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Key Points: 6 

• Scaling-based long-range stochastic forecasting is a past value problem not an initial 7 

value problem. 8 

• Granger causality shows that while spatial correlations exist in the temperature field, they 9 

cannot be used to improve on predictions based on historical data of individual infinite 10 

time series. 11 

• The statistics and teleconnection patterns of the real-world can be reproduced with 12 

stochastic simulations with a total lack of causal relationships.  13 

Abstract 14 

Conventional long-range weather prediction is an initial value problem that uses the current state 15 

of the atmosphere to produce ensemble forecasts. Purely stochastic predictions for long-memory 16 

processes are “past value” problems that use historical data to provide conditional forecasts. 17 

Teleconnection patterns, defined from cross-correlations, are important for identifying possible 18 

dynamical interactions, but they do not necessarily imply causation. Using the precise notion of 19 

Granger causality, we show that for long-range stochastic temperature forecasts, the cross-20 

correlations are only relevant at the level of the innovations – not temperatures. This justifies the 21 

Stochastic Seasonal to Interannual Prediction System (StocSIPS) that is based on a (long 22 

memory) fractional Gaussian noise model. Extended here to the multivariate case, (m-StocSIPS) 23 

produces realistic space-time temperature simulations. Although it has no Granger causality, 24 

emergent properties include realistic teleconnection networks and El Niño events and indices.  25 

1 Introduction 26 

For forecasts over the weather regime – below the ≈10 day deterministic predictability 27 

limit – Numerical Weather Prediction (NWP) and General Circulation Models, (GCMs) have 28 

been highly successful, yet for longer term macroweather (“long range”) forecasts, their skill is 29 

disappointing. This has motivated the development of stochastic alternatives. Successful 30 

stochastic forecasts require causal models and the search for causality typically starts with 31 

correlations. In the last years, two stochastic strands have emerged each inspired by different 32 

sources of strong correlations. A particularly well studied constellation of correlations are 33 

associated with large scale spatial structures – teleconnections – as vividly displayed in climate 34 

networks [e.g.: (Donges et al., 2009b; Ludescher et al., 2014)]. Teleconnection-inspired forecast 35 

models often use climate (especially El Niño) indices [see (Brown & Caldeira, 2020; Eden et al., 36 

2015)]. An alternative source of correlations upon which to base causal models is the system’s 37 

long range memory (Blender & Fraedrich, 2003; Bunde et al., 2005; Rypdal et al., 2013; 38 

Varotsos et al., 2013), a consequence of temporal scaling, itself associated with long range 39 
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spatial scaling, a basic property of the governing equations that is well respected by both GCMs 40 

and the empirical data [(Palmer, 2019), see also the review (Lovejoy & Schertzer, 2013)]. 41 

At the moment, these strands are at virtual antipodes. Models based on teleconnections 42 

use only data from a few months – they are Markovian, short (exponential) memory models that 43 

get their skill largely from spatial information. In this, they are almost as extreme as GCMs that 44 

are zero-memory, initial value models based purely on the spatial information at t = 0. In 45 

contrast, the scaling, long memory Stochastic Seasonal to Interannual Prediction System 46 

(StocSIPS) model is at the opposite extreme (Del Rio Amador & Lovejoy, 2019, 2020). For each 47 

pixel, it uses historical past data to forecast the future - but uses no other data as co-predictors: it 48 

is a purely “past value” model. In spite of this apparent deficiency, for monthly, seasonal, and 49 

annual temperature forecasts StocSIPS’ skill already rivals – or exceeds – those of GCMs.   50 

This paper attempts to answer the obvious question: is it possible to make a model that 51 

combines strong spatial correlations and long memory to produce even more skillful forecasts?   52 

While it is well known that correlations and causality are not synonymous, the precise 53 

relationship between the two is often unclear and there are no general tools for untangling them.  54 

However, the present case is an important exception: the problem of improving StocSIPS using 55 

spatial co-predictors can be precisely answered by using the theoretical framework of Granger 56 

causality (Granger, 1969). 57 

Two series are Granger causally related iff one can be used as a skillful co-predictor of 58 

the other. Therefore, it suffices to enquire as to the Granger causality of the space-time StocSIPS 59 

model. If the temperature teleconnections have no Granger causality, then they will not improve 60 

StocSIPS forecasts. In the first part of the paper we propose a multivariate surface temperature 61 

model (m-StocSIPS) for which the uncoupled regional StocSIPS model gives the optimal 62 

forecast. m-StocSIPS also reproduces the empirical cross-correlation structure over a wide range 63 

of time lags. This is made more convincing by making simulations that display numerous 64 

realistic but emergent model properties including spatial teleconnection networks, realistic El 65 

