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Abstract:  In part I, we considered the zero-dimensional heat equation showing quite generally that conductive – radiative 

surface boundary conditions lead to half-ordered derivative relationships between surface heat fluxes and temperatures: the 

Half-ordered Energy balance Equation (HEBE).  The real Earth – even when averaged in time over the weather scales (up to 10 

≈ 10 days) – is highly heterogeneous, in this part II, we thus extend our treatment to the horizontal direction.  We first consider 

a homogeneous  Earth but with spatially varying forcing, both on a plane and also on the sphere: we compare our new equations 

with the canonical 1-D Budyko-Sellers equations.  Using Laplace and Fourier techniques, we derive the Generalized HEBE 

(the GHEBE) based on half-ordered space-time operators.  We analytically solve the homogeneous GHEBE, and show how 

these operators can be given precise interpretations. 15 

We then consider the full inhomogeneous problem with horizontally varying diffusivities, thermal capacities, climate 

sensitivities and forcings.  For this we use Babenko’s operator method which generalizes Laplace and Fourier methods.  By 

expanding the inhomogeneous space-time operator at both high and low frequencies, we derive 2-D energy balance equations 

that can be used for macroweather forecasting, climate projections and for studying the approach to new (equilibrium) climate 

states when the forcings are all increased and held constant. 20 

1 Introduction 

In part I, we showed that when the surface of a body exchanges heat both conductively and radiatively, that its flux depends 

on the half order derivative of the surface temperature.  This implies that energy stored in the subsurface effectively has a huge 

power law memory.  This contrasts with the usual phenomenological assumption used notably in box models (including zero 

dimensional global energy balance models) that the order of derivative is an integer (one) and that on the contrary, the memory 25 

is only exponential (short).  The result followed directly by assuming that the continuum mechanics heat equation was obeyed 

and the depth of the media was of the order of a few diffusion depths; for the Earth, perhaps several hundred meters.   The 

basic result was a classical application of the heat equation barely going beyond results that [Brunt, 1932] already found “in 

any textbook”. 

A consequence was that although Newton’s law of cooling is obeyed, that the temperature obeyed the half-order 30 

energy balance equation (HEBE) rather than the phenomenological first order Energy balance Equation (EBE).  When applied 

to the Earth, the HEBE and its implied long memory explains the success of both climate projections through to 2100 [Hebert, 

2017], [Lovejoy et al., 2017], [Hébert et al., 2020] and macroweather (monthly, seasonal) temperature forecasts [Lovejoy et 

al., 2015], [Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 2020a; Del Rio Amador and Lovejoy, 2020b].  

We also considered the responses to periodic forcings showing that surface heat fluxes and temperatures are related by a 35 

complex thermal impedance (Z(w), w is the frequency).  In the Earth system, Z(w) = s(w) where s(w) is the complex climate 

sensitivity that we estimated from a simple semi-empirical model. 

Although in part 1 we discussed the classical 1-D application of the heat equation to the Earth’s latitudinal energy balance 

(Budyko-Sellers models) - especially their ad hoc treatment of the surface boundary condition – we restricted the discussion 



3 
 

to zero horizontal dimensions.  In this part II, we first (section 2) extend the part I treatment to systems with homogeneous 40 

properties but with inhomogeneous forcings, first in the horizontal plane (section 2.1, 2.2), then - following Budyko-Sellers - 

latitudinally varying on the sphere (section 2.3).   The homogeneous case is quite classical and can be treated with standard 

Laplace and Fourier techniques, it leads to the (horizontally) Generalized HEBE: the GHEBE.  Although the GHEBE has a 

more complex (space-time) fractional derivative operator that is unlike anything we know of in the literature - like the HEBE, 

it can nevertheless be given precise meaning via its Green’s function.   45 

In section 3, we derive the inhomogeneous GHEBE and HEBE needed for applications.  This is done by using of 

Babenko’s method [Babenko, 1986] which is essentially a generalization of Laplace and Fourier transform techniques.  The 

challenge with Babenko’s method is to interpret the inhomogeneous space-time fractional operators.  Following Babenko, we 

do this using both high and low frequency expansions corresponding respectively to processes dominated by storage and by 

horizontal heat transport.  The long time limit describes the new energy balance climate state that results when the forcing is 50 

increased everywhere and held fixed: for the model this corresponds to equilibrium.   We also include several appendices 

focused on empirical parameter estimates (appendix A), the implications for two point and space-time temperature statistics 

(when the system is stochastically forced, internal variability, appendix B), and finally (appendix C), the changes needed to 

account for the Earth’s spherical geometry, including the definition of fractional operators on the sphere. 

2. The two-dimensional homogeneous heat equation 55 

2.1 The homogeneous GHEBE 

In part I we recalled the heat equation for the time-varying temperature anomalies (T) with diffusive and (horizontal) effective 

advective velocity (v): 

	 (1)	

 (This is written in the still general form of eq. 19, part I).  kh, kv are horizontal and vertical thermal diffusivities, z the vertical 60 

coordinate (pointing upwards, the Earth is z≤0), t the time, x = (x,y) the horizontal coordinates,  (the 

circonflexes indicate unit vectors).  These equations must now be solved using the conductive-radiative surface boundary 

condition: 

	 (2)	

∂
∂t

−κ v
∂2

∂z2
⎛
⎝⎜

⎞
⎠⎟
T = −v ⋅∇hT +κ h∇h

2T

∇h = x
! ∂/ ∂x + y! ∂/ ∂y

T x ,z ,t( )
s

+ ρcκ
v

∂T x ,z ,t( )
∂z

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
z=0

= F x ,t( )
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r, c are the fluid densities and specific heats s is the climate sensitivity and F is the anomaly forcing.  The initial conditions 65 

are T = 0 at (all t), and  (Riemann-Liouville) or below,  (Weyl).  

 

In part I, we nondimensionalized the zero-dimensional homogeneous operators by nondimensionalizing time by the relaxation 

time:  (with ) and nondimensionalizing the vertical distance by the vertical diffusion depth:

, with .  Considering now the full equation with advective and diffusive transport, we 70 

nondimensionalize the horizontal coordinates by the horizontal diffusion length: , (with )  and use 

the nondimensional advection velocity  (with speed  ).  If we now take s = 1 (equivalent to using dimensions 

of temperature for the forcing F), we obtain: 

 

	 (3)		75 

For the heat equation and the conductive-radiative surface boundary condition respectively.  For initial conditions such that T 

= 0 for t≤0, as in part I, we take Laplace transforms in time, but we now take Fourier transforms in the horizontal:  

		 (4)	

Where “F.T.” is the Fourier transform in horizontal space, k for the conjugate of x,  (the vector modulus) with  

conjugate variable  (as usual, ).  Fourier transforms in space are convenient for either infinite horizontal 80 

media, or media with periodic horizontal boundary conditions.  In appendix C, we consider the changes needed to account for 

spherical geometry.   

When , the solution  and  where Gd is the impulse 

(Dirac) response Green’s function, part I, eq. 30.  From eq. 4, we see that this is the same as the zero dimensional equation 

(eq. 24, part I) but with   i.e. for the corresponding Green’s function: 85 

z = −∞ T x ,z ,t =0( )=0 T x ,z ,t = −∞( )=0

t→ t / τ τ =κ v ρcs( )2

z→ z / lv lv = τκ v( )1/2

x→ x / lh lh = τκ h( )1/2

α = v
V

V =
lh
τ

∂2

∂z2
− ∂

∂t
+ −∇h

2( )−α ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
T = 0

∂T
∂z z=0

+T t,x;0( ) = F t,x( )

∂2

∂z2
− ∂

∂t
+ −∇h

2( )−α ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟
T = 0 ↔

L.T .(t ),F .T .( x ) d 2

dz2
− p + k 2 − iα ⋅ k( )⎛

⎝⎜
⎞
⎠⎟
T̂ = 0

k = k

r = x ∇h↔
F .T .

ik

F t, x( ) = δ t( )δ x( ) T t, x( )→Gδ t, x( ) T̂ p,k( )→ Ĝδ p,k( )

p→ p + k 2 − iα ⋅ k
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		 (5)	

A note on notation: the first argument is time, with the vertical separated by a semi-colon.  When there is a horizontal coordinate 

it comes after time, before the semicolon.  With this notation, the right hand side of eq. 5 is the L.T. of the zero-dimensional 

(time-depth) Green’s function , the left hand side is the Laplace (time) and Fourier transform (horizontal, space) 

transform. 90 

We can now use the basic Laplace shift property: 

	 (6)	

To conclude that: 

	 		 (7)	

Decomposing this into a circularly symmetric diffusion part  and a factor  that shifts phases, we obtain: 95 

	 (8)	

By circular symmetry of , its inverse (2-D) Fourier transform reduces to an inverse Hankel transform (“H.T.”).   

Using: 

		 (9)	

We therefore obtain for the diffusive part of the surface impulse response (i.e. the response with source spatial forcing 100 

):  

	 (10)	

Where is the zero-dimensional impulse response.  If needed, its integral representation is given in eq. 34, part I.  The 

last step is to take into account the advective term associated with the phase shift .  For this final step, we use the Fourier 

shift theorem to obtain:  105 

Gδ
! p,k;z( ) = Gδ

! p + k 2 − iα ⋅ k;z( )

Gδ t;z( )

e −k2+iα ⋅k( )tGδ t;z( ) ↔
L.T .(t )

Gδ
! p + k 2 − iα ⋅ k;z( )

Ĝδ t,k;z( ) = e −k2+iα ⋅k( )tGδ t;z( )

G!δ ,dif t,k;z( ) eik⋅αt

Ĝδ t,k;z( ) = eik⋅αtG!δ ,dif t,k;z( ); G!δ ,dif t,k;z( ) = e−k2tGδ t;z( )

G!δ ,dif t,k;z( )

e−r
2 / 4t( )

2t
↔
H .T .

e−k
2t

δ x( ) = δ r( ) / 2πr( )

Gδ ,dif t,r;z( ) = e
−r2 / 4t( )

2t
Gδ t;z( )

Gδ t;z( )
k ⋅αt
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	 (11)	

This is the general surface result for the diffusive-advective transport part of the spatially homogeneous case.  As 

expected, the advective transport simply displaces the centre of the impulse response with nondimensional velocity a.  As 

usual, the solutions for arbitrary forcing F(t,x) can be obtained by convolution.   

