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Classically, turbulence has been modeled by a hierarchy of different isotropic scaling regimes.
However, gravity acts at all scales and theory and modern observations point towards an
atmosphere described by a single anisotropic scaling regime with different scaling laws in the
horizontal and vertical directions: the 23/9D model. However, the implications of this
anisotropic spatial scaling for the temporal statistics (i.e. the full space–time scaling) have not
been worked out and are the subject of this paper. Small structures are advected by larger
turbulent structures, by considering averages over the latter we obtain estimates for the
structure functions and spectra.
To test these predictions, we analyze geostationary satellite MTSAT Infra red radiances over
wide scale ranges in both horizontal space and in time (5 km to ~10000 km, 1 h to 2 months).
We find that our model accurately reproduces the full 3D (kx, ky, ω) spectral density over the
range studied 60–5000 km in space and 2–100 h. For example, to within constant factors, the
1D spectral exponents were the same in both horizontal directions and in time with spectral
exponent β ~1.55 ± 0.01. We also considered the various 2-D subspaces ((kx, ky), (kx, ω),
(ky, ω)) and showed how these could be used to determine both mean advection vectors
(useful for atmospheric motion vectors) but also the turbulent winds.
Going beyond these second order statistics we tested the predictions of multiplicative cascade
models by estimating turbulent fluxes from both MTSAT but also the polar orbiting TRMM
satellite at infrared and passive microwave bands over scale ranges 100 km to 20000 km,
1 day to 1 year. These accurately obeyed the predictions of multiplicative cascade models over
large ranges of spatial scales with typically slight deviations at smallest and largest scales.
Analogous temporal analyses showed similar agreement at small scales, but with significant
deviations at scales larger than a few days, marking two regimes, associated with weather and
macroweather. This allows us to determine Eulerian frame space–time diagrams relating the
sizes and lifetimes of structures.

© 2013 Elsevier B.V. All rights reserved.
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1. Introduction

Turbulent flows have long been recognized for their com-
plexity, randomness and myriad of structures of different sizes
and lifetimes. Typically, one describes the statistics of the
corresponding fluctuations with the help of scaling laws. For
instance, the celebrated Kolmogorov law (Kolmogorov, 1941)
joy).
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describes how turbulent wind fluctuations change with scale. In
real space, this law has the form: Δv = ε1/3ΔxH where Δv is a
fluctuation in the turbulent wind field v, Δx is the spatial
separation overwhichΔv is calculated,H is themean fluctuation
scaling exponent and ε is the flux of energy from large to small
scales. The Kolmogorov law applies to statistically isotropic
turbulence in three spatial dimensions and the dimensional
arguments based on a homogeneous energy flux from large to
small scales yield H = 1/3. We can also express these laws in
Fourier space where they follow E(k) = ε2/3 k−β where E(k) is
scaling and cascade structure of the atmosphere and satellite
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the power spectrum of the turbulent field, k is the wavenumber
and the spectral exponent β = 1 + 2H, hence the famous
“5/3 law”.

If we apply the Kolmogorov law to the atmosphere, wemust
understand and account for the gravity-induced stratification. In
the classical quasi-geostrophic approach (Charney, 1971), this is
handled by considering the stratification to occur at the very
largest scales which are modeled by (quasi flat) horizontal
isotropic (2D) turbulencewith the smallest scales being isotropic
in three dimensions. However gravity acts at all scales, not only
the largest and empirical evidence points towards a spatially
anisotropic scaling atmosphere (see the reviews (Lovejoy and
Schertzer, 2010, 2013)). In the 23/9D model (Schertzer and
Lovejoy, 1985b), the turbulence is never isotropic so that (even
ignoring intermittency) the classical (isotropic) Kolmogorov law
never holds. Nevertheless, the energy flux governs the horizontal
dynamics so that the Kolmogorov exponent is still fundamental
for the horizontal statistics, and this from the small dissipation
scale (~1 mm) up to the largest, planetary scales. In contrast,
in the vertical, the buoyancy variance flux dominates the
dynamics so that a different exponent is fundamental, the
Bolgiano–Obukhov exponent:Hv = 3/5 (ignoring intermittency,
βv = 11/5; Bolgiano, 1959; Obukhov, 1959). The simultaneous
action of the two anisotropic cascades leads to an overall 23/9D
turbulence model intermediate between flat (2D) and isotropic
(3D) turbulence (Schertzer and Lovejoy, 1985a). Thismodel thus
has a single anisotropic scaling regime describing the stratifica-
tion of turbulent structures in the atmosphere, frommillimeters
to planetary scales.

This 23/9D model provoked a debate sparked by the
reinterpretation of aircraft measurements (Lovejoy et al.,
2009a, 2009b, 2009c, 2010; Lindborg et al., 2009, 2010;
Schertzer et al., 2011; Yano, 2009; Frehlich and Sharman,
2010) followed by the massive (Pinel et al., 2012) re-evaluation
of commercial aircraft measurements, and the derivation
(Schertzer et al., 2012) of fractional vorticity equations
respecting anisotropic scaling symmetries. The latter provide
respectively empirical and theoretical arguments in favor of the
23/9D model that are difficult to refute. This raises the question:
if the spatial structures do indeed respect anisotropic scaling,
what are the implications for the temporal evolution, i.e. the full
space–time scaling? Since (x, y, z, t) data sets spanning significant
ranges of scales are not available we consider the simpler
problem: what are the horizontal–temporal statistics?

Although our goal is to understand Eulerian (fixed frame)
statistics, first recall that a general feature of turbulent flows is
that there exists a statistical relation between the shears of
structures and their lifetimes (their “eddy turnover time”); for
Kolmogorov turbulence this is Δv ¼ ε1=2ΔtHτ with Hτ = 1/2, a
Lagrangian relation which is used conceptually in meteorology
in constructing space–time “Stommel” diagrams (see e.g. Dias
et al., 2012). In this paper, instead we estimate the corre-
sponding Eulerian space–time relationships. A classical way to
obtain Eulerian statistics is to consider the case when the
turbulent fluctuations are sufficiently small compared to an
imposed mean flow, such that a clear scale separation exists.
Taylor's hypothesis of “frozen turbulence” developed for wind
tunnels experiments (Taylor, 1938) can then be used. In this
case, a constant (mean flow) velocity V relates temporal to
spatial statistics so that Δv = ε1/3(VΔt)1/3so that Hτ = 1/3
(or βτ =5/3). However, in the atmosphere, we have argued
Please cite this article as: Pinel, J., et al., The horizontal space–time
radiances, Atmos. Res. (2014), http://dx.doi.org/10.1016/j.atmosres
that no scale separation exists so that another model for
space–time scaling is needed.

Without a scale separation, Tennekes (1975) argued that in
the Eulerian framework, the turbulent eddies would “sweep”
the small eddies. Since the velocity difference across an eddy
is ~Δv ~ ε1/3Δx1/3, the largest eddies with largest velocities Ve
would dominate so that at a fixed location, for time interval Δt,
we would have Δv ~ ε1/3(VeΔt)1/3 and thus Hτ = 1/3 so that
the Eulerian exponent would be different from the Lagrangian
one. Radkevich et al. (2008) found empirical support for this by
analyzing passive scalar concentrations in the atmosphere
(using lidar backscatter as a surrogate), finding values of Hτ

mostly ≈1/3 but occasionally ≈1/2. It was argued that
the latter values were consequences of the vertical wind
dominating the statistics, not amanifestation of the Lagrangian
exponent (Lovejoy et al., 2008).