Niño patterns and indices. The optimal m-StocSIPS predictor at a given location is obtained from 66 

its own past if the series is long enough. Even strongly spatially correlated series from other 67 

locations do not help improve the skill, teleconnection correlations may be seductive, but without 68 

Granger causality, they are misleading.   69 

2 Methods 70 

2.1 Stochastic modeling of the temperature anomalies 71 

In macroweather temperature anomalies at position 𝐱 (after removing the annual cycle) 72 

can be modeled as a trend-stationary process: 73 

 ( ) ( ) ( )anom anth, , ,T t T t T t= +x x x , (1) 74 

where 𝑇(𝐱, 𝑡) is a stochastic stationary component and 𝑇anth(𝐱, 𝑡) is a deterministic low-75 

frequency response to anthropogenic forcings as in (Del Rio Amador & Lovejoy, 2019). 76 

The stationary stochastic 𝑇(𝐱, 𝑡), is the zero-mean residual natural variability that 77 

includes “internal” variability and the response of the system to other natural forcings (e.g.: 78 

volcanic and solar). These anomalies can be predicted by modelling each position independently 79 

using an univariate representation [the regional StocSIPS model presented in (Del Rio Amador 80 
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& Lovejoy, 2020), hereafter DRAL]. However, to investigate whether forecasts for individual 81 

series can be improved using other data, a multivariate framework is needed. A quasi-Gaussian 82 

process, stationary in time, but inhomogeneous in space has a multivariate continuous-in-time 83 

Wold representation (moving average of infinite order MA(∞)) (Box et al., 2008; Brockwell & 84 

Davis, 1991; Wold, 1938):   85 

 ( ) ( ) ( )
t

i ij j

j

T t t t t dt 
−

  = −  . (2) 86 

The index  “𝑖” is a subscript indicating the spatially discrete position (“pixel”), the matrix 𝜅𝑖𝑗(𝑡) 87 

is a kernel specifying the MA process and the innovations, 𝛾𝑖(𝑡), are normalized Gaussian white 88 

noise processes with 〈𝛾𝑖(𝑡)〉 = 0, 〈𝛾𝑖
2(𝑡)〉 = 1 and cross-correlation matrix: 89 

 ( ) ( ) ( ) ( )ij i j ijt t t t a t t     − = = − , (3) 90 

where 𝛿(𝑡) is the Dirac function, 〈∙〉 denotes ensemble averaging and −1 < 𝑎𝑖𝑗 < 1. This “delta-91 

correlated” innovation temporal structure implies that the latter are totally unpredictable and is 92 

the key property below. 93 

The cross-covariance for time lag ∆𝑡 > 0 for the temperature is: 94 

 ( ) ( ) ( ) ( ) ( )
0

ij i j im jn mn

m n

C t T t T t t t t t a dt 


   = + = + ,  (4) 95 

hence the cross-correlation is: 96 

 ( )
( )

( ) ( )0 0

ij

ij

ii jj

C t
R t

C C


 = . (5) 97 

Since the process is Gaussian with zero mean, it is completely determined by the 98 

correlation structure. In the macroweather regime – with the possible exception of extremes – 99 

𝑇𝑖(𝑡) is nearly Gaussian in time, but multifractal in space and the statistics of its fluctuations are 100 

scale-invariant over wide ranges (Lovejoy, 2018; Lovejoy et al., 2018; Lovejoy & Schertzer, 101 

2013). The scaling behaviour in time implies that there are power-law correlations and hence 102 

potentially a large memory that can be exploited. The simplest relevant scaling process is the 103 

statistically stationary fractional Gaussian noise (fGn) process. 104 

The fGn based StocSIPS model was first developed for monthly and seasonal forecast of 105 

globally averaged temperature (Lovejoy et al., 2015; Del Rio Amador & Lovejoy, 2019).   106 

Recently, DRAL extended StocSIPS to the regional prediction of 𝑇𝑖(𝑡), where each grid point 107 

was considered as an independent time series. This univariate representation using a resolution 𝜏 108 

fGn process (see the supporting information) can be extended to the multivariate case with the 109 

kernel: 110 

 ( )
 

( ) ( )
1 21 21

3 2

ii i i
HH T H

ij ij

i

c
t t t t

H


    



