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Abstract:	20 

Scaling fluctuation analyses of the marine animal diversity, extinction and origination 21 

rates based on the Paleobiology Database occurrence data have opened new perspectives on 22 

macroevolution, supporting the hypothesis that the environment (climate proxies) and life 23 

(extinction and origination rates) are scaling over the “megaclimate” biogeological regime 24 

(from ≈ 1 Myr to at least 400 Myrs).   In the emerging picture, biodiversity is a scaling “cross-25 

over” phenomenon being dominated by the environment at short time scales and by life at long 26 

times scales with a cross-over at ≈40Myrs.  These findings provide the empirical basis for 27 

constructing the Fractional MacroEvolution Model (FMEM), a simple stochastic model 28 

combining destabilizing and stabilizing tendencies in macroevolutionary dynamics, driven by 29 

two scaling processes: temperature and turnover rates.   30 

Macroevolution models are typically deterministic (albeit sometimes perturbed by 31 

random noises), and based on integer ordered differential equations.  In contrast, the FMEM is 32 

stochastic and based on fractional ordered equations.   Stochastic models are natural for systems 33 

with large numbers of degrees of freedom and fractional equations naturally give rise to scaling 34 

processes.   35 

The basic FMEM drivers are fractional Brownian motions (temperature, T) and fractional 36 

Gaussian noises (turnover rates E+) and the responses (solutions), are fractionally integrated 37 

fractional Relaxation processes (diversity (D), extinction (E), origination (O) and E- = O - E).  38 

We discuss the impulse response (itself a model for impulse perturbation, e. g. bolide impacts) 39 

and derive the full statistical properties including cross covariances.  By numerically solving 40 

the model, we verified the mathematical analysis and compared both uniformly and irregularly 41 

sampled model outputs to paleobiology series.   42 

1.	Introduction	43 

 44 
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Several centuries of paleontological research revealed that the evolution of Life on Earth 45 

is characterized by high temporal complexity characterized by periods of sluggish and 46 

predictable evolution (Jablonski, 1986; Casey et al., 2021) with mass extinctions characterized 47 

by selectivity that is low or different in kind than in “background intervals” (Raup, 1992a ;  48 

Raup, 1994 ;  Payne & Finnegan, 2007).  There are also mass evolutionary radiations which 49 

sometimes are contemporaneous with mass extinctions (Cuthill et al., 2020). Moreover 50 

apparently the factors and modes of macroevolution vary with time—e.g. Cambrian explosion 51 

or Ediacaran-Cambrian radiation and post-Cambrian evolution (Gould, 1990 ;  Erwin, 2011 ;  52 

Mitchell et al., 2019); environment (Kiessling et al., 2010; Jablonski et al., 2006; Miller & 53 

Foote, 2009 ; Boyle et al., 2013; Spiridonov et al., 2015; Tomašových et al., 2015); and 54 

timescales (Crampton et al., 2018 ;  Van Dam et al., 2006 ;  Spiridonov et al., 2017b; Beaufort 55 

et al., 2022). Moreover macroevolution is strongly influenced by Earth system —geological, 56 

climatic, and paleoceanographic—factors (Marshall et al., 1982; Lieberman & Eldredge, 1996;   57 

Lieberman, 2003 ; Saupe et al., 2019;  Halliday et al., 2020;  Carrillo et al., 2020), but also by 58 

biotic interactions, which can translate into patterns which are apparent on extremely long time 59 

scales of tens to hundreds of millions of years (Vermeij, 1977 ;  Jablonski, 2008 ; Erwin, 2012;  60 

Vermeij, 2019). Also, there are questions on the role of general stochasticity and path 61 

dependence/memory in evolutionary dynamics  (Schopf, 1979; Hoffman, 1987;  Erwin, 2011 ;  62 

Erwin, 2016 ;  Gould, 2001;  Gould, 2002 ;  Cornette & Lieberman, 2004). The question is: 63 

can we reconcile in a single simple model this multitude of hierarchically organized and 64 

causally heterogenous processes producing macroevolutionary dynamics, while maintaining 65 

simplicity and conceptual clarity?  Here we argue that we can. 66 

The development of large, high temporal resolution databases – both of past climate 67 

indicators (Veizer et al., 1999 ;  Song et al., 2019 ;  Grossman & Joachimski, 2022) and of 68 

paleobiological information such as  Paleobiology Database (Alroy et al., 2001 ;  Alroy et al., 69 
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2008) or NOW (Jernvall & Fortelius, 2002;  Žliobaitė et al., 2017;  Žliobaitė, 2022), is 70 

transforming our understanding of macroevolution.  Time series are frequently long enough 71 

that they be studied systematically - not just as chronologies to be compared with other 72 

chronologies - but as functions of temporal scale, i.e. the behaviour of their fluctuations as 73 

functions of duration (or equivalently, their behaviour as functions of frequency).   A regime 74 

over which fluctuations DT are scaling i.e. of the form where Dt is duration - “lag”, 75 

scale, and H  is an exponent - can be used to objectively define dynamical regimes (this scaling 76 

relationship holds in a statistical sense discussed below).  This is because over such a regime, 77 

long duration fluctuations at scale l Dt ( l >1) are related to the shorter duration fluctuations 78 

by:  i.e. the fluctuations at different time scales differ only in their 79 

amplitudes.  In addition, we can already distinguish the qualitatively different types of regime 80 

by the sign of the exponent H.  H>0 implies that fluctuations increase with scale whereas H<0) 81 

implies that they decrease. 82 

An important consequence for our understanding of deep time biogeodynamics - here 83 

understood as joint Earth-Life systems - is the robustness of the “megaclimate” regime of 84 

positively scaling (a short hand for H>0) with time scale temperature fluctuations meaning that 85 

at longer time scales climates become more and more distinct, first (Lovejoy 2013), (Lovejoy 86 

2015) on the basis of long paleotemperature data from ocean core stacks (Veizer et al. 2000), 87 

(Zachos et al. 2001).  Megaclimate is the hypothesis that there is a unique (presumably highly 88 

nonlinear)  biogeological dynamical regime that operates over time scales spanning the range 89 

≈ 1 Myr to (at least) several hundred Myrs.  This would be the consequence of a unique (albeit 90 

complex, nonlinear) underlying dynamic that is valid over this wide range of scales; 91 

presumably it involves a scaling (hence hierarchical) mechanism that operates from long to 92 

short durations.  A consequence is the existence of a statistical scaling regimes (notably of 93 

paleo temperatures), empirically verified throughout the Phanerozoic. While its inner scale 94 

ΔT Δt( )∝ Δt H

ΔT λΔt( ) = λ HΔT Δt( )
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appears to be fairly robust at around 1 Myr,  its outer scale (the longest duration over which it 95 

is valid) is not known although it appears to be at least 300 Myrs.  The megaclimate regime 96 

implies that the underlying biology - climate dynamics are essentially the same over these time 97 

scales: i.e. that the statistics are stationary (although they may appear to be nonstationary at 98 

shorter time scales). 99 

The hypothesis that biology and the climate are linked, and that climate is crucial and 100 

defining variable in ecological and evolutionary turnovers (Vrba, 1985 ;  Vrba, 1993 ; Eldredge, 101 

2003; Lieberman et al., 2007; Hannisdal & Peters, 2011;  Mayhew et al., 2012 ; Crampton et 102 

al., 2016;  Spiridonov et al., 2016; Spiridonov et al., 2017a; Spiridonov et al., 2020a;  103 

Spiridonov et al., 2020b;  Mathes et al., 2021), is hardly controversial - after all - the 104 

paleoclimate indicators themselves are often based on stable oxygen isotopic analyses of 105 

CaCO3 from ancient foraminifera (O'Brien et al., 2017) or sometimes for more recent periods 106 

estimated directly from occurrences and abundances of taxa using modern analog techniques 107 

(Dowsett & Robinson, 1998; Green, 2006).  However, the scope and utility of the megaclimate 108 

notion would increase if it could be backed up by direct analysis of paleobiological series, 109 

particularly of extinction and origination rates. This has now been done.  A recent paper 110 