For the surface we obtain the simpler expressions: 110 

	

	 (12)	

 (see eq. 35, part I).  From these, the general surface results including advection are obtained with , i.e.  

.   

Since the advection term has this simple consequence, below we take a = 0, considering only diffusive transport, advection 115 

can easily be included if needed (i.e. below, we take ).    

To better understand the impulse response, fig. 1 shows this surface  for various radial distances r and fig. 2 shows 

the corresponding time dependence of the time integral of Gd; the unit step response GQ for various distances r, illustrating the 

power law approach to equilibrium at large t (discussed in section 2.2).  The corresponding long time, short distance expansions 

are: 120 

;	

	 (13)	

Gδ t, x;z( ) = Gδ ,dif t, x −αt ;z( ) = e
− x−αt 2 / 4t( )

2t
Gδ t;z( )

Gδ ,dif t,r;0( ) = e
−r2 / 4t( )

2t
1
π t

− eterfc t
⎛
⎝⎜

⎞
⎠⎟

GΘ,dif t,r;0( ) = Gδ ,dif t,r;0( )dt =
0

t

∫
1
r
erfc r

2 t
⎛
⎝⎜

⎞
⎠⎟
−
0

t

∫
e
− r

2

4s
+s

2s
erfc s1/2( )ds

r→ x −αt

Gδ t, x;0( ) = Gδ ,dif t, x −αt ;0( )

Gδ t,r;0( ) = Gδ ,dif t,r;0( )
Gδ t,r;0( )

Gδ t,r;0( ) ≈ t
−5/2

4 π
−
6+ r 2( )
16 π

t−7/2 +O t−9/2( )

GΘ t,r;0( ) ≈Gtherm,δ r;0( )− t
−3/2

6 π
+
6+ r 2( )
40 π

t−5/2 +O t−7/2( )
t >>1
r <<1
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Where  is the Green’s function for the (spatial Dirac) “hotspot”   equilibrium response discussed below (eq. 

20).  Note that the leading term in  is independent of r, and the leading term in the approach to   equilibrium 

 is also independent of r.   125 

Just as we derived the zero-dimensional HEBE by showing that it had the same Green’s function as the z = 0 transport equation 

Green’s function, we can likewise derive the homogeneous Generalized Half-Order Energy Balance Equation (GHEBE) which 

is the space-time surface equation whose Green’s function is given in eq. 12. Following the derivation of the HEBE, in part I 

eq. 29, and replacing  we obtain: 

	 (14)	130 

Hence, for z = 0:  

(15)	

The left hand equation is the homogeneous GHEBE whose Green’s function is given by eq. 12.  We have therefore found a 

surprisingly simple explicit formula for the (inverse) half-order space-time GHEBE operator: 

		 (16)	135 

where “ ” indicates convolution.   This allows us to give a precise interpretation of the half-order operator.  Therefore the 

dimensional, homogeneous,  GHEBE and its full solution are:  

		 (17)	

Gtherm,δ r,0( )
Gδ t,r;0( )

GΘ t,r;0( )

p→ p + k 2 − iα ⋅ k

Ĝδ p,k;z( ) = e p+k2−iα ⋅k z

p + k 2 − iα ⋅ k +1

∂
∂t

+ −∇h
2( )− iα ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

1/2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
Gδ t,x;0( ) = δ t( )δ x( ) ↔

L.T .(t ),F .T . x( )( )
p + k 2 − iα ⋅ k +1( )Ĝδ p,k;0( ) = 1

∂
∂t

+ −∇h
2( )− iα ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

1/2

+1
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

−1

= Gδ t, x;0( )∗

∗

τ ∂
∂t

+ −lh
2∇h

2( )− ilhα ⋅∇h

⎛
⎝⎜

⎞
⎠⎟

1/2

Ts t, x( )+Ts t, x( ) = sF t,x( )

Ts t, x( ) = s Gδ
t − ′t
τ
,
x − ′x
lh

;0
⎛

⎝
⎜

⎞

⎠
⎟ F ′t , ′x( ) d ′t

τ
d ′x
lh
2

0

t

∫
surf
∫

= s
lh
2

e
−τ x− ′x −lhα t− ′t( )/τ 2 / 4lh2 t− ′t( )( )

2 t − ′t( )
τ

π t − ′t( ) − e
t− ′t( )/τerfc

t − ′t( )
τ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
F ′t , ′x( )d ′t d ′x

0

t

∫
surf
∫
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 (“surf” is the surface over which the forcing acts, the bottom line uses the explicit eq. 12 for Gd).   

The above shows that even with the purely classical integer-ordered Budyko-Sellers type heat equation, that surface 140 

temperatures already obey long memory, half order equations.  However, it is not certain that the classical heat equation is in 

fact the most appropriate model.  Straightforward generalizations to fractional heat equations - where  

lead directly to fractional energy balance equations for surface temperatures, we investigate fractional heat equations 

elsewhere.  Physically, this  generalization from the classical fractional value H = 1/2 could be a consequence of turbulent 

diffusive transport which since at least Richardson been known to have anomalous diffusion. 145 

2.2 Energy balance, equilibrium 

If F(t,x) = 0 then there is a radiative energy balance at time t, point x, but the temperature may be changing.  However, if F(t,x) 

= 0 for a long enough time, and for all x, then the time derivatives ( ) vanish and Earth is in a steady energy balance 

(“climate”) state, Tclim(x), so that the temperature anomaly T(t,x) = 0. Now consider a step function increase 

.  Then as  , the time derivatives will vanish and a new (steady) climate state (with temperature 150 

) will be reached in which the horizontal transport and anomalous black body emission balance the new forcing: 

.  The new state is steady in time and is in energy balance with outer space and its local 

surroundings, but it is not strictly correct to describe  as one of thermal equilibrium.  This is because thermal  

equilibrium would imply that the temperature everywhere is constant (thermodynamic equilibrium is an even more stringent 

condition).   Nevertheless the term “radiative equilibrium” is commonly used in the context of planetary energy balance, so 155 

we will use the terms energy balance and equilibrium synonymously. 

Let us now investigate the equilibrium state.  Since d/dt = 0, the conjugate variable p = 0, with this and a = 0 in eq. 15, we 

obtain the equation for the (spatial) surface impulse response for  equilibrium (subscript “eq”): 

		 (18)	

i.e. the same as eq. 4 but with p = 0 (and a = 0) hence: 160 

	 (19)	

τ ∂T
∂t

→τ2H ∞Dt
2HT

∂
∂t

= 0

F t,x( ) =Θ t( )F0 x( ) t→∞

T0 x( )

−∇h
2( )1/2 +1( )T0 x( ) = F0 x( )

T0 x( )

Geq,δ r;0( )

−∇h
2( )1/2 +1( )Geq,δ = δ x( )↔

F .T .

k +1( )Ĝeq,δ = 1

Ĝeq,δ k;z( ) = ekz

1+ k
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The equilibrium surface temperature (spatial) impulse (Dirac “hotspot”) Green’s function is therefore: 

	 (20)	

Where H0 is the zeroth order Struve function and Y0 is the zeroth order Bessel function of the second kind.  For large r, we 

have the expansions: 165 

	 (21)	

;	

	 r	≈	0		

The 1/r3 asymptotic decay is fast and implies that  spatial hotspots remain fairly localized; indeed, it is easy to show that if 

instead we had a Dirac surface heat flux source driving the system (i.e. with surface BC  i.e. without radiation) 170 

that the decay would be the much faster (1/r).   Forcing inhomogeneities thus remain much more localized than would otherwise 

be the case. 

 To study the convergence to equilibrium, consider a simple model of a surface “hot spot” where the forcing is confined to a 

unit circle and turned on and held at a constant unit temperature at t = 0.  This is the spatial equivalent of a step forcing in 

space, we combine it with a step (Heaviside) in time: 175 

	 (22)	

P1(r) is the corresponding indicator function. We now use the transform pair  to perform the convolution: 

		 (23)	

 (J1 is the first order Bessel function of first kind).  Taking the limit  we obtain the  equilibrium temperature distribution.  

Alternatively we could find it directly by from eq. 19: 180 

Geq,δ r,0( ) = 1r +
π
2
Y0 r( )− H0 r( )( ) ↔

H .T .( )
Ĝeq,δ k;0( ) = 1

1+ k

Geq,δ r;0( ) ≈ 1
r3

− 9
r5

+O r −7( ); r >> 0

Geq,δ r;0( ) ≈ 1r + log r + γ E − log2− r +
r 2

4
1+ log2− γ E( )− r

2

4
log r + ...

∂T
∂z z=0

= δ x( )

F t,r( ) =Θ t( )Π1 r( ); Π1 r( ) = 1 r ≤1
0 r >1

Π1 r( )↔
H .T . J1 k( )

k

Ts t,r( ) = GΘ t,r;0( )∗Θ t( )Π1 r( )↔
H .T . J1 k( )

k
ĜΘ t,k;0( )

t→∞
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		 (24)	

Fig. 4 shows the cross section as a function of the distance from the circle’s center at various times (the inverse Hankel 

transforms were done numerically).  We note that the temperature rises very quickly at first, then slowly reaches equilibrium 

(thick).  The figure also shows (dashed) the   equilibrium when the forcing is purely due to unit conductive heating over the 

unit circle.  The difference between the dashed  and the thick equilibrium curves are purely due to the radiative loses in the 185 

latter.   (Note that in the zero-dimensional case (part I), using pure heating forcing boundary conditions leads to diverging 

temperatures, there is no  equilibrium.  This explains why Brunt instead used temperature forcing boundary conditions.  Here, 

in two horizontal dimensions, boundary conditions that impose a fixed temperature over the circle are problematic since they 

imply infinite horizontal temperature gradients and infinite horizontal heat fluxes). 