++ = − − −
  +

, (6) 111 

where 𝜃(𝑡) is the Heaviside (step) function, Γ is the Gamma function, 𝐻𝑖 ∈ (−1,0) is the 112 

fluctuation exponent characterizing the scaling of the fluctuations in time, 𝜎𝑇𝑖
 is the standard 113 
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deviation, 𝑐𝐻𝑖
 is a normalization constant and 𝛿𝑖𝑗 is the Kronecker 𝛿. The different temperature 114 

series, 𝑇𝑖(𝑡), are correlated, and the spatial correlation structure is inherited from the innovation 115 

cross-correlations, 𝑎𝑖𝑗. The presence of the Kronecker 𝛿 in Eq. (6) implies that the temperature at 116 

grid point “𝑖” is an fGn with parameters 𝐻𝑖 and 𝜎𝑇𝑖
. 117 

In DRAL it was shown that the fGn model (Eq. (6)) is an accurate univariate 118 

representation of the natural temperature variability for most of the globe. However, in the 119 

tropical ocean, the fGn model approximates the temperature increments, meaning that the actual 120 

temperature variability is modelled as a fractional Brownian motion (fBm) process with 121 

fluctuation exponent 𝐻𝑖 ∈ (0,1) (see Fig. 1(a)), although cut-off at multi-annual scales. The 122 

fluctuation exponents of fBm and fGn are related as 𝐻fBm = 𝐻fGn + 1. Both cases are high-123 

frequency approximations of the more general fractional relaxation noise (fRn) process, 124 

introduced in (Lovejoy, 2019; Lovejoy et al., 2020). 125 

The use of a parametric model considerably reduces the number of parameters and 126 

clarifies their interpretation. m-StocSIPS is fully determined by the symmetric innovation cross-127 

covariance matrix 𝑎𝑖𝑗, the amplitudes of the temperature fluctuations 𝜎𝑇𝑖
, and the memory 128 

exponents 𝐻𝑖. These characterize the internal dynamics; for example low values of 𝜎𝑇𝑖 over the 129 

oceans are a consequence of the greater heat capacity and thermal inertia and 𝐻𝑖 characterizes the 130 

memory associated with the multiscale energy storage mechanisms (Lovejoy, 2020; Lovejoy et 131 

al., 2020). 132 

m-StocSIPS is defined by 𝑁(𝑁 + 3) 2⁄  parameters; in comparison, a vector 133 

autoregressive order 𝑝 model (VAR(𝑝)) needs 𝑝𝑁2 values (Box et al., 2008; Brockwell & Davis, 134 

1991) and for long-memory processes, 𝑝 is large. These “black box” type models suffer from 135 

opaque physical interpretations, and their large number of VAR parameters makes them unstable 136 

and subject to overfitting. The same is true for general vector autoregressive-moving average 137 

VARMA(𝑝, 𝑞) models. 138 

Ultimately, the adequacy of a model must be checked. In this case, the diagnostics are 139 

primarily based on the examination of the whiteness and time-independence of the residual 140 

vectors 𝛾𝑖(𝑡), which are obtained by inverting Eq. (2) with the estimated parameters. The 141 

whiteness was verified in DRAL using the theory in Appendix 1 of (Del Rio Amador & Lovejoy, 142 

2019). To verify the time-independence of the innovations (Eq. (3)), there exist many “goodness-143 

of-fit” tests based on the residual cross-covariance matrices at several lags (Ali, 1989; Hosking, 144 

1980; Li & McLeod, 1981; Poskitt & Tremayne, 1982). In our case, they are either impractical – 145 

the matrices have more than 1.1 ∙ 108 elements – or impossible since there is only one realization 146 

of our planet. Nevertheless, a visual inspection of the residual cross-correlation matrices for 147 

different lags (shown in Fig. S2 in the supporting information) may be enough. Our results 148 

indicate that m-StocSIPS is a good approximation, confirmed in Sect. 3.3 using global 149 

simulations that convincingly reproduce the space-time patterns (Fig. 2). Aside from minor 150 

numerical approximations, StocSIPS predictions presented in DRAL are optimal m-StocSIPS 151 

predictions in the minimum mean square error framework, explaining the high StocSIPS forecast 152 

skill.   153 

2.3 Correlation, causality and Granger causality 154 

m-StocSIPS uses an fGn model for most of the globe (where 𝐻𝑖 < 0) and a (truncated) 155 

fBm model for the tropical ocean (where 𝐻𝑖 > 0). The cross-correlation structure for the 156 
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temperature anomalies is thus determined by three kinds of interaction: 1) fGn-fGn, 2) fGn-fBm 157 

and 3) fBm-fBm. The fGn-fGn cross-correlation can be obtained directly by using Eq. (6) in Eq. 158 

