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1. Universality and the relevance of multifractals

Since 1985, there have been a series of papers in-
vestigating rain and cloud fields understood to be re-
sulting from multifractal cascades; this approach has
lead to an increasing number of fruitful applications (for
a review, see Lovejoy and Schertzer 1995). More gen-
erally, the multifractal approach in meteorology (and
particularly in rain) has many fundamental advantages
over the usual ones, since it gives dynamic and physical
insights at all scales without any ad hoc parameteriza-
tion or homogeneity hypotheses. This approach not only
enables us to overcome the limits of the classical meth-
ods, but it also creates a research framework that si-
multaneously allows for theoretical investigations and
empirical analysis based on fundamental physical prin-
cipals (namely symmetries and invariants). However,
mathematically, an infinite number of parameters is gen-
erally necessary to specify such a process—for example,
hierarchies of singularities and their codimensions (see
section 3). Hence, staying on a purely mathematical
level (without any physical considerations), such cas-
cades would be unmanageable. Theoretically and em-
pirically, cascades would be irrelevant. Since the mid-
1980s, debate has centered on the fundamental physical
idea that of this infinite number of parameters only a
few might be physically relevant, determining the ‘‘uni-
versality’’ classes. In the paper by Gupta and Waymire
(1993, GW in the following), the authors are also haunt-
ed by this issue, since they categorically dismiss the
notion of universality in cascade processes as ‘‘unten-
able’’ no less than three times, while devoting only a
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single sentence1 to explaining why it is an ‘‘error.’’ In
this comment, we clarify why this unique error argument
is irrelevant and point to what seems to be its precise
and misleading origin. The question of universality not
only merits debate and clarification, but, due to the
growing number of attempts at modeling and analyzing
multifractals in rain (and elsewhere), it is becoming cen-
tral for applications.

In the following, we give a new presentation of uni-
versality and universal multifractals. Although it is
based on arguments that have been presented under dif-
ferent forms in various papers during the last 10 years,
in order to overcome some past misunderstandings, we
have taken care not to repeat them in their original form.
Although the mathematical propositions concerning uni-
versal multifractals are almost trivial—directly analo-
gous as they are to the additive results—we have for-
malized them in such a way so as to dispel all doubt
about the mathematical existence of universality. Let us
emphasize that the interesting question is now in the
physics: Which routes—if any—to universality are
physically relevant?

The associated theoretical and empirical conse-
quences, particularly the fact that the same ‘‘universal’’
infinitesimal generator may be responsible for the ap-
pearance of the extremes as well as of the mean field
(see Fig. 1 for an illustration), underline the necessity
of clarifying any misunderstandings or any underesti-
mation of the scope of the basic notion and concept.

2. Universality of additive processes: Random
walks

The well-known example of the random walk readily
illustrates the idea of universality. Consider the general

1 Out of a total of eight sentences devoted to the issue.
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FIG. 1. Scheme showing the drunkard’s walk problem.

theme of 1D discrete random walks, illustrated by a
drunkard (see Fig. 1) following a straight line for a
random distance (according to a fixed probability law),
stopping, and then moving either left or right again for
a possibly (but not necessarily) random distance. Such
a random walk could depend on as large a number of
parameters as the theoretician would like to intro-
duce—that is, it could be quite different from just a
constant distance left or right (e.g., the distance to the
next lamppost in the simplest case). Now consider the
‘‘densification’’ of the walk by decreasing the typical
length scale l between two consecutive stops. This can
be done by replacing a single step by N similar steps
as follows:

N DX 2 a(N)iDX 5 , (1)O
b(N)i51

where b(N) and a(N) are, respectively, the rescaling and
the recentering parameters. It is well known that with
only the hypothesis of the finite variance of each ele-
mentary step, the process converges to Brownian motion
(e.g., Feller 1971)—that is, a Gaussian random walk
(Fig. 2 displays a 2D example) with b(N) 5 N1/2. Brown-
ian motion is ruled by at most two parameters: the mean
of an elementary step (nonzero if the walk is asym-
metric) and its variance. Nevertheless—and this not
widely enough known—when the hypothesis of finite
variance is relaxed, universality still survives! Indeed,
Lévy (1925) demonstrated the following generalized
central limit theorem.

