer
and Lovejoy [1991, appendix B] for more discussion and
generalizations to higher dimensions; see also Miller and
Ross [1993]). In real space for integrals of order H of the
function f, this corresponds to the following:

1

= F(;i_) Tlt—ﬂH_lf(’t)dT

—o00

910 13)

where I'(H) is the usual gamma function. This corresponds to
Fourier space filtering by

4

K(q)

.
-l

.

e

q

Figure 13. Log K(gq) vs g for 1-to 16- day flows for various
rivers in France. The open circles were obtained considering
30 realizations (one per site) and the solid squares were
obtained from just one site. The continuous line is the
theoretical curve calculated from the values of o and C,
obtained by the DTM method (i.e. o = 1.45, C, = 0.2).
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Figure 14a. Multifractal simulations of rain and river flow,
using parameters a=1.5, C;=0.15, and varying H. From top to
bottom, H=-0.3, H=0.0, H=0.0 with a noncausal filter, and
H=0.3.The same random seed was used throughout, and the
fields have been offset for clarity. The three different
parameter values correspond roughly to rainfall for periods
>16 days, rivers >16 days, rivers <16 days, respectively.

E sin(%(l—H))korH

As can be seen by inspection of (13), the Riemann-
Liouville fractional integral is determined symmetrically by
the past and future values of f(f). In order to obtain a causal
"Liouville" fractional integral (/% L)» we use the following
definition: :

(14)

1 f() == (1) f(t)an

= 0 (15)

—o00

which by inspection only depends on the past of f(¢), and
which is equivalent to the filter (i) .

70

v T T

60
50
40

Q)

30
20

10

0

200 300 400
time (Days)

above, but showing a subsection of the

0 100 500

Figure 14b. As
simulated fields.
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A priori, any H is permissible (including complex values!)
as long as convergence is maintained. Figures 14a and 14b
show the result of a continuous cascade multifractal simulation
of rain and river flow series fully respecting the causality
requirement discussed above and leading to the noticeable left-
right asymmetry (compare the causal and acausal simulation
for the same parameters and same random seed). The
asymmetry arises from the asymmetry of the kernel in (15)
contrary to the symmetry in (13). By using the one-sided
fractional integral (15) that depends only on past times, the
correlations induced on the white noise subgenerator are causal
by construction.

Note that, at least in the usual interpretation, discrete
multifractal cascade models of rain series are left-right
symmetric; they cannot be used, except perhaps very
artificially, for causal modeling of time series. Another causal
approach for a space-time rain model has recently been
proposed by Over and Gupta [this issue] involving discrete
cascades for the spatial structure but causal (Markov) temporal

structure. While this model is indeed causal, it has the
unrealistic feature of being scaling and multifractal in space,

but scale breaking in time. The velocity required to relate
space and time is implicitly nonscaling which is contrary to
mounting evidence from studies of the wind field [e.g.,
Nastrom and Gage, 1983], as well as contrary to direct space-
time scale by scale analyses of rain [Tessier et al.,, 1993]. A
full scaling and causal space-time model using Liouville
fractional integration in time, and Riemann-Liouville
fractional integration in space has been developed by Marsan
et al. [this issue]. Finally, we can also simulate the spectral
break at periods of roughly 16 days by simply using a filter
with two power law sections joined in a smoothly varying
manner. The result is figures 15a-15c for river flows; the
result looks very similar to the data series shown in Figure 1.

Scaling, Causal Transfer Functions

We have seen that empirically, at least for ‘periods of 1
month or more, the conserved processes underlying both

6 AAMRARAE B SR B AR O SL N S | LM S LM
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Figure 15a." A multifractal simulation of river flow, with
parameters a=1.5, C;=0.15, and fractionally integrated with a
break in the scaling introduced only by the latter (H=0.3 at
high frequencies, H=0 at low frequencies; see Figure 15c).
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Figure 15b. Subsection of Figure 15a. Compare this with
the data in Figure 1.

rainfall and river flow time series have nearly the same values
of o and C|, i.e., they have the same statistics over the entire
corresponding range of scales (up to at least 11 years). Our
analysis showed that over this range, the only significant
difference is the corresponding degree of fractional
integration. Therefore, if we fractionally integrate the rain
series by an order AH=Hy, .-H .. =0.3, we will obtain a series
with the same statistics as the river flow series (i.e., filter by
(i0)2H), Since fractional integration is simply a power law
convolution, the two will be statistically related by a linear
transfer function (although these will involve power laws
rather than scale-dependent exponentials, as is usually
assumed). Conversely, for periods less than 16 days (if the
“zero value problem” has been adequately dealt with and hence
the rain gauge estimates can be trusted) the o and C,; values of
the conserved multifractals are different. Hence in this case,