Figs. 5, 6 shows the same evolution but with temperature as a function of time for various distances (fig. 5) and as contours in 190 

space-time (fig. 6).  We see that equilibrium is largely established in the first two relaxation times (here t = 1) and most of the 

perturbation is confined to two horizontal diffusion distances (here, lh = 1).   

 

2.3 Comparison of the HEBE with the standard 1-D Budyko - Sellers model on a sphere 

It is helpful to clearly understand the similarities and differences between the HEBE and the usual 1-D (latitudinal) B-S 195 

approach (see the comprehensive monograph [North and Kim, 2017], and see [Zhuang et al., 2017], [Ziegler and Rehfeld, 

2020] for recent applications, development).  Since the latter model is on a sphere but with only latitudinal dependence, we 

write the horizontal transport term  using gradient and divergence operators: 

 with q  = colatitude	and	µ = cos q.   In standard notation [North and 

Kim, 2017]) the B-S equation is thus written: 200 

	 (25)	

Where C is the specific heat per area,   the thermal conductivity per radian of arc, B is the climate feedback parameter, 

the inverse of climate sensitivity (B =1/s),  Q0, the solar constant, H the heat function, S is the insolation distribution function, 

a is the co-albedo and A is the constant term from the linearization of the black-body emission. If we measure temperatures 

with respect to the mean (reference) Earth temperature so that the A term balances the mean forcing), then the B-S equation 205 

with dimensionless operators can be written: 

Teq,s r( ) = Ts ∞,r( )↔
H .T . J1 k( )
k 1+ k( )

∇h ⋅DB−S∇h

∇h⋅= − 1
R
d
dµ

1− µ2 ; ∇h = −
1− µ2

R
d
dµ

C ∂T
∂t

− ∂
∂µ

DB−S µ( ) 1− µ2( ) ∂
∂µ
T

⎛
⎝⎜

⎞
⎠⎟
+ B µ( )T + A µ( ) = Q0H µ( ); H µ( ) = S µ( )a µ( )

DB−S
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	 (26)	

(the product sDB-S is dimensionless, t = C/B) where F is the anomaly with respect to the global average.   

In part I section 3.1.1, we expressed the horizontal transport operator in terms of the transport coefficient DF that allows us to 

write the HEBE in the form: 210 

	 (27)	

where .   Using  for the transport operator, we obtain the 1-D HEBE on 

the sphere: 

	 (28)	

In the case of constant thermal diffusion coefficients we may solve both equations using Legendre polynomials Pn(µ) 215 

that are eigenfunctions of the Laplacian:  (with boundary conditions at the 

poles being zero horizontal heat flux, see also appendix C for more general results on the sphere).  Expanding the temperature 

and forcing in terms of the Legendre polynomials and taking Laplace transforms of the coefficients in time, we obtain: 

 

	 (29)	220 

We then obtain equations for the Laplace transform of the nth Legendre coefficients: 

	 (30)	

τ ∂
∂t

− s ∂
∂µ
D
B−S µ( ) 1−µ2( ) ∂

∂µ
⎛
⎝⎜

⎞
⎠⎟
T +T = sF

τ ∂
∂t

+ζ
⎛
⎝⎜

⎞
⎠⎟

1/2

T +T = sF ; ζ = −sR∇
h
⋅D

F
∇
h
; D

F
x( )= l

h
x( )

Rs x( ) = κh

βρc
R

β = κ v /κ h( )1/2 ζ = −s d
dµ
DF µ( ) 1− µ2( ) ddµ

τ ∂
∂t

− s ∂
∂µ
D
F
µ( ) 1−µ2( ) ∂

∂µ
⎛
⎝⎜

⎞
⎠⎟

1/2

T +T = sF

− ∂
∂µ

1−µ2( ) ∂
∂µ

⎛
⎝⎜

⎞
⎠⎟
P
n
µ( )= n n+1( )Pn µ( )

T t,µ( ) = Tn t( )Pn µ( )↔
L.T .

T! p,µ( ) = T! n p( )Pn µ( )
n=0

∞

∑
n=0

∞

∑

F t,µ( ) = Fn t( )Pn µ( )↔
L.T .

F! p,µ( ) = F! n p( )Pn µ( )
n=0

∞

∑
n=0

∞

∑

τp+ ξ
B−S ,n( )Tn! +Tn! = sF

n

! ; ξ
B−S ,n = sDB−Sn n+1( )

τp+ ξ
F ,n( )1/2Tn! +Tn! = sF

n

! ; ξ
F ,n = sDFn n+1( )
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So that: 

 (31) 

In real space: 225 

	 (32)	

(note that the generalization to the FEBE is obtained by the replacement  so that 

 whereas  so that  is not a special 

case of the FEBE).  Using: 

	 (33)	230 

(eq. 35, part I), combining this with eq. 32, we obtain for the impulse responses: 

	 (34)	

Integrating these with respect to t, we obtain the step responses: 

T! n p( ) = sG!δ
n( )
p( )F! n p( );

G!δ ,B−S
n( )

p( ) = G!δ ,1 τ p + ξB−S ,n( );
G!δ ,F

n( )
p( ) = G!δ ,1/2 τ p + ξF ,n( );

G!δ ,H p( ) = 1
1+ pH

τ −1e−ξB−S ,nt /τG0,B−S
n( ) t / τ( )↔

L.T .

G! 0,1
n( )
pτ + ξB−S ,n( )

τ −1e−ξ1/2,nt /τG0,F
n( ) t / τ( )↔

L.T .

G! 0,1/2
n( )

pτ + ξF ,n( )

τ p→ τ p( )2H

G!δ ,H
n( )
p( ) = 1/ 1+ τ p( )2H + ξF ,n( )1/2⎛

⎝⎜
⎞
⎠⎟

G!δ ,B−S
n( )

p( ) = 1/ 1+τ p + ξB−S ,n( ) G!δ ,B−S
n( )

e− t↔
L.T . 1
1+ p

1
π t

− et /τerfc t↔
L.T . 1
1+ p1/2

Gδ ,B−S
n( ) t( ) = τ −1e− 1+ξB−S ,n( )t /τ

Gδ ,F
n( ) t( ) = τ −1e−ξF ,nt /τ τ

π t
− et /τerfc t

τ
⎛

⎝
⎜

⎞

⎠
⎟
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	 (35)	

The long time limit represents Earth energy balance (equilibrium):  235 

	 (36)	

If x<0, then there is an unphysical divergence so that sDF  must be >0.  Since Pn(µ) has n zeroes, n plays the role of wavenumber, 

it specifies structures of horizontal size ≈ pR/n.  Therefore we see that the B-S model (where G falls off as n-2) will yield a 

much smoother equilibrium temperature than the HEBE where it falls off as n-1.  Note that when generalized from the HEBE 

to the FEBE (with p→p2H), this equilibrium result is unchanged. 240 

For the HEBE, the short and long time behaviours are:  

	 (37)	

The asymptotic response for  is interesting because it tells us how quickly equilibrium is reached.  When n = 0 we 

have P0(µ) = 1, so that this component corresponds to the mean.  Since  we see that it is identical to the zero-

dimensional result in part I: equilibrium is approach in a power law fashion (t-1/2 for large t), whereas for n = 0, the B-S model 245 

GΘ,B−S
n( ) t( ) = 1

ξB−S ,n +1
1− e− ξB−S ,n+1( )t /τ( )

GΘ,F
n( ) t( ) =

ξF ,nerf ξF ,n
t
τ
−1+ e

− t ξ
F ,n

−1( )/τerfc t
τ

ξF ,n −1

Geq,B−S
n( ) = GΘ,1

n( ) ∞( ) = 1
1+ ξB−S ,n

= 1
1+ sDB−Sn n+1( )

Geq,F
n( ) = GΘ,F

n( ) ∞( ) = 1
1+ ξ

F ,n

= 1

1+ sDFn n+1( )
; ξ ≥ 0

GΘ,F
n( ) t( ) = 2t

1/2

πτ
− t
τ
−
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3 π

t
τ

⎛
⎝⎜

⎞
⎠⎟
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+ 1
2
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⎛
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⎞
⎠⎟

2
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+ 1
2t π t
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− e−ξF ,nt /τ

2 πξF ,n

t
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⎛
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⎠⎟
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⎛
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⎜
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⎛

⎝
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⎠
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n( ) t( )

ξF ,0 = 0



14 
 

approach to equilibrium is exponential.  However for n≥1, HEBE power law terms are exponentially damped, with exponential 

decay time:  whereas the B-S model is exponentially damped for all n with . 

In order to make a more detailed comparison between the models, we can follow [North and Kim, 2017] who consider a model 

with constant DS-B and that is north-south symmetric so that the odd numbered polynomials vanish.  They empirically give the   

climate equilibrium values for n = 0, 2, 4; the (constant) n = 0 term is used to obtain the mean  temperature 288K.  Other 250 

pertinent empirical data are  s = 1/B = 0.50 KW-1m2, F2 = -180.7 W/m2, F4 = 20.8K, T2 = -30K, T4 = -4K.  From eq. 36 for the 

equilibrium temperature Green’s function, we obtain: .  The n = 2 relationship is use to estimate 

 = 0.67 Wm-2K-1, with this estimate, we obtain ≈ 

1.35K which is not far from the empirical estimate T4 = -4K ([North and Kim, 2017]), it also yields the dimensionless quantity 

sDB-S = 0.33.   If we follow the same procedure for the HEBE, we estimate  , comparing this with the 255 

B-S relation, we  find: sDF = 6(sDS-B)2  the dimensionless sDF = 0.67, and DF = 1.33 Wm-2K-1 , T4 = 2.23K (again not far from 

the data).   We note that the ratio DF / DB-S ≈2 so that the estimates are close.   