(Spiridonov and Lovejoy 2022), hereafter SL) found that genus - level extinction and 111 

origination rates exhibited scaling statistics over roughly the same range as the paleo 112 

temperatures confirming that the megaclimate includes these key macroevolutionary 113 

parameters.   114 

The shortest scale of SL’s paleobiological time series was closer to ≈ 3 Myrs (average 115 

stage resolution was 5.9 Myrs) which correspond to the durations of shortest Paleobiology 116 

Database stages – a standard shortest time resolution for Phanerozoic scale global biodiversity 117 

analyses (e.g. (Alroy et al., 2008; Alroy, 2010b)).  Systematic reviews and multiple case studies 118 

revealed that even variously defined (molecular, morphological, phylogenetic, and taxic) 119 
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evolutionary rates universally exhibit negative time scaling behavior (Gingerich, 1993;  120 

Gingerich, 2001;  Gingerich, 2009;  Roopnarine, 2003; Harmon et al., 2021;  Spiridonov & 121 

Lovejoy, 2022), which suggests the universality of the temporal scaling - hence hierarchical - 122 

evolutionary dynamics.  Although an inner megaclimate scale of ≈ 1 Myrs was also proposed 123 

in (Lovejoy 2013), (Lovejoy 2015) and is discussed at length in the nonspecialist book 124 

(Lovejoy 2019). The scaling, and thus by implication dominance of time symmetric 125 

hierarchical interactions, was also detected on multimillion year time scales in sedimentation 126 

rates/stratigraphic architecture (Sadler, 1981), sea level (Spiridonov and Lovejoy, 2022), and 127 

dynamics of continental fragmentation (Spiridonov et al., 2022), which shows universality of 128 

the pattern in major Earth systems as well. Therefore, the time scaling patterns of evolution 129 

and megaclimate overlap at the very wide range of temporal scales (from ≈ 106 to > 4×108 yrs), 130 

which motivates the development of quantitative models which explicitly tackle and integrate 131 

together these time scale symmetries. 132 

If macroevolution and climate respect wide range scaling, then it may be possible to 133 

resolve a longstanding debate in macroevolution.  In terms first posed by (Van Valen 1973), 134 

we may ask: are evolutionary processes dominated by external factors -  especially climate, the 135 

“Court Jester” (Barnosky, 2001;  Benton, 2009) - or is life itself - the “Red Queen” (Van Valen, 136 

1973 ;  Finnegan et al., 2008) - the determining process.  SL proposed a scaling resolution of 137 

the debate in which at scales below a critical transition time t of ≈40 Myrs, the climate process 138 

is dominant, but there is a “cross-over” beyond which life (self-regulating by means of 139 

geodispersal and competition) are dominant.  SL thus quantitatively concluded that at long 140 

enough time scales the Red Queen ultimately overcomes the Court Jester. The scaling 141 

processes of the Earth system here are playing double role (thus Geo-Red Queen theory) – 142 

climate fluctuations growing with time scale cause perturbations in diversity to grow in their 143 

size, but at the same time, at longer and longer time scales fluctuating climates and plate 144 
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tectonics cause the mixing and competitive matching of biota, thus effectively globally 145 

synchronizing it. Later results in a described “cross-over” when ustable and wandering 146 

diversity regime changes to longer time scale fluctuation canceling or stabilizing regime 147 

(Spiridonov and Lovejoy, 2022). 148 

Physicists use the term “cross-over”, as a short-hand to describe analogous phenomena 149 

involving processes that are subdominant over one scale range but eventually become dominant 150 

at longer scales.  However, such transitions are typically modelled by Markov processes so that 151 

the autocorrelations are exponential so that at the critical time scale, the transition between two 152 

regimes is fairly sharp.  In SL, on the contrary, in keeping with the basic megaclimate scaling 153 

dynamics, the cross-over was postulated to be a the consequence of the interaction of two 154 

scaling processes i.e. the transition is a slow, power law one.   An analogous scaling cross-over 155 

phenomenon was found in phytoplankton where the competing scaling processes were 156 

phytoplankton growth (with turbulence) and a predator-prey process of zooplankton grazing 157 

(Lovejoy et al. 2001). 158 

SL argued that while both macro evolution and climate respect wide range statistical 159 

scaling, that their quantitative and qualitative differences are significant and this was the key 160 

to macroevolution power law cross-overs.  While temperature (T) fluctuations vary with time 161 

scale Dt as DT(Dt) ≈ DtHT with HT ≈ 0.25, the corresponding laws for extinction (E) and 162 

origination (O) have HE , HO ≈ -0.25.  When H > 0, fluctuations grow with scale so that the 163 

corresponding series tend to “wander” without any tendency to return to a well-defined value, 164 

they appear “unstable”.  On the contrary, when H < 0, successive fluctuations tend to have 165 

opposite signs so that they increasingly  cancel over longer and longer time scales, they 166 

fluctuate around a long term value, they appear stable. 167 

To deepen our understanding, it is necessary to build a quantitative model of the 168 

interaction of climate and life.  In recognition of the strongly nonlinear nature of evolutionary 169 
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dynamics, there have developed numerous deterministic chaos models such as predator - prey 170 

models (e.g. (Huisman and Weissing 1999), (Caraballoa et al. 2016)).  Although extensions 171 

with some stochastic forcing exist (e.g. (Vakulenko et al. 2018 )), in the latter, the stochasticity 172 

is a perturbing noise on an otherwise deterministic system. In paleontology the model of 173 

exponential (unconstrained) proportional growth of diversity was historically popular (Stanley, 174 

1979; Benton, 1995), or expanded for possible acceleration due to niche construction effects 175 

(second-order positive feedback)  - a hyperbolic model (Markov and Korotayev, 2007). These 176 

simple models of expansion were contrasted by single or coupled logistic models of resource 177 

constrained competitive macroevolutionary dynamics, sometimes also supplemented with 178 

random perturbations which account for effects of mass extinctions (Sepkoski 1984; 1996); or 179 

implicitly hierarchical, and also competition constrained Gompertz models (Brayard et al., 180 

2009), However, such models assume that only a few degrees of freedom are important 181 

(typically fewer than 10) whereas the true number is likely to be astronomical.  It is therefore 182 

logical to model the process in a stochastic framework (involving infinite dimensional 183 

probability spaces), where the primary dynamics are stochastic using the scaling symmetry as 184 

a dynamical constraint. Therefore, there is growing recognition of stochastic models as 185 

essential tools for understanding macroevolutionary dynamics. Actually some of the first 186 

models that tried to explain complexities of macroevolutionary dynamics were stochastic 187 

Markovian birth and death models (Raup, 1985 ; Raup & Valentine, 1983 ;  Gould et al., 1977 ; 188 

Raup, 1992a ;  Nee, 2006). Several recent applications of linear stochastic differential equations 189 

were used in causal inference of macroevolutionary drivers and competitive interactions 190 

between clades (Reitan & Liow, 2017 ;  Liow et al., 2015 ;  Lidgard et al., 2021).  191 

Beyond the realism of implicitly involving larger numbers of degrees of freedom, 192 

stochastic models have the advantage that they may be linear even though the corresponding 193 

deterministic model may be highly nonlinear.  Also, by the simple expedient of using fractional 194 
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ordered differential equations rather than the classical integer ordered ones, stochastic models 195 

can readily handle scaling which is rarely explicitly considered in macroevolutionary analyses.  196 

This is because fractional equations have impulse response functions (Green’s functions)  and 197 

hence solutions that are based on scaling (power laws) rather than the exponential Green’s 198 

functions associated with integer ordered differential equations.    199 

In this paper, we therefore build a simple model for biodiversity (D) that can reproduce 200 

and explain SL’s findings.  The model is parsimonious: has only two scaling drivers -  the 201 

climate and life – and by construction - it  reproduces the observed scaling cross-over at 202 

40Myrs.  Although the model has two basic exponents (climate and life) and two correlation 203 

coefficients, it satisfactorily reproduces the fluctuation statistics of D, T, E, O as well as the 204 

turnover (E+ = O + E) and  difference E- = O - E over the range ≈ 3 Myrs to several hundred 205 

