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Introduction: Chaos vs. Cosmos

Perhaps the oldest and most basic philosophical question is the
origin of order from disorder; indeed the terms of the ancient
Greek dichotomy chaos/cosmos are still with us. Although this
problem is posed in all areas of life, it is undoubtedly in physics
where it has reached its fullest and most precise expression,
concomitant with the recent "chaos revolution," which has
changed our outlook in so many areas. In the revolution's wake,
the physics notion of deterministic chaos is invading territory as
distant as literature and criticism.
While the validity of this attempted conceptual transplant can be
criticized, the relevance of the notion to its original domain of
application, physics, is rarely discussed. In this essay, we criticize
the underlying philosophy of deterministic chaos as well as many
of its significant claims to applications. We then show the need to
develop a rather different framework which we call stochastic
chaos. While we believe this alternative to be quite broad,
potentially encompassing much of our atmospheric and
geophysical environment, we do not claim exclusivity. Rather we
view stochastic chaos as complementary to deterministic chaos
with the former being necessary in systems involving many
interacting components and the latter being useful when only a
few corre-

Fig. l The temple at Khajuraho showing a small part of the hierarchical
structure within structure architecture executed following an essentially
self-similar algorithm in accord with the Hindu cosmos of smaller and
smaller structures within structures.



sponding degrees of freedom are important. Both model types
belong in the physicist's toolbox. While we are primarily con-
cerned with providing a critique within physics, we have endeav-
ored to do so in a widely accessible way.1

The utility of stochastic chaos lies primarily in its ability to
exploit a (nonclassical) symmetry principle called "scale
invariance," associated with fractals and multifractals. We will
argue that the ubiquity of fractals in nature is an indication of the
wide scope for applying stochastic chaos models. The basic idea
of scale invariance is that small parts of a scale invariant object
are similar to the whole, thus its relevance to art and architecture.
For example, Trivedi argued that Indian temples from at least the
tenth century onward were explicitly constructed according to
fractal mathematical algorithms (fig. 1). Similarly, Briggs and
Peat suggested that certain examples of Celtic art exemplify a
deliberate fractal type construction.2 The connection between art
and fractals is occasionally explicit, for example, the photo album,
as in "An Eye for Fractals" by McGuire.3 More recently, a shared
interest in scale invariant clouds lead us to collaborate with
sculptor M. Chin on a projection piece at the StoreFront for Art
and Architecture, New York City, entitled "Degrees of Paradise."
This piece featured an evolving multifractal cloud simulation
displayed on 16 monitors suspended from the ceiling.4

Order vs. Disorder and the Scientific World View

Although God(s) were traditionally invoked to explain order, their
role was drastically diminished with the advent of the Newtonian
revolution. By the middle of the nineteenth century, these laws
had become highly abstract (thanks notably to Laplace, Hamilton,
and Lagrange), while the corresponding scientific world view had
become determinism. In this regard probably the most extreme
views have been attributed to Laplace (1886), who went so far as
to postulate a purely deterministic universe in which "if a
sufficiently vast intelligence exists" it could solve the equations of
motion of all the constituent particles of the Universe. In
Laplace's universe, such a divine calculator could determine the
past and future from the present in an abstract high dimensional
"phase space."
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Unfortunately, due to man's imperfect knowledge we are
saddled with measurement errors that clearly involve notions of
chance. This lead Laplace (following Voltaire) to identify chance
and probability with ignorance. Much later, in 1870, probability
was explicitly introduced into the formulation of physical laws by
James Clerk Maxwell. This is the basic idea of classical
Statistical Mechanics: that the unobserved or unknown degrees of
freedom ("details"), are the source of "random" behavior such as
fluctuations about a mean temperature. Although highly partial
information is the rule, macroscopic objects are typically
described by parameters such as temperature, pressure, and
density. Most of the degrees of freedom, such as the positions and
velocities of the constituent particles, are unimportant and can be
reduced to various averages using statistics. Hence, the
dichotomy of objective deterministic interactions of a large
number of degrees of freedom coexisting with randomness
arising from our subjective ignorance of the details.