(4). The exact result is given in the supporting information (Eq. S22). Similar expressions can be 159 

obtained for the other two cases (Coeurjolly et al., 2010). 160 

While fGn is a stationary process and fGn-fGn cross-correlations only depend on the lag 161 

∆𝑡, this is not the case for fBm. Nevertheless, under some approximations for long enough finite 162 

time series, it is possible to obtain expressions that only depend on ∆𝑡 [see (Delignières, 2015)]. 163 

The cross-correlations for ∆𝑡 ≫ 𝜏 (𝜏 is the temporal resolution of the time series, i.e. 1 month) 164 

are: 165 

Case 1: fGn-fGn (𝐻𝑖 < 0 and 𝐻𝑗 < 0),   166 

 ( ) ( ),

i j

i j

H H

ij H H ijR t a t 
+

  . (7) 167 

Cases 2 and 3: fGn-fBm and fBm-fBm (𝐻𝑖 > 0 or/and  𝐻𝑗 > 0), 168 

 ( ) ( ), 1
i j

i j

H H
ij

ij H H ij rR t a t 
+  − 

  
 , (8) 169 

for ∆𝑡 ≪ 𝜏𝑟
𝑖𝑗

, where 𝜏𝑟
𝑖𝑗

 is a characteristic relaxation time related to the ocean weather-ocean 170 

macroweather transition (Lovejoy, 2019; Lovejoy et al., 2018; Del Rio Amador & Lovejoy, 171 

2020), and 𝜑𝐻𝑖,𝐻𝑗
 and 𝜙𝐻𝑖,𝐻𝑗

 are proportionality constants that depend on 𝐻𝑖 and 𝐻𝑗 (see Eq. S25 172 

in the supporting information). As expected, these expressions coincide with the high-frequency 173 

approximations of the stationary fRn cross-correlations for 𝐻𝑖 and 𝐻𝑗. 174 

Equations (7) and (8) imply that the cross-correlation structure of the temperature field 175 

has a spatial correlation component given by the matrix 𝑎𝑖𝑗, and a temporal component 176 

determined by the memory dependence of the individual series (𝐻𝑖 and 𝐻𝑗). In this sense, they 177 

are similar, but more general than the average Statistical Space-Time Factorization (SSTF) 178 

proposed earlier by (Lovejoy & de Lima, 2015). For a given location 𝑖 and lag ∆𝑡, the cross-179 

correlation with any other location 𝑗 will be higher for series whose past is important (large 𝐻𝑖) 180 

as compared to series with short memories (small 𝐻𝑖).  181 

Now consider the prediction problem for the general process given by Eq. (2). Since the 182 

process is Gaussian, we use the minimum mean square error framework. Although correlations 183 

play an important role in the statistical description and in pattern identification, it is wrong to 184 

infer causality based on the lagged cross-correlation structure alone. In the words of (Buchanan, 185 

2012): “Not only does correlation not imply causality, but lack of correlation needn’t imply a 186 

lack of causality either”. A classic example is two correlated systems without any dynamic 187 

interaction between them but with a common dependence on a third variable. Conversely, there 188 

are coupled chaotic systems, that exhibit a complete lack of long-term statistical correlation, 189 

despite sharing a clear cause-effect link (Sugihara et al., 2012).   190 

An example from (Barnston, 2014; Lyon & Barnston, 2005) may clarify the discussion.  191 

They argue that El Niño events lead to a cascade of global impacts, e.g.: wet Central Asias. 192 

However, in GCM terms, a given set of initial conditions is the ultimate cause of both an El Niño 193 

and a wet season in Central Asia. The chain of events starting from those initial conditions 194 

explains the mutual correlations without mutual causation. In traditional mechanistic terms, the 195 

best that can be done to reconcile the two viewpoints is the notion of causal chain (e.g. Bunge, 196 
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2017). In this fairly qualitative view, the ultimate cause – the initial conditions – triggers a causal 197 

chain of events in which El Niño is a “proximate” link leading to a wet season in Central Asia.  198 

From a stochastic point of view, (Andree, 2019) argues that a time series (e.g. the 199 

temperature at a given location) has a memory part depending on its own past and a causal part 200 

from the past at other locations. For short-memory processes, this causal contribution may be 201 

important, explaining how some empirical models obtain their skill by effectively borrowing 202 

memory from co-predictors. However, the longer the memory – the more autoregressive steps 203 

that are needed – the lower the influence of the causal component. In the limit, all the causal 204 

chain for a given time series may be embedded in its own past, so that GCMs and StocSIPS 205 

exploit a whole chain of causation, not only the last links in the chain so that their skill is higher 206 

than models that only exploit proximate causes. 207 

The precise tool needed to clarify stochastic causality issues is Granger causality 208 

