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Abstract.  

Atmospheric variability as a function of scale has been divided in various dynamical “regimes” with alternating 

increasing and decreasing fluctuations: weather, macroweather, climate, macroclimate, megaclimate. Although a vast 10 

amount of data is available at small scales, the larger picture is not well constrained due to the scarcity and low resolution of 

long paleoclimatic time-series. Using statistical techniques originally developed for the study of turbulence, we analyse the 

fluctuations of a centimetric resolution dust flux time-series from the EPICA Dome C ice-core in Antarctica that spans the 

past 800,000 years. The temporal resolution is 5 years over the last 400 kyrs, and 25 years over the last 800kyrs, enabling the 

detailed statistical analysis and comparison of eight glaciation cycles, and the subdivision of each cycle into eight 15 

consecutive phases. The unique span and resolution of the dataset allows us to analyze the macroweather and climate scales 

in detail, i.e. fluctuations with periodicities from 1 year to 100,000 years.  

We find that the interglacial and glacial maximum phases of each cycle showed particularly large macroweather to 

climate transition scale c (around 2 kyrs), whereas mid-glacial phases feature centennial transition scales (average of 300 

yr). This suggests that interglacials and glacial maxima are exceptionally stable when compared with the rest of a glacial 20 

cycle. The Holocene (with c ≈ 7.9 kyrs) had a particularly large c but it was not an outlier when compared with the phase 1 

and 2 of other cycles. For each phase, we quantified the drift, intermittency, amplitude, and extremeness of the variability. 

Phases close to the interglacials (1, 2, 8) show low drift, moderate intermittency, and strong extremes, while the “glacial” 

middle phases 3-7 display strong drift, weak intermittency, and weaker extremes. Our results suggest that despite the large 

climatic changes occurring during glacial-interglacial transitions, glacial maxima, interglacials, and glacial inceptions were 25 

characterized by relatively stable atmospheric conditions, but punctuated by more frequent and severe droughts, than during 

the more unstable mid-glacial conditions. The low amplitude during phases 6-8 also suggests that the Patagonian ice sheet 

was not yet fully developed before 30 kyr after glacial inception. 

 

 30 
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1 Introduction 

 

Over the late Pleistocene, surface temperature variability is strongly modulated by insolation, both at orbital (Jouzel et 

al., 2007), and daily time scales. In between these two extremes, temperature variability has been shown to scale according 

to power-law relationships, thus evidencing a continuum of variability at all frequencies (Huybers and Curry, 2006). 5 

However, although a vast amount of high-resolution data exists for modern conditions, our knowledge of climatic variability 

at glacial-interglacial time scales is usually limited by the lower resolution of paleoclimatic archive records, thus restricting 

high frequency analyses during older time sections. Previous analyses using marine and terrestrial temperature proxies from 

both hemispheres suggest a generally stormier and more variable atmosphere during glacial times than during interglacials 

(Ditlevsen et al., 1996; Rehfeld et al., 2018). 10 

One of the difficulties in characterizing climate variability is that ice core paleo-temperature reconstructions rapidly 

lose their resolutions as we move to the bottom of the ice column. Fig. 1 shows this visually for the EPICA Antarctic ice 

core (5787 measurements in all); the curve becomes noticeably smoother as we move back in time. In terms of data points, 

the most recent 100 kyr period has more than 3000 points (≈30 year resolution) whereas the most ancient 100 kyr period has 

only 137 (≈730 year resolution). This implies that while the most recent glacial-interglacial cycle can be perceived with 15 

reasonable detail, it is hard to compare it quantitatively to previous cycles - or to deduce any general cycle characteristics.  

Fluctuation analysis (Lovejoy and Schertzer, 2013; Nilsen et al., 2016), gives a relatively simple picture of 

atmospheric temperature variability (Fig. 2). The figure shows a series of regimes each with variability alternately increasing 

and decreasing with scale. From left to right we see weather scale variability, in which fluctuations tend to persist, building 

up with scale - they are unstable - increasing up to the lifetime of planetary structures (about 10 days), followed by a 20 

macroweather regime with fluctuations tending to cancel each other out, decreasing with scale, displaying stable behaviour.  

In the last century, anthropogenically forced temperature changes dominate the natural (internal, macroweather) variability at 

about 10- 20 years. In pre-industrial periods the lower frequency climate regime starts somewhere between 100 and 1000 

years (the macroweather-climate transition scale c).  Further to the right of Fig. 2, we can see the broad peak associated with 

the glacial cycles at about 50kyrs (half the 100 kyr period) and then at very low frequencies, the megaclimate regime again 25 

shows increasing variability with scale.  In between the climate and megaclimate regimes, the fluctuations decrease with 

scale over a relatively short range from about 100 kyrs to 500 kyrs. However, the temperature fluctuations shown in Fig. 2 

display average behavior, which can potentially hide large variations from epoch to epoch. In this paper, we use a uniquely 

long and high-resolution paleo dataset to analyze the macroweather and climate scales in detail.   

We focus on the EPICA Dome C dust flux record, which has a 55 times higher resolution than the temperature record, 30 

including high resolution over even the oldest cycle (Lambert et al., 2012, Fig. 1). Antarctic dust fluxes are well correlated 

with temperature at orbital frequencies (Lambert et al., 2008; Ridgwell, 2003). But the fluxes are also affected by climatic 

conditions at the source and during transport (Lambert et al., 2008; Maher et al., 2010). The analysis of the dust record 
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presented here can therefore be thought of as a more “holistic” climatic parameter that includes not only temperature 

changes, but describes atmospheric variability as a whole (including wind strength and patterns, and the hydrological cycle). 

 

2 Method 

In order to proceed to a further quantitative analysis of the types of statistical variability, and of the macroweather-5 

climate transition scale, we need to make some definitions. A commonly used way of quantifying fluctuations is the Fourier 

analysis. It quantifies the contribution of each frequency range to the total variance of the process. However, the 

interpretation of the spectrum is neither intuitive, nor straightforward (section 2.3). The highly non-Gaussian spikiness – for 

both dust flux and its logarithm (e.g. Fig. 3b, c), implies strong Fourier space spikes; indeed, (Lovejoy, 2018) found that the 

probability distribution of spectral amplitudes can themselves be power laws. This has important implications for 10 

interpreting spectra, especially those estimated from single series (“periodograms”): if the spectral amplitudes are highly 

non-Gaussian, then we will typically see strong spectral spikes that are purely random in origin. This makes it very tempting 

to attribute quasi-oscillatory processes to what are in fact random spectral peaks. It therefore makes sense to consider the real 

(rather than Fourier) space variability (fluctuations). The problem here is that the spectrum is a second order statistical 

moment (the spectrum in the Fourier transform of the autocorrelation function). While second order moments are sufficient 15 

for characterizing the variability of Gaussian processes, in the more general and usual case - especially with the highly 

variable dust fluxes - we need to quantify statistics of higher orders. In particular, the higher order statistics that characterize 

the extremes. Here, we will use two simple concepts to describe variability and intermittency (or spikiness) of the data.  

The theoretical framework that we use in this paper is that of scaling, multifractals, the outcome of decades of 

research attempting to understand turbulent intermittency.   Intermittent – spiky transitions – characterized by different 20 

scaling exponents for different statistical moments - turns out to be the generic consequence of turbulent cascade processes.   

Although the cascades are multiplicative, the extreme probabilities generally turn out to be power laws (Mandelbrot, 1974; 

Schertzer and Lovejoy, 1987) - not log-normals (as was originally proposed by (Kolmogorov, 1962)).   The analyses are 

based on scaling regimes and their statistical characteristics.  Because scaling is a symmetry (in this case invariance of 

exponents under dilations in time), the broad conclusions of our dust flux analyses – scaling regimes and their break points, 25 

stability/instabilty - are expected to  be valid for the more usual climate parameters including the temperature.  Although it is 

beyond our present scope, we will explore the scale by scale relationship between EPICA dust fluxes and temperatures in a 

future publication. 