Starting with Gibbs and Boltzman, this identification of
statistics with ignorance evolved somewhat to the more objective
identification of statistics with the irrelevance of most of the
details;5 however, this did not alter the deeply held prejudice that
statistics were a poorman's substitute for determinism. A
corollary to this was the hierarchical classification of scientific
theories; fundamental theories being deterministic, the less
fundamental involving randomness or ignorance.

Since then—even in spite of the Quantum revolution—this
prejudice has become fairly entrenched even though a number of
developments (especially in deterministic and more recently, in
stochastic chaos) have occurred which make it obsolete.
Unfortunately there has not been an adequate conceptual
reassessment. In this essay, we outline these developments, and
propose an alternative framework for chaos that we believe
overcomes the limitations of strict determinism: stochastic chaos.

The Deterministic Chaos Revolution: The
Butterfly Effect

The rigid "Newtonian" or "mechanical determinism" of Laplace
runs into trouble as soon as one attempts to solve the equations of
motion for anything but the most simple systems: as recognized
by Poincare, three particles are already sufficient.6 However, the
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general property of nonlinear systems of having "sensitive
dependence" on initial conditions only became widely known in
the 1970s. Better known as the "butterfly effect," this term
denotes me general property of nonlinear systems to amplify
small per-turbations—such as the possible large-scale
consequences of the flapping of a butterfly's wings on the
atmospheric circulation. Even if Laplace's calculator had both
almost  perfect information at an initial instant (i.e. only
infinitesimally small perturbations are present) and infinite
precision in its numerics, the predicted future would not in fact be
predictable. On the contrary, finite random-like "chaotic"
behavior would result. With fluids, this led to the idea that such
"turbulence" arose through a short (rather than infinite) series of
instabilities, contrary to the pioneering idea of Landau.7
However—and this crucial point has often been
overlooked—even if only three instabilities are necessary, the
asymptotic state of "fully developed fluid turbulence" still
depends on an infinite number of degrees of freedom!

In addition to the butterfly effect, two additional key
developments were necessary to make the "chaos" revolution. The
first was the reduction of the scope of study to systems with a
small number of degrees of freedom. The second was the
discovery that under very general circumstances that
quantitatively the same behavior could result—the celebrated
Feigenbaum con-stant. This universality finally allowed for
quantitative empirical tests of the theory. By the early 1980s these
developments had led to what could properly be called the "chaos
revolution."

Later Developments and Problems

The basic outlook provoked by the developments in chaos (that
random-like behavior is "normal" and not pathological) is valid
irrespective of the number of degrees of freedom of the system in
question. The success of systems with a small number of degrees
of freedom led to some bold prognostications, such as "junk your
old equations and look for guidance in clouds' repeating
patterns."9 This fervor was unfortunately accompanied by a drastic
restriction of the scope of chaos to meaning precisely
deterministic systems with few degrees of freedom. The
restriction, coupled with the development of new empirical
techniques, led to a major focus on applications and a number
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of curious, if not absurd, claims.
It is perhaps easiest to understand these aberrations by

considering the example of the climate system (fig. 2). Numerical
modeling the climate has always been one of the great scientific
challenges, if only because of the large (practically infinite)
number of degrees of freedom assumed to be involved. However,
when new chaos tools were applied to the data; it was even
claimed10 that only four degrees of freedom were required to
specify the state of the climate." Attempts were even made to
prove objectively from analysis of data that, in spite of
appearances, random-like signals were in fact deterministic in
origin.

These attempts were flawed at several levels, the most
important of which is philosophical: the supposition that nature is
(ontologically) either deterministic or random. In reality, the best
that any empirical analysis could demonstrate was that specific
deterministic models fit the data better (or worse) than specific
stochastic ones.