Unfortunately, full (3D) space–timedatawithwide ranges of
scale are not available and reanalyses have limitations, including
the use of the hydrostatic approximation (see Stolle et al., 2010;
Stolle et al., 2012). Therefore, to better understand the horizontal
Eulerian statistics, we present a spectral study of the space–time
scaling of atmospheric variability and its (horizontal) space–
time statistical relations, using infrared radiances measured by
the geostationary multi-functional transport satellite (MTSAT).
These infrared radiances are probably the best data currently
available for this task as they cover wide scale ranges in both
space and time (5 km to ~10000 km, 1 h to months, years).
For scenes extracted not too far from the equator, the map
projections are straightforward. Here, they do not lead to
significant spectral distortions (see the appendix in Lovejoy and
Schertzer, 2011). The use of either passive thermal emission
bands or active sensing is necessary to avoid strong diurnal
effects. However, planetary scale active sensors (satellite-borne
radars and lidars) have low temporal resolutions with return
times of days. We therefore primarily consider thermal IR from
a geostationary satellite which is the best available for the
purpose (MTSAT). However, we also analyzed infrared and
passive microwave radiances measured by the tropical rainfall
measuringmission (TRMM) satellite whose sampling protocol is
not ideal for temporal analysis but still allows us to investigate
the intermittency.

We should make it clear from the outset that the satellite
radiances are not considered as surrogates for cloud liquid
water content or any other field. Instead, we use turbulence
theory and scaling arguments to derive the corresponding
space–time radiance statistics directly (including their
space–time spectra). This theoretical form is then empiri-
cally tested.

Since our geostationary data is (of necessity) centered at the
equator and the sector we analyzed (30°S to 40°N) was largely
tropical in character, we will say a few words about the classical
(deterministic) dynamical meteorology approach to the tropics.
Dynamical meteorology starts with a scale analysis of the
governing equations, which is quite different from a scaling
analysis (see below), attempting to identify terms which are
dominant over a given scale range (usually the so-called synoptic
scales). It then considers various idealized flows governed
by these dominant terms (e.g. wave motions usually obtained
by various linearizations). In this framework the main
difference between the tropics and the midlatitudes is the
relative lack of Coriolis forces in the former contrasting with
scaling and cascade structure of the atmosphere and satellite
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the classical geostrophic balance with pressure gradient forces
in midlatitudes.

In the tropics, the dynamical meteorology picture is that
large-scale atmospheric motions are dominated in the zonal
direction by the Walker circulation. The latter is produced by
the uneven distribution of heating processes over the ocean
and land (Walker and Bliss, 1930, 1932, 1937; Bjerknes, 1969),
and is associated with the trade winds in the Inter-Tropical
Convergence zone. This large scale motion is in turn affected
by wave/oscillation-like disturbances at different scales. At
interannual scales, the El-Nino-Southern Oscillation phenom-
enon plays a major role (Neelin et al., 1998; Sarachik and Cane,
2010) whereas at somewhat smaller temporal scales, tropical
variability is determined by the Madden–Julian oscillation
(Madden and Julian, 1971, 1972, 1994) and equatorial waves
(Matsuno, 1966; Wheeler and Kiladis, 1999). The former is
a cyclic pattern associated with winds and surface pressure
propagating in the eastward direction with a period of
30–60 dayswhereas the equatorialwaves –of some relevance to
the high frequency analysis below (1 h to 14 days) – propagate
along the equator,with periods typically of a fewdays. Equatorial
waves are often obtained by linearizing the shallow-water
equations (Matsuno, 1966). In the meridional direction, the
motion of the atmosphere between the equator and roughly
latitudes ±30° is described by a Hadley cell; in midlatitudes,
where the Coriolis force is important, it involves the “Ferrel cell”
(Chamberlain and Hunten, 1987; Cushman-Roisin, 1994).

Although distinguishing midlatitude and tropical phe-
nomenology may have its uses, global scale general circula-
tion models use the same equations to model both the tropics
and midlatitudes, i.e. not performing any simplification of the
equations according to the aforementioned scale analysis. This
convergence ofmidlatitude and tropical dynamical approaches is
also a strength of the stochastic framework we develop below.
Indeed, studies of the basic spatial turbulence characteristics
of state variables (zonal, meridional winds, vertical velocities,
geopotential heights, humidity, temperature) from reanalyses
(Lovejoy and Schertzer, 2011) show that the main differences
between midlatitude and tropical statistics are also quantitative
(primarily the somewhat smaller effective outer scale in the
tropics). This can be understoodwith the help of scaling analyses
of the governing equations and the derived fractional vorticity
equations (Schertzer et al., 2011). Unlike the scale analysis
discussed above which generates simplified equations, each
approximately valid over fairly narrow scale ranges, scaling
analysis yields equations with anisotropic scaling laws, (e.g.
different scaling for the horizontal and vertical directions) each
holding over wide scale ranges. In this framework the main
difference between the midlatitudes and tropics is only the
importance and orientation of the difference between the
absolute and relative vorticities, in the local reference frame,
therefore only quantitative, not qualitative differences.

In certain respects, our analysis follows the highly cited
Wheeler and Kiladis (1999), “WK” approach (see also Hendon
andWheeler, 2008).WK also used space–time spectral analysis
of infra red satellite data over much the same latitudes. Their
goal was to empirically detect the various equatorial waves
predicted by linear theory including the verification of the
predicted dispersion relations. However, there are several
important differences between the present and WK ap-
proaches. To start with, their data were from two years of
Please cite this article as: Pinel, J., et al., The horizontal space–time
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polar orbiting satellites with 24 hour temporal resolution
whereas we use geostationary satellite data at hourly
resolutions over about two months i.e. roughly the same
scale ratio but with resolutions a factor 24 smaller. This
difference precludes us from observing the lower frequency
waves. However, probably the most important difference is
in our respective treatments of turbulence which strongly
dominates the spectrum. The WK approach considers that
turbulence contributes an annoying “background” that they
remove by an ad hoc averaging and smoothing procedure, in
an attempt to obtain a pure wave spectrum. In this paper, we
take quite the opposite approach and consider the turbulent
part of the spectrum as our object of study and explicitly
attempt to theoretically characterize it, testing our observa-
tions against the satellite data. To a first approximation, we
find that the wave contribution to the spectrum is such a
small residual that it may be neglected. Since the theoretical
characterization of the turbulent part turns out to be quite
accurate, in a refined analysis, it can used to estimate the
wavelike part. This is discussed in a separate publication
(Pinel and Lovejoy, 2013, 2014) where we argue that the
waves themselves are best understood as strongly nonlinear
(high Reynold's number) phenomena with nonclassical
effective fractional propagators and with dispersion rela-
tions constrained primarily by scaling symmetries.

This paper is part of the Ph.D. thesis (Pinel, 2013). One of
the figures (Fig. 4) contains a part (the lower right) that has
been adapted from the review paper (Lovejoy and Schertzer,
2010), all the other empirical results are new. While the
latter paper contains some theoretical developments the full
development including the key analysis of subspaces (most
of Section 2.2) is presented here for the first time.

On the theoretical side, we use a concrete anisotropic
scaling model based on multiplicative cascades (see below)
to interpret the results. Section 2 presents a review of the
model. In Section 3, we present the results of the spectral
study made on MTSAT IR data. Section 4 presents an
application of our method in understanding the atmospheric
motion vectors which are used to estimate the wind. In
addition to the spectral analysis, we also present a more
detailed investigation of the scaling behavior of the atmo-
sphere and its space–time statistical relations by examining
its intermittency (Section 5).