We can use this information to estimate lh in the HEBE.  From the definition of DB-S as a thermal conduction coefficient 

per radian we obtain DB-S = K/R so that .  To find the transport length, we can use 

, , to obtain: 260 

	 (38)	

Alternatively, we can estimate lh from the global scale DH: 

	 (39)	

We see that these lh estimates differ by a factor of bDB-S/DF ≈ b/2.  Since typical numerical models with resolutions of hundreds 

of kilometers use kv ≈ 10-4 m2/s, and kh ≈ 1m2/s, at least at these scales b ≈10-2 so that the difference in the estimates may be 265 

large.  For example since sDB-S  ≈ 0.33, we find that the former yields lh ≈ 20km,  while the latter yields, lh ≈ 4000 km.  One 

way to reconcile the difference is to assume that b - that characterizes the horizontal-vertical effective diffusivity ratio - has a 

τ F ,n = τ / ξF ,n τ B−S ,n = τ / 1+ ξB−S ,n( )

Teq,n = sGeq,B−S
n( ) Fn

DB−S =
1
6s

sF2
T2

−1
⎛

⎝⎜
⎞

⎠⎟
T4 = F4 / 1+ ξB−S ,n( ) = F4 / 1+ 20DB−Ss( )

DF =
1
6s

sF2
T2

−1
⎛

⎝⎜
⎞

⎠⎟

2

κ h = K / ρc = RDB−S / ρc ≈1m
2 / s

lh = βκ hρcs β =
κ v
κ h

⎛

⎝⎜
⎞

⎠⎟

1/2

lh
R
= βsDB−S

lh
R
= sDF
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systematic scale dependence due to a difference in the scaling properties of kh and kv so that at global scales b ≈ 1 (this may 

arise as a consequence of the scaling anisotropic horizontal structure of the atmosphere at weather scales, notably of the 

horizontal wind field, the 23/9D model, [Schertzer and Lovejoy, 1985]).   270 

A different (possibly additional) way of reconciling the estimates is to consider the potentially large (multifractal) intermittency 

of the diffusivities that introduces s strong scale effect.  For example,  [Havlin and Ben-Avraham, 1987], [Weissman, 1988], 

[Lovejoy et al., 1998]) show that in 1-D, the large scale effective thermal resistance rT – the inverse diffusivity - is the average 

of the small scale resistances.  If we denote the spatial averages over a scale L by a subscript, and assume that the resistivity is 

scaling (scale invariant) up to planetary scales (denote this by R), then it will generally follow the following multifractal 275 

statistics: 

	 (40)	

Where the angle brackets denote statistical averages and Kr(q) is the moment scaling function that characterizes the scaling of 

the qth order statistical moment order of the thermal resistance. 

The thermal resistance is proportional to the inverse thermal diffusivity, therefore the effective HEBE diffusive transport 280 

coefficient at scale L satisfies: 

	 (41)	

Finally, using  we obtain: 

	 (42)	

Which relates the transport length at small scales L and planetary scales R.  Depending on Kr(-1), the ratio   can be 285 

quite small.  For example, if the thermal resistivity statistics are taken as log-normal, then: so that 

 so that .  As discussed in appendix A, C1 ≈ 0.16 for the temperature in space (see also 

[Lovejoy, 2018]).  Using this value as a guide, we find  so that depending on the small scale resolution 

L, we can easily explain a factor of 10 or more increase in the effective transport length at large scales.   Clearly the scale 

dependence of kh, kv is an important topic for future FEBE research.  290 

ρT ,L
q = R

L
⎛
⎝⎜

⎞
⎠⎟

Kρ q( )
ρT ,R
q

DF ,L ∝κ h,L ∝ ρT
−( )
L

−1
≈ R
L

⎛
⎝⎜

⎞
⎠⎟

−Kρ −1( )
DF ,R

lh,L ∝ DF ,L

lh,L ∝
L
R

⎛
⎝⎜

⎞
⎠⎟

Kρ −1( )
lh,R

lh,L / lh,R

Kρ q( ) = C1q q −1( )
Kρ −1( ) = 2C1 lh,L ∝ L / R( )2C1 lh,R

lh,L ∝ L / R( )0.32 lh,R
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3. The inhomogeneous heat equation 

3.1 Babenko’s method 

The homogeneous heat equation in a semi-infinite domain is a classical problem and conductive - radiative surface boundary 

conditions naturally lead to fractional order operators, the HEBE and GHEBE.  Although we have seen that fractional operators 

appear quite naturally, their advantages are much more compelling for the more realistic inhomogeneous equations relevant 295 

for the Earth.  We therefore proceed to derive the inhomogeneous HEBE and GHEBE using Babenko’s method.  The more 

usual application is to find the surface heat flux given a solution to the conduction equation (see for example [Magin et al., 

2004],  [Chenkuan and Clarkson, 2018]), the following application appears to be original.   

In the inhomogeneous case with t = t (x), lh = lh(x), lv = lv(x), a = a(x), there is no unique nondimensionalization.  Therefore, 

we express the inhomogeneous anomaly heat equation with nondimensional operators as: 300 

	 (43)	

Where we have used  and z is a time independent horizontal transport operator allowing for 

both advective and diffusive transport.  Under the fairly general conditions, when z  operates on the temperature field, it is 

proportional to the nondimensional divergence of the horizontal heat flux (discussed in part I, see eq. 4).  Since the forcing is 

via the surface boundary condition rather than by an inhomogeneous term, eq. 43 is mathematically homogeneous.  305 

The first step in Babenko’s method (see e.g. [Podlubny, 1999], [Magin et al., 2004]), is to factor the differential operator: 

		 	(44)	

As usual, the general solution of a homogeneous equation is a linear combination of elementary solutions A+ and A-: 

		 (45)	

The A+ solution leads to solutions that diverge at  whereas A- leads to the required physical solutions with 310 

, ([Podlubny, 1999]).  Therefore we are interested in solutions to: 
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		 (46)	

putting z = 0 and using  (part I,  eq. 22), we obtain: 

	 (47)	

where Ts(t ,x) is the surface temperature anomaly and   is the heat flux into the surface (the negative of which is the 315 

z component of the surface conductive (sensible) heat flux).  Before interpreting the half order operator on the left, we can 

already give this equation a physical interpretation.  When >0, sensible heat is forced into the Earth, some of it is stored in 

the subsurface (the  term, the same horizontal position x but stored by heating up the subsurface, z<0), and some of the 

heat (the  term), is transported horizontally to neighbouring regions (and conversely when <0).  We can also 

understand the basic difference between the A+ and A- solutions: whereas the physically relevant A- solution correspond to 320 

energy storage and horizontal transport in the region z<0, the A+ solutions correspond to the region z>0 assumed to be devoid 

of conducting material.   

The final step is to use the fact that the conductive heat flux  is equal to the radiative imbalance (part I, fig. 1): 

	 (48)	

Combining the equations 29, 30 we obtain the inhomogeneous Generalized Half-order Energy Balance Equation (GHEBE): 325 

	 (49)	

If needed, the internal field T(t,x;z), can be found by solving eq. 49 for Ts(t, x) which is the z = 0  boundary condition for the 

full eq. 43.  We see that eq. 49 reduces to the homogeneous GHEBE (eq. 17) when t, lh, s, a are constant.   

By comparing this derivation with that of the homogeneous GHEBE via the classical Laplace-Fourier transform method 

(section 2.1), it is clear that Babenko’s method is very similar, but is more general.  Whereas in the homogeneous equation, 330 

where the transforms reduce the derivative operations to algebra, the difficulty with Babenko’s method is to find proper 

interpretations of the fractional operators.   However, in the above, we assumed that t was only a function of position, so that 
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Laplace (or Fourier) transform methods still apply in the time domain, in the next section we discuss the more challenging 

interpretation of the fractional inhomogeneous spatial operators. 

3.2 The zeroth order high frequency GHEBE: the HEBE 335 

Before discussing the inhomogeneous GHEBE, consider the case where the horizontal term lhz is small compared to ; 

below we argue that this is a good approximation for scales up to years and decades and greater than tens of kilometers (table 

1, appendix A).  Recall that the this horizontal transport term is in fact proportional to the divergence of the horizontal heat 

flux so that it may be small even when heat fluxes are significant [Trenberth et al., 2009]. Alternatively, in globally averaged 

models, there are no horizontal inhomogeneities so that z = 0.  In these cases ; and we obtain the 340 

inhomogeneous HEBE as a special case of the inhomogeneous FEBE: 

	 (50)	

We	have	written	it	with	a	general	H	since	as	in	part	I,	an	inhomogeneous	version	of	the	EBE	may	be	obtained	with	H	=	
1.	 We	 have	 also	 used	 the	 Weyl	 derivative	 (i.e.	 from	 )	 since	 this	 accommodated	 periodic	 or	 statistically	

stationary	forcing	as	well	as	forcing	starting	at	t	=	0	(I	this	case	we	simply	consider	F	=	0	for	t≤0).		Eq.	50	shows	that	345 

the	HEBE	only	depends	on	 the	 local	 climate	sensitivity	and	 the	 local	 relaxation	 time.	 	We’ll	 see	below	that	explicit	

dependence	on	the	horizontal	transport	(v,	kh)	and	specific	heat	per	volume	rc	is	only	important	at	scales	somewhat	

smaller	than	the	transport	length	scale	(or	alternatively	at	extremely	long	time	scales,	section	3.6).		Before	solving	the	

HEBE,	 it	 is	 instructive	 to	 introduce	 the	notation	 .	 	 	 	is	 the	equilibrium	temperature	 that	

would	be	reached	at	time	t,	if	at	each	location	x,	F	was	suddenly	stopped	and	fixed	at	that	value.			With	this	notation,	we	350 

may	integrate	both	sides	of	eq.	50	by	order	H,	and	multiply	by	t-H	to	obtain:	

	 (51)	

Written in this form, it is obvious that the temperature is constantly relaxing in a power law manner to  (although if F is 

time dependent, equilibrium will in general never in fact be established).  In the usual EBM special case (H = 1), the power 

law must be replaced by an exponential, the HEBE is obtained with H = 1/2.  Since , the deviation from  - the 355 
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term  (eq. 50) - physically corresponds to the energy imbalance, as before, it is a power law, long memory energy 

storage term. 