The Alternative for Large Numbers of Degrees of Freedom
Systems: Stochastic Chaos

We have argued that by the mid 1980s, the ancient idea of chaos
had come to take on a very narrow and restrictive meaning,
essentially characterizing deterministic systems with small
numbers of degrees of freedom. The philosophy underlying its use
as a model for complex geophysical, astrophysical, ecological, or
sociological systems—each involving nonlinearly interacting
spatial structures or fields—has two related aspects, each of which
we argue are untenable. The first is the illogical inference that
because deterministic systems can have random-like behavior,
that random-like systems are best modeled as not random after all.
The second is that the spatial structures which apparently involve
huge variability and many degrees of free-dom spanning wide
ranges of scale, can in fact be effectively reduced to a small finite
number. In short, at a philosophical level, deterministic chaos is
an attempt to resurrect Newtonian determinism.
In order to overcome the limitations of deterministic modeling, we
note that the axiomatization of probability theory early in this
century clarified the objective status of probabilities and
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made the idea that statistics is somehow an expression of
ignorance rather outdated. We follow general usage in denoting
such objective randomness as "stochastic." The fundamental
characteristic of stochastic theories—models which distinguishes
them from their deterministic counterparts is that they are defined
on probability spaces (usually infinite dimensional), whereas their
deterministic counterparts are only manageable on low
dimensional spaces.

The stochastic chaos alternative for nonlinear dynamics with
many degrees of freedom is now easy to state: contrary to
Einstein's injunction that "God does not play dice," we seek to
determine "how God plays dice" with large numbers of interacting
components.12

Objections to Stochastic Chaos

Before continuing, we should briefly consider various objections
to the use of stochastic theories/models.

Fundamental theories should be deterministic : Ever since sta-
tistical mechanics forced physicists to embrace stochasticity in a
major physical theory, there has been an attempt to discount the
significance of this fact by claiming that at least fundamental
theories should be deterministic. However, since Quantum
Mechanics itself admits a completely consistent stochastic
interpretation,13 it is hard to avoid the conclusion that stochastic
the-ories can also be fundamental.

Causality requires determinism: Another reason for clinging to
determinism is the common misconception that causality is
identical to determinism, or equivalendy, that indeterminism
implies a degree of acausality. This view has already been
criticized by one of the founders of quantum mechanics. Max
Born.14 At a formal level, causality is nothing more than a specific
type of objective determination or necessity, and, as emphasized
by Bunge,15 it by no means exhausts the category of physical
determination that includes other kinds of lawful
production/interconnection, including statistical determination.

Structures are evidence of determinism: Another common
prejudice is the idea that the phenomenological identification of
structures is a kind of signature of determinism, while the
presence of variability without "interesting" structures is a
symptom
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of noise. The inadequacy of this view of randomness is brought
home by the (still little-known fact) that stochastic models can (in
principle) explain the same phenomena; the key is a special kind of
"stochastic chaos" involving a scale invariant symmetry principle
in which a basic (stochastic) cascade mechanism repeats scale after
scale after scale, from large to small scales, eventually building up
enormous variability. The result, multi-fractal fields, is the subject
of much of the remainder of this essay. The main point is that
unlike classical noises, such stochastic processes specifically have
extreme events called "singularities," which are strong enough to
create structures. There is insufficient "self-averaging," the result
is far from a featureless white noise.

Physical Arguments for Stochastic Chaos:
The Example of Turbulence

We have already noted that since stochastic processes are defined
on infinite dimensional probability spaces, stochastic models are a
priori the simplest whenever the number of degrees of freedom is
large. In particular, we argue that stochastic chaos is particularly
advantageous with respect to classical approaches when a
nonclassical symmetry is present: scale invariance.

Consider the example of fluid turbulence. The basic
dynamical, and deterministic ("Navier-Stokes"), equations of fluid
motion have been known for nearly 150 years, yet the fundamental
problem remains whole: how to reconcile the (violent)
nonclassical turbulent statistics/structures with the equations. If
only because of this relative lack of progress, turbulence must be
counted among the most difficult problems in physics. The main
difficulty is the presence of a very strong type of inhomogeneity
called "intermittency." Not only does the "activity" of turbulence
induce inhomogeneity, but the activity itself is inhomogeneously
distributed. There are "puffs" of (active) turbulence inside "puffs"
of (active) turbulence.16 It should now be no surprise that the
cascade paradigm provides a convenient framework to study this
phenomenology, yielding concrete models and interesting
conjectures. In particular, it is now increasingly clear that a general
outcome of stochastic cascades are multi-fractals, as shown below.
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Scale Invariance Symmetries and Cascades:
Cascades and Multifractals

Scale invariant cascades have served as a paradigm of turbulence,
at least since Richardson's celebrated poem in his 1922 book,
Weather Forecasting by Numerical Process:

Big whorls have little whorls that feed on their velocity, and little whorls have
smaller whorls, and so on to viscosity (in the molecular sense).. .