2. Review and development of the anisotropic
scaling model

2.1. Anisotropic scaling in real space

If the turbulent field I has anisotropic space–time scaling,
then for each space–time direction:

ΔI Δxð Þ ¼ φh ΔxHh

ΔI Δyð Þ ¼ φh ΔyHh

ΔI Δyð Þ ¼ φv ΔyHv

ΔI Δtð Þ ¼ φτ ΔtHτ

ð1Þ

where ΔI is a fluctuation in a turbulent field I (e.g.ΔI(Δx) =
|I(x + Δx) − I(x)|), φ's are scale by scale conserved turbu-
lent fluxes, Δx, Δy Δz, Δt are the spatial temporal scales
over which ΔI is estimated and H is the “non conservation”
scaling and cascade structure of the atmosphere and satellite
.2013.11.022
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or “mean fluctuation” exponent. As in the case of the
horizontal velocity, Eq. (1) assumes unique horizontal,
vertical and temporal exponents Hh, Hv and Hτ. If I is a
horizontal wind component, we have already described how
arguments from classical turbulence theory and dimensional
analysis yield for isotropic 3D turbulence: φh = ε1/3, Hh =
1/3 and φτ =ε1/2, Hτ = 1/2. Schertzer and Lovejoy (1985a)
proposed that in the vertical, the scaling exponent Hv = 3/5
on the assumption that a different quadratic invariant- the
buoyancy variance flux ϕ (φv = ϕ1/5) -dominated the
dynamics; see Lovejoy et al. (2007) for empirical confirma-
tion using drop sondes. This value is a consequence of the
dimensional analyses proposed by Bolgiano (1959) and
Obukhov (1959) for isotropic buoyancy forced turbulence.
Analogous laws for passive scalar concentrations ρ can be
obtained by making the following change: ε → χ3/2ε−1/2

where χ is the passive scalar variance flux.
The way to combine these laws for any space–time vector

displacements is described in Schertzer and Lovejoy (1985b)
and Marsan et al. (1996), Schertzer and Lovejoy 2011, using
the formalism of “generalized scale invariance”. It consists in
replacing the usual vector norm for the space–time increments
by a different measure of scale – the scale function 〚ΔR〛 – that
takes into account the anisotropy. A simple example of such a
“canonical” scale function is:

ΔI ΔRð Þ ¼ φh;〚ΔR〛〚ΔR〛
Hh ;

〚ΔR〛 ¼ Lw
Δx
Lw

� �2
þ Δy

Lw

� �2
þ λ2 1=Hz−1ð Þ

s
Δz
Lw

� �2=Hz

þ Δt
τw

� �2=Ht
� �1=2

ð2Þ

whereΔR = (Δr,Δt)withΔr = (Δx,Δy,Δz); Lw is a convenient
reference scale (see below), of the order of the size of the Earth
(Le = 20000 km) and τw = ε−1/3Lw

2/3 is the corresponding
duration, the lifetime of planetary scale structures; the
subscript “w” is for “weather”. φh;〚ΔR〛 is the turbulent flux
governing the dynamics in the horizontal at resolution 〚ΔR〛
and λs = Lw/ls where ls = ϕ−3/4ε5/4 is the “sphero-scale”
(i.e. the scale at which structures are roughly roundish i.e.
〚ls,0,0,Δt〛 = 〚0,ls,0,Δt〛 = 〚0,0,ls,Δt〛. Here we introduced the
exponents Hz =Hh/Hv and Ht = Hh/Hτ that characterize the
vertical–horizontal and (horizontal) space–time stratifications.
For the wind and passive scalars,Hh = 1/3,Hv = 3/5,Hτ = 1/2,
Hz = 5/9, and Ht = 2/3. The use of the temporal Lagrangian
exponent in the above Eulerian Eq. (2) is valid when there is
no mean advection. Note that when ΔR is aligned with one of
the axes in our coordinate system, (e.g. ΔR = (Δx, 0, 0, 0)), we
retrieve Eq. (1) for that particular direction. Finally, the vertical
extent of structures of horizontal size L is LHz ; their volumes are
LDel with Del = 2 + Hz = 23/9; this is the 23/9D model
(Schertzer and Lovejoy, 1985a, 1985b).

Using the scale function, taking the qth order moments and
averaging, the statistics of the space–time fluctuation ΔI ΔRð Þ
follow the qth order structure function:

Sq ΔRð Þ ¼ ΔI ΔRð Þj jq� � ¼ φq

〚ΔR〛

D E
〚ΔR〛

qHh∝〚ΔR〛ξ qð Þ
;

φq

〚ΔR〛

D E
∝ Lw

〚ΔR〛

� �K qð Þ
; ξ qð Þ ¼ qH−K qð Þ

ð3Þ

where the function K(q) takes into account the intermittency of
the flux φ and yields the structure function exponent ξ(q) as
Please cite this article as: Pinel, J., et al., The horizontal space–time
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indicated. Its statistical behavior is determined by multiplica-
tive cascades whose external scale is Lw and which we discuss
in Section 5.

The scale function (Eq. (2)) uses only the Lagrangian
temporal scaling; it ignores advection. In the Eulerian frame,
we also need to take into account the mean advection of
structures. For a fixed advection velocity v = (vx, vy, vz),we can
use the Gallilean transformation r → r–vt; t → t, to obtain:

〚ΔR〛advec ¼ Lw
Δx−vxΔt

Lw

� �2
þ Δy−vyΔt

Lw=að Þ
� �2

þ λ2 1=Hz−1ð Þ
s

Δz−vzΔt
Lw

� �2=Hz

þ Δt
τw

� �2=Ht

( )1=2

ð4Þ

where we also introduced a, a parameter that describes the
possible trivial (scale independent) zonal/meridional anisot-
ropy in the horizontal spatial plane.

The basic problem now is that Eq. (4) holds only for a
fixed, constant and uniform advection v whereas the actual
advecting v is a turbulent field, i.e. we must consider an
“effective” scale function that takes into account the turbu-
lent nature of v. The situation is complicated by the fact that
at fixed location (i.e. Δx = Δy = Δz = 0), there are four
temporal terms and each can in principle be dominant
depending on the v field. In Lovejoy et al. (2008) and
Radkevich et al. (2008), it was argued that sometimes the
vertical wind term (the 3rd on the right in Eq. (4)) can
dominate the statistics of the horizontal wind, producing
Δv ≈ ΔtH with H ≈ 0.5 scaling. To see how this might arise,
take Δz = 0, so that the vertical term in Eq. (4) is∝ vzΔtð Þ1=Hz.
Unlike the horizontal wind, the vertical wind has typically
small values and follows vzj j∝ΔtHvz with empiricallyHvz ≈ −0.2
(see Lovejoy and Schertzer, 2011). From Eq. (4), taking Hz =5/9
and neglecting the intermittency, we find: the effective scale
function at zero spatial lag is ∝Δt Hvzþ1ð Þ=Hz ¼ Δt1=Hτ;eff with Hτ,

eff = 0.7 ~ Ht = 2/3; hence taking the Hsubscripth=1/3 power
(eq. 3) we obtain Δv ~ Δt0.5 scaling when this vertical term is
dominant (corresponding to the spectrum E(ω) ~ ω−2). In the
following, we consider only satellite radiance fields, which are
(x, y, t) fields. The consequence of the vertical wind on the
radiances is therefore quite different. Since our field is horizontal,
we takeΔR = (Δr,Δt)whereΔr = (Δx,Δy), so that for constant
advection v ¼ vx; vy

� 	
, (i.e. vz = 0 in Eq. (4)) we have:

〚ΔR〛advec;hor ¼ Lw
Δx−vxΔt

Lw

� �2
þ Δy−vyΔt

Lw=a

� �2

þ Δt
τw

� �2=Ht

( )1=2

:

ð5Þ

We have mentioned that the largest eddies with speed
Vw = Lw/τw advect all the others so that the “effective”
Eulerian scale function will involve averages over v's ranging
up to Vw. Using this in Eq. (5) for vx and ignoring vy, we see
that whenever Δt b τw, the corresponding advection term

Δt
τw




 


1=Ht ¼ Δt
τw




 


3=2 will dominate the temporal scaling term

VwΔt
Lw




 


 ¼ Δt
τw




 