 

2.1 Haar Fluctuations 30 

The basic tool we use to characterize variability in real space is the Haar fluctuation, which is simply the absolute 

difference of the mean over the first and second halves of an interval: 
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 We can characterize the fluctuations by their statistics.  For example, by analyzing the whole dataset using intervals 

of various lengths, we can thus define the variability as a function of scale (i.e. interval length).  If over a range of time 

scales t, there is no characteristic time, then this relationship is a power law, and the mean absolute fluctuation varies as: 

DF Dt( ) µDtH
 (2)

 5 

where “< >” indicates ensemble average, here an average over all the available disjoint intervals. A positive H implies that 

the average fluctuations increase with scale. This situation corresponds to unstable behavior identified with the climate 

regime. In contrast, when H is negative, variability converges towards a mean state with increasing scale. This is the 

situation found in the stable macroweather regime. 

More generally, we can consider other statistical moments of the fluctuations, the “generalized structure functions”, 10 

Sq(t):  

Sq Dt( ) = DF Dt( )
q

µDt
x q( )

 (3)
 

If the fluctuations are from a Gaussian process, then their exponent function is linear:(q) = qH. More generally 

however, (q) is concave and it is important to characterize this, since the nonlinearity in (q) is due to intermittency, i.e. 

sudden, spiky transitions (for more details on Haar fluctuations and intermittency we refer to (Lovejoy and Schertzer, 2012)).  15 

We therefore decompose(q) into a linear and a nonlinear (convex) part K(q), with K(1)=0: 

 
x q( ) = qH-K q( )

 (4)
 

so that K(q) =0 for quasi-Gaussian processes.  Since the spectrum is a second order moment, the spectrum of a scaling 

process at frequency  is a power law: 

  E() ≈  
-

  (5) 20 

where the spectral exponent = 1+(2) = 1+2H - K(2); K(2) is sometimes termed the “intermittency correction”. 

 

2.2 Intermittency  

A simple way to quantify the intermittency is thus to compare, the mean and Root Mean Square (RMS) Haar 

fluctuations: 25 

S1 Dt( ) = DF Dt( )( ) µDt
x 1( ) =DtH   (6) 

S2 Dt( )
1/2
= DF Dt( )( )

2
1/2

µDt
x 2( )/2 = Dt

H-K 2( )/2

 (7)
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with ratio: 

S1 Dt( ) / S2 Dt( )
1/2
= DF Dt( ) / DF Dt( )( )

2
1/2

µDt
K 2( )/2

 (8)
 

where we estimate S(t) using all available disjoint intervals of size t. These expressions are valid in a scaling regime. 

Since the number of disjoint intervals decreases as t increases, so does the sample size, hence the statistics are less reliable 

at large t. 5 

For theoretical reasons (Lovejoy and Schertzer, 2013; Schertzer and Lovejoy, 1987), it turns out that the intermittency 

near the mean (q=1) is best quantified by the parameter C1 = K’(1).  Since K(1) = 0, it turns out that for log-normal 

multifractals, (approximately relevant here) the ratio exponent K(2)/2≈C1. 

While the mean to RMS ratio is intuitive, a more accurate estimate of C1 uses the intermittency function G(t): 
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whose exponent is C1. The intermittency exponent C1 quantifies the rate at which the clustering near the mean builds 

up as a function of the range of scales over which the dynamical processes act; it only partially quantifies the 

spikiness. For this, we need other exponents, in particular the exponent qD that characterizes the tails of the 

probability distributions. This is because scaling in space and/or time generically gives rise to power law probability 15 

distributions (Mandelbrot, 1974; Schertzer and Lovejoy, 1987). Specifically, the probability (Pr) of a random dust flux 

fluctuation F exceeding a fixed threshold s is: 

Pr DF > s( ) » s-qD ; s >>1
 (10)

 

Where the exponent qD characterizes the extremes, for example, qD ≈ 5 has been estimated for wind or temperature 

(Lovejoy and Schertzer, 1986) and for paleotemperatures (Lovejoy and Schertzer, 2013) whereas qD =3 for precipitation 20 

(Lovejoy et al., 2012).   A qualitative classification of probability distributions describes classical exponential tailed 

distributions (such as the Gaussian) as “thin tailed”, log normal (and log-Levy) distributions as “long-tailed”, and power law 

distributions as “fat tailed”.  Whereas thin and long tailed distributions have convergence of all statistical moments, power 

distributions only have finite moments for orders q<qD.   

 25 

2.3 How Fluctuations help interpret spectra 
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Although spectra may be familiar, their physical interpretations are nontrivial, a fact that was underscored in 

(Lovejoy, 2015).  In a scaling regime – a good approximation to the macroweather and climate regimes discussed here – the 

spectrum is a power law form (eq. 5) where the spectral exponent characterizes the spectral density. Although   tells us 

how quickly the variance changes per frequency interval, its physical significance is neither intuitive nor obvious.  

Integrating the spectrum over a frequency range is already easier to understand: it is the total variance of the process 5 

contributed by the range.   Therefore we already see that -1 (the exponent of the integrated spectrum) is more directly 

relevant than .  But even to understand this, we need to consider whether over a range of frequencies the process is 

dominated by either high or low frequencies.  For this, we can compare the total variance contributed by neighboring 

octaves.   For a power law spectrum, the variance ratio of one octave to its neighboring higher frequency octave is 2
1-

. 

From this, we see that > 1 yields a ratio 2
1-

 < 1 implying low frequency dominance whereas when < 1, we have 2
1-

 > 10 

1 and high frequency dominance.  

But what does low frequency or high frequency “dominance” mean physically?  For this, it is easier to consider the 

situation in real space using fluctuations; the simplest relevant fluctuations being the Haar fluctuations F discussed in 

section 2.2 that varieswith time interval t asF ≈ tH.   We saw that the exponents in real and spectral space were simply 

related by  = 1+2H –K(2) where K(2) > 0 due to the spikiness (intermittency).  This formula leads to two important 15 

conclusions.  First, if we ignore intermittency (putting C1 = 0, hence K(2) = 0) and assume that the mean fluctuations scale 

with the same exponent as the RMS fluctuations, then H = ( - 1)/2 showing again that it is the sign of  - 1 that is 

fundamental:  > 1 implies H > 0 hence fluctuations grow with scale and the process “drifts” or “wanders”, it is unstable.  

Conversely  < 1 implies H < 0 hence fluctuations decrease with scale and the process “cancels”, “converges”, it is “stable”.   

The second conclusion is that if intermittency is strong (here we typically have C1 ≈ 0.1, K(2) ≈ 0.2), then the relationship 20 

between the second and first order statistical moments is a little more complex so that for example, with these values and a  

≈ 0.9 we would have high frequencies dominating the variance (< 1) but low frequencies dominating the mean (H > 0).   

3 Results 

3.1 Looking at the data 

Unlike water isotopes that diffuse and lose their temporal resolution in the bottom section of an ice core at high 25 

pressures and densities, the relatively large dust particles diffuse much less and have been used to estimate the dust flux over 

every centimetre of the 3.2 km long EPICA core (298,203 measurements, (Lambert et al., 2012)). The temporal resolution of 

this series varies from 0.81 years to 11.1 yrs (the averages over the most recent and the most ancient 100 kyrs respectively). 

The worst temporal resolution of 25 years per centimeter occurs around 3050 m depth, with the result that at that resolution, 

there are virtually no missing data points in the whole record (Fig. 1). 30 
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Dust measurements cannot be assigned to one particular atmospheric variable, like temperature for the water isotopes. 