Initially this cascade was nothing more than a conceptual scheme
for explaining the transfer of energy from the planetary scales
(where the pole/equation temperature gradient forces the large-
scale circulation), down to the small scales (roughly one
millimeter) where it is dissipated by viscosity. However, a key
feature of the atmospheric circulation (and more generally of
turbulence) is that it is far from being homogeneous; it is
intermittent in both time and space. In order to model this
intermittency, many explicit multiplicative cascade models were
developed. The simplest ("beta model") is obtained by making the
simplistic assumption that at each cascade step, the turbulence is
either dead or alive. Since the same mechanism (the "coin tossing"
to decide whether the daughter eddy is kept alive or is killed) is
repeated unchanged, scale after scale, the process is scale
invariant; in the small scale limit the "active" regions form a
geometrical fractal set of points.

Ignoring for the moment the artificiality of the straight
construction lines and the factor of two break-up of eddies into
subeddies, we can now take a step towards realism by introducing
a slight modification: we continue to flip coins, but now we
multiplicatively "boost" or "decrease" the energy flux density
rather than boosting or killing the eddies (the "alpha model"). The
result is a multifractal field with an infinite number of levels of
activity, depending on the sequence of boosts and decreases: the
sets of points exceeding a given intensity form geometric fractal
sets, except that the fractal dimension (i.e. the sparseness) of each
fractal set decreases as the intensity level increases.

The "alpha model" is an example of what physicists call "toy
models": they are simple without being simplistic; their generic
consequences are quite nontrivial. In this case, the alpha model
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50       100      150      200 Time (kyr BP)
Fig. 2 High resolution (2oo year average; !O18 record (parts per thousand of oxygen 18
compared to to oxygen 16/,Coming from the recent GRIP Greenland ice core; these values are
believed to be roughly proportional to the past temperature. Sharp fluctuations occuring on small
time scales are clearly visble; note that the sudden warming associated with the end of the last ice
age (about 10.000 years ago, far left) is by no means ther only sudden transition. Schmitt et al
shows that this series is scale invariant having statistics near the theoretically predicted universal
multifractal type (Schmitt et al, 1995).

Fig. 3 Multifractal cloud and mountain from the exposition" "Strange Attractors Signs of
Chaos," September 14 -; November 26. 1989. at the museum for contemporary art, New
York (G. Sarma. J. Wilson).

SHAUN LOVEJOY AND D. SCHERTZER
89



has all the essential ingredients of the more sophisticated models
needed for realism. Specifically, the "continuous cascade" process
eliminates the discrete (factor 2) scale ratio—and hence the ugly
straight-line artifacts as well as the boost/decrease dichotomy. The
most important point about continuous cascades is that they
generically yield "universal multifractals," special multifractals
which occur irrespective of the details of the basic dynamical
mechanism and depend on only three basic parameters, just like
random walks discussed earlier (fig. 4).I7

The Multifractal (Stochastic) Butterfly Effect and Self-Organized Criticality

The significance of sensitive dependence on initial conditions, the
"butterfly effect," is that if the system is sufficiently unsta-ble, then
a small disturbance can grow, totally modifying the future state of
the system. In the atmosphere this would mean that the sequence of
weather events (which would include Texas tornadoes in Lorenz's
metaphor) would be different, although presumably not the climate
(which is a kind of ill-defined "average weather"). In our stochastic
multifractal cascade model, we may identify an analogous
"stochastic butterfly effect" by studying the small scale limit of the
cascade and by determining under which conditions the small scale
can dominate the large.