Myrs (the longest scales available).  Beyond this, it explains the 15 pairs of (scale by scale 206 

fluctuation correlations) over the same observed range.  The data are from SL paper-they 207 

represent stage level time series of Phanerozoic marine animal genera O and E (second-for-208 

third origination and extinction proportion (Kocsis et al., 2019 ;  Alroy, 2015) not-standardized 209 

for the duration of stages), sample standardized using shareholder quorum method (Alroy, 210 

2010a) D of Phanerozoic marine animals based on Paleobiology Database data 211 

(https://paleobiodb.org/). While paleotemperatures (T) are also the same as in the SL paper, 212 

obtained from (Song et al., 2019) 213 

As a final comment, we should note that the basic – simplest - stochastic “cross-over” 214 

process is the fractionally integrated fractional relaxation noise (ffRn process) whose properties 215 

were only fully elucidated very recently (Lovejoy 2022) in the context of long term weather 216 

forecasts (Del Rio Amador and Lovejoy 2021) and climate projections (Procyk et al. 2022). 217 

The new model has conceptual commonalities with the environmental “stress model” of M. 218 

Newman that attempted to replicate the scaling statistics of extinction intensities of marine 219 
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biota (Newman, 1997;  Newman & Palmer, 2003). The model presented here is more 220 

sophisticated since it ties the principal macroevolutionary variables — O, and E — to a 221 

principal geophysical scaling process — the megaclimate — in producing realistic multi time 222 

scale global dynamics of marine animal biodiversity, while keeping its conceptual simplicity 223 

in transparently using a few crucial parameters of time scaling and correlations. The model also 224 

explicitly hierarchical through scaling relations – having a desirable feature of a unified 225 

evolutionary theory (Eldredge, 1985 ;  Eldredge, 1989 ; Gould, 2002 ; Lieberman et al., 2007). 226 

 227 

2.	The	model:	228 

2.1.	The	equations:	229 

2.1.1	The	basic	diversity	equation	230 

The SL picture is one where the extra-biological factors (“the climate”) are scaling and 231 

drive biodiversity from ≈ 1Myr to ≈ 40 Myrs, where the cross-over occurs followed by the 232 

domination of biotic-regulation at the longer time scales, which also enabled by global 233 

homogenization of biota at long time scales by continental drift and changes in climate zones 234 

(Geo-Red Queen dynamics).  Based on this picture, we propose the following Fractional Macro 235 

Evolution Model (FMEM).  At first we describe the model, we then comment on it. 236 

The basic diversity equation is: 237 

;   238 

   (1) 239 

t is the cross-over time scale (≈40 Myrs) and E+ = E + O is the turnover rate.  Whereas 240 

D, E+ are already nondimensional, T must be nondimensionalized, for example by the standard 241 

deviation of its increments at some convenient reference scale, say 1 Myr.   sT, sE are constants 242 

that are determined by the coupling between T and D (sT) and E+ and D (sE).  243 

τ h
d h D − sTT( )

dth
+ D = sEE+ E+ = O + E
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 244 

2.1.2		The	drivers:	245 

The basic drivers are the climate (T) and life (E+), themselves driven by Gaussian white 246 

noises gT, gE: 247 

 (2)  248 

a is the basic biology (extinction and origination rate) exponent (a ≈ 0.25 as deduced 249 

from SL’s analysis) and h is the exponent difference (contrast) between the temperature and 250 

biology, from SL’s analysis h = 0.75 - a ≈ 0.5.  Combined with the diversity equation (eq. 1), 251 

these determine D.  The derivatives are fractional, in this paper we use the semi-infinite “Weyl” 252 

fractional derivatives.  For the arbitrary function W(t), the z ordered Weyl fractional derivative 253 

is defined as: 254 

 (3) 255 

Since fractional derivatives (and their inverse, fractional integrals) are – as in eq. 3 - 256 

generally convolutions, different fractional operators are defined on different ranges of 257 

integration for the convolutions.  Weyl derivative are particularly simple to deal with since they 258 

are simply power law filters in Fourier space, see below (see e.g. (Miller and Ross 1993), 259 

(Podlubny 1999) for more information on fractional equations). 260 

The g’s are Gaussian white noises, they are proportional to “unit” white noises g. Unit 261 

white noises have the properties:  262 

;    (4) 263 

τ α+h dα+hT
dtα+h = γ T

τ α d
αE+

dtα
= γ E

( ) ( ) ( )
z

-

z
-¥

= - < z <
G -z ò

1 ; 0 1
1

t
hd W d t s W s ds

dt dt

γ t1( )γ t2( ) = δ t1 − t2( ) γ 2 = 1; γ = 0
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where the angle brackets indicate ensemble (statistical) averaging.  Eq. 2 therefore implies that 264 

T, E+ are fractional integrals of white noises.  Depending on the value of the exponents), these 265 

are fractional Gaussian noises (fGns) and fractional Brownian motions (fBms), (Mandelbrot 266 

and Van Ness 1968) (see the later discussion on the small and large scale limits).   267 

 268 

2.1.3	Closing	the	model,	the	Diagnostic	Equation:	269 

The preceding equations 1, 2 determine D, E+, T.  However, in order for the model to 270 

determine E and O, we need a final equation for E-: 271 

;  (5) 272 

This is just the differential form of the usual discrete - time definition of diversity: 273 

 where j is a time index.  tD is the discretization time, it is the basic 274 

resolution of the series.  Equation 5 plays no role in the dynamics, conventionally, it is the 275 

definition of D.  Mathematically, eq. 5 is thus a ”diagnostic equation” because it simply allows 276 

us to close (complete) the model by determining O, E: 277 

  (6) 278 

2.2	Discussion:	279 

2.2.1	Diversity	as	a	Fractionally	Integrated	Fractional	Relaxation	(ffRn)	process	280 

The diversity model was written in a nonstandard way (eq. 1) because in this form, it’s 281 

basic behaviour is transparent.  When h>0, the fractional term is the highest order derivative, 282 

at high frequencies it therefore dominates the zeroth order (D) term so that at short lags Dt<t, 283 

diversity fluctuations so that D follows the temperature.  However at low frequencies 284 

(Dt > t), the zeroth order term dominates and we have instead .  By inspection, the 285 

E− = τ D
dD
dt E− = O − E

Dj+1 = Dj 1+Oj − Ej( )

O = E+ + E−( ) / 2
E = E+ − E−( ) / 2

ΔD ∝ ΔT

ΔD ∝ ΔE+
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model therefore reproduces the cross-over at lag t, and the crossover will be scaling due to the 286 

scaling of T, E+ (eq. 2).  The mathematical structure of the model is clearer if we substitute the 287 

driver in terms of their own Gaussian forcings gT, gE (eq. 2),  rewriting eq. 1 as: 288 

 (7) 289 

(  is a fractional integral order a: for Weyl derivative and integrals it is the 290 

inverse of the a order derivative ). 291 

The linear combination of white noises  is also a white noise.    The D 292 

equation, is thus an order h fractional relaxation equation forced by an order a fractionally 293 

integrated white noise, i.e. it is a “fractionally integrated fractional relaxation” process (ffRn, 294 

(Lovejoy 2022)).  The basic “unit” ffRn process Uh,a(t) satisfies: 295 

 (8) 296 

Where g is the unit white noise defined above and we have used the fact that for Weyl 297 

fractional derivatives fractional differentiation and integration  commute.  If time is rescaled 298 

(t→t/t), we see (from eq. 7) that D is proportional to .  We note that if h = 1, the D equation 299 

(eq. 1) would be a classical relaxation equation and if forced by a white noise (i.e. if a = 0), D 300 

would be a classical Ornstein-Uhlenbeck (OU) process.  OU processes are currently 301 

conventional approaches to the modeling and analysis of microevolutionary as well as 302 

macroevolutionary dynamics (Khabbazian et al., 2016; Bartoszek et al., 2017 ;  Liow et al., 303 

2022). 304 

 305 

τ h d
hD
dth

+ D = τ −α d −α

dt−α
sTγ T + sEγ E( )

d −α / dt−α

dα / dtα

sTγ T + sEγ E

,

h

hh

d d U
dt dt

a a

aa a g
+

+

æ ö
+ =ç ÷

è ø

Uα ,h
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2.2.2	Deterministic	behaviour:	Impulse	response	functions	306 