 . Indeed, as argued in Radkevich et al. (2007)

using meteorological analyses from a component of the
operational Canadian Meteorological Centre Global Environ-
mental Multiscale (GEM) model, the empirical probability
that the transition scale – from horizontal advection scaling
to pure time evolution scaling – is shorter than τw (~10 days)
is low, hence we drop the Lagrangian term.
scaling and cascade structure of the atmosphere and satellite
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Considering only the first two terms on the right hand side of
Eq. (5), therewill be twomain effects of turbulence thatwemust
consider. The first is the advection by the mean v, the second is
the effect of the turbulent variability which is conveniently
estimated by its variance. The two effects can conveniently be
understood by considering the square of the scale function:

〚ΔR〛
2
advec;hor ¼ L2w

Δx−vxΔt
Lw

� �2
þ Δy−vyΔt

Lw=að Þ
� �2

( )

¼ L2w
Δx
Lw

� �2
þ aΔy

Lw

� �2
þ vx

2 þ a2vy
2

L2w

 !
Δt2−2

vxΔx
Lw

þ a2vyΔy
Lw

 !
Δt
Lw

� �( )
:

ð6Þ

We can now approximately take into account the effects
of turbulence by averaging both sides of Eq. (6) over a
turbulent v field. Doing this, we obtain:

〚ΔR〛
2 ¼ ΔRTB

P
ΔR ð7Þ

where 〚ΔR〛 is the “effective” scale function obtained by
averaging, “T” indicates transpose, and ΔR ¼ Δx;Δy;Δtð Þ and

B ¼
1 O −μx

O a2 −a2y
−μx −a2μy 1

0B@
1CA ð8Þ

where we have used the following transformation to
nondimensionalize the parameters:

Δx→
Δx
Lw

; Δy→
aΔy
Lw

; Δt→
Δt
τw

; μx ¼
vy
Vw

; μ ¼ μx; μy

� �
ð9Þ

and v ¼ vx; vy
� �

and Vw ¼ v2x þ a2v2y
� �1=2

where v is the
overall mean advection in the region studied and Vw is a

large-scale turbulent velocity; v2 is the mean square. Note that

since v2N vð Þ2 , |μx| b 1. These results are generalizations of
those presented in Lovejoy and Schertzer (2010), who consi-
dered a = 1).

2.2. Anisotropic scaling in Fourier space

If the increments in a turbulent field I are described by the
scaling in Eq. (3), then, we expect the spectral density P(K) to
be scaling as well, but with a different (Fourier space) scale
function 〚K〛F where K ¼ kx; ky;ω

� 	
, the k's being the

wavenumbers in the horizontal plane and ω the frequency.
To derive this, we start from the general relation between
second order structure functions and spectra (a corollary of
the Wiener–Khintchin theorem):

ΔI ΔRð Þj j2
D E

¼ 2
Z

dK 1−eiK �ΔR� �
P Kð Þ ð10Þ

In order to determine the form of P Kð Þ , we define the
dimensionless wave vector: K→ Lwkx; Lwky; τwω

� �
and use

the relation:

ΔRj jζ 2ð Þ ¼ 2
Z

Kj j− Dþζ 2ð Þð Þ 1−eiK �ΔR� �
dK ð11Þ

where |.| is the usual vector norm. Eqs. (10) and (11) state that,
if the integral converges and the (isotropic) spectral density
Please cite this article as: Pinel, J., et al., The horizontal space–time
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obeys a scaling behavior (i.e. P Kð Þ � Kj j−s ), then ΔRj j is
scaling as well and their scaling exponents are related by
s =ξ (2) + d (with d = 3). For real fields, the scaling is
always only valid for a finite range of scales and the
corresponding truncated integral always converges. If we
make the change of variable K→C

P

−1K , (with C
P

−1 a real
matrix), we obtain:

ΔI ΔRð Þj j2
D E

≈〚ΔR〛ξ 2ð Þ↔P Kð Þ∝ eI Kð Þ



 


2 �

≈〚K〛−s
F ; s ¼ ξ 2ð Þ þ 3

ð12Þ

〚ΔR〛 ¼ ΔRTB
P
ΔRÞ1=2↔〚K〛F ¼ KTB

P
K Þ1=2; B

P
¼ C

P
C
P

T
��

with:

B
P

−1 ¼ 1
1−μ2

x−a2μ2
y

1−a2μ2
y μxμy μx

μxμy 1−μ2
x

� �
=a2 μy

μx μy 1

0BB@
1CCA ð13Þ

from Eq. (8). Since det C
P
C
P

T
� �

¼ detC
P

� �2 ¼ detB
P
and C

P
is real

we have detB
P
N0 so that the result for det B

P

� �
b0 cannot be

obtained from this approach and has qualitatively differ-
ent wave behavior (see Lovejoy and Schertzer, 2013; Pinel

and Lovejoy, 2013, 2014). Alternatively, note that since det

B
P

� �
¼ a2 1−μ2

x−a2μ2
y

� �
, det B

P

� �
N0 when μx2 + a2μy2 b 1, a

condition which is always satisfied. Notice that we intro-
duced the exponent ξ(2) in Eq. (11) that takes into account
the non-conservation exponent H as well as the second
order intermittency correction (see below).

We can further simplify the form of 〚K〛F by introducing:

μ ′
x ¼

μx

1− μ2
x þ a2μ2

y

� �n o ; μ ′
y ¼

μy

1− μ2
x þ a2μ2

y

� �n o ;
ω′ ¼ ω

1− μ2
x þ a2μ2

y

� �n o
ð14Þ

to obtain:

〚K〛F ¼ ðKTB
P

−2KÞ1=2 ¼ ω′ þ k � μ ′
� �2 þ kk k2
� �1=2

; kk k2 ¼ k2x þ ky=a
� �2

ð15Þ

and the final expression for the spectral density:

P Kð Þ≈P0〚K〛
−s
F ¼ P0 ω′ þ k � μ ′

� �2 þ kk k2
� �−s=2

ð16Þ

where P0 is a dimensional constant and kk k2 is a spatial Fourier

scale function. Note thatwe can express the parameters:μ ′
x ¼ vx

σv
;

μ ′
y ¼ vy

σv
with σ2

v ¼ v2x−vx
2

� �
−a2 v2y−vy

2
� �

so that μ
′
x

μx
¼ μ ′

y

μy
¼ Ve

σv
;

the parameter μ ′ thus being directly related to the mean
advection.

Directly testing the prediction that the horizontal space–time
spectral density is of the form of Eq. (12) is unwieldy; it is
more convenient to consider various 2D and 1D subspaces,
obtained by successively integrating out kx, ky, ω in P Kð Þ ¼
Pxyt kx; ky; ω

� 	
. To do this, we use the Wiener–Khintchin
scaling and cascade structure of the atmosphere and satellite
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theorem that relates the autocorrelation function to the spectral
density:

R Δx;Δy;Δtð Þ ¼ 2πð Þ−3
Z

Pxyt kx; ky; ω
� �

ei kxΔxþkyΔyþωΔtð Þdkxdkydω:

ð17Þ
If we successively put Δt = 0, Δy = 0, and Δx = 0, we

obtain:

R Δx;Δy;0ð Þ ¼ 2πð Þ−2
Z

Pxy kx; ky
� �

ei kxΔxþkyΔyð Þdkxdky;

Pxy kx; ky
� �

¼
Z

P kx; ky; ω
� �

dω

R Δx;0;Δtð Þ ¼ 2πð Þ−2
Z

Pxt kx; ωð Þ ei kxΔxþωΔtð Þdkxdω;

Pxt kx; ωð Þ ¼
Z

P kx; ky; ω
� �

dky

R 0;Δy;Δtð Þ ¼ 2πð Þ−2
Z

Pyt ky; ω
� �

ei kyΔyþωΔtð Þdkydω;