10—~
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logl 0(k) (Days'1 )

Figure 15c. Power spectrum of 400 realizations of a
simulated causal multifractal field with a break in the.scaling,
using the parameters determined for river flow. The straight
lines fit to the data have slopes of B=1.75 and B=0.68.
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both a linear transfer function and a nonlinear transformation
of variables will be necessary. Note that in all cases, we
establish only that series with the same statistics as the river
series will be generated from the rain series; this does not in
itself establish that actual river flows on specific realizations
can be obtained from a single rain gauge in this way (the door
is, however, open to the possibility of using more general
linear functions; taking into account the spatial distribution
of rain might be sufficient for the latter task).

Turning our attention to the determination of the linear
transfer function for the low-frequency regime, and
representing the rain rate as R(¢) and the stream flow as Q(¥), it
is sufficient to consider the following convolution
(represented by the asterisk):

O(r)=IE7 R(r)=R(5) #1*! (16)
where the notation = indicates that the corresponding series
have the same scaling properties. Using this representation
gives a different understanding of the effect of the Liouville
fractional integration or “causal transfer function”. We see
that the unit hydrograph will have a shape characterized by a
steep rising limb, a peak and a milder sloping recession curve.

- This is because the response is integrating only past events.

On the contrary, if we were to choose a Rieman-Liouville
integration, the unit hydrograph would be a smooth rising
slope, a peak and a smooth descent slope because the response
would be incorporating past and future information. The basic
Liouville asymmetry is indeed observed for river flows (see
Figure 1). Using AH=0.3, Figures 16a and 16b shows an
example indicating that using this single station transfer
function approach does a surprisingly reasonable job of
simulating the corresponding river series. Recall that the aim
has only been to use a scaling, causal linear transformation on
a rain gage series to yield a series with the same scale-by-scale
statistics as for river flows. The fact that we get a surprising
degree of agreement, even on a single realization, suggests
that the method could profitably be extended to incorporate
spatial rainfall information (e.g., via the use of more

800

700

Q)

300 f
200

100

h
f

0
0 500

1000 1500 2000 2500 3000 3500 4000
time (Days)

Figure 16a. Comparison of rainfall data (bottom), river '
flow data (top), and rainfall data fractionally integrated with a
causal filter (transfer function) (middle). The fields have been
offset for clarity.
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Figure 16b. Subsection of Figure 16a.

stations). Other limitations include the fact that the present
transfer function does not account for a change in o and C; in
the 1- to 16- day range nor has the annual cycle been
considered.

Conclusion

A growing body of theoretical and empirical work indicates
that space-time multifractals provide the natural framework for
analyzing and modeling scale invariant geodynamical
processes including rain, runoff and river flows. Using
streamflow data from 30 rivers as well as the corresponding
daily rainfall in France, we have provided the first multifractal
analysis of river flows, estimating the range and types of
scaling. Two basic regimes were identified (<16 days, >16
days), with the break corresponding to the atmosphere's
synoptic maximum, the typical lifetime of planetary-scale
atmospheric structures. Universal multifractal parameters
characterizing the infinite hierarchy of scaling exponents
were estimated, as well as critical exponents associated with
extreme events, multifractal phase transitions, and self-
organized criticality. These multifractal parameters (see Table
2) were also checked for possible systematic variations with
regional climate types, the size of the basins, and the geology
of the region. Since no systematic variations were found, we
hypothesize that the measured properties are generic.

These parameters were then used to perform multifractal
simulations of both rain and river flow time series. This
involved an extension of previous multifractal modeling
methods to take into account the requirement that the series are
necessarily causal (the future depends on the past, but the past
does not depend on the future). A causal series was obtained by
using Liouville rather than Riemann-Liouville fractional
integrals in the basic multifractal simulation algorithm. Since
we found that, at least for the low-frequency regime, the basic
conserved multifractal processes for both rain and river flows
are nearly the same, a fractional integral of order AH (which
corresponds to the Fourier filter by (i0)2H); AH=0.3) can be
used to transform a single-gauge series into one having
identical statistical properties to the corresponding river flow
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series; over the entire range 1 month to (at least) 11 years. To
improve on this simple single-station linear response model,
many stations could be added, and the cross-scaling properties
of river flow and rainfall series could be analyzed with the help
of Lie cascades [Schertzer and Lovejoy, 1995]. Alternatively,
detailed understanding of the runoff processes could
potentially be obtained by using multifractal models of
topography, networks, and the corresponding transport. In
the future, these methods promise to provide physically based
hydrological models.
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