The amount of dust deposited in East Antarctica will depend on the vegetation cover at the source region (mostly Patagonia 

for East Antarctic dust (Delmonte et al., 2008)), on the amount of dust available in the source region (can depend on the 

presence of glaciers), on the strength of the prevailing winds between South America and Antarctica, and the strength of the 

hydrological cycle (more precipitation will wash out more dust from the atmosphere (Lambert et al., 2008)). At low 5 

frequencies the dust variability will be driven by conditions at the source (presence of glaciers, vegetation cover), which is 

primarily driven by Southern Hemisphere temperature, explaining the high correlation between dust and temperature in ice 

cores. At high frequencies however, dust and temperature are decoupled and dust variability will be driven by changes in 

wind and the hydrological cycle. A single dust peak within a low background may therefore reflect a short-term atmospheric 

disturbance like drought over South America or low precipitation over the Southern Ocean. The analysis presented here 10 

focuses heavily on the occurrence of dust fluctuations, the physical interpretation of which will depend on the scale of the 

phenomenon. 

Fig. 3a shows a succession of 10 factors of 2 “blowdowns” (upper left to lower right at 11 different resolutions). In 

order to avoid smoothing, the data was “zoomed” in depth rather than time, but the point is clear: the signal is very roughly 

scale invariant, at no stage is there any sign of obvious smoothing, and the quasi-periodic 100 kyr oscillations is the only 15 

obvious time scale (we quantify this below). In comparison with more common paleoclimate signals such as temperature 

proxies, the dust flux itself is already quite spiky. However, it also displays spiky transitions. In Fig. 3b we show the absolute 

change in dust flux and one can visually see the strong spikiness associated with strongly non Gaussian variability: the 

intermittency. At each resolution, the solid red line indicates the maximum spike expected if the process was Gaussian, and 

the upper dashed lines the expected level for a (Gaussian) spike with probability 10-6. Again, without sophisticated analysis, 20 

we can see that the spikes are wildly non-Gaussian, frequently exceeding the 10-6 level even though each segment has only 

290 points, with the spikiness being nearly independent of resolution.    

Taking the logarithms of the dust flux is a common practice since it reduces the extremes and makes the signal closer 

to the temperature and other more familiar atmospheric parameters.  We therefore show the corresponding spike plot for the 

log transformed data (fig. 3c).  Although the extreme spikes are indeed less extreme (see also fig. 6a, b), we see that the 25 

transformation has not qualitatively changed the situation with spikes still regularly exceeding (log) Gaussian probability 

levels of 10-5 and occasionally 10-8.   

 

3.2 Spectra 

Figure 4 shows various spectral analyses (for the corresponding fluctuation analyses, see fig. 5). There is a clear 30 

periodicity at about (100 kyrs)-1. In the double power law fit (line plot), the transition frequencies are a little lower: 0 = (160 

kyr)-1 (flux) and c = (145 kyr)-1 (log flux), although a Gaussian fit near the max gives a spike at (94±9 kyrs)-1. Note that it is 

actually a little bit “wide” (two peaks) hence it is not perfectly periodic, and the amplitude is only about a factor 4 above the 
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background. In comparison, the amplitude of the annual temperature frequency peak is several thousand times above the 

background (depending on the location) and is narrower (not shown).  

Since this is a log-log plot, power laws appear as straight lines. We show in the figure the fits to the bi-scaling 

function 

E w( ) =
a

w /w0( )
bh + w /w0( )

bl
 5 

that smoothly transitions between a spectrum with 
 
E w( ) » w-b

h  at  > 0 and 
 
E w( ) » w-b

l  at  <0 . The figure shows 

the regressions with l =-2.5, h = 1.7, and a = 7.5 (mg/m2/yr)2yr, 0 ≈ (145kyrs)-1 for the fluxes, and a = 0.375 

(mg/m2/yr)2yr, 0 ≈ (160kyrs)-1 for the logarithms of fluxes. According to the figure, the high frequency climate regime 

scaling continues to about (300 yrs)-1 before flattening to a very high frequency scaling (m≈0.8) “macroweather” regime 

(Lovejoy and Schertzer, 2013). Note that this spectral transition scale is close but not identical to the transition scale 10 

estimated in real space with fluctuation analysis (around 250 years, Fig. 5). The scaling exponents h = 1.7 and m=0.8 

corresponding to the climate and macroweather regime respectively, may be compared with the values 2.1 and 0.4 for the 

EPICA paleotemperatures discussed in a future publication (compare however the red and black curves in Fig. 2).  A review 

covering nearly 2 dozen h estimates for temperature proxies from both hemispheres was given in (Lovejoy and Schertzer, 

2013) (see especially table 11.4; also (Ditlevsen et al., 1996; Huybers and Curry, 2006; Shao and Ditlevsen, 2016)).  15 

Although the dust and temperature exponents are not identical - implying scale-varying correlations – these results do 

support the use of dust as a proxy for atmospheric variability. 

The plot graphically counterposes two views of the variability. Although we clearly see a spectral maximum at 

around (100 kyrs)-1, the broad bispectral scaling model already accounts for 96% of the spectral energy (variance) leaving 

only 4% for the (extra) contribution from the (near) (100kyrs)-1 Milankovitch frequency. If it is argued that the logarithm of 20 

the flux is more physically relevant (blue spectrum) the situation is barely changed. Alternatively, we may take a narrow 

spectral spike model that approximates the spectral spike near (100 kyr)-1 as a Gaussian shaped profile. With this model, the 

spike is localised at (94±9 kyrs)-1 and contributes a total of 31% of the total variance. However, not all of this is above what 

we would expect from a scaling background; the exact amount depends on how the background is defined. For example, 

over the range from the 6th to the 11th highest frequencies in this discrete spectrum (from (133 kyrs)-1 to (72 kyrs)-1), in 25 

comparison to the background over this range, there is an enhancement of about 80% due to the strong peaks (the 

enhancement is about 100% for the 7th to the 12th frequencies). This means although the (94±9 kyr)-1 peak represents 31% of 

the total variability over the range from (800 kyrs)-1 to (25 yrs)-1, it is only about 15% above the “background” (note that 

only 5% of the total variance is between (25yrs)-1 and (1 kyr)-1). The overall conclusion is that the background represents 

between 85% and 96% of the total variance. 30 
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3.3 Haar Fluctuation Analysis 

Figure 5 shows that Haar fluctuations have simple interpretations in terms of the variability of the dust flux. For 

example, typical variations over a glacial-interglacial cycle (half cycle ≈ 50 kyrs) are about ±3mg/m2/yr (dashed line). From 

the figure we see there is a short regime with H<0 (up to about 250 yrs), a scaling regime with H >0 (up to glacial-

interglacial periods (≈50 kyrs) and finally a long time scale decrease in variability that is possibly (but not obviously) 5 

scaling. As expected, the regimes correspond to those indicated in Fig. 4 with the relation =1+(2) where E() ≈ 
-

 and 

represent macroweather, climate, and macroclimate, respectively.  

Fig. 6a shows the fluctuation probabilities of the entire 800 kyr series at 25 year resolution. We see that the large 

fluctuations (the tail) part of the distribution is indeed quite linear on a log-log plot with exponents qD ≈ 2.75 and 2.98 in 

time and depth respectively (both fit to the extreme 0.1% of the distributions). To get an idea of how extreme these 10 

distributions are, consider the depth distribution with qD = 2.98. With this exponent, dust flux fluctuations 10 times larger 

than typical fluctuations occur only 102.98 ≈ 1000 times less frequently. In comparison, for a Gaussian, they would be ≈1023 

times less likely; they would never be observed.   