a. Generalized central limit theorem

The renormalized sums of identically independently
distributed (i.i.d.) variables DXi converge toward a Lévy
stable law La:

N DX 2 a(N)ilim 5 L . (2)O ab(N)N→` i51

Here, La depends only on three parameters;2 the most
important one, the Lévy index, usually denoted by a

2 Four parameters if we include the almost trivial ‘‘location’’ pa-
rameter.

(#2), in fact describes how the variance diverges. More
precisely, it corresponds to the critical order of diver-
gence of moments of the elementary step (DXi):

a , 2; ∀q $ a: ^zDXizq& 5 `. (3)

b. Comments

1) The Gaussian case corresponds to the limit a 5 2,
although in this case, the critical order of divergence
becomes infinite.

2) In the Lévy case, the drunkard will usually move
past many lampposts before stopping.

3) The renormalization of the sum by the factor b(N)
corresponds to a natural physical requirement, which
follows from the original statement of the problem:
to replace the large steps by many smaller steps im-
plicitly refers to some common nature of the small
and large steps—the commonality is usually taken
to be self-similarity (see comment 4)—between the
steps of different scales.

4) The limit La is a stable fixed point of Eq. (1), in the
sense that for any N, DXi (i 5 1, N) independent and
identically distributed as La, DX [defined by Eq. (1)]
has the same distribution. This self-similarity implies
a group property for the renormalization factor. More
precisely,

b(N) 5 N1/a. (4)

5) The renormalization–self-similarity assumption can
be relaxed: a wider class of a continuous random
walks [including the (strong) universal walks defined
by comment 4] is obtained by only requiring that
any step must be able to be decomposed in N i.i.d.
elementary steps for any N. The corresponding laws,
also proposed by Lévy, are therefore called ‘‘infinite
divisible laws,’’ which clearly include Lévy stable
laws as particular cases.

6) We may mention that the second important parameter
(usually denoted by b) characterizes the asymmetry
of the law; b 5 0 in case of symmetry [a requisite
for the a 5 2 (Gaussian) case]. However, a requisite
for a multifractal process with a , 2 (Schertzer et
al. 1988) is that the law be maximally asymmetric
(zbz 5 1), in which case in the divergence of mo-
ments, the elementary step (DXi) occurs only on one
half-axis (e.g., only for positive steps). Such laws
are often called ‘‘extremal Lévy laws.’’

Rather than ‘‘densifying’’ the stopping points by tak-
ing l → 0, we can also obtain the classical Brownian
or Lévy limit by simply asking the drunkard to decide
how far to move left or right based not only on one
random event (trial), but on an increasingly large num-
ber of them. For example, the actual distance he moves
before stopping may be the sum of many independent
processes, which are thus ‘‘mixed.’’ Again, the gener-
alized central limit theorem will intervene. As discussed
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FIG. 2. Universality under the addition of random variables is il-
lustrated here by two random walks. Steps are chosen randomly to
be up, down, left, or right with equal probability. On the left of each
pair of columns, the steps are all of equal length, whereas on the
right, they are occasionally (randomly) five times longer (the lengths
have been normalized so that the variances are the same). For a small
number of steps, the walks are very different, but for a large enough
number, they tend to the same limit and do indeed look similar (we
thank C. Hooge).

below, these additive results have direct analogs in mul-
tiplicative cascade processes.

3. Universality of multiplicative processes:
Multifractals

Multiplicative cascade models of turbulence all work
in the following way: a random factor determines the
fraction of the rate of energy transferred from one large
eddy to one of its subeddies. Figure 3 shows in a 2D
cut how the large structures are multiplicatively mod-
ulated by smaller ones. We then iterate this construction
over the scale ratio L 5 L/l, where L is the larger scale
and l the smallest resolved scale, corresponding to the
resolution of our field. For the pedagogical discrete (in
scale ratio) cascade models, L 5 , where l0 is theNl0

(fixed) scale ratio for one step and N is the number of
steps. As L goes to infinity, we observe singularities:
at some points, the field goes to infinity (a singularity),
whereas over most of the space, it goes to zero (regu-
larities).