(Granger, 1969).  We say that the temperature 𝑇𝑗 at location 𝑗 fails to Granger-cause the 209 

temperature 𝑇𝑖, if for all future times 𝑡 > 0, the mean square error (MSE) of a forecast of 𝑇𝑖(𝑡) 210 

based on its own past (𝑇𝑖(𝑠) for 𝑠 ≤ 0) is the same as the MSE of a forecast of 𝑇𝑖(𝑡) based on 211 

both 𝑇𝑖(𝑠) and 𝑇𝑗(𝑠). The notion of Granger causality is intuitive and provides a much more 212 

rigorous criterion for causation than simple lagged cross-correlations. While other notions of 213 

causality exist, Granger causality does imply forecasting ability, which is our only concern here. 214 

We now investigate the Granger causality of m-StocSIPS. A necessary and sufficient 215 

condition for the optimality of an estimator is given by the orthogonality principle (Box et al., 216 

2008; Brockwell & Davis, 1991; Palma, 2007; Straškraba, 2007; Wold, 1938), that states that the 217 

error of the optimal predictor (in a mean square error sense) is orthogonal to any possible 218 

estimator: 219 

 ( ) ( )ˆ 0i iT t E t = , (9) 220 

where 𝑇̂𝑖(𝑡) is the temperature predictor for position 𝑖 at a future time 𝑡 > 0 and 𝐸𝑖(𝑡) = 𝑇𝑖(𝑡) −221 

𝑇̂𝑖(𝑡) is the error.  222 

From the integral representation (Eq. (2)) and given a diagonal kernel 𝜅𝑖𝑗(𝑡) as in Eq. (6), 223 

we find that the optimal predictor satisfying this principle is: 224 

 ( ) ( ) ( )
0

ˆ
i ii iT t t t t dt 

−

  = − , (10) 225 

with error: 226 

 ( ) ( ) ( )
0

t

i ii iE t t t t dt   = − . (11) 227 

𝐸𝑖 only depends on future innovations 𝛾𝑖(𝑡′′) (𝑡′′ > 0), while the estimator, 𝑇̂𝑖(𝑡), depends only 228 

on past innovations 𝛾𝑖(𝑡′) (𝑡′ < 0). Since the white noise innovations are 𝛿-correlated in time 229 

(Eq. (3)), for any 𝑖, 𝑗 we have: 230 

 ( ) ( ) 0;       0,  0j iT s E t s t=   . (12) 231 
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This means that any predictor that is a linear combination of past temperature values from 232 

any position 𝑗, is orthogonal to the error of the predictor obtained from the past at location 𝑖, 233 

given by Eq. (10). Hence, the predictor (Eq. (10)) is optimal given the full field 𝑇(𝐱, 𝑡) for 𝑡 ≤ 0. 234 

This is a precise statement of Granger causality. Although there are large cross-correlations 235 

inherited from the innovation matrix 𝑎𝑖𝑗 (Eqs. (7) and (8)), the information of past temperatures 236 

from other locations does not help improve the forecast. For StocSIPS predictions, it is the lack 237 

of innovation connectivity at non-zero lags that implies that the optimal predictor for any given 238 

location is obtained from its past. In effect, these occasionally strong spatial correlations “were 239 

already used” for building the past of any given time series, whose past is therefore enough to 240 

yield the optimal predictor for that specific series. 241 

3 Results 242 

3.1 Empirical cross-correlations 243 

Our analysis were based on monthly, 2.5° resolution surface temperatures (T2m: 73 × 244 

144 = 10512 points) from 1948 to 2019 (864 months in total) from the National Centers for 245 

Environmental Prediction/National Center for Atmospheric Research Reanalysis 1 (Kalnay et al., 246 

1996; NCEP/NCAR, 2020). 247 

The validity of the univariate fGn (StocSIPS) model was confirmed in DRAL by testing 248 

the whiteness of the innovations 𝛾𝑖(𝑡) for every grid point 𝑖, which were obtained by inverting 249 

the discrete version of Eq. (2) (see the supporting material for the theoretical details). We used 250 

the fact that a white noise process is a particular case of fGn with fluctuation exponent 𝐻𝛾 =251 

− 1 2⁄ . Maximum likelihood estimates for the residuals at 10512 grid points give 𝐻𝛾 =252 