The D process - the solution to eq. 7  - is the response of the operator  to 307 

a white noise forcing.  The general behaviour of responses to linear operators is determined by 308 

their impulse response (Green’s) functions  that satisfy:  309 

 (9) 310 

(Lovejoy 2022)), where d(t) is the Dirac (“delta”) function.   can be expressed in terms of 311 

“generalized exponentials” or Mittag-Leffler functions  as: 312 

;313 

 (10) 314 

 315 

(G is the gamma function).  At small t, the leading order term is therefore .  316 

The large t (asymptotic) expansion is:   317 

 (11) 318 

(Podlubny 1999).  Whereas the small t expansion is ta-1 times terms of positive powers of h, 319 

the large t expansion is in terms of ta-1 times terms in negative powers of h, with leading term 320 

.  Unless h = 0,   therefore transitions between two different power laws.  321 

The special case h = 0 that applies to the temperature and turnover forcings (eq. 2), corresponds 322 

h

h

d d
dt dt

a a

a a

+

+

æ ö
+ç ÷

è ø

Gα ,h

( )
+a a

a+a a

æ ö
+ = dç ÷

è ø
,

h

hh

d d G t
dt dt

Gα ,h

eh,h+α

( )
( ) ( ) ( )

,
11 1

1
1 ; 0
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nh h

h h
n

G t
tt e t t t
nh

t
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, +a
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=
- = - ³
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<

å
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0

n
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n
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¥
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Gα ,h t( ) ≈ tα−1+h

Γ α + h( )
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to the pure power law .  Ga,h has the property that if it is (fractionally) integrated 323 

z times, the result is just Ga+z,h.  As explained in appendix A, Ga,h is useful for numerical 324 

simulations. 325 

At a typical highest resolution of global datasets of 1Myr time scales, for example a 326 

bolide strike (During et al., 2022;  Alvarez et al., 1980), supernova or gamma ray burst (Fields 327 

et al., 2020), or even much slower hyperthermal event such as PETM (McInerney & Wing, 328 

2011 ;  Gingerich, 2006) or Cenomanian-Turonian Event (Eaton et al., 1997 ;  Meyers et al., 329 

2012 ;  Venckutė-Aleksienė et al., 2018) is effectively an impulse, so that  could be 330 

considered as the response to a short time scale stressor such as meteorite or asteroid impact or 331 

extensive volcanic eruption episode. This impulse response property is desirable, since the 332 

global stratigraphic stages and substages are defined based on the episodes of turnover, which 333 

implies that at the measurement scales of million years or more, most of turnover is 334 

intermittent—near instantaneous or impulse-like (Foote, 2005 ;  Foote, 1994).  Figs. 1, 2 show 335 

the impulse response functions for the empirical parameters estimated in SL (a ≈ 0.25, h ≈ 0.5).  336 

Since the equations are linear, these impulse responses will be superposed onto the stochastic 337 

white noise driven responses.  We could remark that the power law decay of the impulse 338 

responses in much slower than that of conventionally assumed exponential decays.  This means 339 

that our model predicts that there are long term impacts of bolide catastrophic events.  This is 340 

in accord – for example - with the findings of (Krug et al., 2009; Krug & Jablonski, 2012), that 341 

the  K-Pg mass extinction caused by the effects of Chixulub asteroid impact changed long-term 342 

origination rates and their spatial distribution, that persists today, 66 million years after the 343 

event, in accord with this long memory feature of the FMEM model.   344 

Gα ,0 t( ) = tα−1

Γ α( )

Gα ,h t( )
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2.3.	Solving	the	model		345 

Fractional derivatives are generally convolutions (with power laws, eq. 3) and therefore 346 

according to the range of integration of the convolution the fractional derivatives and integrals 347 

will be different.  Different convolution ranges therefore correspond to different definitions of 348 

fractional derivatives. Most often (e.g. the Riemann-Liouville and Caputo fractional 349 

derivatives), the latter are taken from time = 0 to t in which case the initial conditions are 350 

important and dealing with them is technically somewhat complex.  In these cases, the main 351 

tool is the Laplace transform.   352 

Here however, we consider statistically stationary white noise forcing that starts at time 353 

= .  In this case, we can use  the “Weyl” fractional derivative (a convolution from to 354 

t, eq. 3) whose Fourier transform (”F.T.”) is particularly simple: 355 

 (12) 356 

If we Fourier transform (denoted with a tilde), equations 1, 2, we can write the model in 357 

matrix form as: 358 

 359 

  360 

 (13) 361 

−∞ −∞

d h

dth
↔ iω( )h

F .T .
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⎜
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⎟
⎟
⎟
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⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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T!

E+
!

D!

⎛

⎝

⎜
⎜
⎜
⎜

⎞
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⎟
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⎟
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(the single underline indicates a vector, the double underline, a matrix).   362 

As noted above, the D forcing is a linear combination of white noises (eq. 7), so that the 363 

sum on the RHS of eqs. 7, 13 is  a correlated white noise.  However, from the data (see fig. 4), 364 

we see that E+, T are themselves correlated.  We therefore rewrite the model in terms of two 365 

statistically independent ( ) unit ( ) white noise drivers g1, g2: 366 

 (14) 367 

So that: 368 

. (15) 369 

Where  sT is the standard deviation of gT, sE of gE and rE is the T, E+ correlation.  Eq. 14 is the 370 

standard Cholesky decomposition of correlated  random variables, noises. 371 

Fourier transforming eq. 14 and using eq. 13, we can write the model as: 372 

 (16) 373 

; ;  374 

Where the parameters: 375 

 (17) 376 

depend on both the driver statistics  (sT, sE and rE) and the model parameters sT, sE.  While sD 377 

does parametrize the amplitude of the diversity fluctuations, unlike sT, sE (that must be ≥0), it 378 

γ 1γ 2 = 0 γ 1
2 = γ 2

2 = 1

1

2 2

0 1 0
0 1

T T

E E E E

g s g
g s gr r

=æ ö æ öæ öæ ö
ç ÷ ç ÷ç ÷ç ÷
ç ÷ ç ÷ ç ÷ç ÷ç ÷è ø è ø è ø-è ø

σ T
2 = γ T

2 ; σ E
2 = γ E

2 ; ρE =
γ Tγ E
σ Tσ E

; γ T = γ E = 0

S! ω( ) = iωτ( )−α F ω( )σ ργ!

0 0
0 0
0 0

T

E

D

s
s s

s

æ ö
ç ÷

= ç ÷
ç ÷
è ø ( )

2

2

01
1

sgn 1
E E

D Dr

r r r
r r

æ ö
ç ÷

= -ç ÷
ç ÷ç ÷-è ø

γ! =
γ!1
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⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

σ D = sTσ T 1+ 2ρEr + r
2 ; r =

sEσ E

sTσ T

ρD =
1+ rρE

1+ 2rρE + r
2
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is not a true standard deviation:  if sT<0 it will be negative.  Similarly, we will see that  rD 379 

determines the D, E+ and D,  T correlations but is not itself a correlation coefficient and it 380 

depends on the sign of the ratio r.    381 

 382 

2.3	Stochastic	response	to	white	noise	forcing	383 

2.3.1	Scaling	processes:	fGn,	fBm	384 

We are interested in the statistical properties of the solutions .  These can be 385 

expressed in terms of fGn, fBm and ffRn (fractionally integrated fractional Relaxation noises) 386 

processes. Before discussing the full statistics that includes the cross correlations, let us 387 

therefore discuss their statistics. 388 

Let us start with the scaling processes T, E+ that are of the form: 389 

 (18) 390 

For the statistics, we can determine the power spectrum: 391 

 (19) 392 

Where bX is the spectral exponent and we have used the fact that the spectrum of a Gaussian 393 

white noise is flat: 394 

  (20) 395 

 is thus the basic form of the T, E+  spectra.  From the Wiener-Khintchin theorem, the 396 

(real space) autocorrelation function RX(Dt) is the inverse transform: 397 

S! ω( )

dα X X
dtα X

= γ ↔
F .T .

iω( )α X X! = γ!