The FEBE is a linear differential equation that can be solved using Green’s functions [Miller and Ross, 1993], [Podlubny, 

1999].  The solution is: 

		 (52)	360 

where Gd,H is the H order Mittag-Leffler impulse response Green’s function ([Lovejoy, 2019a]).  In general, Gd,H is only 

expressible in terms of infinite series, exceptions are the H = 1 EBE (Gd,1 = e-t);  and the H = ½ HEBE (eq. 33).  

The corresponding step response GQ,1/2 = is the integral of Gd,1/2 (respectively G1,1/2, G0,1/2 in the notation of eq. 36, part I), it 

describes relaxation to   equilibrium when F is a step function; similarly, the ramp (linear forcing) response G2,1/2 (eq. 36, part 

I), is the integral of the step response. 365 

 

3.3 Some features of stochastic forcing 

The FEBE and the HEBE are examples of fractional relaxation equations; these have primarily been discussed in the context 

of deterministic forcings that start at t = 0.  The corresponding stochastic fractional relaxation processes (in physics, “fractional 

Langevin equations”, (FLE) see the references in [Lovejoy, 2019a]) - here corresponds to stochastic internal forcing.  The FLE  370 

has received little attention, although [Kobelev and Romanov, 2000], [West et al., 2003] discuss the corresponding 

nonstationary random walks.  The statistically stationary stochastic case that results when Weyl rather than Riemann-Liouville 

fractional derivatives are used is treated in [Lovejoy, 2019a], including the HEBE autocorrelation function and prediction 

problem (and its limits) when F is a Gaussian white noise.   

To understand the noise driven HEBE, it is helpful to Fourier analyze it using  [Lovejoy, 2019a], section 375 

3.3 part I.   At high frequencies, the derivative (energy storage) term dominates so that the temperature is a fractional integral 

(order H) of the forcing.  At low frequencies, the derivative term can be neglected so that T ≈ sF implying that the equilibrium 

temperature follows the forcing and that s is indeed the usual climate sensitivity.   

Alternatively, in real space, if F(t) is a unit step function Q(t) and s  = 1, then for H ≠ 1 the long time relaxation to the 

equilibrium temperature response is a power law:  (part I eq. 33).  Similarly, for small t, for H < 1, the 380 

impulse response  is singular  (part I eq. 33).   Due to this singularity, when F(t) is a Gaussian white noise, at 

high frequencies, T will be a fractional Gaussian noise (fGn) with exponent HfGn = H - ½; averages over time Dt will behave 
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as .  When H ≤1/2 (HfGn≤0) and the resolution is increased ( ), this implies strong resolution 

dependencies (mathematically, small scale divergences) and so it is important in data analysis, including the estimation of the 

temperature of the Earth [Lovejoy, 2017]. When forced by a white noise, the HEBE is exactly at the critical value HfGn = 0 385 

corresponding to a “1/f” noise (research in progress indicates that it is at least close to a white noise).  A particularly relevant 

aspect is that the correlation function and spectrum change very slowly from high to low frequencies [Lovejoy, 2019a].  With 

data over a limited ranges of scales – e.g. months to decades – then, depending on the relaxation time t, the HEBE could mimic 

the FEBE with any H in the range 0< H ≤ ½ (hence -1/2≤ HfGn ≤0).  It can therefore potentially account for the geographical 

variations in H reported in [Lovejoy et al., 2017] as being spurious consequences of geographical variations in t(x). 390 

 At global scales, the high and low frequency HEBE behaviours are close to observations.  For example, the global value H = 

0.5±0.2 was found for the long time behaviour needed to project the earth’s temperature to 2100 [Hebert, 2017], [Hébert et 

al., 2020], and [Procyk et al., 2020] also using centennial scale global temperature estimates but using the FEBE directly, 

found the less uncertain H = 0.38±0.05; and using data at monthly and seasonal scales [Del Rio Amador and Lovejoy, 2019] 

found the value H = 0.42±0.03 and used it).  Appendix B discusses the spatial cross correlation matrix implied by the HEBE 395 

that is needed for example in calculating Empirical Orthogonal Functions (EOFs, or for the space-time macroweather model 

developped in [Del Rio Amador and Lovejoy, 2020b]). 

Although the HEBE was derived for anomalies, these were not defined as small perturbations but rather as time-varying 

components of the full solution of the temperature (energy) equation with the time independent part corresponding to the 

climate state.  The only point at which T was assumed to be small was with respect to the absolute local climate temperature 400 

about which the black body radiation was linearized, a fairly weak restriction on T.  We could also mention that by allowing 

the albedo or other parameters to change in time, the HEBE could easily be extended to the study of past or future climates 

where it would broaden the spectrum potentially improving the modeling of glacial cycles. 

An important feature of fractional differential operators is that they imply long memories, this is the source of the skill in 

macroweather forecasts ([Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019]).  The fractional term with the long 405 

memory corresponds to the energy storage process.   In contrast,  [Lionel et al., 2014] introduced a class of ad hoc Energy 

Balance Models with Memory (EBMM) whose (nonfractional) time derivative depends on integrals over the past state of the 

system.  

3.4 The first order in space GHEBE 

The HEBE is the GHEBE limit where horizontal transport effects are dominated by temporal relaxation processes and are 410 

ignored.   Although this spatial scale depends on the time scale, appendix A estimates that at monthly time scales, this spatial 

scale is less ≈10 km and even at centennial scales it may only be only 100km or so.  For these small spatial scales, we follow 

[Babenko, 1986], [Kulish and Lage, 2000],  [Magin et al., 2004], and expand the square root operator using the binomial 

expansion: 

TΔt
2 1/2

∝ Δt H fGn Δt→ 0
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  415 

		 (53)	

(for the expansion to be strictly valid, t must be a constant in time and in space; we have already assumed that  is 

independent of time).  As usual with Babenko’s method, a rigorous  mathematical justification is not available ([Podlubny, 

1999]), although recall that t, and lh are only functions of position so that for the temporal operator, Laplace and Fourier 

transforms techniques still work. 420 

Considering the spatial part of the fractional operator, we see that it is weighted by the effective heat transport velocity V; as 

shown below, it plays the role of a small parameter (table 1, appendix A estimate it as  ≈10-4m/s).  Therefore, dropping the 

subscript “s” here and below, the GHEBE is: 

		 (54)	

with the Weyl fractional derivatives (these are partial fractional derivatives).   425 

Keeping only the spatial terms leading in the small parameter V, we have the first order (in space) GHEBE: 

	 (55)	

Or: 

		 (56)	

This equation is apparently similar to the usual transport equation.  To see this, operate on both sides by  , to 430 

obtain: 

	 (57)	
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Except for the factor ½, the half order derivative term and the “effective”, (roughened) forcing, this is the usual transport 

equation.  Nevertheless, although tempting, it would be wrong to think of this simply as a usual transport equation with an 435 

extra fractional term.  The reason is that the extra term is not a small perturbation, it is dominant except at small spatial scales.  

On the contrary, it is rather the classical transport terms that are small perturbations to the main HEBE.  Alternatively, without 

the  term, eq. 59 is a generalized fractional diffusion equation (e.g. [Coffey et al., 2012]), although still with a key 

difference being that the fractional derivative is Weyl, not Riemann-Liouville (i.e. over the range to t, not 0 to t). 

3.5 Climate states, equilibrium and the low frequency GHEBE 440 

3.5.1 The equilibrium temperature distribution: the HEBE  climate 

The HEBE applies to time scales sufficiently short and to spatial scales sufficiently large that the horizontal temperature fluxes 

are too slow to be important, they are neglected.  The first order correction (eqs. 56, 57) makes a small improvement by giving 

a more realistic treatment of the small scale horizontal transport.  However, a long time after performing a step increase of the 

forcing, the time derivatives vanish and a new climate state is reached.  If the temperature followed the pure HEBE, the spatial 445 

equilibrium temperature distribution would be determined by setting the HEBE time derivative to zero: 

	 (58)	

Where the subscript “eq” indicates the long time equilibrium (climate) FEBE limit.  However, appendix A shows that – 

depending on the nature of the horizontal transport - at scales perhaps of the order of centuries, the horizontal heat fluxes will 

dominate the relaxation processes so that for very long times, this HEBE estimate is only approximate.  450 

 

3.5.2 Equilibrium and approach to equilibrium in the inhomogeneous GHEBE 

To understand the long time behaviour, we return to the GHEBE but perform a (long-time) binomial expansion of the half-

order operator assuming that the transport terms dominate: 
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	 (59)	455 

 (from here on we drop the “h” subscripts on l and the gradient operator).  Again, to be strictly valid, t must be a constant so 

that  and  commute.  We have to be careful since the advection length and relaxation times are functions of 

position (but not time) so that the spatial operators don’t commute.   Keeping terms to first order in time, we obtain: 

		 (60)	

To make progess, let’s choose the transport operator so that its half powers are easy to interpret.  The simplest approach is 460 

consider only diffusive transport and to use an isotropic fractional operator defined over the surface of the earth.  For an 

arbitrary test function r, the corresponding order H fractional integral is: 

	 (61)	

 (for 0≤H≤d, where d is the dimension of space, here d = 2, see e.g. [Schertzer and Lovejoy, 1987], appendix A).  This can be 

understood  since in Fourier space, the Laplacian is  and its inverse is , the “Poisson solver”.  465 

Note that eqs. 60, 61 involve ½  order inverse Laplacians which are H = 1 (rather than H = ½) isotropic integrals (eq. 61).   

With the help of spherical harmonics, Appendix C generalizes the results of section 2.3 gives the corresponding operators and 

their fractional extensions on the surface of the sphere. 