Pyt ky; ω
� �

¼
Z

P kx; ky; ω
� �

dkx:

ð18Þ

From Eq. (18) and developments similar to Eqs. (11)–(13),
we define:

Pxy kx; ky
� �

¼ ‖ kx; ky
� �

‖
− s−1ð Þ
xy ;

Pxt kx; ωð Þ ¼ ‖ kx; ωð Þ‖
− s−1ð Þ
xt

Pyt ky; ω
� �

¼ ‖ ky; ω
� �

‖
− s−1ð Þ
yt

ð19Þ

and we find:

‖ kx; ky
� �

‖
2

xy ¼ k2x þ a−2k2y

‖ kx; ωð Þ‖
2

xt ¼ ω′
x þ kxμ

′′

x

� �2 þ k2x ;

μ ′′

x ¼
vx

σ2
v þ a2 vy

� �2� �1=2 ¼ μ ′
x

1þ a2μ ′
y
2

� �1=2 ;
ω′

x ¼
ω

1−μ2
x

� 	1=2
‖ ky; ω
� �

‖
2

yt ¼ ω′
y þ kyμ

′′

y

� �2 þ k2y ;

μ ′′

y ¼
vy

σ2
v þ vxð Þ2� 	1=2 ¼ μ ′

y

1þ μ ′
x
2

� �1=2 ; ω′
y ¼

ω

1−a2μ2
y

� �1=2 :

ð20Þ

Similarly, for the 1D subspaces, we obtain:

Ex kxð Þ ¼
Z

P kx; ky; ω
� �

dω dky∼k
−β
x ; β ¼ s−2

Ey ky
� �

¼
Z

P kx; ky; ω
� �

dω dkx∼k
−β
y

Et ωð Þ ¼
Z

P kx; ky; ω
� �

dkx dky∼ω
−β

:

ð21Þ

3. MTSAT IR data analysis

3.1. MTSAT data

We now test the spectrum Eq. (16) with infrared radiance
data measured by the MTSAT satellites which are a series of
geostationary weather satellites operated by the Japan Mete-
orological Agency. MTSAT-1R, the first of the series, was
Please cite this article as: Pinel, J., et al., The horizontal space–time
radiances, Atmos. Res. (2014), http://dx.doi.org/10.1016/j.atmosres
launched in 2005 and replaced the older series of Geostation-
ary Meteorological Satellites (GMS, also called “Himawari”,
operational since 1977). It measures radiances from the region
centered on longitude 140° East (Japan, tropical western
Pacific, Australia) over five channels: one visible (0.55–
0.90 μm), four infrared (10.3–11.3 μm; 11.5–12.5 μm; 6.5–
7.0 μm and 3.5–4.0 μm). MTSAT-1R has a maximal resolution
of 1 km (visible) and 4 km (infrared) at nadir. The temporal
resolution is 30 min (above the equator) and 1 h (full disk),
(Takeuchi et al., 2010; Puschell et al., 2002, 2003).

We analyzed 1386 images (~twomonths of data, September
and October 2007), from the first (“thermal”) infrared channel
(10.3–11.3 μm, sensitive to temperature at (roughly) the top of
clouds) taken from the Atmospheric Radiation Measurement
database that archives MTSAT-1R data at 5 km and 1 hour
resolutions over latitudes 40°S–30°N and longitudes 80°E–
200°E (a Mercator projection was used; see Fig. 1). This
corresponds to 1675 × 2672 pixel images (north–south, east–
west) covering a region 8375 by 13360 km.

3.2. MTSAT spectra

We separated the MTSAT sample into five 277 h (~12 day)
blocks (with resolutions, 30 km, 1 h), calculating for eachblock
(of 277 h by ~8000 km (N–S) by ~13000 km (E–W)), the
spectral density of fluctuations of the field with respect to the
mean image (over the 2 month period); in addition, we used a
standard Hann window to reduce spectral leakage. Due to the
land and ocean surfaces as well as clouds, the images are
variable in space and in time, however, it is the clouds that
dominate the variability over the scales considered here.
After averaging over the five time blocks to improve the
statistics, we compared the results to the theoretical form
(Eq. (16)). Figs. 2 and 3 show the comparisons for 1D and 2D
subspaces (Eqs. (18)–(21)) between MTSAT data and a
regression from Eq. (16). It is convenient to introduce three
dimensional parameters P0, Lw and τw even though only two
may be determined independently. This means that we may
take Lw–Le = 20000 km; τw and P0 are then uniquely
determined by the regression with τw corresponding to the
lifetime of planetary structures (size Lw). The parameters we
found are (see also Table 1):

Vw ¼ 41� 3 km=h � 1000 km=day; τw ¼ Lw=Vw � 20� 1 days ;

a � 1:2� 0:1 ; s � 3:4� 0:1

μx � −0:3� 0:1 ; vx � −12� 4 km=h � −300 km=dayð Þ ;

μy � 0:10� 0:08 ; vy � 4� 3 km=h � 100 km=day
� �

;

P0 ¼ 2:8� 0:2�C2km2h:

ð22Þ

From Fig. 2, we see that the 1D spectra are very close to
power laws over the range of scales 60–5000 km in space
and 2–100 h in time (except for expected and relatively small
diurnal cycle contributions at 12 and 24 h. cf. (Hsu et al.,
2006, 2011)). The exponents are β ~ 1.55 ± 0.01, a bit
smaller than the non-intermittent passive scalar, Corrsin–
Obukhov value β = 5/3, (with intermittency corrections, the
latter are nearly identical, see (Lilley et al., 2008)). We thus
have space–time isotropy in the spectral exponents, as
predicted (Eq. (21)). However, the scaling is even better
than suggested by the near linearity displayed in Fig. 2.
scaling and cascade structure of the atmosphere and satellite
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Fig. 1. Thermal IR MTSAT-1R image taken on September 9, 2007, at 5 km resolution; between latitudes 40°S–30°N and longitudes 80°E–200°E. We can easily
recognize the shape of Australia at the bottom and observe various cloud structures.
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Indeed, we expect deviations from log–log linearity due to
the space–time anisotropy coupled with our finite sample
size which breaks the scaling symmetry at high and low
wavenumbers/frequencies. When the integrals in Eq. (21)
are performed on the discretized, numerically integrated
(100
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Log10 kx (km)-1
(6000)-1 (1897)-1 (60
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Fig. 2. 1D spectra. In black: the theoretical spectrum using parameters estimated
sampling volume. The parameters are: Lw ~ 20000 km; τw ~ 20 ± 1 days; (Vw ~ Lw
0.1; (vx −12 ± 4 km/h ≈ −295 km/day); μy ~ 0.10 ± 0.08; (vy 4 ± 3 km/h ≈ 9
The straight lines are reference lines with slopes −1.5 (blue) and −0.2 (red). U
temporal spectrum. Bottom right: superposition of zonal, meridional and temporal s
reader is referred to the web version of this article.)
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theoretical expressions, we see (Fig. 2) that much of the
curvature at both ends of the spectra can be explained,
although for spatial scales ≥ 6000 km or temporal scales
longer than ~100 h, deviations become important. Note that
the regression value Vw = Lw/τw = 41 km/h is also consistent
1

2

3

00 km)-1 (1000 km)-1 (100 km)-1

0 days)-1 (1 day)-1 (10 h)-1
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1.0

1.5
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Log10ω

Log10E(ky)
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Log10 k

00)-1 (1897)-1

by regression from Eq. (16) and taking into account the finite space–time
/τw = 41 km/h = 984 km/day); a ~ 1.2 ± 0.1; s ~ 3.4 ± 0.1; μx ~ −0.3 ±

8 km/day); P0 = 2.8 ± 0.2 K2 km2 h. In color: MTSAT thermal IR radiances.
pper left: zonal spectrum. Upper right: meridional spectrum. Bottom left:
pectra. (For interpretation of the references to color in this figure legend, the
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Fig. 3. Contours of log of spectral densities projected on to 2D subspaces. In color: the fit from theoretical expression (Eq. (16)) with parameters: as in fig. 2.
In black: MTSAT thermal IR radiances. Upper left: Log10P(kx, ω); zonal wavenumber/frequency subspace. Upper right: Log10P(ky, ω); meridional wavenumber/
frequency subspace. Bottom: Log10P(kx, ky); spatial spectral density. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

8 J. Pinel et al. / Atmospheric Research 138 (2014) xxx–xxx
with the values Lw = 5000 km and τw = 120 h (with P0 =
0.03 °CK2 km2 h; the radiances are in units of equivalent black
body temperature), which are roughly the scales at which
the scaling is broken; these are denoted Ld and τd for space
and time respectively (Table 1; see Fig. 2 in the north–south
direction, Ld/a ≈ 4300 km).