EX ω( ) = X!
2

= 1
2π

ω
−βX ; βX = 2α X

γ! ω( ) 2 = 1
2π

γ 2 = 1
2π

EX ω( )
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398 

 (21) 399 

The technical difficulty is that due to a low frequency divergence, the inverse transform 400 

of pure power spectra (eq. 19) only converges for bX < 1 (i.e. aX < ½, HX <0); this is the fGn 401 

regime appropriate for E+.  Even here,  is infinite for Dt = 0.  Since  is the 402 

variance, fGn processes are (like the white noise special case aX = 0) generalized functions that 403 

must be averaged (integrated) over finite intervals in order to represent physical processes.  404 

Averaging to yield a finite resolution process is adequate for bX> -1 (aX> -1/2, HX > -1) so that 405 

the fGn process is defined for -1<bX < 1 (i.e. -1/2 < aX < ½, -1 < HX < 0).  After averaged over 406 

a finite resolution tr: Xtr with the result and since Hx<0 the data will be highly 407 

sensitive to the resolution tr.   408 

When aX ≥ ½, the low frequency divergences imply that the X(t) process is nonstationary 409 

(the process generally “wanders off to plus or minus infinity).  However, for 1< bX < 3 (i.e. ½ 410 

< aX < 3/2,  0 < HX < 1; this is the range appropriate for T: HT ≈ 0.25, bT ≈ 3/2), it’s increments 411 

are (stationary) fGn processes, this regime defines the fBm process.  Finally, since all physical 412 

scaling processes exist over finite ranges of scale, there will be finite outer (longest) time scale 413 

(smallest frequency) so that truncating the spectrum at low frequencies (as for the ffRn 414 

processes, see below) leads to an overall stationary process. 415 

When analysing paleo series, it is convenient to analyze the statistics in real space, the 416 

main reason being that these are easier to interpret (the difficulty in interpretation is the cause 417 

of the quadrillion error in climate temperature spectra that was only recently discovered  418 

(Lovejoy 2015)).  An additional reason is that paleo series are typically not available at uniform 419 

sampling / averaging intervals making the spectrum more difficult to estimate.   420 

RX Δt( ) = X t( )X t − Δt( ) ∝ Δt HX ↔
F .T .

R! X ω( ) = EX ω( ) = X ω( )!
2

∝ ω
−βX ; HX =

βX −1
2

=
α X

2

RX Δt( ) RX 0( )

Xτ r
2

1/2
∝τ r

Hx
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We have already noted that the autocorrelation functions are only adequate for HX < 0 421 

(aX < 1/2, bX <1), this is why when 0<Hx<1, it is conventional to define fluctuations using 422 

differences DX(Dt) = X(t- Dt) - X(t), which are stationary over this range.  Differences avoid 423 

low frequency divergences but will still have high frequency divergences when HX <0.  In order 424 

to avoid the problems at both small scale (resolution dependencies) and at large scales 425 

(nonstationarity), it is convenient to use Haar fluctuations. Over the interval Dt the Haar 426 

fluctuation DX(Dt) is defined as the difference between the average of the first and second 427 

halves of the interval. 428 

 (22) 429 

(valid for Haar fluctuations).  Over the indicated range of parameters, the Haar fluctuations are 430 

stationary and are independent of the resolution. 431 

Comparing eq. 7 and 2 we find: 432 

 (23) 433 

2.3.2	Two	scaling	regimes:	fRn,	ffRn	434 

 435 

From eq. 8, 9, the basic Fourier transforms of ffRn processes and their impulse responses 436 

are: 437 

438 

 (24) 439 

ΔX Δt( )2
1/2

∝ Δt HX ↔ EX ω( )∝ω −βX ;

−1< HX <1

−1< βX < 3
βX = 2HX +1

ΔE+ Δt( )2
1/2

∝ Δt HE ; HE =α − 1
2

ΔT Δt( )2
1/2

∝ Δt HT ; HT = h+α − 1
2

U!α ,h ω( ) = γ!

iω( )α 1+ iω( )h( ) ; G!α ,h ω( ) = 1

iω( )α 1+ iω( )h( ) ; 0 <α <1/ 2; 0 < h < 2
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The fractional Relaxation noise (fRn) process is the special case where a = 0.  The ffRn power 440 

spectrum is therefore: 441 

 (25) 442 

 is thus the basic form of the D spectrum.   443 

The full statistical properties of ffRn processes (including series expansions) are 444 

discussed in (Lovejoy 2022), however for our purposes, the low and high frequency scaling 445 

exponents are sufficient.  For these, eq. 25, yields: 446 

 (26) 447 

(“h” for high frequency, “l” for low frequency).  In order to obtain the basic fluctuation 448 

statistics, it is sufficient to apply eq. 22 to each regime separately.  Indeed, more generally, 449 

“Tauberian theorems” (e.g. (Feller 1971)) imply that if the spectrum is a power law over a wide 450 

enough range, then the corresponding (second order) real space statistics will also be scaling.  451 

Therefore: 452 

 (27) 453 

Using the empirical values a ≈ 0.25, h ≈ 0.5, we see E+ is a fractional Gaussian noise and T is 454 

an fBm process.   Also, we find (c.f. eqs. 7, 27) that HD ≈ HT (Dt ≪ t) and HD ≈ HE (Dt ≫ t). 455 

 456 

Eα ,h ω( ) = U!α ,h
2

= 1

2π ω
2α
1+ iω( )h

2

Eα ,h ω( )

Eα ,h ω( )∝ ω
−β
;

βl = 2α ; ω <<1

βh = 2 α + h( ); ω >>1

ΔUα ,h Δt( )2
1/2

∝ Δt Hl ; Hl =α − 1
2
; Δt >>1

∝ Δt Hh ; Hh =α + h− 1
2
; Δt <<1
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2.4.	The	full	model	statistics:	spectra,	correlations:	457 

2.4.1	The	basic	model:	458 

The model is linear and has stationary Gaussian (white noise) forcing (T, E+), therefore 459 

D,  E-, E, O are also Gaussian so that their statistics are determined by spectra and cross-spectra 460 

– or equivalently in real space (via the Wiener-Khintchin theorem), by the autocorrelations and 461 

cross-correlations: 462 

 (28) 463 

(the diagonal terms are the spectra of the components: ). In matrix notation:  464 

 (29) 465 

Where we have used: 466 

 (30) 467 

The key correlation matrix (from eq. 16) is: 468 

 (31) 469 

Where 470 

 (32) 471 

 472 

and 473 

Rij Δt( ) = Si t( )S j t − Δt( ) ↔
F .T .

R! ij ω( ) = S! i ω( )S! j* ω( )

R! ii ω( ) = Ei ω( )

R! ω( ) = S!S!
T*

= ωτ
−2α
F ω( )σ ρ γ!γ!

T*
ρT*σ T*F ω( )T*

=
ωτ

−2α

2π
F ω( )σ ρρT*σ T*F ω( )T*

γ!.γ!
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=
γ!1
γ! 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

γ!1 γ! 2
⎛
⎝

⎞
⎠ = 1

2π
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
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2π
1

*

1
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1
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ç ÷
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2 1− ρD
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 (33) 474 

 475 

2.4.2	Closing	the	model:	the	diagnostic	equation	for	E-:	476 

Before writing down the final spectra, let’s close the system with the help of the 477 

diagnostic equation that allows us to determine E- from D (and hence E, O, eq. 6). 478 

The Fourier transform of the diagnostic equation (eq. 5) is: 479 

 (34) 480 

Therefore the full system is: 481 

482 

 (35) 483 

From this we can find E, O: 484 

 (36) 485 

The explicit formulae for E± are: 486 

 (37) 487 

The overall final statistics are: 488 

2
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2
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 489 

 (38) 490 

Using eqs. 36, 37, the spectra of E, O can be determined: 491 

  (39) 492 

The far right approximation can be seen from eq. 37 using the fact that tD is the resolution of 493 

the series so that for the full range of empirically accessible frequencies, we have wtD<1.  In 494 

addition, since t>tD, the factor .   495 
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3.	The	properties	of	the	model	496 

3.1	Scaling	properties	497 

3.1.1	High	and	low	frequency	exponents	498 

In order to interpret the statistics (eqs. 38, 39) in real space, it suffices to use the fact that 499 

Fourier scaling implies real space scaling and to use the above relations between real space and 500 

Fourier scaling exponents (eq. 22).  In matrix form, the spectral exponents are therefore: 501 