−0.498 ± 0.003 and standard deviations 𝜎𝛾 = 1.000 ± 0.002, which confirms that the 253 

innovations are unit variance 𝛿-correlated white noise and hence the adequacy of the fGn model 254 

for the natural temperature variability in the univariate case.  255 

To show that the multivariate model is also realistic, we must check that the lagged cross-256 

correlations between the innovations at different locations (Eq. (3)) are negligible. For this 257 

analysis, we obtained the lagged cross-correlation matrices involving the 10512 grid points for 258 

the innovations, 𝜌𝑖𝑗(Δ𝑡), and for the temperature variability, 𝑅𝑖𝑗(Δ𝑡), for Δ𝑡 from 1 to 12 259 

months. These matrices are shown in the supporting information (Fig. S2) for Δ𝑡 = 0, 1, 2 and 3 260 

months. For the temperature, the correlations decrease with Δ𝑡, but large values are often 261 

obtained for relatively large lags, following Eqs. (7) and (8). For the innovation cross-262 

correlations, the values decrease much faster. For Δ𝑡 = 0, the elements 𝜌𝑖𝑗(0) = 𝑎𝑖𝑗 are 263 

relatively large, but even for Δ𝑡 = 1 month, almost all the correlation is lost. This indicates that 264 

the innovations closely satisfy the discrete version of the time-independence condition Eq. (3). 265 

Another way of testing the model is by checking that Eqs. (7) and (8) are good 266 

approximations of the empirical 𝑅𝑖𝑗(Δ𝑡). Fig. 1(a) shows the results for ensembles with similar 267 

𝑎𝑖𝑗 , 𝐻𝑖 and 𝐻𝑗 values (𝑎𝑖𝑗 = 0.5 ± 0.025 gives 10490 pairs). Comparisons are shown for the 268 

three cases (fGn-fGn, fGn-fBm and fBm-fBm): 269 

 Case 1: fGn-fGn (marked as “+” in Fig.1(a)), we chose the series with 𝐻𝑖 = −0.1 ±270 

0.025 (red symbol) and 𝐻𝑗 = −0.3 ± 0.025 (yellow), 380 pairs. 271 
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Case 2: fGn-fBm (marked as “o”), the series with 𝐻𝑖 = −0.1 ± 0.025 (purple) and 𝐻𝑗 =272 

0.25 ± 0.025 (green), 569 pairs. 273 

Case 3: fBm-fBm (marked as “x”), the series with 𝐻𝑖 = 0.3 ± 0.025 (black) and 𝐻𝑗 =274 

0.4 ± 0.025 (cyan), 323 pairs. 275 

Fig. 1(b) shows the average cross-correlations functions of the lag 𝜆 = ∆𝑡 𝜏⁄  (𝜏 = 1 276 

month), with fits from Eqs. (7) and (8). For case 1, we included the dashed red curve 277 

corresponding to higher order corrections for fRn processes (Lovejoy, 2019; Lovejoy et al., 278 

2020). The small values of the cross-correlation innovation pairs (“*” in the figure) confirm the 279 

independence of these series. Although the expressions (Eqs. (7) and (8)) are only first order 280 

Fig. 1 (a) Maximum likelihood estimates of the fluctuation exponent, 𝐻. The grid points 

forming the pairs used to calculate the average ensemble cross-correlations (shown in (b)) 

are marked as: “+” for fGn-fGn, “o” for fGn-fBm and “x” for fBm-fBm. The colours 

indicate the values of 𝐻. (b) Average cross-correlations for 𝜆 = 1 − 10 for the cases 1, 2 

and 3 (described in the text), with the corresponding fits from Eqs. (7-8) (we also included 

in dashed red the curve corresponding to higher order corrections for fRn processes). The 

average cross-correlations for the pairs of innovations corresponding to the series selected 

in Case 1were included as reference (“*” symbol). (c) Ratio of Global Influence (RGI) for 

innovations for 𝜆 = 0, 1 and 3. (d) RGI for temperature anomalies. The RGI for pixel 𝑖 was 

defined as the fraction of the area of the planet for which the cross-correlation ห𝑅𝑖𝑗(𝜆)ห >

0.2 for all 𝑗. 
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approximations, there is good agreement with the empirical values. This supports the model and 281 

shows that the correlation structure has an intrinsic spatial component proportional to 𝑎𝑖𝑗, and a 282 

temporal, memory-dependent component that depends on 𝐻𝑖 and 𝐻𝑗. 283 

3.2 Ratio of global influence  284 

Empirical Orthogonal Functions (EOF) or Principal Component Analysis (PCA) 285 

decomposition techniques are often used to interpret the lagged cross-correlations (the matrices 286 