To understand the break in the temporal spectrum at large
scales, fig. 2 shows that as expected there is a statistical relation
between the size of structures and their lifetimes. As the scaling
symmetry seems to generally hold in space for scales as large as
planetary scales (see the review (Lovejoy and Schertzer, 2010)),
it was estimated by Lovejoy and Schertzer (2010) from “first
principles” (i.e. using the energy flux due to solar radiation) and
from ECMWF reanalyses that structures of planetary scale Le
have typical lifetimes of τe = ε−1/3Le

2/3 ~ 10 days. It was also
observed that atmospheric fields all undergo a transition in their
statistics at a scale τw ≈ τe, from a small scale regime (Δt b τw)
to a different larger scale regime (Δt N τw); the two regimes
having qualitatively different scaling behaviors with fluctua-
tions growing or decreasing with scale respectively (the sign of
Please cite this article as: Pinel, J., et al., The horizontal space–time
radiances, Atmos. Res. (2014), http://dx.doi.org/10.1016/j.atmosres
H changed from positive to negative at τw). It was proposed by
Lovejoy and Schertzer (2010, 2012, 2013) to identify the former
regime with weather and the latter as “macroweather” this
replaces the earlier descriptive term “low frequency weather”,
see also Lovejoy (2013).

In order to investigate this more fully, we can examine 2D
rather than 1D spectra (Eq. (18)). Regressions on the 2D
spectra also reproduce the data relatively well, but there are
still residuals (see Fig. 3). The mean deviations between the
two surfaces (for the three 2D cases shown in Fig. 3) are of the
order of ±11% in Log10P(k, ω), even though the signal P Kð Þð Þ
varies over ~five orders of magnitude over the scaling range
(60–5000 km in space and 2–100 h in time due to the Nyquist
frequency, these are the highest wavenumbers and spectra
possible with 30 km, 1 hour data). The orientation of the
contours of Log10P(kx, ω) (in zonal wavenumber/frequency
subspace) is a consequence of the non zero (and relatively
large) mean zonal advection vx ~−12 ±4 km/h (−300 km/
day). Hence, with our contours, we can estimate the overall
mean advection. The area analyzed in this paper is not perfectly
scaling and cascade structure of the atmosphere and satellite
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Table 1
A comparison of different parameters obtained from the spectral method (Section 3) and from statistical moments (Section 5) as well as results from a previous
TRMM analysis in the along track direction (Lovejoy et al., 2009d). Ld and τd are the (large) spatial and temporal scales respectively beyond which the scaling
symmetry breaks down. The speed V provides an estimate of the statistical relation between the size of structures and their lifetimes, i.e. it corresponds to Vw

evaluated by the spectral method (Section 3) or an averaged (north–south, east–west) value Veff evaluated from the cascade analysis (Section 5). The parameter a
from the spectral method was directly estimated from the regression while for the statistical moments, a is an averaged value from the “shifting method” and
from the Eulerian Stommel diagrams (Section 5.3). Generally, values of parameters obtained for MTSAT by spectral and statistical moment methods are
comparable. We find small discrepancies between parameters found for MTSAT, VIRS-5 and TMI-8, even though the values of C1 and a are comparable (except for
TMI-8). Interestingly, the values of Leff found in the north–south direction are comparable with those found by (Lovejoy et al., 2009d) in the direction of the orbit.

Spectra Statistical moments

This study Lovejoy et al. (2009d)

MTSAT MTSAT VIRS-5 TMI-8 VIRS-5 TMI-8

Resolutions Space (km) 30 30 100 100 8.8 13.9
Time (h) 1 1 24 24 – –

C1 – 0.07 0.07 0.05 0.084 0.102
α – 1.5–1.6 1.8 2 1.63 1.90
Leff E–W (km) – 50000 25000 12600 12600

(orb. dir.)
6300
(orb. dir.)N–S (km) – 32000 12600 8000

τeff Time (days) – 48 57 57 – –

Ld E–W (km) 5000 6000 12000 5000 10000
(orb. dir.)

2500
(orb. dir.)N–S (km) 2500 2000 9000 2000

τd Time (days) 4 2 14 4 – –

V (km/day) 1000 ~800 ~340 ~120 – –

a 1.2 ~1.35 ~1.4 1.1 – –
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symmetric with respect to the equator and our data spanned
only two months so that we found a small mean advection in
the meridional direction.

The functional form Eq. (16) was derived by assuming that
the structures were localized, turbulent like; however, there is
a longstanding phenomenology of wavelike disturbances
(localized in space but not in space-time) so that we may
expect that the residual differences between the empirical and
theoretical regression space may be associated largely with
waves. This is the basic idea behind the techniquedeveloped by
Wheeler and Kiladis (1999) who also used IR radiances
(although at somewhat larger space–time scales). In order to
study the residual spectrum believed to be associated with
waves, they factored the spectral density into a “red noise”
turbulent background and studied the residual part that they
associated with waves. However, instead of using a theoreti-
cally motivated characterization of the turbulent background
(Eq. (16)), they used an ad hoc averaging technique and
estimated the wave part of the spectrum as deviations from
this. Examining only the (kx, ω) subspace, they compared the
several classical dispersion relations with the residual spec-
trum obtained by dividing out the turbulent background. We
discuss this small residual for MTSAT data and our anisotropic
model in Pinel and Lovejoy, 2013, 2014 and Lovejoy and
Schertzer (2013) where it is argued that the waves are on the
contrary an emergent phenomenon arising from strongly
nonlinear but scaling dynamics.

4. Application to atmospheric motion vectors

As an application of the model, we now show that Eq. (16)
gives a theoretical basis for extracting “atmospheric motion
vectors” (AMV's) from sequences of IR satellite images
(Leese et al., 1970; Szantai and Seze, 2008) which are used
to determine cloud (or water vapor) “motion” vectors in near
real-time from geostationary satellite data; these are used as
surrogates for wind vectors for weather forecasting applications.
Please cite this article as: Pinel, J., et al., The horizontal space–time
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Although several techniques exist to estimate AMV's, they are all
variants of the maximum cross correlation technique which is
based on the displacement Δr max which yields the maximum
cross correlation between successive images. From this, the
motion vector: vmotion ¼ Δr max

Δt is obtained, where Δt is the time
interval between consecutive images.