While the fluxes are positive definite and so cannot be Gaussians, the increments analyzed here could easily be 

approximately so.  Nevertheless, a common way of trying to tame the spikes is by making a log transformation of fluxes.  15 

Fig. 4 already showed that this did not alter the spectrum very much; here it similarly has only a marginal effect.  For 

example Fig. 6b shows that the extreme tails on the log dust flux distribution has qD =3.60 in time (25yrs) and 4.59 in depth 

(at 1cm resolution; this is close to the value qD ≈ 5 reported for both GRIP and Vostok paleotemperatures in (Lovejoy and 

Schertzer, 2013)).  The log-transformed variable still displays huge extremes with the extreme log flux corresponding to a 

log-Gaussian probability of 10-30 and 10-50 (time, depth respectively).   Whether or not taking logarithms yields a more 20 

climate relevant parameter, it does not significantly change the problem of intermittency or of the extremes. 

These power law fluctuations are so large that according to the classical assumptions, they would be outliers. While 

Gaussians are mathematically convenient and can be justified when dealing with measurement errors, in atmospheric science 

thanks to the scaling, very few processes are Gaussian. This has important applications in tipping point analysis, where noise 

induced tipping points are generally studied using well behaved white or Gaussian noise (e.g. Dakos et al., 2012). 25 

 

3.4 Phases 

Scaling is a statistical symmetry. In our case, it means that on average the statistics at small, medium and large scales 

are the same in some way. The difficulty is that on a single realization – such as that available here, a single core from a 

single planet earth – the symmetry will necessarily be broken. For example, in the spectrum Fig. 4, in each of the proposed 30 

scaling regimes, scaling only predicts that the actual spectrum from this single core will vary about the indicated straight 

lines that represent the ensemble behaviour. Since this variability is strong, we made the potential scaling regimes more 

obvious by either averaging the spectrum over frequency bins (the red and blue spectra) – or by breaking the series into 
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shorter parts and averaging the spectra over all the parts, effectively treating each segment as a separate realization of a 

single process (green).  

This already illustrates the general problem: in order to obtain robust statistics we need to average over numerous 

realizations – and since here we have a single series, the best we can do is to break the series into disjoint segments and 

average the statistics over them. Yet at the same time, in order to see the wide-range scaling picture (which also helps to 5 

more accurately estimate the scaling properties/exponents), we need segments that are as long as possible. The compromise 

that we chose between numerous short segments and a small number of long ones was to break the series into 8 glacial-

interglacial cycles, and each cycle into 8 successive phases. As a first approximation, we defined eight successive 100kyr 

periods (hereafter called “segments”, Fig. 7, top set), corresponding fairly closely to the main periodicity of the series. As we 

discussed, the spectral peak is broad implying that the duration of each cycle is variable – the cycles are only “quasi-10 

periodic”. It is therefore of interest to consider an additional somewhat flexible definition of cycles defining them as the 

period from one interglacial to the next (hereafter called “cycle”, Fig. 7, bottom set). The break points were taken at 

interglacial optima: 0.4, 128.5, 243.5, 336, 407.5, 490, 614, 700, 789 kyrs BP, i.e. 96.9±18.7 kyrs per cycle. Using this latter 

definition, the cycles were nondimensionalized so that nondimensional time was defined as the fraction of the cycle, 

effectively stretching or compressing the cycles by ±19%.  15 

With either of these definitions, we have 8 segments or cycles, each with 8 phases. Note that in our nomenclature, 

phase 1 and 8 are the youngest and oldest phases, respectively, and that time flows from phase 8 to phase 1. Fig. 8 shows the 

phase by phase information summarized by the average flux over each cycle including the dispersion of each cycle about the 

mean (for the segments in the top set, and the cycles in the bottom set). We see that the variability is highest in the middle of 

a cycle and lowest at the ends.  20 

Since the spectra in Fig. 4 showed that there were wide scale ranges that are scale invariant – power laws - we are 

interested in characterizing the scaling properties over the different phases. In Fig. 9 we compares the statistics averaged 

over cycles and the statistics averaged over phases. The figure shows that the phase to phase differences are much more 

important than the cycle to cycle differences. Particularly noticeable are the phase to phase differences in the average 

fluctuations 
DF Dt( )( )

 (lower left).  25 

From the global statistics (e.g. Figs. 4, 5), it is clear that in each glacial-interglacial cycle there are two regimes, so 

that before characterizing the structure functions by their exponents (e.g. H = (1) for the mean fluctuations), we have to 

determine the macroweather-climate transition time scale c whose average (from Fig. 4, 5) is 250-300 years. 

One way of estimating the transition scale c is to make a bilinear fit of log10S1(t) (i.e. Haar with q = 1, the mean 

absolute fluctuation) with the mean slopes -0.05 (small t) and slope +0.25 (large t; the values were chosen because they 30 

are roughly the H estimates from the average over all the cycles) (Fig. 10). Bilinear fits were made for each phase of each 

segment (blue) as well as for each phase of each cycle (black). For each phase there were thus 8 transition scales, which were 

used to calculate the mean and its standard deviation, (shown here as representative black arrows). From the figure we see 
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that at first (phases 8-3) the transition scale is relatively short (250-400 yr), but that it rapidly moves to longer (1 – 2 kyrs) 

scales for the final phases 2 and 1. The average transition scale over all phases is around 300 years.  

The figure shows that our results are robust since the results are not very different using dimensional and 

nondimensional time (segments and cycles). Comparing the blue and black curves, we see that in all cases the late phases 

have much larger c than the early and middle phases. Also shown in Fig. 10 (dashed) is a plot of the break points estimated 5 

by a more subjective method that attempts to visually determine a break point on logS1 – log t plots. Again, we reach the 

same conclusion with quantitatively very similar results: a transition of millennia for phases 1 and 2, and a few centuries in 

the middle of the cycle. The cycle average value (c ≈ 300 years) is therefore not representative of the latest phases where c 

is many times larger (glacial maxima and interglacials). The Holocene has an even larger transition scale (c = 7.9kyrs, 

marked by an X in Fig. 10), but it lies just outside the standard deviation of the first nondimensional phases (red arrows in 10 

Fig. 10).  Although the Holocene value of c is the largest in phase 1, it corresponds to 1.55 standard deviations above the 

mean with a corresponding p value of 0.12, roughly the expected extreme of a sample of 8; it is therefore not a statistical 

outlier. 

Alternatively, rather than fixing a phase and determining the variation of the mean fluctuation and intermittency 

function (Fig. 10), we can consider the variation of the Haar fluctuations at fixed time scales and see how they vary from 15 

phase to phase (Fig. 11). The figure shows the phase to phase variation of Haar fluctuations at 50, 100, 200, 400, 800, 3300, 

7000 years scales (bottom to top). Over the macroweather regime (up to 400 to 800 years) the fluctuations tend to cancel so 

that the variability is nearly independent of time scale. In contrast, once we reach the scales in the climate regime (800 to 

7000 years), the fluctuations increase noticeably as the time interval t is increased. For every time scale, there is a clear 

cyclicity (left to right), with fluctuation amplitudes largest in the middle phases. We note that the cycle to cycle variability is 20 

fairly large; about a factor of 2 (for clarity the error bars indicating this cycle to cycle spread were not shown). 