The resulting multifractal behavior of the field «l at
any intermediate scale ratio l (l # L; in the discrete
case, l 5 ; n # N) can be determined either by thenl0

scaling of its probability distribution, whose exponent
is the codimension3 c(g) of the corresponding singular-
ity g, as

Pr(«l . lg) ø l2c(g), (5)

or (equivalently) by the scaling of its different moments,
with corresponding moment scaling function [K(q)], as

^ & ø lK(q).q«l (6)

4. The debate about universality

If we simply iterate the model step by step (e.g., with
the fixed ratio of scale l0 in a discrete cascade model),
we indefinitely increase the overall range of scales L.
This already poses a nontrivial mathematical problem
(a weak limit of random singular measures; see Kahane
1985, 1987). Some antiuniversality prejudice has arisen
because of the pervasive use of discrete cascades to help
understand cascade properties. Indeed, within the frame-
work of discrete cascades, one is naturally lead to con-
sider the (nontrivial) small-scale limit simultaneously
(Yaglom 1966) with the limit of an infinite number of
interactions (random variables). However, the conver-
gence of the small-scale limit of «L implies the diver-
gence of its generator (GL)—that is, its logarithm:

«L ø .GLe (7)

This is perhaps easiest to see by considering the second

3 Here, c(g) is a statistical generalization (e.g., Schertzer and Love-
joy 1992) of the geometric notion of a fractal codimension (c) of a
set of dimension D embedded in a d-dimensional space: c 5 d 2 D.
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FIG. 3. A schematic diagram showing a two-dimensional cascade
process at different levels of its construction to smaller scales. Each
eddy is broken up into four subeddies, transferring a part or all its
energy flux to the subeddies. In this process, the flux of the field at
large-scale multiplicatively modulates the various fluxes at smaller
scales; the mechanism of flux redistribution is repeated at each cas-
cade step (self-similarity).

characteristic function KL(q) of the generator GL, which,
in order to satisfy Eq. (6), must behave as KL(q) ø K(q)
log(L). Therefore, there can be no central limit theorem
convergence for the generator due to this logarithmic
divergence! Indeed, the particularities of the discrete
models (e.g., the a model; see below) remain as a dis-
crete cascade proceeds to its small-scale limit. This has
prompted the opposite extreme claim that multiplicative
cascades could not admit any universal behavior (e.g.,
Mandelbrot 1989 states that ‘‘in the strict sense, there
is no universality whatsoever . . . this fact about multi-
fractals is very significant in their theory and must be
recognized . . .’’). Indeed, GW’s ‘‘explanation’’ for the
error of universality just repeats the above argument,
and they fail to understand the alternatives discussed in
Schertzer and Lovejoy (1987, 1991), Lovejoy and
Schertzer (1990), and Schmitt et al. (1992).

5. The alternative routes to universality

The general theme of alternative routes to universality
discussed in the series of papers devoted to universal
multifractals cited above is that instead of considering
only the iteration of the process down to smaller and
smaller scales, one can first consider interactions of this
process over a finite range of scales L, with larger and
larger numbers of its replicas, and then seek the limit

L → `. Two variations on this general theme have been
pointed out, as well as a possible combination:

1) ‘‘nonlinear mixing’’ of these processes, involving
multiplication of independent, identically distributed
processes over the same range of scales (illustration
in Fig. 4a); and

2) ‘‘scale densification’’ of the process,4 involving in-
troducing more and more intermediate scales—that
is, more and more (elementary) multiplication be-
tween two fixed scales (illustration in Fig. 4b).

In both cases, multiplying processes corresponds to
adding generators. A rather strong and straightforward
universal result is obtained if we have generators that
are stable and attractive under addition via some more
or less trivial rescaling and/or recentering.