We now estimate Δr max and vmotion from the structure
function: S2 Δrð Þ (see Eq. (3) for q = 2). Δr max can be found,
from the condition on the cross-correlation function:

R Δr max;Δtð Þ ¼ max
Δr

R Δr ;Δtð Þf g

where

R Δr ;Δtð Þ ¼ I x; y; tð ÞI xþ Δx; yþ Δy; t þ Δtð Þh i:

ð23Þ

Using R Δr ;Δtð Þ ¼ R 0;0ð Þ− 1
2 S2 Δr ;Δtð Þ , we can derive

vmotion in terms of the matrix B
P

as follows. We have

max
Δr

R Δrð Þf g∼min
Δr

S2 Δrð Þf g and we only need to minimize

S2 Δrð Þ for a fixed Δt. From Eqs. (3)–(9), we find that

the minimization condition is: ∇S2 Δrð Þ ¼ 0 so that Δxmax
Δt ¼ μx;

Δymax
Δt ¼ μy . We thus see that the cross correlation techniques

used to estimate AMV's do indeed correspond to the mean
advection in the region considered. In contrast, if the spectra
are used to estimate the advection from (kx, ω) and (ky, ω)
sections, using Eq. (20), we estimate the μ″ velocities which are
related to the μ velocities measured by AMV's by an extra
normalization factor (however these represent an average over
the total sample, as we will see in the next section).

5. Intermittency

5.1. Cascades

Up until now, we have used Fourier techniques since these
are straightforward, well understood and allowed us to
scaling and cascade structure of the atmosphere and satellite
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validate the basic space–time turbulence model. The main
limitation is that spectra are second order statistics so that –
unless the statistics are quasi-Gaussian – they only give a
partial description of the process. In order to obtain a full
description, we must consider statistics of all orders; this
takes into account intermittency. A full validation necessi-
tates a characterization of the flux φ which, in this model is
the result of a multiplicative cascade process. In such
processes, a large (“mother”) eddy breaks up into smaller
(“daughter”) eddies, transferring to each of them a fraction
of its turbulent flux φ, according to a stochastic rule. The
process is scale invariant and repeats down to smaller and
smaller scales (until scales at which viscosity becomes
dominant are reached). The resulting flux at resolution Δx,
scale ratio λ will have the following statistics in which
different moments and intensities generally have different
scaling behaviors (Schertzer and Lovejoy, 1987):

Mq ¼
φq
λ

� �
φ1

� �q ¼ λ′K qð Þ
; λ′ ¼ Leff

Δx
¼ λ

λeff
; λ ¼ Lw=Δx; λeff ¼ Lw=Leff ð24Þ

where K(q) is the multi-scaling exponent, Leff is the effective
outer scale of the cascade, Lw ≈ Le = 20000 km is the size
of the earth and λ is the scale ratio with respect to the
reference scale and λ′ with respect to the effective outer
(largest) cascade scale in which is determined empirically.
bφ1N is the large scale mean of the flux and serves as a
normalization, nondimensionalization factor. “b.N” means
ensemble average. For temporal analysis, instead of using Lw,
we can use a reference time scale τref = the duration of our
sample. Eq. (24) states that for a pure cascade, plotting the
log of the normalized statistical moments versus the log of
the scale ratio should yield straight lines with slopes K(q)
and these lines should intersect at Leff (or in the time
domain, τeff). These stochastic multiplicative cascades are
the generic multifractal process and K(q) is a convex
function. For the “generator” of the cascade (i.e. the
logarithm of the multiplicative factors determining how φ
is transferred from one scale to another at each step of the
cascade), we can apply the additive central limit theorem
(Schertzer and Lovejoy, 1987, 1997), so that K(q) can be
expressed as a stable and attractive (universal) form
depending on two parameters:

K qð Þ ¼ C1

α−1
qα−q
� 	 ð25Þ

where C1 is the “codimension” of the mean (i.e. a measure of
the sparseness of the dominant contribution to the mean
flux) and α (0 ≤ α ≤ 2) is the (Lévy) index of
multifractality. For α b 2, this is only valid for q N 0; for
q b 0, the moments diverge.

5.2. The space–time cascade structure of MTSAT and
TRMM radiances

5.2.1. MTSAT radiance cascade structure
To quantify the intermittency of the cascade, we cal-

culate the statistical moments of φ as a function of spatial
(or temporal) scale Δx and see if they follow Eq. (24). Since
MTSAT was over-sampled in the east–west direction (Kigawa
and Sullivan, 1998), there was spurious lower variability at the
Please cite this article as: Pinel, J., et al., The horizontal space–time
radiances, Atmos. Res. (2014), http://dx.doi.org/10.1016/j.atmosres
smallest scale (5 km) and we therefore spatially averaged the
data to 10 km resolution. We then estimated the normalized
flux (see eq.1 ):

φ0 ¼ φ
φh i ¼

ΔI
ΔIh i : ð26Þ

The fluctuation in the field was estimated as ΔI = Max
{|I(x + l, y) − I(x,y)|,|I(x,y + l) − I(x,y)|} for each pixel
where x and y are coordinates in east–west and north–south
directions respectively and l = 10 km, the resolution at which
the flux was estimated (I is the thermal IR radiance intensi-
ty measured by MTSAT). The “max” was used to partially
compensate for residual measurement artifacts (excessive
small scale smoothness). This improved the scaling somewhat
at the smallest scales, but is not essential.

We can verify the predictions of the cascade model
(Eq. (24)) by simply degrading (i.e. by spatial or temporal
averaging) the resolution of the flux, taking ensemble
averages of different powers of the flux for each scale of the
degradation process (we took 10 points per order of
magnitude of scales, equally spaced on a log scale). Fig. 6
shows the results for the zonal andmeridional directions. The
“effective” outer spatial scales of the cascade are found to be
Leff = 50000 km and 32000 km in the east–west and north–
south directions respectively, i.e. somewhat larger than
planetary scales. This is possible because even at planetary
scales there are nonlinear interactions with other atmo-
spheric fields, which are responsible for the additional
planetary scale variability. We see that for spatial analyses,
the predictions of the cascade model are well verified for
smaller scales, up to ~6000 and 2000 km for east–west and
north–south directions respectively; for scales beyond this
we observe deviations from pure scaling. The upper scaling
regime limit is smaller than Leff (the outer cascade limit) and
is comparable to the outer spectral scales Ld (5000 km and
2500 km for E–W and N–S directions respectively) from the
spectral method in Section 3 (Table 1). These large scale
deviations may be at least partly due to the anisotropy
discussed earlier. Therefore, it is interesting to average the

moments in both directions: M EWNSð Þ
q ¼ M EWð Þ

q þM NSð Þ
q

2 . When this
is done (Fig. 4), we observe almost perfect scaling over the
available range of scales. Note that all of the following
Msubscript q plots, the q N 1 curves lie above the axis and the
q b 1 below it.

For the temporal analysis, we had to deal with an extra
complication due to the resolution of the data. MTSAT images
are taken every hour, but the radiances are not averaged over
1 h (i.e. they are basically snapshots). However, it is the
resolution in space–time that is important: averaging snapshots
in space at resolution L has the same space–time resolution as
averaging data with very small spatial resolution in time over
durations τ = L/Vw where Vw is the velocity estimated from
the spectrum i.e. ≈40 km/h. In order to sample at the
appropriate time scale and to keep the highest resolution
possible, we averaged our estimated flux over a 30 km scale.

In Fig. 4, we observe that up to about ~2 days, the data are
well described by the model, beyond which we observe
significant deviations from scaling (the effective outer cascade
scale τeff ~48 days estimated by regression is the outer scale
scaling and cascade structure of the atmosphere and satellite
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required so that the smaller scale statistics are accurate). As
mentioned earlier, atmospheric dynamics undergoes a drastic
change in its variability from a weather regime at time scales
less than ~10 days to a macroweather regime at larger scales
(the latter going up to scales ~10–30 years, (Lovejoy and
Schertzer, 2013; Lovejoy, 2013, Lovejoy et al 2013). As expected,
the MTSAT data exhibit a breakdown in the scaling, but at scales
a little bit smaller than this (2 days), even though it is not
completely obvious to determine the transition scale from these
curves. Here we see a large spread between the outer cascade
scale (48 days) and the scalewhere the cascade scaling becomes
poor (~2 days) and the scale atwhich the spectral scaling breaks
down (~4 days, see Table 1). At small time scales – the weather
regime – the statistics of the turbulent flux are described by a
cascade. At larger scales – the macroweather – the spatial
degrees of freedom are effectively quenched and there is a
“dimensional transition” leading to different, low intermitten-
cy statistics (Lovejoy and Schertzer, 2010).