Contrary to "additive" stochastic chaos, such as Brownian
motion, the turbulent activity around a given point is not changed
by smaller and smaller amounts as cascades proceed to smaller and
smaller scales; rather, it is modulated by random factors. It turns
out that these lead to extreme events that are governed by
nonstandard statistics characterized by algebraic (rather than
exponential) probability tails, exactly the same type as those
associated with avalanches and "self-organized critical
phenomena."18 However, contrary to Bak's original "sand pile
model," which is a system nearly at thermodynamic equilibri-

Fi'g. 4 Universality of random variables illustrated by two random walks. Steps are chosen randomly to be up,
down, left, or right with equal probability. On the left of each pair of columns, the steps are all of equal length,
whereas on the right of each pair of columns they are occasionally five times longer (the lengths have been
normalized so that the variances are the same). For a small number of steps, the walks are very dijferent, but for
a large number, they tend to the same limit and look similar.
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um, one has to consider a nonclassical self-organized criticality19 in
a stochastic framework. This is the multifractal/cascade version of
the butterfly effect: most of the time, the flapping of the wings will
lead to nothing special; the perturbation will be small compared to
the existing large-scale weather structures. However, in all
probability, the overall effect of the small-scale dynamics (which
includes those small enough to be perturbed by a butterfly's
flapping) will occasionally dominate the effect of the large-scale
dynamics. This specific cascade prediction has been verified
empirically in a dozen or so geophysical fields.

Nonclassical (Anisotropic) Zooms and Generalized Scale Invariance

Up to this point, we have considered scale invariance intuitively
using the example of cascade processes, in which a simple mech-
anism is repeated scale by scale (coin tossing and multiplicative
modulation). This mechanism is the same in all directions
(isotropic); the resulting fractals and multifractals are therefore
"self-similar" in the sense that a small piece when blown up using
a standard isotropic "zoom" statistically resembles the whole. With
the minor exception of "self-affinity," which involves squashing
along a coordinate axis, self-similarity is the very special case
discussed by Mandelbrot,20 and in most of the fractal/multifractal
literature. However, no natural system is exactly isotropic; many
physical mechanisms exist that can introduce preferred directions,
the most obvious being gravity. Gravity, for example, leads to a
differentially stratified atmosphere: ocean and earth interior.
Sources of anisotropy that can lead to differential rotation are the
Coriolis force (due to the earth's rotation) or stresses (in fluids or
rock) induced by external boundary conditions. Contrary to the
conventional wisdom equating scale invariance with self-
similarity, and hence with isotropy, scale invariance still survives,
although the notion of scale undergoes a profound change. The
resulting formalism of Generalized Scale Invariance (GSI)
involves essentially two ingredients.21 The first is the definition of
a unit (reference) scale; the second is a family of scale-changing
operators (i.e., rules) that describe how the unit scale is blown up
or down. The fundamental restriction is that the rule should only
involve ratios of scales so that there is no absolute notion of size

92 STOCHASTIC CHAOS, SYMMETRY, AND SCALE INVARIANCE



(the reference scale is arbitrary). Mathematically, this implies that
the scale changes form a mathematical group with a corresponding
group generator. Perhaps the key factor to note is that the great
differences in the appearance of the shape at different scales does
not imply the existence of a characteristic scale whatsoever. Any
member of the family could be taken as the unit shape and mapped
onto any of the others simply by blowing up or down
anisotropically by an appropriate ratio. Physically, in GSI the
distribution of conserved (turbulent) fluxes determines the notion
of size; this relation between scale and dynamics is analogous to
that of General Relativity between the distribution of matter and
energy and the metric.

The most interesting application of this is in the modeling and
analysis of multifractals, for example clouds with various scale
invariant generators (fig. 3). Changing the generator has the effect
of changing cloud or mountain morphology/type. With GSI, we
may no longer infer that such phenomenological differences in
appearance necessarily correspond to differences in dynamics.