𝑅𝑖𝑗(Δ𝑡), Fig. S2). This includes temperature teleconnection patterns, even though – if our model 287 

is valid – these have no Granger causality. An alternative to EOF teleconnection analysis is 288 

provided by network analysis (Donges et al., 2009a; Steinhaeuser et al., 2012; Tsonis, 2018; 289 

Tsonis et al., 2006; Yamasaki et al., 2008) based on the zero lag cross-correlations that define the 290 

area weighted connectivity (AWC). 291 

Since the zero-lag statistics have no causal information, we generalized the AWC to 292 

nonzero lags by defining the ratio of global influence (RGI). The RGI for pixel 𝑖 is the fraction of 293 

the area of the planet for which ห𝑅𝑖𝑗(𝜆)ห > 0.2, averaged over all 𝑗 (for innovations ห𝜌𝑖𝑗(𝜆)ห >294 

0.2), for zero lags it is equal to the AWC. Values below 0.2 (dashed line in Fig. 1(b)) are 295 

considered to be of low influence. In climate networks, a threshold of 0.5 is typically used for 296 

defining connectivity, but innovation correlations – relevant to Granger causality – are much 297 

weaker, hence 0.2 was chosen 298 

Figure 1(c) and (d) shows RGI maps for innovations and temperatures, respectively, for 299 

𝜆 = 0, 1 and 3. For the innovations, almost all the correlation is lost for 𝜆 > 0, in agreement with 300 

Eq. (3): there is no significant influence on future values for any pixel. For 𝜆 = 0, we see that the 301 

region of largest innovation influence is the tropical Pacific where RGI ≈ 5%. For temperature 302 

anomalies (panel (d)), much larger correlations and RGIs are obtained. For 𝜆 > 0, almost all the 303 

influence from land disappears, but the ocean’s influence is preserved up to around 1 year (not 304 

shown). Unsurprisingly, the tropical ocean has the largest correlations. As we mentioned earlier, 305 

this is a consequence of the long memory (large 𝐻, Fig. 1(a)). 306 

Rigorously, the orthogonality condition (Eq. (12)) was derived for infinitely long time 307 

series with complete knowledge of the infinite past. In practice, we only have finite series and for 308 

each pixel, the memory effects of the unknown past will depend on the 𝐻 values. For a fixed, 309 

finite length of past data, series with 𝐻 closer to zero have more past information that can be 310 

borrowed. In the supporting information, we confirm that there is a small improvement in skill 311 

using a co-predictor series from different locations, but this improvement decreases with the 312 

memory, 𝑚, and is very small when sufficient past data points are used to build the predictor (see 313 

Fig. S3). For 20 months of past data, forecast skill improves by a maximum of 2%, which is 314 

roughly the noise level of the skill estimates (see Fig. S6). If only a few memory-steps are used, 315 

then the improvement in skill from borrowing memory from co-predictors is larger, but in all 316 

cases the combined predictor / co-predictor skill is lower than for the single long-memory 317 

predictor (see Figs. S4 and S5). 318 

3.3 Simulations and emergent properties 319 

At each pixel, m-StocSIPS has the same statistics as StocSIPS, which DRAL showed to 320 

be quite accurate. However in addition, m-StocSIPS takes into account the spatial correlations: to 321 
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be a realistic macroweather model it must also reproduce the observed spatial patterns including 322 

teleconnection networks (AWC, RGI), and El Niño events and indices. Since – just as in GCMs – 323 

Fig. 2 (a) Comparison between series of the Oceanic Niño Index (ONI) derived for surface 

temperature (T2m) as the 3-month running mean of the average over the region (5°N-5°S, 

170°W-120°W). In the bottom, we show the series computed from reanalysis (labelled as 

ONI); in the middle, samples from three different simulations (marked as Sim.1-3) and in 

the top, the index computed from one of the historical runs of the second generation 

Canadian Earth System Model (CanESM2) for the period 1948-2005. (b) Canonical 

anomaly pattern associated with the El Niño peaks marked in the series in Fig. 2(a) for each 

respective case. (c)  Ratio of Global Influence (RGI) for the observational reference dataset 

for 𝜆 = 0, 1 and 3. (d) RGI for the Simulation 1 dataset. 
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m-StocSIPS does not put these features in “by hand”, they are emergent model properties that are 324 

notoriously difficult to reproduce so that their realism (or lack thereof) provide stringent quality 325 

checks. Using m-StocSIPS simulations, (detailed in Sects. S2 and S7 of the supporting 326 

information) we now show that indeed, these emergent properties are well reproduced.   327 

 In order to compare StocSIPS space-time statistical structures to reanalysis and to GCM 328 

outputs, we produced simulations with the same resolutions and overall length as our reference 329 