We now establish two propositions concerning uni-
versal multifractals—that is, multifractal processes ad-
mitting Lévy or Gaussian generators (often respectively
misnamed log-Lévy and lognormal processes5). Prop-
osition 1, dealing with nonlinear mixing, is the most
straightforward. Schertzer et al. (1991) explicitly shows
how the nonlinear mixing of a models6 in this way leads
to a multifractal having a Gaussian generator.
PROPOSITION 1. The renormalized nonlinear mixing
over a finite range of scales of i.i.d. cascade processes
converges to a universal multifractal.
DEMONSTRATION. At each ratio of scale l , L (for a
discrete cascade model), or on any small interval of ratio
of scale [l, l 1 dl] (for a continuous cascade model),
the product of N independent identically distributedN«l

random variables with generators ,(i) (i)« Gl l

i5N

(i)« 5 P « , (8)N,l l
i51

admits the generator

N

(i)G 5 G . (9)ON,l l
i51

Taking the power 1/b(N) of «N,l rescaled by e2a(N) cor-
responds to rescaling GN,l by 1/b(N) and recentering it
by 2a(N). The generalized central limit theorem (sec-
tion 2) then applies to the generator.

The scale densification (Schertzer and Lovejoy 1987,

4 Using a ‘‘test field’’ argument (Schertzer and Lovejoy 1991), this
seems physically based.

5 They are misnamed because the dressed process (integrated over
a large range of scales) is only approximately log Lévy/lognormal
for low-order moments or low singularities; see Schertzer and Love-
joy (1997).

6 An a model is a two-state discrete cascade model originally in-
troduced in Schertzer and Lovejoy (1983) as a multifractal ‘‘desta-
bilization’’ of the monofractal b model.
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FIG. 4. (a) Schematic of nonlinear mixing: multiplication of independent, identically distributed processes
on the same scales, while the total range of scale is kept fixed and finite. (b) Schematic of scale densification
introducing intermediate scales, while keeping the total range of scale fixed and finite.

see Wilson et al. 1991 for numerical implementations7)
corresponds to a slightly different product.
PROPOSITION 2. The renormalized scale densification
over a finite range of scales of a cascade process con-
verges to a universal multifractal.
DEMONSTRATION. Considering the fixed range of scale
of ratio L (.1), we will subdivide it into N smaller and
smaller subranges, each of ratio of scale l ↓ 1 (or of
order 1): l 5 L1/N. The simplest case corresponds to
disjoint subranges. Overlapping subranges correspond
in fact to a combination of the previous case with non-
linear mixing. Due to proposition 1, we have only to
demonstrate proposition 2 in the case of disjoint sub-
ranges. In fact, we are formally back to the mixing case,
since the field «N,l and its generator GN,L over the range
of scales L are decomposed, respectively, into a product
and a sum of i.i.d. elements:

i5N
(i)« 5 P « (10)N,L l

i51

and

7 This paper simply explains how to numerically simulate universal
multifractals. Contrary to what is implied in GW, it does not introduce
any original theoretical arguments concerning universality—the dis-
cussion is purely pedagogical. The similarly miscited Lovejoy and
Schertzer papers (1990, 1995), the idea of universality is only applied
to data analysis. It is curious that GW do not reference the original
precise mathematics in appendix A of Schertzer and Lovejoy (1991),
which is in the same volume as the Wilson et al. (1991) paper.

N

(i)G 5 G , (11)ON,L l
i51

although the significance of and is not the sameN N« Gl l

as in proposition 1; the same renormalization of the
process (and correspondingly to its generator) leads to
the application of the generalized central limit theorem
to the generator.

COMMENTS.

1) As for random walks, the renormalization has its
importance. Mixing without renormalization corre-
sponds to the larger class of cascades continuous in
scale. By analogy with the continuous random walk,
their generators are infinitely divisible (Novikov
1994).

2) The failure of Yaglom’s (lognormal) conjecture
(Yaglom 1966) can be better understood due to the
fact that the renormalizing factor diverges as N1/a.

3) By densifying over a finite range of scales and re-
normalizing we obtain not only a finite limit for the
generator, but also for its exponential—that is, the
corresponding field «.