 (40) 502 

 503 

(The elements correspond to T, E+, D, E- left to right, top to bottom).  Using the relationship 504 

between H and b (eq. 22), the high and low frequency (here small and large times, t) have 505 

exponents:  506 

 (41)  507 

While at low frequencies large Dt (i.e. large lags) we have:  508 
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 (42) 510 

 511 

We should add here that since E, O are linear combinations of E+, E-, their exponents will the 512 

maximum of those of E+, E-, so that: 513 

 (43) 514 

We see that for the physically relevant parameters, H = a-1/2 = -0.25 for both E, O, over the 515 

whole range (close to the data, see SL and fig. 3). 516 

To get a concrete idea of the implications of model, let’s use the rough empirical 517 

estimates from SL of a = 0.25, h = 0.5.  Plugging these values into eqs. 41, 42, we obtain: 518 

   (44) 519 

(again, for T, E+, D, E- left to right, top to bottom).  We can see that the Haar fluctuations will 520 

be useful for all the series over the whole range of frequencies/scales, the only exception being 521 

DD(Dt) at long lags (Hl<-1, lower right corner of the Hl matrix with Hl<-1).  In this case, the 522 

Haar fluctuations “saturate” and the spurious (limiting) value Hl = -1 is obtained. 523 
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3.1.2	Normalized	Correlations		525 

The cross spectra and cross covariances (eq. 38) can be used to determine the normalized 526 

correlations that were estimated in SL: 527 

 (45) 528 

 529 

(Haar fluctuations).  However, from eqs. 41, 42, we find that their exponents (whether at high 530 

or low frequencies) are  i.e. they are not power laws and only vary at 531 

sub power law rates, they are therefore nontrivial (i.e. they are significant) over the whole range 532 

of Dt.   Since there are six series (T, E, D, O, E+, E-) there are 15 pairs whose fluctuation 533 

correlations may be determined over the observed range of 3  ≈ < Dt ≈ <400 Myrs, see fig. 4.   534 

The key correlations are those that correspond to the model parameters: , , 535 

see below.   We can already see that the correlations are quite noisy, a consequence of the low 536 

resolution and variable sampling of the series.  In order to make a proper model - data 537 

comparison, we therefore turn to numerical simulations. 538 

4.	Numerical	simulations:	539 

4.1	The	statistics	of	the	simulated	series		540 

The model has two fundamental exponents (a, h), two basic correlations (rE = rTE+, 541 

rD = rTD) and a cross over time scale t.  The third correlation rDE is a derived parameter (eq. 542 

32).  In addition, there are two amplitude factors sT, sE but these will depend on the 543 

nondimensionalization/normalization of the series; on log-log plots they correspond to an up-544 

down shift and on (normalized) correlation plots, the normalization eliminates them, they will 545 

not be considered further.  546 

ρ jk Δt( ) = ΔS j Δt( )ΔSk Δt( )
ΔS j Δt( )2

1/2

ΔSk Δt( )2
1/2

2H jk − H jj + Hkk( ) = 0

ρE = ρTE ρD = ρTD
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We used the results of SL to fix the values a = -0.25, h = 0.5, t = 32Myrs (this is the 547 

nearest power of 2 to the slightly larger – but only roughly estimated - value t = 40Myrs in 548 

SL).  This leaves the only unknown parameters as the TE and TD correlations (rE = rTE+, 549 

rD = rTD), fig. 4.   550 

Before comparing the model directly to the (noisy) data we first check that we are able 551 

to numerically reproduce the theoretically expected behaviour.  The basic modelling technique 552 

is to use convolutions with various (impulse response) Green’s functions, this is detailed in 553 

appendix A, but follows the methods described in (Lovejoy 2022).   The main numerical 554 

problems are the small scales that have singular power law filters that are not trivial to 555 

discretize, and there are some (easier to handle) long time (low frequency) issues.   556 

Rather than attempting to rigorously determine optimum parameters,  as indicated above, 557 

we fixed the exponents a =0.25, h=0.5 and the crossover scale t =32Myrs.  With guidance of 558 

the fig. 4 correlations for rTE+ ,  rTD and some numerical experimentation, we took rE = 0.5, 559 

rD  = -0.1 (hence rTE+ = 0.5, rTD = -0.1,  rDE+ = -0.9 i.e. the sign of r was taken as negative, 560 

eq. 32).  We then performed simulations at a resolution of 250kyrs  resolution, with  simulation 561 

length of 4 Gyrs (214= 16384 points), shown in fig. 5.  We postpose a discussion of the 562 

significance of the correlations to section 4.2. 563 

According to the model (see  the diagonal elements in eq. 44), the only series with 564 

positive low frequency scaling exponent (Hl >0) is the temperature (Hl = 0.25), it indeed shows 565 

“wandering” behaviour (second from the bottom in fig. 5); from the figure, one can see its long 566 

range correlations as low frequency undulations.  This is also true for D, but only up to the 567 

cross-over scale (≈32Myrs) after which consecutive 32 Myr intervals tend to cancel (Hl <0, eq. 568 

44).  The other series are on the contrary “cancelling” (Hl <0,  Hh <0) especially E- (eq. 44).  569 

We can also visually make out some of the correlations, but this is clearer at lower resolution 570 

discussed later. 571 



 29 

On these simulations, we can check that the theoretical scaling is obeyed, this was done 572 

using Haar fluctuations, see fig. 6 where the theory slopes (from eq. 43, 44) are shown as 573 

reference lines.  Note that since the Haar analysis “saturates” at H =-1, the low frequency Hl = 574 

-1.25 value for E- (eq. 44, lower right hand diagonal element) yields a slope -1 (not -1.25), the 575 

other slopes are however accurately estimated.  Note that the theory / simulation agreement is 576 

not perfect, mostly because the theory is for the average statistics over an infinite ensemble, 577 

whereas fig. 6 is from a single - albeit large - simulation.   578 

We can also work out the 15 correlations as functions of lag, fig. 7.   The figure shows 579 

the model parameters rTE+ = 0.5 (=rE = 0.5), rTD = -0.1 (= rD  = -0.1) as solid black reference 580 

lines and the derived correlation rDE+ = -0.9 (eq. 32) as a dashed reference lines.  Also shown 581 

are dashed theory lines for the TE, TO correlations (predicted to be equal to equal to TE+ at 582 

long lags – eq. 39) and the DE, DO correlations (predicted to be equal to DE+, at long lags, see 583 

eq. 39).  We can see that the correlations approach the theoretical correlations at large lags, 584 

although the results are somewhat noisy.   585 

 586 

4.2	The	statistics	of	the	simulated	series	resampled	at	the	data	sampling	times	587 

Before making more effort at parameter fitting and comparing the model to data, it is 588 

important to take into account the small number of empirical data points and their irregular 589 

sampling.   Fig. 8 shows the result for a simulation with the same parameters, but with a 1 Myr 590 

temporal resolution (right hand side), resampled at the same times as the data (left hand side). 591 

Since the model and data are only expected to have similar statistics, the detailed “bumps” and 592 

“wiggles” are unimportant, but one can nevertheless make out realistic looking variability 593 

including correlations between the series.  Note that the model respects causality so that when 594 

there is a large extinction event, that is asymmetric with a rapid upturn being followed by a 595 
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slower downturn (however, we have followed convention so that the present is at the left and 596 

the past at the right). 597 

We can now consider the fluctuation scaling and correlation statistics on the resampled 598 

series and compare them to the both the data and to the results from the same simulations but 599 

at a regular 1 Myr resolution (fig. 9).  The figure shows a log-log plot of the RMS fluctuations 600 

as a function of the lag.  In order to make the comparison, they were normalized by their 601 

standard deviations, but this is somewhat arbitrary so that the up-down displacement 602 