Finally, we describe for each phase the drift tendency and the intermittency, as well as fluctuation amplitude and 

extremeness of the data. In Figure 12 we show the result on the nondimensional phases of the range 500 years < t < 3000 

years, (upper left and right; the range was chosen to be mostly with t>c, and it was fixed so as to avoid any uncertainty 

associated with the algorithm used to estimate c).  Recall that the fluctuation exponent H > 0 quantifies the rate at which the 25 

average fluctuations increase with time scale. Similarly, the exponent C1 characterizes the rate at which the spikiness near 

the mean (the intermittency exponent) increases with scale. We see (upper left) that H is fairly high in the early phases with 

H reaching small value in the later phases (with H actually a little bit negative on average in phase 1 due to the large c 

value). C1 on the other hand (upper right) decreases a bit in the middle the phases. The error bars show that there is quite a 

lot of cycle to cycle variability.  30 

If H quantifies the “drift” and C1 the “spikiness”, then Fig. 12 shows that the early phases have high drift and medium 

spikiness, the middle phases have high drift and lower spikiness, while phases 1-2 have low drift but medium spikiness. To 

understand this better, consider the transition time scales in Fig. 10. The youngest 2 phases with the low drift and spikiness 
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are also the phase with the longest transition scales. This means that the rate at which the variability builds up is small and 

that it only builds up over a short range of scales (from c to roughly t = 50 kyrs, the half cycle duration, this can be 

checked on Fig. 9 that shows the phase by phase structure functions and intermittency functions). Conversely, phases 3 and 4 

with high drift and high intermittency also have a smaller c so that both the fluctuations and spikiness build up faster (Fig. 

11) and over a wider range of scales (Fig. 10). 5 

Another useful characterisation of the phases is to directly consider the flux variability at a fixed reference scale, 

taken here as the 25 year resolution; quantifying the amplitude of the variability of each segment by its standard deviation A 

at 25yr time scale (Fig. 12, lower left). This is not the difference between neighbouring values or fluctuation (as in figure 

11), it is rather the variability of the series itself at 25 year resolution. For each of the phases, we have 8 estimates (one from 

each cycle); these are used to calculate the mean (black) and standard deviation shown by the error bars. We can see that the 10 

amplitude of the 25 yr scale fluctuations is about four times higher in the middle of the ice age (phase 4) than at interglacial 

(phase 1). The figure clearly shows the strong change of variability across the cycle.  

Whereas C1 characterizes the intermittency near the mean, we have seen that the probability exponent qD 

characterizes the extreme spikiness. Fig. 12 lower right, compares qD phase by phase.  Recalling that small qD implies more 

extreme extremes, we see that the extremes are stronger in the beginning and end of the cycle, and somewhat less 15 

pronounced in the middle phases of the cycle (note the overall mean is 2.62±0.42, this can be compared to the value qD 

=3.60 for the overall log transformed data, fig. 6b). Notice that for phase 8, qD=2.03 (the mean); this is close to the value qD 

= 2 below which the extremes are so strong that the variance (and hence spectrum) does not converge.  An extreme (low) 

exponent qD phase implies that most of the time the changes in flux are small, but occasionally, there are huge transitions.  

Conversely, a high (less extreme) qD implies that there is a wider range of different flux changes so that most of the changes 20 

tend to be in a restricted range.  We can now categorize the phase by phase spikiness as: extremes strong, and medium 

spikiness (phases 1, 2, 8), and extremes intermediate and low spikiness (phases 3-7). For the cycle to cycle estimates (not 

shown), the value qD =2.75±0.41, seems to be fairly representative of all the cycles, although there is a slight tendency for qD 

to decrease for the older cycles implying that they may have been a bit more extreme than the recent ones. 

4 Discussion  25 

An attractive aspect of dust fluxes is that they are paleo indicators with unparalleled resolutions over huge ranges of 

temporal scales. However, they come with two difficulties.  First, their physical interpretation is not clear: while they depend 

on temperature, wind, and precipitation, and so are holistic climate indicators, the precise climate significance of dust flux 

variability is hard to nail down. Second, their appearance as a sequence of strong spikes is unlike that of any of the familiar 

proxies. Indeed, we argued that their highly spiky (intermittent) nature is outside the purview of conventional statistical 30 

frameworks including autoregressive, moving average or more generally of quasi-Gaussian or even quasi log-Gaussian 

processes. 
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Due to the dominance of the continuum, (spectral, background) variability, physical interpretations must be based on 

an understanding of climate variability as a function of scale. We will first consider overall analyses over the whole dust flux 

series, and then focus on the phases. The spectral analysis (Fig. 4) is the most familiar and it is qualitatively similar to 

previous results obtained with temperature data, although temperature spectra with anything approaching the resolution of 

Fig. 4 are only possible over the most recent glacial cycle. The most striking spectral feature is the peak over the background 5 

at 100 kyr periodicity. The broadness of this peak already indicates the irregularity of the eccentricity-forced Milankovitch 

cycles. More surprising is the (near) absence of obliquity frequencies at 41 kyr.  Although there is definitely power in that 

frequency range, it is not significantly larger than the background continuum, suggesting low internal feedback to that 

forcing.  Finally, our high-resolution data allows us to discern two different power-law regimes, one at low frequencies with 

an exponent  = 1.7, and one at high frequencies with exponent  = 0.8, with the transition between the two at around 300 10 

years.   

In section 2.3, we discussed some of the difficulties inherent in interpreting spectra and showed that the exponent of 

the integrated spectrum -1 is more directly relevant than   Applying this understanding to the dust exponents, we see that 

in macroweather, there is a weak high frequency dominance (1-≈ 0.2 > 0) whereas the climate regime is dominated by low 

frequencies (1- ≈ -0.7 < 0).  A plausible physical explanation is that over long periods of time (at large scales), the amount 15 

of dust in the SH atmosphere is driven by changes in glacier and vegetation coverage, which is itself forced by SH 

temperature change. There is therefore a very strong correlation between dust and temperature at climatic scales. At higher 

frequencies in the macroweather regime, temperature oscillations are too fast to overcome the inertia of ice sheet and 

vegetation responses. Instead, dust deposition in Antarctica will be more sensitive to temporary atmospheric disturbances in 

the winds and the hydrological cycle.  20 

To interpret the analysis by phase of the dust record (Fig. 12) one must understand the significance of A and of the 

exponents H, C1, and qD in the context of dust deposition. The H exponent and the amplitude A are linked to 

oscillations/fluctuations.  We saw that the H-exponent signifies a tendency to “drift”, meaning that when H < 0, the dust 

oscillations will tend to cancel each other out and the record will cluster around a mean value. In contrast, H > 0 indicates 

that the dust fluxes will not cluster around a mean value, in essence, the process wanders and does not stay constant. The low 25 

H numbers during phases 1 and 2 (interglacial and glacial maximum) indicate a very constant, stable climatic state, with 

Patagonian dust production being either very low during interglacials (low glacier activity, large vegetation cover) or very 

high (Patagonian ice cap fully grown, large outwash plains on the Argentinean side). In contrast, the high H and amplitude A 

values during the mid-glacial may have been due to strong variability in glacier extent during that time, and therefore a very 

variable dust supply (see also Fig. 11 that shows how the amplitude of the fluctuations at different time scales varies with the 30 

phase). The glacial inception (phases 7 and 8) features low A but a high H exponent. This implies that the mean dust level 

was highly variable, but the dust supply was still low, thus not allowing for large amplitude fluctuations. The higher 
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amplitudes in phases 6 and 7 indicates that dust supply became abundant then, which suggests that the Patagonian ice cap 

had already grown to a substantial size about 30 kyr after glacial inception. 