4) The second characteristic function [K(q)] of the limit
of the generator (over a fixed finite range of scales)
is well defined and should not be considered as an
approximation to the moment scaling function of the
universal process: K(q) is its moment scaling func-
tion without any approximation.
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As a consequence of either case, GW’s claim that
‘‘the error in [our] arguments is that infinite convolu-
tions of nonidentical distributions do not need to lie in
the domain of attraction of Gaussian or other Lévy stable
distribution,’’ is irrelevant because of the following:

1) In the case of nonlinear mixing, at each level of the
cascade, we multiply (proposition 1) i.i.d. fields or
add their corresponding generators with equal
weights.

2) In the case of scale densification, we indeed consider
(proposition 2) equal scale ratios—that is, sums of
i.i.d. random variables with equal weights.

3) The same comment applies to possible combinations
of nonlinear mixing with densification.

These elements directly clarify the circumstances that
lead to the existence of universality for discrete cascades
and, therefore (by proposition 2), indirectly for those
with continuous cascades as their limit. The next section
(which can be skipped without any prejudice for the rest
of the text) discusses this question directly in the frame-
work of continuous cascades, since GW’s claim seems
to stem from a misleading confusion between weights
of generators and weights of their Fourier components
for continuous cascades.

6. The weights of the generator

In order for the generalized central limit theorem to
hold, a necessary condition is that the independent ran-
dom variables in the sum [Eq. (1)] should be identically
distributed—that is, not only from the same basic type
of distribution, but also with equal weights/amplitudes.
Contrary to GW’s claim that we require unequal
weights, in this section we demonstrate that the gen-
erators do have equal (real) weights in spite of the fact
that their Fourier components must not have equal
weights. Furthermore, we have the following proposi-
tion.
PROPOSITION 3. (a) Unequal weights for the Fourier
components of the generator—the generator is a colored
and not a white noise—are a requisite condition for
obtaining equal weights for the generator over the N
spherical shells of a given scale ratio step l0 obtained
by dividing the cascade into N steps, where 5 L.Nl0

The corresponding N spherical shells are as follows in
the physical space:

L L
S 5 r # r , ; n 5 0, N 2 1; (12))n n11 n5 6l l0 0

or in the Fourier space, they are

n n11l l0 0Ŝ 5 k # k , ; n 5 0, N 2 1. (13))n 5 6L L

(b) More precisely, the generator of a universal cascade
process is a pink Lévy noise, obtained by a D-dimen-

sional (or C-codimensional) fractional integration over
a white noise (g0, called the ‘‘subgenerator’’), with

d d 1 1
C 5 ⇔ D 5 D [ d 2 C; 1 [ 1 . (14)1 2a a9 a a9

COMMENTS.

1) Gupta and Waymire (1993) confuse the weights of
the Fourier components with the weights of the
spherical shells (i.e., of the integral of the Fourier
components of a shell). Equality of the (real space)
generator weights requires inequality of the Fourier
weights.

2) Mixing corresponds to considering sums of i.i.d.
generators having identical wavenumbers; hence, the
question of weights is irrelevant for proposition 1.
For a given wavenumber, the ‘‘coloring’’ introduces
only a (constant) factor.

3) In the case of the scale densification route (whether
or not in combination with mixing), the colored na-
ture of the generator is, on the contrary, central.

DEMONSTRATION. Following these remarks, we concen-
trate on the less obvious case of pure scale densification.
Specifically, we decompose a cascade over a (fixed) finite
range of scales L into N steps of scale ratio l0 ( 5 L)Nl0

with corresponding spherical shells Sn [Eq. (12)] or Ŝn

[Eq. (13)] in the Fourier space. The link between con-
tinuous cascades and discrete cascades is the following:
at the cascade resolution L (i.e., at the scale l 5 L/L),
a white Lévy noise (g0,L) over a set A corresponds to a
sequence of i.i.d. Lévy variables supported by pixels of
cascade resolution size, covering8 A. The integration of
the noise over A corresponds to summing the corre-
sponding Lévy variables. The number Nn of these pixels
covering Sn varies with scale as Nn ø (L/ln)d; therefore,
in order that the sum over each spherical shell Sn has the
same weight (i.e., independently of n), the Lévy variables
on Sn have to be renormalized [due to Eq. (1)] by the
factor bn, which scales as

d/a
L

1/ab ø b(N ) 5 N ø . (15)n n n n1 2l

The weighted Lévy noise g0,L/bn has individually un-
equal weights, but, indeed, their sum/integral over any
Sn does have identical weights.