(corresponding to a different nondimensionalization/normalization) is unimportant.  To judge 603 

the realism of the model, the appropriate comparison is between the shapes of the resampled 604 

model output (red) and the data (black).   We can see that the two are fairly close although both 605 

model and data are noisy due to the small number of points and the irregular sampling.  The 606 

agreement must be assessed not only by allowing for (relative) vertical shifts, but also noting 607 

that the scales on the top D, T comparisons are such that the fluctuations vary only over a small 608 

factors (for the data, factors of ≈ 1.7 for D and ≈ 2 for T) for lags varying over range of about 609 

a factor 100.  In comparison, the E+, E-, E, O ranges are closer to factors of 10.   Aside from 610 

this, these basic fluctuation statistics are fairly close to the data.   611 

The figure also gives important information about the effect of the sampling: compare 612 

the resampled (red) and uniformly sampled analyses (brown).  The resampling is particularly 613 

important for E+, E-, E, O although the effects are mostly at small lags for E+,E, O but for large 614 

lags for E-.  This information should prove useful in interpreting a variety of real world 615 

extinction and origination data. 616 

Finally, we can compare the 15 pairwise correlations (fig. 10).  Again, to judge the 617 

realism of the model, compare the red and black correlations.  Although – as expected – these 618 

are fairly noisy, we see that the agreement is quite good, significantly, it is generally much 619 

better than the agreement between the uniformly sampled correlations (brown curves) and data 620 
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(black).  By comparing the red (resampled) and brown (uniformly sampled) correlations, we 621 

see that the resampling is especially important for the DE+, DO, DE, E+E-, E-O, OE, 622 

correlations and to a lesser extent the OE, TE+  comparisons, for the others it is about the same.  623 

We could note the successful prediction that the E+E, E+O, OE correlations that should be ≈1 624 

and the E-E correlations that should be ≈ -1.  Interestingly, the prediction that the E-O 625 

correlations should be ≈ -1 (eq. 39) is verified with the uniform sampling (i.e. it is indeed a 626 

property of the model), yet, the resampling (red in the lower left graph in fig. 10) makes it >0 627 

and aligns it closely with the observations.  In other words, when the pure model predictions 628 

are poor (brown versus black), there are many instances where the effects of nonuniform 629 

sampling are particularly strong so that overall the model explains the data fairly well: overall 630 

6 fluctuation plots (fig. 9) and 15 correlations (fig. 10) with 5 adjustable parameters (a, h, t, 631 

rE, rT). 632 

4.3	Discussion	of	the	model	and	physical	significance	of	the	correlations	633 

  The model was motivated by an attempt to model the diversity process as a scaling 634 

cross-over phenomenon with  wandering climate (paleo temperature) and stabilizing life 635 

(turnover) scaling drivers.  In the course of the model development, it became clear both 636 

theoretically (due to the definition of the diversity, eq. 5) and empirically, that rather than E, O 637 

being fundamental, it rather the turnover E+ that is fundamental (indeed, the E+ and E_ statistics 638 

are quite different (figs. 3, 9) and the E+E- correlations are nearly zero (figs. 4, 10).  In any 639 

event, the model predicted that E, O would follow the E+ statistics (eq. 39, fig. 3, 9 and the E+E 640 

and E+O correlations in fig. 3, 10).  641 

A more counterintuitive finding concerns the correlations.   To start with, the model 642 

specifies that the diversity is primarily driven by the temperature up until the cross-over scale, 643 

yet the temperature and diversity are negatively correlated over the entire range!  Although at 644 

any given time lag, the DT correlation is small (-0.1), it means that there is a (weak) tendency 645 
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for the diversity fluctuations to decrease when temperature fluctuations increase and visa versa, 646 

but this is not enough to offset the overall temperature control of the diversity that implies that 647 

consecutive temperature fluctuations tend to add up (HT = 0.25 > 0) and this is a stronger overall 648 

effect.   649 

There is an additional more subtle effect. Consider that at each scale, the imposed TE+ 650 

correlation is moderate and positive (rTE+ = 0.5) and together, rTD and rTE+ (with r<0, eq. 32) 651 

they imply that at each lag, DE+ is negatively correlated (reaching the theory value rDE+ ≈ -0.9, 652 

at long lags, see the DE+ correlation, the brown curve in fig. 10).  Since the turnover E+ also 653 

drives the diversity, (eq. 1), at each scale, we thus have a tendency for T and E+ fluctuations to 654 

increase (or decrease) together but D and E+ (and hence T and D to have opposite tendencies).  655 

The overall result is that the weak anticorrelation of D with T and D with E+ at any fixed scale 656 

is still dominated by the stronger effect of T fluctuations growing with scale  and dominating 657 

the E+ driver at lags < t.   658 

We could remark that rTE+ = 0.5 >0 indicates a tendency for temperature changes to 659 

“stimulate” the turnover: periods of increasing temperatures tending to be associated with 660 

increasing turnovers and decreasing temperatures with decreasing turnovers.  Also there is a 661 

strong anticorrelation between D and E+ (rDE+ ≈ -0.9, although it seems to nearly disappear 662 

after the nonuniform sampling, see fig. 10, second in the top row) that indicates that increased 663 

turnover decreases with diversity.  However over the range of scales that E+ dominates 664 

dynamics of D (i.e. Dt > t), since HE+ ≈ -0.25 <0), successive E+ fluctuations tend to cancel and 665 

on long time scales, the latter effect is dominant so that   HD = HE+ ≈ -0.25 – this is a scaling 666 

region of biotic self-regulation. 667 
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5.	Conclusions:	668 

The driver of macroevolutionary biodiversity has famously been reduced to a dichotomy 669 

between “life” and the “environment”: the “Red Queen” versus “Court Jester” metaphor (Van 670 

Valen 1973); (Barnosky, 2001).   Using genus level time series from the Paleobiology Database 671 

(Spiridonov and Lovejoy 2022) (SL) systematically analysed fluctuations in extinction (E), 672 

origination (O) rates, biodiversity (D) and paleo temperatures (T) over the Phanerozoic.  They 673 

did this as a function of time scale from the shortest (≈3Myrs) to longest lags available 674 

(≈400Myrs) and their analysis included the correlations of the fluctuations at each scale.  They 675 

concluded that T, E, O – the basic climate and life parameters - showed evidence of wide range 676 

scaling, supporting the hypothesis that over this range, there is a single biogeological 677 

“megaclimate” (Lovejoy 2015) regime with no fundamental time scale.  However, they found 678 

that D followed the T fluctuations up until a critical time t ≈ 40Mys, whereas at longer time 679 

scales, it followed life (E, O): D was a scaling cross-over phenomenon.  At the shorter time 680 

scales Dt < t, - like the temperature – the D scaling exponent HD ≈ +0.25 (i.e. >0) indicating 681 

that fluctuations tended to grow with scale, leading to “wandering” behaviour.  In contrast for 682 

time lags Dt > t, - like E, O, its scaling exponent was HD ≈ -0.25 i.e. <0), hence successive 683 

fluctuations tended to cancel, resulting in long time stabilization of diversity by life.  684 

In order to clarify our ideas, to better understand the geobiodynamics and to better 685 

understand and quantify the limitations, biases and other data issues, we proposed the simple 686 

model  Fractional Macro Evolution Model (FMEM) to reproduce the observations.  It is a 687 

model of macroevolutionary biodiversity driven by paleotemperature (the climate proxy) and 688 

the turnover rate (E+ = O+E), the “life” proxy.  In order to fit with basic empirical scaling 689 

statistics and theoretical ideas about the macroclimate regime (form time scales of roughly 690 

1Myr to at least 500Myrs), these drivers were taken to be scaling with climate dominating at 691 

short time scales and life at long time scales. Therefore, FMEM suggests a possible way to 692 
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combine into single stochastic framework both: i) the destabilizing geophysical processes (and 693 

possibly astrophysical ((Raup, 1991; Raup, 1992b;  Melott & Bambach, 2014 ; Fields et al., 694 

2020)) with  ii) the stabilizing, density dependent and self-regulating, biotic processes.  The 695 

model is specified by a simple parametrization based on two scaling exponents and two 696 

pairwise correlations (between T and E+ and between T and D). 697 

The model had two unusual characteristics: first, it was stochastic so that the crossover 698 

from climate to life dominance was thus a scaling (power law) not standard exponential (i.e. 699 

Markov process type) transition.  Stochastic models involve infinite dimensional probability 700 

spaces, they are therefore natural model types in systems with huge numbers of degrees of 701 

freedom.  We believe that they are intrinsically more realistic than strongly nonlinear but 702 

deterministic chaos type models (including those that are deterministic but are perturbed by 703 

noises).  When the intermittency is strong scaling stochastic models must be nonlinear (e.g. 704 

multifractal cascade processes), and this can easily be included in further model improvements 705 