Applying eq. 61 to the case d = 2 and H = 1 we have: 

	 (62)	470 

 Therefore, let us define a diffusive type transport operator and its inverse implicitly from its inverse half-order 

power: 
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	 (63)	

Hence let us define the half-order operator by: 

		 (64)	475 

With this definition the surface temperature equation 60 becomes:  

		 (65)	

Where the range of the integration W = E  is the entire surface of the earth.  This equation has only superficial links to equations 

studied in the literature such as the “generalized fractional advection-dispersion equation” (e.g. [Meerschaert and Sikorskii, 

2012], [Hilfer, 2000]).  We can now consider the system reaching equilibrium after a step forcing F(x,t) = F0(x)Q(t), (increase 480 

by F0 (x) “turned on” at t = 0).  At long enough times, the earth reaches  equilibrium, the time derivative term vanishes and we 

obtain the equation for the equilibrium (climatological) temperatures:  

		 (66)	

To obtain an approximate solution, let’s now assume that  differs from the climatological FEBE climate temperature 

Teq,FEBE(x) by a small perturbation dT(x).  485 

	 (67)	

then, using Teq(x) ≈ s (x)F0(x) in the integral, we obtain the approximation:  

		 (68)	

 is the slow, diffusive correction to the “instantaneous” (fast, high frequency),  HEBE climate sensitivity s(x) that is 

estimated at usual (e.g. decadal) scales.  As expected, since this is the long time solution after a step perturbation, it doesn’t 490 

depend on t. 
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Horizontal transport of heat redistributes the energy fluxes locally, but since the GHEBE is linear, it shouldn’t affect the overall 

(global) energy balance.  Let us check this by direct calculation of the globally averaged temperature.  Averaging  eq. 66, we 

obtain: 

	(69)	495 

Where the spatial averaging operator (overbar) is defined for an arbitrary function f.  The average of the horizontal heat flux 
term yields: 

		 (70)	

Where KE is an unimportant constant from the x integration, independent of x’.  The far right equality is an application of the 

divergence theorem on the surface E whose boundary is dE, ds is a vector parallel to the bounding line.  But since the integration 500 

is over the whole earth surface (E), there is no boundary, hence the result.  We conclude that while horizontal diffusion 

transports heat over the earth’s surface, it does not affect the overall global radiation budget: .  

4. Conclusions 

Up until now, at macroweather and climate scales, the Earth’s energy balance has been modelled using two classical 

approaches.  On the one hand, Budyko - Sellers models assume the continuum mechanics heat equation, this yielding a 1-D 505 

latitudinally varying climate state.  On the other hand, there are the zero-dimensional box models that combine Newton’s law 

of cooling with the assumption of an instantaneous temperature-storage relationship.  Both models avoid the critical conductive 

- radiative surface boundary condition; the former by ignoring heat storage, redirecting radiative imbalances meridionally away 

from the equator, the latter by postulating a surface heat flux that is not simultaneously consistent with the heat equation and 

energy conservation across a conducting and radiating surface (part I).   510 

This two part paper re-examined the classical heat equation with classical semi-infinite geometry.  In the horizontally 

homogeneous case (part I), the fundamental novelty is the treatment of the conductive - radiative boundary conditions, here 

(part II), it is the use of Babenko’s method to extend this to the more realistic horizontally inhomogeneous problem.   In both 

cases, the semi-infinite subsurface geometry is only important over a shallow layer of the order of the diffusion depth where 

most of the storage occurs (roughly estimated as ≈ 100m in the ocean, ≈<10m over land, see table 1 and appendix A).   515 
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The key result was obtained by using standard Laplace and Fourier techniques.  It was shown quite generally that the surface 

temperatures and heat fluxes are related by a half-order derivative relationship.  This means that if Budyko-Sellers models are 

right - that the continuum mechanics heat equation is a good approximation to the Earth averaged over a long enough time – 

that a consequence is that the energy stored is given by a power law convolution over its past history.  This is a general 

consequence of the conductive - radiative surface boundary conditions in semi-infinite geometry and is very different from the 520 

box models that assume that the relationship between the temperature and heat storage is instantaneous.   Although the system 

itself is classical, this result may be viewed as a nonclassical example of the Mori-Zwanzig mechanism in which system 

parameters that are not modelled explicitly (here, the subsurface temperatures) imply long (power law) memories for the 

modelled parameters (here, the surface temperatures). This is in contrast to conventional short (exponential) memory 

assumption.  It implies that any part of the Earth system that exchanges energy both radiatively and conductively into a surface 525 

should be modelled with fractional rather than integer ordered derivatives.  A far reaching consequence is that classical 

dynamical systems approaches based on integer ordered differential equations are not necessarily pertinent to the climate 

system. 

If we ignore horizontal heat transport (part I), an immediate consequence of half order storage is that the temperature obeys 

the Half-order Energy Balance Equation (HEBE) rather than the classical first order EBE.  Depending on the space-time 530 

statistics of the anomaly forcing, the HEBE justifies the current Fractional EBE (FEBE) based macroweather (monthly, 

seasonal) temperature forecasts [Lovejoy et al., 2015], [Del Rio Amador and Lovejoy, 2019], [Del Rio Amador and Lovejoy, 

2020a; Del Rio Amador and Lovejoy, 2020b] that are effectively high frequency approximations to the FEBE).  Similarly, the 

low frequency (asymptotic) power law part can produce climate projections with significantly lower uncertainties than current 

GCM based alternatives ([Hebert, 2017], [Hébert et al., 2020] and work in progress directly using the HEBE, [Procyk et al., 535 

2020]). 

When the system is periodically forced, the response is shifted in phase - and borrowing from the engineering literature -  the 

surface is characterized by a complex thermal impedance that we showed is equal to the (complex) climate sensitivity.  In part 

I, we gave evidence that this quantitatively explains the phase lag (typically of about 25 days) between the annual solar forcing 

and temperature response. 540 

In this second part, we investigated the consequences of horizontal heat transport, first in a homogeneous medium with 

inhomogeneous forcing first on a plane and then – permitting a direct comparison with the usual Budyko-Sellers approach - 

on the sphere (section 2).   In section 3 we considered inhomogeneous material properties (including variable diffusion lengths, 

relaxation times, and climate sensitivities).  While Laplace and Fourier techniques can still be used in time, they cannot be 

used in space.   However, the extension to inhomogeneous media was nevertheless possible thanks to Babenko’s powerful (but 545 

less rigorous) operator method.   Whereas in part I, the homogeneous fractional space-time operator was given a precise 

meaning, here - following Babenko - the corresponding inhomogeneous operator was interpreted using binomial expansions 

for both the short and long time limits and yield 2D energy balance models.  Part II thus allows us for the first time to extend 

energy balance models to 2-D, allowing the treatment of regional temporal anomalies.   
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The expansions depend both on the space and time scale and on a dimensional parameter: the typical horizontal transport speed 550 

(V), estimated as ≈ 10-4m/s (appendix A).  The zeroth order expansion in time limit yielded the inhomogeneous HEBE, the 

first order correction yielded an equation that superficially resembled the usual heat equation but instead had a leading half - 

order time derivative term.  Based on the analysis of NCEP reanalyses (appendix A), it was argued that at spatial scales larger 

than hundreds of kilometers, that these approximations are likely to be useful for years, decades, and perhaps longer.  However, 

for studying climate states – defined for example as the equilibrium state for forcings that are increased everywhere in step 555 

function fashion – we required low, not high frequency expansions and these are based on fractional spatial operators.   We 

defined inhomogeneous fractional diffusion operators in both flat space and on the sphere (appendix C), and derived equations 

for both the equilibrium limit and the approach to the limit.  We showed that (as expected) they conserved energy and that the 

low frequency climate sensitivity is somewhat different from that estimated at higher frequencies (from the EBE or HEBE).   

The EBE and HEBE are the H = 1, H = 1/2 special cases of the Fractional EBE (FEBE) that was recently introduced as a 560 

phenomenological model [Lovejoy et al., 2020] (see also  [Lovejoy, 2019a], [Lovejoy, 2019b]) with empirical estimates H ≈ 

0.4 - 0.5, i.e. very close to the HEBE.   Although only a special case, the HEBE illustrates the general features of the FEBE 

fractional-order energy storage term and power law long memories, in [Lovejoy, 2019a]  discussed the statistical properties of 

the FEBE driven by Gaussian white noise (a model for the internal variability forcing) showing that the high frequency limit 

is a process called fractional Gaussian noise (fGn).  In the special HEBE case with H = 1/2, the fGn temperature response has 565 

exactly a high frequency 1/f spectrum that is cut-off at the relaxation time (empirically of the order of a few years).  [Lovejoy, 

2019a] developed optimal predictors and determined the predictability skill.   

Whereas the more general FEBE is essentially a phenomenological model up until now justified by the hypothesized scale 

invariance of the energy storage mechanisms ([Lovejoy et al., 2020]), the HEBE follows directly and quite generally from the 

continuum mechanics heat equation, thus giving it a more solid theoretical basis.  However, the work here suggests another 570 

way to obtain the FEBE: to replace the classical heat equation by its fractional generalization, the fractional heat equation, a 

possibility that we explore elsewhere.   