The second part of the proposition is demonstrated
by considering the limit l0 ↓ 1 (N ↑ `), the renormal-
ization on each sphere Sn by the factor bn, which cor-
responds to a convolution by the scaling of Green’s
function G(x) } zxz2C; C 5 d/a (a multiplication by its

8 If they are not disjoint, the pixels should have a negligible in-
tersection.
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Fourier transform Ĝ(k) } zkz2D; D 5 d 2 D in Fourier
space). Therefore, the generator (at any cascade reso-
lution) is obtained by fractional integration of order D:

GL(x) 5 g0,L * zxz2C 5 ∫ g0,L(x9)zx 2 x9z2C ddx9, (16)

or equivalently in Fourier space,

L(k) 5 k2Dg0̂,L(k).Ĝ (17)

7. Strong versus weak universality

If for any physical reason the ‘‘strong’’ universality
based on renormalization as described above fails to
hold, weaker types of universality may still prevail
(Schertzer et al. 1995). These will involve relationships
between the generator and a few of its iterates that are
looser than rescaling and/or recentering. These looser
relations correspond to a different subclass of infinitely
divisible generators, since, as already mentioned, any
continuous cascade generator is infinitely divisible. For
instance (as noted by She and Waymire 1995), the log-
Poisson statistics considered by She and Leveque (1994)
and Dubrulle (1994) provide a particularly simple ex-
ample, which turns out to be a (nonrenormalized) con-
tinuous limit of the a model (Schertzer et al. 1995)!9

More generally, as an infinitely divisible law (e.g., Feller
1971) corresponds to a random (Poisson) sum of jumps,
there is indeed a kind of weak universality if the dis-
tribution10 of jumps is defined by only a limited number
of parameters.

Although both types of universality exist mathemat-
ically, strong universality is physically more appeal-
ing—it corresponds to a renormalization property of the
generator. A priori, one must look for weak universality
only in the case of a failure of strong universality. In
any case, it seems that strong universality is supported
by the experimental evidence in the atmosphere, in-
cluding in rain (Lovejoy and Schertzer 1995).

8. Conclusions

The multifractal approach yields a convenient frame-
work for the analysis and simulation of highly nonlinear
meteorological fields over a wide range of scales and
intensities. A priori, this approach requires the deter-
mination of an infinite hierarchy of singularities and
their associated codimensions. Fortunately, thanks to the
general physical notion of universality, we emphasized
that it is possible that this hierarchy could be fully de-
terminable by a small number of fundamental expo-
nents. We have given some details about two possible
scenarios as well as about their possible combination,

9 The renormalized limit being the (misnamed) ‘‘lognormal’’ mul-
tifractal (Schertzer et al. 1995).

10 This ‘‘Lévy canonical measure’’ need not even be a probability
measure.

each of which allows us to reach a strong type of uni-
versality in a straightforward manner. These routes to
universality rely only on a decomposition of the gen-
erator into (possibly infinitesimal) steps of equal
weights, whereas GW’s counter argument presupposed
a decomposition based on unequal weights. The origin
of this misunderstanding was traced to an erroneous
interpretation of the significance of the numerical recipe
pedagogically discussed in the cited Wilson et al. (1991)
paper. While each generator is a noise with decreasing
Fourier amplitudes, universality is still obtained by sum-
ming (i.i.d.) generators having equal weight on spherical
shells of identical scale ratio and, hence, does not in-
volve ‘‘convolutions of independent but nonidentical
distributions’’ at all. In short, in spite of some confusion,
the mathematical existence of universality is now rather
straightforward; the real question is what the physically
relevant mechanisms are. On the whole, we are con-
vinced that this well-founded notion of multifractal uni-
versality is the key for the rapid development and further
understanding of meteorological fields.
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