NCEP/NCAR Reanalysis 1 dataset (864 months, 2.5° resolution). Although full movies of the 330 

model outputs are available (Movie S1), here we focus on El Niño events that are particularly 331 

difficult to simulate. First consider the Oceanic Niño Index (ONI) derived for surface 332 

temperature (T2m) as the 3-month running mean of the average over the region (5°N-5°S, 333 

170°W-120°W), Fig 2(a). The bottom (“ONI”) is a reanalysis series above which are samples 334 

from three different m-StocSIPS realizations (“Sim.1-3”, middle).  The top series is from a 335 

historical run of the CanESM2 GCM (CCCma, 2020), the ONI was estimated after standard 336 

detrending (but without variance adjustments).  337 

Except for the larger GCM amplitude, the time series in Fig. 2(a) are difficult to 338 

distinguish. Both deterministic and stochastic simulations produce realistic-looking ONI 339 

anomalies sequences. More impressively, the stochastic simulations reproduce huge regional 340 

emergent patterns including El Niño and La Niña events. In Fig. 2(b), we see canonical El Niño 341 

anomaly patterns corresponding to El Niño peaks marked in Fig. 2(a) (see also Fig. S11 for map 342 

sequences). While the deterministic models explain these events as an expression of the 343 

dynamics implicit in the governing equations, in the stochastic model they emerge from random 344 

synchronizations from places sharing high 𝐻 values (see Fig. 1(a)) and long ocean weather-345 

macroweather transition times. 346 

StocSIPS also produces realistic and emergent teleconnections patterns: RGI maps, see 347 

Fig. 2(c) and (d) for lags 𝜆 = 0, 1 and 3. Despite these striking spatial patterns, there is no 348 

Granger causality connecting any two points: the optimal predictor is obtained from the past of 349 

each individual series without any contribution from the teleconnection patterns. These 350 

correlations do not imply any Granger causality.  351 

4 Conclusions 352 

GCMs long range forecasting skill is low, and this has stimulated the development of 353 

stochastic alternatives often inspired by correlations. Two competing approaches have 354 

developed, one that primarily exploits teleconnections (space) with only a short memory in time 355 

(Markovian), the other – StocSIPS – that only exploits the long memory in time without using 356 

any spatial information. While Markovian models are approximately initial value problems 357 

GCMs are strictly so. In comparison, StocSIPS exploits the system’s (scaling) long range 358 

memory; it is a “past value” model. Although it is tempting to try to improve StocSIPS skill by 359 

using spatially correlated co-predictors, to be useful the correlations must also be causal. 360 

Untangling correlations and causality is possible thanks to the precise notion of Granger 361 

causality. To apply this, we first extended StocSIPS to the full space-time process, m-StocSIPS, 362 

that has identical single pixel statistics but that includes pixel-pixel cross-correlations.  Although 363 

m-StocSIPS’s time-lagged temperature cross-correlations are strong, they are generated by 364 

temporally uncorrelated innovations and it has no Granger causality. For a given position, past 365 

information from other locations cannot be used to improve on the forecast obtained as an 366 
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optimal linear combination of past data: those correlations “were already used”. Whereas the 367 

ultimate causation in deterministic models is their initial conditions, the ultimate cause in 368 

StocSIPS is its white noise innovations.   369 

To make this convincing, we provided a full space-time macroweather model, producing 370 

global space-time stochastic simulations at one month and 2.5o resolution over 864 months 371 

(Movie S1). Emergent model properties include realistic teleconnection networks and El Niño 372 

and La Niña events that have both realistic spatial warming patterns as well as Oceanic El Niño 373 

indices. For real data, only a finite length of the past series is known, but even in this case, we 374 

showed that by exploiting the correlations in the temperature series, maximum improvements in 375 

skill of only 1-2% are possible (and this is in the noise).   376 

What then is the status of causal mechanisms such as those linking El Niño events to a 377 

wet central Asia (Barnston, 2014)? GCMs and StocSIPS provide ultimate causes that eschew 378 

such mechanisms. At best, it may be argued that ultimate causes initiate a causal chain in which 379 

an El Niño could be regarded as a proximate cause, and this proximate cause could presumably 380 

be captured in short memory empirical models. However, thanks to Granger causality we can 381 

now affirm that at best, at a given pixel 𝑖, the short memory models (partially) compensate for 382 

their under-exploitation of the memory by effectively “borrowing” the memory of particularly 383 

strong memory pixels 𝑗 such as those in the El Niño region. StocSIPS obviates the need to 384 

borrow memory from pixel 𝑗 by fully exploiting the memory at pixel 𝑖. 385 
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