As a final comment, we should mention that although this paper focused on the time varying anomalies with respect 

to a time independent climate state, our approach opens the door to new methods for determining full 2-D climate states 

(generalizations of the 1-D Budyko-Sellers type climates) but also to determining past and future climates and the transitions 575 

between them.  This is because the definition of temperature “anomalies” is very flexible.  For example, we could first apply 

the method to determining the existing climate by fixing the forcing at current values and solving the time independent transport 

equations.  Then, the long term effect of changes such as step function increases in forcing could be determined from the 

GHEBE anomaly equation (section 3.5) which regionally corrects the local climate sensitivities for (slow) horizontal energy 

transport effects. Nonlinear effects that can be modelled by temperature dependent forcings (i.e. 580 

)  can easily be introduced.  Other  nonlinear effects needed to account for Milankovitch cycles 

could thus easily be made, the primary difference being the half-order derivatives and the scaling that they imply.  Indeed, the 

F x,t( )→ F x,t,T x,t( )( )
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power law relaxation processes implied by the GHEBE suggests straightforward explanations for the observed power law 

climate regime spanning the range from centennial to Milankovitch scales.    
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Appendix A: Empirical analysis of the horizontal structure  

In order to apply our results to the Earth, we need some idea of the magnitudes of various terms in our equations.  To 590 

start with, recall that our model is of the Earth system at macroweather and climate time scales i.e. all relevant quantities are 

averaged over the weather scales ≈ 10 days or longer.   The resulting averaged system is then treated as a continuum and the 

general continuum mechanics heat equation is applied.  In this, we essentially follow the Budyko - Sellers approach and 

consider that the diffusive transport is characterized by eddy (not molecular) diffusivities and that the vertical structure of this 

averaged continuum is homogeneous (although it may vary considerably from place to place in the horizontal, see section 2.3 595 

for a scaling (multifractal) model).  Unlike Budyko - Sellers that treat the vertical as negligibly thick – they don’t consider it 

at all – our main difference is that we assume that it has a thickness of the order of a few diffusion depths, and then we apply 

the key conductive- radiative surface boundary condition. 

Probably the most important aspect is to estimate the relative importance of the temporal relaxation (and storage) 

terms in comparison to the horizontal transport terms  with  (see eq. 43).  Indeed, for 600 

judging their relative importance, the key parameter is the ratio of the transport to relaxation terms r: 

		 (71)	

Where a is the magnitude of the dimensionless advection velocity vector a = v/V.  When r≪1, the transport term is small 

compared to the temporal term, conversely when r≫1.  In order to quantify this, it is convenient to consider the advective 

(“a”) and diffusive (“d”) terms as well as their derivatives individually: 605 
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		 (72)	

In the macroweather regime, the temporal temperature fluctuation at time scale Dt is  where  is the anomaly 

averaged over scale Dt; empirically this is valid over the macroweather regime i.e. up to 10 - 30 years in the industrial epoch 

(see e.g. [Lovejoy and Schertzer, 2013], [Lovejoy, 2013], [Lovejoy et al., 2017]).  The typical fluctuation can be estimated by 

the RMS anomaly: 610 

			 (73)	

Where the overbar is the average over all the anomalies in a time series at a single location x.  Dt1 is a convenient reference 

time, here taken as 1 month.  Empirically, the exponent Ht ≈ 0 to -0.2; this is similar to the high frequency result Ht = 0 (i.e. 

for Dt<t) predicted from the HEBE with white noise forcing, valid for Dt <t.  Hence for our present purposes the typical time 

derivative is: 615 

	 (74)	

This is the resolution Dt time derivative.  Since typical north-south gradients are larger than typical east-west ones, the 

meridional (y) component of the transport is dominant, so that we will focus on it: 

	 (75)	

Hence the meirdional contributions to the ratios ra, rd are:  620 
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	 (76)	

Where  , is the relative fluctuation in the RMS temperature at time scale Dt, spatial scale Dy and 

- since we are only interested in an order of magnitude - we took a ≈ ay. The estimate of the diffusive term uses a finite 

difference approximation to the Laplacian.  lh is horizontal diffusion length and a is the nondimensional advection speed v/V 

(V = lh/t, see below).  To gauge the order of magnitudes, in the far right term of eq. 76, we took the absolute value so that the 625 

result is an upper bound.   

Quantity Symbol Values 

Volumetric specific heat  rc water ≈ 4x106 , soil ≈ 1x106 J/(m3K). 

 

Climate sensitivity  s water  ≈ 4x106 , soil ≈ 1x106 J/(m3K) 

Relaxation time  t global t ≈ 108s 

Horizontal Diffusivity  kh 1 m2/s  

Vertical diffusivity  kv ocean ≈10-4 m2/s, soil ≈10-6 m2/s, global ≈10-5 m2/s 

Diffusion depth lv ocean 300m, soils ≈ 3 – 10m, global ≈ 30 - 100m 

Diffusion length  lh ocean ≈ 30 km, land 3 km, global ≈ 10 km.   

 

Diffusive velocity parameter  V 3x 10-3 – 3x 10-4 m/s 

Nondimensional advection 

velocity  
a 0.1 - 1 

Table 1: Parameter estimates from part 1 section 3.1.2, see section 2.3 for some planetary scale estimates. 

 

Table 1 summarizes the dimensional and nondimensional parameter estimates, the final step is to estimate values of the gradient 

and Laplacian terms (eq. 76).  Since s - and hence log s  - are the amplitudes of temporal noises; these amplitudes vary 630 

stochastically from one spatial location to another.  Due to the space-time scaling of the temperature anomalies (analysed in 

[Lovejoy and Schertzer, 2013]), we expect that the statistics of the logarithms (eq. 76) to follow power laws up to large scales.  

ra,y =Vα
Δt
Δy

Δ log sΔt Δy( )

rd ,y =Vlh
Δt
Δy2

Δ log sΔt Δy( )( )2 + Δ2 log sΔt Δy( )( )

Δ log sΔt Δy( ) = ΔsΔt Δy( )
sΔt
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To quantify this, we used NCEP reanalysis data at 2.5o resolution from 1948 to present, and after removing the low frequency 

anthropogenic trend, we estimated the RMS temperature anomalies at each pixel; s(x).  In fig. 6, we then calculated spatial 

zonal and meridional fluctuations Dlogs(Dx), Dlogs(Dy), and from these their root mean square (RMS) values.  From the figure, 635 

we see that to a good approximation: 

(77)	

The fluctuations we used are Haar fluctuations, but because Hx ≈ Hy > 0, they are nearly equal to difference fluctuations 

[Lovejoy and Schertzer, 2012].  We see that the zonal and meridional lines are roughly parallel: with a “trivial” horizontal 

anisotropy factor ≈ 5 (typical north-south fluctuations are 5 times larger than typical east-west ones).  Although, H = 1/2 is the 640 

value corresponding to Brownian motion, the actual variability is highly intermittent (spiky), so that unlike the temporal 

fluctuations, these spatial increments are far from Gaussian; it is not Brownian motion.   Multifractal analysis indicates that 

the intermittency parameter (the codimension of the mean) C1 ≈ 0.16 which is very high, reflecting the strong spatial 

fluctuations as we move from one climate zone to another [Lovejoy and Schertzer, 2013], [Lovejoy, 2018],  [Lovejoy, 2019b].  

Since the north-south gradients are much stronger than the east-west ones, we can estimate the gradients and Laplacians 645 

by using the y direction  fluctuations: at scale Dy:  

	 (78)	

	 (79)	

Since LNS ≈ 3x106m , over most of the range of Dy, so that the ratio of advection to diffusion is 

 so that advection dominates diffusion for .  Taking a ≈ 1, it is dominant for . 650 
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		 (80)	

Where Dt is measured in seconds, Dy in meters.  When the typical distances exceed these critical distances (i.e. when Dy>Dyc), 

we have r<1 so that the temporal derivative terms dominate over the horizontal transport.  For Dt = 1 month, we have Dyc,a ≈ 655 

0.1m, and Dyc,d ≈ 200m, so that unless the distances are very small, the temporal (storage) terms are indeed dominant.  Even 

over much longer time scales - e.g. Dt ≈30 years (109s), they dominate for distances greater than ≈Dyc,a ≈ Dyc,d ≈ 10 km.   

Alternatively, we could estimate the time scales needed so that the critical transport scale is 1000km.  From the same equations, 

we obtain estimates of 300 years (advection), 30,000 years (diffusion).  Note however that in the anthropocene, for periods Dt 

≈> 10 years, that the temporal fluctuations start to grow (i.e. the empirical relations eqs. 78, 79 will break down); nevertheless, 660 

the above scaling relations for the internal variability may hold to much longer times [Lovejoy et al., 2013]. 

In summary, from eq. 80, we conclude that for the larger scales >>≈10 km, that r≪1 and that the HEBE may apply 

except for time scales ≫t: the only explicit role of kh, kv, r, c is to determine the limits of validity of the HEBE via lh, a.  

When the HEBE is valid, only the relaxation time t and the climate sensitivity s are relevant.  

Appendix B:  The HEBE cross-correlations  665 

The temperature anomaly cross-correlation function (a matrix when the temperature is discretized on a grid), is commonly 

used in climate science, notably to determine Empirical Orthogonal Functions (EOFs).  These can be determined from the 

HEBE (or GHEBE if needed) once a forcing model is given.  Let us first consider that the climate sensitivities and relaxation 

times are deterministic characterizations of the local properties at points x1, x2.  In this case, for the HEBE, any correlations 

between the temperature anomalies at those points will arise because of correlations in the forcing F(x,t).   We now consider 670 

simple deterministic and stochastic forcings. 

a) Deterministic forcing, temporal averaging: 

The simplest model is to take spatial correlations obtained by temporally averaging following a step function (Q(t)) forcing at 

t = 0, but different at each position x: 

		 (81)	675 

The temporally averaged cross-correlation can be determined by: 

 

Δyc,a = 10
−14Δt2; ra Δyc,a( ) = 1

Δyc,d = 10
−2Δt2/3; rd Δyc,d( ) = 1

F x,t( ) = F0 x( )Θ t( )
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		 (82)	

 

Recalling that the step response, is the integral of Gd,1/2 and since we have: 680 

		 (83)	

Hence: 

	 (84)	

b) Stochastic forcing: 

A convenient model of pure internal variability, is to assume that the forcing is statistically stationary in time with the following 685 

forcing cross-correlations: 

		 (85)	

(the “<.>” symbol indicates ensemble, statistical averaging).  The corresponding stationary temperature cross-correlation: 

		 (86)	

Note the general symmetry property  so that we only need to determine R for Dt>0. For 690 

statistically stationary forcing,  is the anomaly cross-correlation needed - for example - for constructing 

Empirical Orthogonal Functions (EOFs).  