Symmetries and Dynamics

Having argued that even for a mathematically well defined
deterministic problem such as hydrodynamic turbulence (the
Navier-Stokes equations), the basic obstacle is an adequate
treatment of the scale invariance symmetry: the "puffs within
puffs." On the other hand, with practically no ingredients beyond
this symmetry, stochastic cascades provide immediate insights:
universal multifractals in which all the statistics are characterized
by only three fundamental exponents. Just as a complete
description of the dynamical equations is theoretically sufficient to
specify the evolution of a system, a complete knowledge of the
relevant symmetries will also suffice. This idea, applied to the
turbulent cascade approach suggests that the latter would be
equivalent to the usual deterministic approach if the remaining
symmetries (i.e., other than scale invariance) of the fluid equations
were known.
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The Emergence of Stochastic Chaos from Determinism

Physics is an evolving hierarchy of interlocking theories.
Statistical mechanics, at the same time, has accustomed us to the
fact that methods and concepts necessary to understand large
numbers of degrees of freedom (atoms/molecules in the latter) are
qualititatively different from those that describe only a few. While
we expect no contradiction between the theories that describe
systems of a few and of many degrees of freedom (e.g., between
classical mechanics and classical statistical mechanics), the idea
that stochasticity is a significant "emergent quality" is not new.

In the frontier between low and high numbers of degrees of
freedom, randomness emerges from determinism. Although
hydrodynamic turbulence is an apparently mathematically well-
defined deterministic problem, and few doubt the mathematical
correctness of the equations (or their physical usefulness when
only a few degrees of freedom are excited), they have been
singularly unhelpful in elucidating the nature of turbulence with
many degrees of freedom. A promising recent approach is a
deterministic cascade model, the "Scaling Gyroscopes Cascade,"22

which confirms with many new insights the general intuition that
the chaos of turbulence is related to an infinite dimensional space
(the infinite number of tops in SGC); it is also related to the
complex interplay between determinism and randomness rather
their simple opposition.

The Consequences: How Bright, How Hot, How Windy, is the
Coast of Brittany?

We have argued that nonlinear scale invariant dynamics
generically leads to a special type of stochastic chaos (universal
multifractals) and that the existence of fractal structures is
evidence for such multifractality. The basic feature of such scale
invariant systems is that all their usual properties depend on the
scale at which they are measured or observed, the exceptions
being precisely the exponents such as the fractal dimensions
which are scale invariant. Probably the first explicit recognition of
the resolution dependence problem was by Perrin on the question
of the tangent of the coast of Brittany;23 the mathematically
equivalent problem of the length was addressed in the 1950s by
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Steinhaus for the left bank of the river Vistula. Richardson
quantified this effect empirically by measuring the scaling
exponents of the coast of Britain and of several frontiers using the
"Richardson dividers" method.^ Shortly afterwards, in the 1967
celebrated paper, "How Long is the Coast of Britain?," Mandelbrot
interpreted Richardson's scaling exponent in terms of fractal
dimensions.25 By the i98os, it had become generally accepted that
the length of a coastline was primarily a function of the resolution
of the map.

Turning to the example of the atmosphere, the relevant
multifractal question is "how hot, how windy, how wet, how bright
is the coast of Brittany?"26 There is now growing evidence
(especially of the multifractal nature of cloud brightness fields as
measured by satellite) supporting widespread multifractality.
Hence, the answer depends on the space-time resolution at which
the temperature, wind speed, and rain rate is measured.
Limits to Predictability and Stochastic Forecasting

There are major differences between the way in which
deterministic and stochastic systems are forecast. We have already
outlined the usual approach for forecasting global weather, which
involves solving the highly nonlinear governing equations starting
from very limited initial data, an approach limited by the
computer's inability to model structures smaller than several
hundred kilometers. The scale invariance symmetry is broken:
over the remaining factor of 100 million or so the atmosphere is
assumed homogeneous. In contrast, stochastic forecasts respect the
scale invariance symmetry and (statistically) take into account
interactions over the entire range of about ten billion in scale.