The exponents C1 and qD are associated with the intermittency, or spikiness of the data.  While C1 is a measure of the 

sparseness of the spikes whose amplitudes contribute most to the mean, qD characterizes how extreme these extreme spike 

values are.  The dust flux record is generally more intermittent in phases 8, 1, and 2 (glacial inception, interglacial, glacial 5 

maximum) than in the mid-glacial, with also more extreme spike values. Since the C1 and qD exponents are calculated from 

the derivative of the signal, a spike and a fast change in the system state (e.g. Dansgaard-Oeschger event in the NH) will 

both produce a similar signal. However, such fast changes in system state do not occur in the SH where the corresponding 

signal to NH DO events is more triangular and gradual in shape. We therefore interpret the C1 and qD exponents as purely 

indicative of spikes in the dust signal. A short large spike (<100 years) in dust deposition cannot be associated to ice sheet 10 

changes which have generally larger reaction times. Its origin is therefore due to vegetation and/or atmospheric changes. 

Large-scale natural fires could alter the landscape in a very short time, allowing for more dust uptake by the winds and a 

sudden rise in atmospheric dust. The recuperation of vegetation cover would be more gradual, though, resulting in a saw-

tooth shape of the dust spike that we do not observe in the data. The most likely explanation for a dust spike is therefore a 

short-term disturbance in the atmosphere, involving either the winds or the hydrological cycle (or both at the same time). 15 

The obvious candidate for a perturbation that would lead to increased dust in the atmosphere is drought. We will therefore 

interpret short dust spikes as multiannual to multidecadal drought events in southern South America. With this interpretation, 

we can conclude that glacial maxima, interglacials, and glacial inceptions were characterized by more frequent and more 

severe drought events than during the mid-glacial. During glacial maxima, such extreme dust events could have contributed 

to Southern Hemisphere deglaciation by significantly lowering ice sheet albedo at the beginning of the termination 20 

(Ganopolski and Calov, 2011). In contrast, more frequent dust events could have contributed to glacial inception through 

negative radiative forcing of the atmosphere. 

5 Conclusions 

Until now, a systematic comparison of the different glacial-interglacial cycles has been hindered by a limitation of the 

most common paleoclimate indicators – the low resolution of temperature reconstructions from ice or marine sediment cores. 25 

Due to this intrinsic characteristic, the older cycles are poorly discerned; we gave the example of EPICA paleo temperatures 

whose resolution in the most recent cycle was 25 times higher than the resolution in the oldest one. In this paper, we 

therefore took advantage of a unique dust flux dataset with 1 cm resolution measuring 320,000 cm. The most recent four 

cycles were discerned at 5 year resolution throughout (20,000 points per cycle) and the entire record of eight glaciations 

could be resolved at 25 years, and this, without signs of over-sampling or smoothing. 30 

Dust fluxes are challenging not only because of their high resolutions, but also because of their unusually high 

spikiness (intermittency) and their extreme transitions that occur over huge ranges of time scales. Standard statistical 
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methodologies are inappropriate for analyzing such data. They typically assume exponential decorrelations (e.g. 

autoregressive or moving average processes) that have variability confined to narrow ranges of scale.  In addition, they 

assume that the variability is quasi Gaussian or at least that it can be reduced to quasi Gaussian through a simple 

transformations of variables (e.g. by taking logarithms). In this paper, using standard spectral and probability distribution 

analysis, we show that both the spectral and the probability tails were power laws, not exponential, requiring nonstandard 5 

approaches.  

 The high resolution of the data allowed us to not only quantitatively compare glacial-interglacial cycles with each 

other, but also to subdivide each cycle into 8 successive phases that could also be compared to one another. One of the key 

findings was that there was a great deal of statistical similarity between the different cycles and that within each cycle there 

were systematic variations of the statistical properties with phase.  These conclusions would not have been possible with the 10 

corresponding much lower resolution temperature data. 

Our variability analysis using real space (Haar) fluctuations confirmed that the majority of the variability was in the 

macroweather and climate scaling regime “backgrounds” with an average transition scale c of about 300 years. In the 

climate regime (time scales above c), dust variability is more affected by long-term hemispheric-wide climate changes 

affecting slow response subsystems like glaciers and vegetation. In contrast, dust variability in the macroweather regime 15 

(time scales below c) would have been more influenced by short-term atmospheric perturbations.  

Using various techniques, c was found to be systematically larger in the youngest two phases than in the middle and 

oldest phases; about 2 kyrs but with nearly a factor of 4 cycle to cycle spread and equal to 300 years (with a factor of 2 

spread) for the six remaining phases. For the Holocene, c was found to be 7.9 kyrs, which makes it an exceptionally stable 

interglacial, but not a statistical outlier compared to other interglacials. Similarly, the typical (RMS) variation in flux 20 

amplitude was smaller in the early phase increases by (on average) a factor of 4 from ±0.13 mg/m2/yr to about ±0.5 mg/m2/yr 

in the middle and later phases. The Holocene (with an amplitude of ±0.08 mg/m2/yr) was again particularly stable with 

respect to the phase 1 of other cycles, but it was not an outlier. 

The task of statistically characterizing the cycles reduced primarily to the problem of characterizing the phases’ 

variability exponents H, C1, qD and amplitude A We show that the atmosphere was relatively stable during glacial maxima 25 

and interglacials, but highly variable during glacial inception and mid-glacial. However, the low amplitude of dust variability 

during glacial inceptions indicates that the Patagonian ice sheet was not very active until ~30 kyr after glacial inception. 

We interpret the intermittency indicators as suggesting a higher frequency of drought events and more severe 

droughts during glacial inception, interglacials, and glacial maxima than during mid-glacial conditions. These short-term 

spikes in atmospheric dust could have helped trigger southern hemisphere deglaciation through albedo feedback of ice-sheet 30 

surfaces, or glacial inception through negative radiative forcing. 
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This paper is an early attempt to understand this unique very high resolution data set. In future work, we will extend 

our methodology to the EPICA paleo temperatures and to the scale by scale statistical relationship between the latter and the 

dust fluxes. 
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Figures 

 

 
Figure 1: Temperature (blue) and dust flux (red) from the EPICA Dome C ice core (Jouzel et al., 2007; Lambert et al., 

2012). The dust flux time series has 32,000 regularly spaced points (25 year resolution), the temperature series, has 5,752 points. 5 
The temperature data are irregularly spaced, and lose resolution as we go back into the past (number of temperature data points 

in successive ice ages: 3022, 1117, 521, 267, 199, 331, 134, 146). In both cases we can make out the glacial cycles but they are at best 

only quasi-periodic. 
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Figure 2: A composite showing root mean square (RMS) Haar fluctuations (T in units of °C) black, and RMS dust 

fluctuations analysed in this paper (red, in units of mg/m2/yr, (Lambert et al., 2012)). From left to right: thermistor temperatures 5 

at 0.0167s resolution (Lovejoy, 2018) , hourly temperatures from Landers Wyoming (Lovejoy, 2015) , daily temperatures from 75 

°N (Lovejoy, 2015), EPICA Dome C temperatures (Jouzel et al., 2007), and two marine benthic stacks (Veizer et al., 1999; Zachos 

et al., 2001). The macroweather-climate transition is not in phase between the different records because the left ones (industrial 

side) are influenced by anthropogenic climate change, while the right data is pre-industrial natural variability. As elsewhere in this 

paper, the fluctuations were multiplied by the canonical calibration constant of 2 so that when the slopes are positive, the 10 

fluctuations are close to difference fluctuations. The various scaling regimes are indicated at the bottom. Adapted from (Lovejoy, 

2017). 
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Figure 3a: Zooming out of the Holocene dust fluxes by octaves, by doubling the depth resolution from 1 cm (upper left) to 

11m (lower right) resolution. Starting at the left and moving to the right and from top to bottom (see the ellipses on the first three 5 

in the sequence) we zoom out by factors of 2 in depth maintaining exactly 290 data points (effectively nondimensionalizing the 

depth; the small number of missing data points were not interpolated so that the final resolution is not exactly 210cm = 10.24m). 