– the Gaussian forcing (g1, g2, eq. 14) need only be replaced by a multifractal one.  Here, 706 

intermittency was neglected and linear stochastic equations with Gaussian white noise forcings 707 

were used (linear stochastic models can often be used even when the underlying dynamics are 708 

strongly nonlinear).   709 

The other unusual FMEM characteristic was that it a system of fractional differential 710 

equations.  Unlike the familiar integer ordered differential equations that typically have 711 

exponential impulse response functions (Green’s functions), fractional equations typically have 712 

power law response functions and are natural ways to model scaling processes.  These impulse 713 

response functions are physical models of bolide impacts and similar nearly instantaneous 714 

processes, and we discussed some implications. 715 

The model was also highly parsimonious with two scaling exponents and a cross-over 716 

time t determined by the Paleobiology Database data as analyzed SL. These determined the 717 
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basic scaling characteristics of the 6 series: T, E+, D, E- (= O - E), O, E.   In addition, the model 718 

had two correlations that were specified: those between T and E+ and between T and D.  From 719 

these, the other 13 pairwise correlations (out the 15 possible pairs of the six series), were 720 

implicitly determined and were compared to the data. 721 

The fractional derivatives were of the Weyl type so that their Fourier transforms were 722 

simple power laws.  Since the system was ultimately forced by two Gaussian white noises, only 723 

the second order statistics (i.e. the spectra and correlation functions) were needed and these 724 

were easily obtained: the basic solutions were fractionally integrated fractional relaxation 725 

noises (ffRn) that were recently introduced (Lovejoy 2022).  In future, more realistic 726 

intermittent (multifractal) forcings could be used instead of the Gaussian white noise.  Beyond 727 

exhibiting the full solution to the equations with a full statistical characterization, we then 728 

implemented the model numerically first verifying the model against the theoretically predicted 729 

behaviour.   By producing simulations at 1Myr resolution, were able to resample the output at 730 

the same irregular sampling times as the biodata base.  The statistical characteristics of the 731 

results (the 6 scaling curves showing the fluctuations as functions of time scale), plus the 15 732 

pairwise correlations as functions of time scale, were all quite close to the data and in several 733 

cases, the agreement could be clearly attributed to the limitations, biases, etc. of the data.  In 734 

particular, this was the case of the DE+, DO, DE, E+E- E-O, OE correlations that were much 735 

closer to the data following the irregular sampling than with the original model outputs 736 

uniformly sampled at 1Myr resolution. 737 

Given the model’s simplicity, it thus was remarkably realistic.   This was fortunate since 738 

until higher resolution (global scale) time series become available (e.g. (Fan et al. 2020)), more 739 

complex models may not be warranted.  In any case, the model was able to help explain some 740 

subtle points about the interaction of different correlated series that were also strongly self-741 
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correlated over wide ranges of time scales and this with quantitatively and qualitatively 742 

different scaling behaviours (“wandering” versus “cancelling”/self-stabilizing). 743 
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Appendix	A:	Numerical	simulations	1060 

Since the model is linear, the obvious simulation method is to use Fourier techniques.  1061 

The main problem is that the small scales have singular power law filters that are not trivial to 1062 

discretize, there may also be some long time (low frequency) issues.  A convenient way is to 1063 

use techniques developed for simulating ffRn processes discussed in (Lovejoy 2022).  ffRn 1064 

processes can be simulated by convolving Gaussian white noises with the ffRn Green’s 1065 

function Ga,h (eqs. 9,10).   A somewhat better numerical technique is to use the step response 1066 

Green’s function (=Ga+1,h it is the smoother – and hence easier to handle integral of Ga,h ), 1067 

followed by a numerical differentiation.   1068 

	1069 

	 	1070 
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Figure	Captions	1071 

Fig. 1: The impulse  (delta function) response  for fractional integrals of 1072 

order a normalized for the same response after 1 Myr. The bottom corresponds to the turnover 1073 

(E+) response  a = 1/4 and the top corresponds to the temperature (T) response with  a = 3/4.  1074 

Notice the long term effects. 1075 

Fig. 2: The impulse response   , with a =1/4, h = 1/2 corresponding to the 1076 

diversity(D) response, for critical transition times t = 1, 4, 16, 64, 256 Myrs (bottom to top).  1077 

The empirical value is t ≈ 40Myrs (SL). 1078 

Fig. 3: This shows the Phanerozoic marine animal macroevolutionary analysis of the 6 1079 

series discussed in this paper; D, T, O, E are replotted from SL.  The dashed lines show the 1080 

theory slopes (eq. 44) with transition at Dt ≈ 40My i.e. log10Dt ≈ 1.6. 1081 

Fig. 4:  The (normalized) pairwise correlations of the 15 pairs of the 6 series as functions 1082 

of lag.  Several of these are reproduced from SL. 1083 

Fig. 5: The previous 214 simulation degraded from ¼ Myr resolution to 1 Myr.  Curves 1084 

normalized by their standard deviations and then offset by 5 units in the vertical for clarity. 1085 

Simulation 214 =16384 points with theoretical slopes indicated.  The transition scale t is 1086 

27 = 128 units, indicated by dashed vertical lines. If the model was at 250kyr resolution, the 1087 

cross over is at 32Myrs, the length of the simulation is: 4 Gyrs.  Parameters a = 0.25, h = 0.5, 1088 

rE = rTE = 0.5, rD = rTD = -0.1 (with derived DE correlation  rDE = -0.9). 1089 

Fig 6: Simulation 214 =16384 points with theoretical slopes indicated.  The transition 1090 

scale t is 27=128 units, indicated by dashed vertical lines. If the model was at 250kyr resolution, 1091 

the cross over is at 32 Myrs, the length of the simulation is: 4 Gyrs.  Parameters a = 0.25, h = 1092 

0.5, rE = rTE = 0.5, rD = rTD = -0.1 (with derived DE correlation  rDE = -0.9). 1093 

Gα ,0 t( ) = tα−1 / Γ α( )

Gα ,h t / τ( )
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Fig. 7: The 15 pairwise correlations from the 214 realization above.  Only two of the 1094 

correlations were prescribed and this, only at a single resolution, the rest are consequences of 1095 

the model, the two exponents a, h and the cross-over time t = 27  (shown as short dashed vertical 1096 

lines).  The two prescribed correlations (DT, TE+) are shown as solid horizontal lines, and the 1097 

derived correlations (DE+ from DT, TE+, eq. 32) and then TE, TO ( predicted to be equal to 1098 

equal to TE+ at long lags – eq. 39) and DE, DO (predicted to be equal to DE+, at long lags  see 1099 

eq. 39).  Note that these are from a single realization of the process not the ensemble average.  1100 

In addition, the statistics of some are fairly sensitive to irregularly sampled (and small size) of 1101 

the empirical data, compare with fig. 10 below. 1102 

Fig. 8:  Model  - simulation comparison with all series normalized by their standard 1103 

deviations.  The simulation was at 1Myr resolution and the sampled at the same (irregular) 1104 

times as the data (84 points over the last 500Myrs).  Each curve was displaced by 5 units in the 1105 

vertical for clarity.  Due to causality, the series are asymmetric with time running from right to 1106 

left.   The simulation is on the right. 1107 

Fig. 9: From the 1Myr resolution simulations discussed above (Brown) and in fig. 8 and 1108 

resampled at the data times (red), black is data.  The relative vertical offsets of the curves are 1109 

not significant, they correspond to specific normalizations / nondimensionalizations.  We see 1110 

that in general, the resampling at the data times (red) yields a closer fit to the data (black) than 1111 

the analysis of the simulation at uniform (1Myr) intervals, this is especially true for E-, O, E, 1112 

E+.   1113 

Fig. 10:  Same simulation as above, compared with data (black).  Brown is a uniform 1114 

1Myr resolution, red is the simulation resampled at the data times.  The resampling notably 1115 

improves the correlations for DE+, DO, DE, E+E-, E-O, OE, and to a lesser extent the OE, TE+  1116 

comparisons for the others it is about the same. 1117 