Considering next the nature of the stochastic forecast, we find
that it is conceptually quite different from its deterministic
counterpart. The deterministic forecast attempts to predict the
smallest detail far ahead in the future. In contrast, a stochastic
forecast could be directy related to the probability of an event
occurring, as well as the statistical reliability of that probability.
While conventional deterministic forecasts have been the object of
40 years or more of scientific development, the corresponding
stochastic forecasts are still in their infancy. They are nevertheless
promising.27
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Conclusions
The idea of chaos can be traced back to antiquity, in art, at least to
Da Vinci. Ever since Newton provided the prototypical model of
deterministic, regular, nonchaotic motion for the solar system,
chaos has been a recurring theme in physics. Laplace and others
elevated this Newtonian determinism to a pedestal: all physical law
should aspire to its form, randomness and chance being
disdainfully ascribed to ignorance (Voltaire's "chance is nothing").
However, as physical theory evolved to encompass more
phenomena, physics was led to the introduction of physical laws
featuring intrinsic randomness, starting with Maxwell's distribution
of molecular velocities. Initially, this randomness was regarded as
an expression of ignorance; in the twentieth century, however,
probability theory was axiomatized to make clear that randomness
can be objective, or "stochastic." While it seems only natural to
model chaotic, randomlike behavior with stochastic models, this
obvious step has faced resistance due to strong residual prejudices
in favor of the Newtonian world view. With the discovery in the
1960s that even simple nonlinear deterministic systems with as few
as three degrees of freedom (interacting components) could have
randomlike chaotic behavior, unreconstructed Newtonian
determinism experienced a revival; such "deterministic chaos"
promised to provide a deterministic explanation of randomness,
finally placing it within the Newtonian orbit. The study of
nonregular, nonsmooth behavior became suddenly respectable;
chaotic behavior was discerned in field after field and by the end of
the 1970s it was rapidly becoming the norm. This fundamental
change in world view is the enduring kernel of the "chaos
revolution."

An unfortunate effect of the revolution was the restriction of
the notion of chaos to systems with deterministic evolution laws;
further developments led to a further important limitation. Initially,
nonlinear systems with few degrees of freedom were studied as
simplified caricatures of systems with many degree of freedom,
especially fluid turbulence. However, following the explosion of
developments in these simple systems, deterministic chaos became
correspondingly restricted. By the 1980s the caricature was often
mistaken for the reality, leading to a number of unfortunate
attempts to explain many complex random-
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like systems (including the weather and climate) with only a handful of degrees
of freedom.

In this essay we have argued that when many interacting components are
present, as is typically the case in turbulent or turbulent-like systems involving
nonlinearly interacting spatial structures/fields, a more appropriate paradigm is
"stochastic chaos," objective random models involving probability spaces and
an infinite number of degrees of freedom. Indeed, following the example of
statistical mechanics, stochastic approaches are natural to use in high
dimensional systems. Stochasticity is then a quality "emergent" from low
dimensional deterministic theories as the latter are extrapolated to many degrees
of freedom.

To date, the primary utility of stochastic chaos is the facility with which it
enables us to exploit a nonclassical symmetry: scale invariance. Scale invariance
is much richer than is usually supposed, providing for example, a potentially
unifying paradigm for geophysics (and possibly astrophysics). Probably the
most familiar examples of scale invariant objects are geometric fractal sets;
however, fields such as the temperature, wind, and cloud brightness/density are
much more interesting. These are multifractals, which are generically produced
in cascade processes. Such cascades involve a dynamical generator which
repeats scale after scale from large to small structures (in the atmosphere,
eddies). In this way, it builds up tremendous (non-classical) variability, which
need not be self-similar (isotropic, the same in all directions). Such anisotropic
scale invariance requires the formalism of Generalized Scale Invariance (GSI) to
define new (anisotropic) ways of"zooming"/"blowing up" structures. In GSI the
system's dynamics determines the very notion of size. Although this has not yet
occurred explicitly, we may expect that these new notions of size and scale will
find both scientific and artistic expression.

Twenty years ago, the dominant scientific view was that most interesting
physical systems were "smooth," "regular," and predictable. The deterministic
chaos revolution has made such a view seem strangely antiquated; chaotic,
unpredictable variability is now the norm. In spite of this undeniable change in
viewpoint, there have been few decisive applications. We believe that this is
because most interesting systems have many degrees of free-
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dom; therefore, stochastic chaos combined with the scale invariance
symmetry ("multifractals") may allow the chaos revolution to take a
step forward by bringing large numbers of degrees of freedom systems
into its purview.
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