The temporal resolution is not exactly doubled due to the squashing of the ice column, the total duration (in years) of each section 

is indicated in each plot, the average temporal resolution of plots are: 0.24, 0.48, 0.98, 2.02, 4.32, 10.1 24.5, 54.1, 184, 434, 2710 yr. 

In order to fit all the curves on the same vertical scale, the dust fluxes were normalized by their mean over each segment. The 10 

means (in mg/m2/yr) are: 0.44, 0.38, 0.30, 0.36, 0.35, 0.33, 0.34, 0.39, 2.48, 2.18, 2.41 i.e. the first 8 plots have nearly the same 

vertical scales whereas the last three are about 6 times larger range. This means that all the plots except the last three are at nearly 

constant normalization. 
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Figure 3b: Same as Fig. 3a but for the absolute changes between neighbouring values in dust flux normalized by the 

corresponding mean over the segment (290 points). The horizontal lines indicate the Gaussian probability levels for p = 1/290 5 

(representing the mean extreme for a 290 point segment, full line), as well as p = 10-6 (lower dashed) and p = 10-9 (upper dashed).  
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Figure 3c: Same as Fig. 3a but for the absolute changes between neighbouring values in the logarithms of dust flux 

normalized by the corresponding mean over the segment (290 points). The horizontal lines indicate the Gaussian probability levels 

for p = 1/290 (representing the mean extreme for a 290 point segment, full line), as well as p = 10-5 (lower dashed) and p = 10-8 5 

(upper dashed, not the same as in fig. 3b). 
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Figure 4: Log-log plot of the Fourier spectrum of the (25yr)-1 resolution dust concentration in frequency units of kyrs-1 

(red) and the same but of the logarithms of the flux (blue). Also shown is the average spectrum of the 5 year resolution data over 

the last 400 kyrs (green). For the latter, the periodograms of each the four most recent 100 kyr cycles were averaged, but the full 5 

spectral resolution (5yrs)-1 was retained. The beta parameters are the exponents of the theoretical spectrum (see main text, the 

negative of the logarithmic slope) for the macroclimate (-2.5), climate (1.7), and macroweather (0.8) regimes. The spectra were 

analyzed using FFT with standard Hanning windows. 
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Figure 5: The Haar fluctuation analysis of the entire 800 kyr dust flux data set (thin lines). The dashed black and solid pink 

(top pair) represent RMS fluctuations for dimensional and non-dimensional time, respectively. The solid black and blue curves are 

the same but for the mean absolute (q =1) fluctuations. The curves with non-dimensional time lags have nominal (average) 

resolutions of 25 years and the fluctuation statistics are averaged over the 8 cycles. The thick black line shows the Haar 5 

fluctuations for the most recent 400 kyrs at 5 year resolution. Note that the peak in the curves occurs as expected at t ≈ 50kyrs i.e. 

at about a half cycle; and the horizontal dashed line shows that at this scale - corresponding to the largest difference in phases – 

the change in the mean absolute dust flux is about ± 3 mg/m2/yr. Also shown (dashed vertical line) is the (average) time scale c ≈ 

250yrs at which the transition from macroweather to climate occurs. Several reference lines (with the slopes/exponents indicated) 

are shown showing approximate scaling behaviours. 10 
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Figure 6a: The probability distribution Pr(F > s) of random changes in dust flux (F) exceeding a fixed threshold s; in 

time at 25 year resolution (brown, 32,000 points), and in depth at 1cm resolution (black, 251,075 points corresponding to the last 

400 kyrs). The frequency scales at the right give the number (N) of jumps in each of the series that exceeds the threshold s. The 5 

straight lines indicate power law probability tails with exponents qD indicated. Also shown (parabolas) are the Gaussians with the 

same mean and standard deviations. In time, the maximum change in flux corresponds to about 28 standard deviations (i.e. to a 

Gauss probability ≈ 10-91), in depth, to 51 standard deviations (i.e. to p ≈ 10-455).   On the right, we provide axes giving the actual 

number of flux increments that exceed s, brown for the fluctuations in time, black for those in depth. 
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Figure 6b: Same as 6a except for the increments of the log of the dust flux (brown is in time, 25 year resolution, black is in 

depth, 1 cm resolution), the curves are the closest fitting (log) Gaussians.   

 5 

 

 

  



26 

 

 
 

Figure 7: Top set: successive segments of theoretical 100 kyr–long glacial cycles using usual (dimensional) time (present to 

past: bottom to top, the segment number is at the far right) with the 12.5 kyr phases indicated by vertical dashed lines. The short 

red lines indicate the interglacial dust minima. Each glacial-interglacial cycle is shifted by 25 units in the vertical for clarity.   The 5 

red markers in the upper plot get mapped to the first dashed blue line in the lower plot. 

Bottom set: successive cycles using nondimensional time (interglacial to interglacial) and then shifted by one phase to better 

line up with the usual time segments (the left most phase of the bottom line of the lower plot is zeroed). The average (nominal) 

resolution is 25 years. The interglacial dust minima were taken as 128.5, 243.5, 336, 407.5, 490, 614, 700, 789 kyrs B.P. and the data 

start at 373 yrs B.P. Each cycle is shifted by 25 units in the vertical for clarity. The data older than 789 kyrs were not used in these 10 

nondimensional cycles. 
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Figure 8: Top set: Averaging over the 8 cycles at 25 year resolution, we get the above picture: the mean is brown and the 

one standard deviation cycle to cycle variability is shown by the red. The dashed vertical lines give a further division into 8 x 5 

12.5kyr segments, the 8 “phases” of the cycle.  

Bottom set: the same but for the nondimensional time. The relative position of the interglacial minimum at the first dashed 

line is indicated. 
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Figure 9: The top row shows the intermittency function G(t) (whose slope on the log-log plot is C1) and the bottom row, 

the mean absolute Haar fluctuation S1(t) (whose slope on the log-log plot is H), the left column shows the result for each phase 5 

after averaging over the 8 cycles with the numbers next to each line indicate the phase number; the right hand column shows the 

result for each cycle after averaging over the phases. Whereas each cycle is fairly similar to every other cycle (the right column), 

each phase is quite different (the left column). We see the most significant difference is the fluctuation amplitude as a function of 

phase (lower left). 
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Figure 10: The transition scale c estimated in two ways for each of the 8 phases and from two definitions of the phases. The 

first method (solid lines) used a bilinear fit to the (logarithm) of the Haar q=1 structure function (i.e. mean absolute fluctuation) as 

a function of log time lag t. To obtain robust results, a small t region with the slope -0.05 and a large t slope +0.25 was imposed 5 

with the transition point (c) determined by regression. This was done for each segment and cycle. For each phase there were thus 

8 transition scales, which were used to calculate the mean of the logarithm of c and its standard deviation. Results are shown for 

dimensional (segments, blue) and nondimensional time (cycles, black).  