The easiest way to relate RF and RT is via their spectra.  Let us define the transform pairs:  

	 (87)	

similarly for the forcing F (the circonflex indicates Fourier Transform).  Then: 695 

T x1,t( )T x2 ,t( ) = s x1( )F0 x1( )s x2( )F0 x2( )
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	 (88)	

(this is true for the Weyl fractional derivatives used here, [Podlubny, 1999]).  So that the impulse response is: 

		 (89)	

The solution to the HEBE at two different points x1, x2 is: 

		 (90)	700 

Where the asterix indicates complex conjugate.  Multiplying and taking ensemble averages and assuming that the forcing – 

and hence responses -  are statistical stationary, we obtain: 

		

		 (91)	

Where: 705 

		 (92)	

Therefore: 

	 (93)		
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A special case that is useful later, is when x1 = x2 = x, which yields the spectrum ET at the point x: 710 

	

	 (94)	

Using a partial fraction expansion of eq. 93, we obtain:  

	

	 (95)	715 

By inverting the Fourier transform, this can be used to determine the real space transfer function .  Using 

contour integration, it is convenient to convert the inverse Fourier transforms into Laplace transforms for Dt > 0: 

		

	 (96)		

For Dt<0, use .  The spatial cross-correlation, temporal autocorrelation function of the 720 
temperature is therefore: 

	 (97)	

Where the “*” indicates convolution. 
The basic Laplace transforms in eq. 96 can be expressed in terms of higher mathematical functions as follows (all for t>0): 

		 (98)	725 
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The ip comes from integrating half way around the pole at the origin.  Note that both the Exponential Integral (EI)  and the 

incomplete Gamma functions have log divergences at the origin.  If needed, these formulae can be combined to obtain a 730 

complete analytic expression for , which can then be used to determine the temperature correlations if the 

forcing correlations are known:  where the asterix is the 

temporal convolution. 

The special case x1 = x2 i.e.	with	t1	=	t2 = t, is a little simpler: 

		 (99)	735 

Whose Fourier transform is: 

	 (100)	

Evaluating the integral for g(Dt) using the Laplace transform formulae (eq. 98): 

		 (101)	

 (Dt>0).  The small scale and asymptotic limits are thus: 740 

		

		 (102)	

Note the small scale log divergence, this is important when the forcing is a white noise, see [Lovejoy, 2019a].   The temporal 

autocorrelation at the point x is thus: 
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	 (103)	745 

However, in general, the Fourier relations are easier to deal with.   

Appendix C: Fractional Integration on the sphere 

At long enough time scales, the spatial transport of heat is important and the spherical geometry of the Earth must be taken 

into account.  The standard way (see section 2.3 and the reviews [North et al., 1981], [North and Kim, 2017]) is to use spherical 

harmonics.  In Appendix 5D of [Lovejoy and Schertzer, 2013] these were used to define fractional integrals on the sphere, 750 

necessary in order to produce the corresponding multifractal cloud and topography models (see also [Landais et al., 2019]).  

Spherical harmonics are particularly convenient when the heat transport is diffusive, involving fractional Laplacians.  In section 

3.5.2, these were defined in real space by taking the domain of integration to be a sphere.  In this appendix we discuss an 

alternative method of spherical fractional integration that may have theoretical and practical advantages.  

The Laplacian on a sphere ( ) is the angular part of the Laplacian in spherical coordinates, it is obtained by expressing the 755 

Laplacian in spherical coordinates and setting the radial derivatives to zero: 

	 (104)	

where	q is the colatitude and f is the longitude.  The normalized eigenfunctions of are the spherical harmonics Yn,m: 

 

 760 

	 (105)	

With m, n integer, n ≥0 and Pn,m is the associated Legendre polynomial.  Yn,m satisfies: 

	 (106)	

So that n(n+1) are the eigenvalues.  Since  there are 2n+1 degenerate eigenvalues and functions for each n. 
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The spherical harmonics form a complete orthogonal basis, so that any function on the sphere can be uniquely 765 

expressed in terms of a spherical harmonic expansion: 

	 (107)	

Where  are the coefficients of the expansion without fractional integration (i.e. of order 0, indicated in the superscript).  

This suggests the following definition for a fractional spherical integration order H of a spherical harmonic: 

,	 (108)	770 

for the HEBE, we take H = 1 which corresponds to the ½ power of the inverse Laplacian (see section 2.3 for the zonally 

averaged case that depends only on n).  We have excluded the value n = 0 since when H>0, the filter 

divergences; since , this component corresponds to the mean.   Therefore the above definition is adequate 

for mean zero anomalies.  Alternatively, the mean can be removed and taken care of separately, see below.  With this definition, 

the fractional integral of the zero mean function f is: 775 

	 (109)	

i.e. a filter in spherical harmonic space, analogous to the Fourier filter  for an isotropic fractional integration in Cartesian 

coordinates. 

The definition of the fractional Laplacian (eq. 111, 112) is adequate when the horizontal transport coefficients are 

constant, but in section 3.5, we saw that more generally, the half order divergence operator was written:  780 

i.e. there was an extra multiplication by the spatially varying diffusion length .  In flat (Cartesian) coordinates, such 

real space multiplications correspond to Fourier space convolutions so that this operator can also be conveniently expressed in 

Fourier space.  However, with spherical harmonics, this simplicity is lost: although isotropic real space convolutions can still 

be performed by filtering the harmonics, real space multiplications no longer correspond to convolutions of harmonic 

coefficients, the closest spherical harmonic equivalent is much more complicated, it involves Clebsch-Gordon coefficients. 785 
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A method of fractionally integrating the mean (n = 0) component was developed for the purpose of multifractal 

modeling in Appendix 5D of [Lovejoy and Schertzer, 2013].  There, a different definition of fractional integrals on the 

sphere was proposed: a convolution with the function Q-(2-H), where Q is the angle between two points subtended at the center 

of the sphere.  The function Q-(2-H) / G(H/2) was numerically expanded in spherical harmonics and the convolution was again 

performed by filtering the coefficients (the constant G(H/2) is needed so that the normalization is the same as for the definition 790 

eq. 107).  The main difference between the two definitions is that the latter can be directly applied to fields with nonzero 

means.  With this definition, the H order fractional integral of a constant function on the sphere (representing the nonzero 

mean), is simply the value multiplied by   which for the HEBE H =1 case, reduces to 

(1/2)1/2Si(2p) where Si is the standard sine integral function.  However for the coefficients n≥1, numerical tests show that the 

two definitions are almost exactly the same; for example with H = 1, the spherical harmonic coefficients of  Q-(2-H) are within 795 

3% for all n≥1 and the ratio converges rapidly to 1 for large n.  The conclusion is that filtering the anomaly by   

and then multiplying the mean by the above factor is a practical method of fractionally integrating a function on the sphere. 
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Figures 

 

 875 

Fig. 1:  The surface impulse response function ( , eq. 12, i.e. Dirac in time and Dirac in space) as a function of 

nondimensional time (t) for nondimensional distance from the source increasing from r = 0 (top) to r = 1 in steps of 0.2 (top to 
bottom). 
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 880 

Fig. 2: The surface step response (time), Dirac (space) function ( , eq. 12) as a function of nondimensional time, each 

curve is for a different nondimensional distance from the source increasing from r = 0.2 (top) to r = 1 in steps of 0.2 (top to bottom).  
At each distance r, the temperature approaches   equilibrium (= Gtherm,d(r), eq. 20) at large t (shown by dashed horizontal lines). 
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Fig. 3: A comparison of the spatial impulse response Green’s functions for  equilibrium with surface forcing via conduction only (i.e. 885 

, no radiation), top = r-1),  and bottom, the same but with conduction – radiative forcing  via the surface BC (

) that is asymptotically ≈ r-3 (eq. 21). 
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 890 
 Fig. 4:  This is the step response in time and (circular) step in space for conductive-radiative forcing.  Lines for t = 0.01 (bottom),  
0.2, 0.4, ... 1.6  (black, bottom to top, the thick black line is for  (  equilibrium).  The nondimensional forcing is the rectangle 
(from unit circular forcing).  Also shown (top dashed) is the   equilibrium when the forcing is purely due to unit conductive heating 
over the unit circle.   
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Fig. 5: The response to a unit intensity forcing in the unit circle.  The temperature as a function of nondimensional time is given for 900 
different distances from the center top (r = 0) to bottom (r = 3), from the same data as before… red every 1/2, black every 0.1 (top, r 
= 0, bottom, r = 3). 
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Fig. 6: Space - time contours for unit circle forcing as a function of nondimensional time (left to right) and nondimensional horizontal 
distance (vertical axis) and nondimensional time left to right.  905 
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Fig. 7: The RMS fluctuations (at Dt = 1 month resolution)     (zonal, bottom),  (meridional, top) 

from NCAR reanalyses.  The vertical scale is dimensionless, the horizontal scale is in log10 (degrees) with the minimum (5o) and 910 
maximum (180o) indicated in large, bold font.  The black lines are reference lines (not regressions) with slopes Hx = Hy =0.5.   
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Parameters Symbol Estimated Value 
   
Specific heat per volume rc ≈106 J/m3 
Climate sensitivity s ≈ 1 K/(W/m2) 
Vertical diffusivity (ocean) kv ≈10-4 m2/s 
Vertical diffusivity (soil) kv ≈10-6 m2/s 
Horizontal diffusivity kh ≈1 m2/s 
Vertical Diffusion depth 
(oceans) 

 ≈100 m 

Vertical Diffusion depth (soil)  ≈ 3 – 10m 
Relaxation time   ≈108 s 

Horizontal Diffusion length  ≈104 m 
Effective horizontal heat 
transport velocity 

V = lh/t ≈10-4 m/s 

Effective advection velocity vh ≈10-4 m/s 
Nondimension advection 
velocity 

a 0.1 - 1 

Characteristic Zonal variation 
length 

LEW ≈1.5x107 m 

Characteristic Meridional 
variation length 

LNS ≈3x106 m 

Table 1: Empirical estimates of the parameters used in this paper; see appendix A for details.   
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