The second method used to estimate c was graphical and relied on a somewhat subjective fitting of scaling regimes and 

transitions, but without imposing small and large t slopes (exponents H). The results are shown in dashed lines, they are quite 10 

similar although we can note some differences for the first phase (dimensional, blue) and the middle phases (nondimensional, 

black). There is also considerable cycle to cycle spread that was quantified by the standard deviations. In order to avoid clutter, 

typical spreads are shown by the double headed black arrows. Dashed horizontal lines show the ensemble mean transition scale 

(about 250 years) as well as ensemble mean for phases 1 and 2  (around 2 kyrs), which stands out compared to the rest of the 

phases. The red arrow shows one standard deviation for the nondimensional first phases, while the X marks the value of the 15 

Holocene c (7.9 kyr) just outside the 1-sigma limit. 
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Figure 11:   Using nondimensional time, the amplitude of the Haar fluctuations are averaged over all the cycles The curves 

from bottom to top are for time scales of t = 50, 100, 200, 400, 800, 1600, 3500, 7000 years, alternating solid and dashed (for 

clarity, only some of the t’s are marked). The cycle to cycle variability (the dispersion around each line) is about a factor of 2 (it is 5 

not shown to avoid clutter).  
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Fig.12:  The fluctuation and intermittency exponents H and C1 (top row) are estimated over the range 500 – 3000 years, as 

a function phase with the standard deviations from the cycle to cycle variability (all using nondimensional time).  The upper left 5 

(H) plot shows low drift in phases 1 and 2 but become driftier in the middle and older phases.  The intermittency (C1, upper right) 

is moderate at the beginning and end of the cycles, and a little weaker in the middle.  The lower left shows the amplitude of the 

fluctuations at 25 years determined by the standard deviation of the dust flux (units: mg/m2/yr).  We see that the flux has low 

amplitude fluctuations at the beginning and end of the cycles and 3-4 times higher amplitude fluctuations in the middle.  The lower 

right shows the probability exponent qD estimated from the 25 year resolution data for each phase; the extreme 5% of the flux 10 

changes were used to determine the exponent in each phase; the cycle to cycle spread is indicated by the error bars (overall 

average over the phases: qD = 2.62±0.42). 

 

 

  15 

More extreme 



32 

 

References 

Dakos, V., Carpenter, S. R., Brock, W. A., Ellison, A. M., Guttal, V., Ives, A. R., Kéfi, S., Livina, V., Seekell, D. A., van 

Nes, E. H. and Scheffer, M.: Methods for detecting early warnings of critical transitions in time series illustrated using 

simulated ecological data, PLoS One, 7(7), doi:10.1371/journal.pone.0041010, 2012. 

Delmonte, B., Andersson, P. S., Hansson, M., Schöberg, H., Petit, J. R., Basile-Doelsch, I. and Maggi, V.: Aeolian dust in 5 

East Antarctica (EPICA-Dome C and Vostok): Provenance during glacial ages over the last 800 kyr, Geophys. Res. Lett., 

35(7), 2–7, doi:10.1029/2008GL033382, 2008. 

Ditlevsen, P. D., Svensmark, H. and Johnsen, S.: Contrasting atmospheric and climate dynamics of the last-glacial and 

Holocene periods, Nature, 379(6568), 810–812, doi:10.1038/379810a0, 1996. 

Ganopolski, A. and Calov, R.: The role of orbital forcing, carbon dioxide and regolith in 100 kyr glacial cycles, Clim. Past, 10 

7(4), 1415–1425, doi:10.5194/cp-7-1415-2011, 2011. 

Huybers, P. and Curry, W.: Links between annual, Milankovitch and continuum temperature variability, Nature, 441(7091), 

329–332, doi:10.1038/nature04745, 2006. 

Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., Minster, B., Nouet, J., Barnola, J. M., 

Chappellaz, J., Fischer, H., Gallet, J. C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D., Oerter, H., Parrenin, F., 15 

Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R., Spahni, R., Stauffer, B., Steffensen, J. P., 

Stenni, B., Stocker, T. F., Tison, J. L., Werner, M. and Wolff, E. W.: Orbital and millennial Antarctic climate variability over 

the past 800,000 years., Science (80-. )., 317(5839), 793–796, doi:10.1126/science.1141038, 2007. 

Kolmogorov, A. N.: A refinement of previous hypotheses concerning the local structure of turbulence in a viscous 

incompressible fluid at high Reynolds number, J. Fluid Mech., 13(01), 82, doi:10.1017/S0022112062000518, 1962. 20 

Lambert, F., Delmonte, B., Petit, J., Bigler, M., Kaufmann, P., Hutterli, M., Stocker, T., Ruth, U., Steffensen, J. and Maggi, 

V.: Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core., Nature, 452(7187), 616–619, 

doi:10.1038/nature06763, 2008. 

Lambert, F., Bigler, M., Steffensen, J., Hutterli, M. and Fischer, H.: Centennial mineral dust variability in high-resolution ice 

core data from Dome C, Antarctica, Clim. Past, 8(2), 609–623, doi:10.5194/cp-8-609-2012, 2012. 25 

Lovejoy, S.: A voyage through scales, a missing quadrillion and why the climate is not what you expect, Clim. Dyn., 44(11–

12), 3187–3210, doi:10.1007/s00382-014-2324-0, 2015. 

Lovejoy, S.: How scaling fluctuation analysis transforms our view of the climate, Past Glob. Chang. Mag., 25(3), 136–137, 

doi:10.22498/pages.25.3.136, 2017. 

Lovejoy, S.: The spectra, intermittency and extremes of weather, macroweather and climate, Nat. Sci. Reports, in press, 30 

2018. 

Lovejoy, S. and Schertzer, D.: Scale invariance in climatological temperatures and the local spectral plateau, Ann. Geophys., 

4(B), 401–410, 1986. 

Lovejoy, S. and Schertzer, D.: Haar wavelets, fluctuations and structure functions: convenient choices for geophysics, 

Nonlinear Process. Geophys., 19(5), 513–527, doi:10.5194/npg-19-513-2012, 2012. 35 

Lovejoy, S. and Schertzer, D.: The Weather and Climate: Emergent Laws and Multifractal Cascades, Cambridge University 

Press, Cambridge., 2013. 

Lovejoy, S., Pinel, J. and Schertzer, D.: The global space–time cascade structure of precipitation: Satellites, gridded gauges 

and reanalyses, Adv. Water Resour., 45, 37–50, doi:10.1016/J.ADVWATRES.2012.03.024, 2012. 

Maher, B. a., Prospero, J. M., Mackie, D., Gaiero, D., Hesse, P. P. and Balkanski, Y.: Global connections between aeolian 40 

dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum, Earth-Science Rev., 99(1–2), 

61–97, doi:10.1016/j.earscirev.2009.12.001, 2010. 

Mandelbrot, B. B.: Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the 

carrier, J. Fluid Mech., 62(02), 331, doi:10.1017/S0022112074000711, 1974. 

Nilsen, T., Rypdal, K. and Fredriksen, H.-B.: Are there multiple scaling regimes in Holocene temperature records?, Earth 45 

Syst. Dyn., 7(2), 419–439, doi:10.5194/esd-7-419-2016, 2016. 

Rehfeld, K., Münch, T., Ho, S. L. and Laepple, T.: Global patterns of declining temperature variability from the Last Glacial 

Maximum to the Holocene, Nature, 554(7692), 356–359, doi:10.1038/nature25454, 2018. 

Ridgwell, A. J.: Implications of the glacial CO 2 “iron hypothesis” for Quaternary climate change, Geochemistry Geophys. 



33 

 

Geosystems, 4(9), 1–10, doi:10.1029/2003GC000563, 2003. 

Schertzer, D. and Lovejoy, S.: Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative 

processes, J. Geophys. Res., 92(D8), 9693, doi:10.1029/JD092iD08p09693, 1987. 

Shao, Z. G. and Ditlevsen, P. D.: Contrasting scaling properties of interglacial and glacial climates, Nat. Commun., 7, 1–8, 

doi:10.1038/ncomms10951, 2016. 5 

Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., 

Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G. and Strauss, H.: 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic 

seawater, Chem. Geol., 161(1–3), 59–88, doi:10.1016/S0009-2541(99)00081-9, 1999. 

Zachos, J., Pagani, M., Sloan, L., Thomas, E. and Billups, K.: Trends, rhythms, and aberrations in global climate 65 Ma to 

present., Science, 292(5517), 686–93, doi:10.1126/science.1059412, 2001. 10 

 