5.2.2. TRMM data
In order to further substantiate this space–time scaling

model, we also used Tropical Rain Measuring Mission
(TRMM) data. The TRMM satellite was launched in 1997 by
the National Aeronautics and Space Administration (NASA)
Fig. 4. Log–log plot of the moments Mq of the normalized flux φ′ for MTSAT therm
corresponds to a single value of q, from q = 0 at the bottom to q = 3 at the top, by st
are a fit with the constraint that they all intersect at a unique scale, Leff. Each graph cor
done. Top-left: east–west, Leff =50000 km. Top-right: north–south, Leff = 32000 km
north–south directions, Leff =32000 km. (For interpretation of the references to color
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to monitor the atmosphere in tropical regions. Its orbit is
between ±38° of latitude at an altitude of 350 km, (period
~90 min; average return period ~2 days. See Fig. 5). The
satellite measures radiances in 5 bands in infrared and
visible (VIRS) – at wavelengths: 12.2 μm; 10.8 μm; 3.75 μm;
1.60 μm and 0.63 μm – as well as in the microwave region
(TMI) at frequencies 10.65 GHz, 19.35 GHz, 21.3 GHz, 37 GHz
and 85.5 GHz. TRMM thus has the advantage (over MTSAT) of
providing access to larger scales (in the zonal direction) aswell
as extra wavelengths not provided by MTSAT. The VIRS
instrument is primarily sensitive to clouds whereas TMI is a
radiometer that is also sensitive to rain (NASDA, 2001). Below,
we analyzed 359 days in 1998 of VIRS channel 5 (~12.2 μm,
sensitive to the temperature near the top of clouds, resolution
2.2 km, swath width 720 km) and TMI channel 8 (85.5 GHz,
that has a strong signal from rain, resolution 4.4 km, swath
width 760 km).

When analyzing TRMM radiances, we degraded the data
resolution by a factor 2 before estimating the fluxes (in order to
avoid possible spuriously smooth data at highest resolution). In
order to investigate the temporal scaling in the weather and
low-frequency weather regimes, we averaged the data at
resolutions 1 day and 100 km in time and space (see Fig. 5).
The return period of the satellite is shorter at higher latitudes
al IR as a function of the scale ratio λ (dots correspond to data). Each curve
eps of 0.2 (q N 1 curves are above the axis, q b 1 are below). Straight blue lines
responds to a different direction in which the degradation of the resolution was
. Bottom-left: time, τeff = 48 days. Bottom-right: average of east–west and
in this figure legend, the reader is referred to the web version of this article.)
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from the equator and can be asmuch as 4 days for certain areas
near the equator. The space–time resolutionswere thus chosen
as a compromise, so the analysis could benefit from the highest
temporal resolution possible while having enough values to
provide a good spatial average on and reasonable statistics. We
rejected every resulting 100 kmpixel having less than a critical
fraction (75%) of data coverage. Similarly, when testing Eq. (24)
for different spatial or temporal resolutions, we rejected
degraded pixels with more than 25% missing values.

5.2.3. TRMM radiance cascade structure
Figs. 6 and 7 show the results for VIRS-5 and TMI-8. For

VIRS-5, we see that for the east–west spatial analysis,
predictions of our cascade model are generally well verified
except for small deviations at small scales for high order
statistical moments. The outer scale is Leff = 25000 km, a little
smaller than for MTSAT (~50000 km) in the same direction.
The scaling in the north–south direction is not as good with
additional, although small, deviations at larger scales. The outer
scale of the north–south cascade is Leff = 12600 km, again
smaller than what we found for MTSAT. For the temporal
analysis, we observe that Eq. (24) gives an accurate description
(with an outer scale τeff = 57 days) for small scales, up to
~14 days, scale beyond which, once again, we observe
significant deviations from scaling, (corresponding to a
transition towards a different scaling regime see Table 1.)

For TMI-8, the cascade model predictions are well followed
for spatial scales up to 4000 and 2000 km for east–west and
north–south directions respectively. At larger scales, we observe
slight deviations from pure scaling. Similarly to MTSAT and
VIRS-5, the north–south moments have lower variability than
predicted by the cascade model at large scales, while the
variability of east–west moments is slightly higher than the
model predictions. The outer scales are Leff = 12600 km and
8000 km for east–west and north–south directions respectively;
scales smaller than for MTSAT and VIRS-5. For the temporal
direction, we can identify a weather regime at small scales
(b4 days), even though there are only a few data points. The
outer scale is τeff = 57 days, just like VIRS-5. For time scales
larger than 4 days, we observe the usual transition.
-50 0-150
-60

-40

-20

-100

40

60

0

80

20

Fig. 5. One day (i.e. ~16 orbits, in blue) of TRMM VIRS-5, (2.2 km resolution) deg
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We can compare these values with analyses of VIRS-5 and
TMI-8 data in the satellite orbit direction made by Lovejoy et
al. (2009d) at higher resolutions (8.8 km and 13.9 km for
VIRS-5 and TMI-8 respectively) from the months of January
and February 1998 (Table 1). Interestingly, the values of Leff
and Ld found in their analyses are comparable with our values
in the north–south direction.

5.2.4. Estimating C1 and α
From Figs. 4, 6 and 7 we can estimate the multi-scaling

exponent K(q) with the parameter C1 and α for the three
directions (east–west, north–south, time). We see from
Fig. 8 that the intermittency of MTSAT data is nearly the
same in all directions. Similarly to MTSAT, the intermit-
tency of the VIRS-5 and TMI-8 fluxes is almost isotropic
(Fig. 8), with small differences in the different directions
for higher statistical order. We estimate C1 using C1 = K
′(1) (see Eq. (25)). All the values are close to each other
and are comparable to those found by Lovejoy et al. (2009d)
(although our value for TMI-8 is a little bit smaller, see
Table 1.)

With the help of Eq. (25), we can also estimate the
parameter α by calculating the “reduced moments”: M′

q ¼
M α−1ð Þ= qα−qð Þ

q ¼ λC1 . If the log of the moments follows
Eqs. (24) and (25), all the curves should collapse – the “Lévy
collapse” – onto a single curve λC1 (up to a critical value qc
beyond which K(q) becomes linear, expressing the fact that
either the moments of order q N qc are dominated by the
maximum value in a finite sample). We can estimate α for the
cascade by identifying the value for which we find the best
collapse. The values ofα for our three datasets vary, though they
are all ≥1.5. (see Fig. 9 and Table 1).

5.3. Probability distributions of MTSAT and TRMM radiance fluxes

In the last section, in order to study the intermittency, we
presented a detailed analysis of the statistical moments of
radiance fluxes. We can also, in an equivalent way, describe
the fluxes by looking at their probability distributions. A
general prediction of cascade models is that their extreme
50 150100

raded at 100 km resolution. The temporal resolution is higher near ±38°.
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Fig. 6. Log–log plot of the momentsMq of the normalized flux φ′ for VIRS-5 as a function of the scale ratio λ (dots correspond to data). Each curve corresponds to a
single value of q, from q = 0 at the bottom to q = 2.8 at the top, by step of 0.2. Straight blue lines are a fit with the constraint that they all intersect at a unique
scale, Leff. Each graph corresponds to a different direction in which the degradation of the resolution was done. Top-left: east–west, Leff = 25000 km. Top-right:
north–south, Leff = 12600 km. Bottom-left: time, τeff = 57 days. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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probability tails are “hyperbolic” or “fat-tailed” (Mandelbrot,
1974):

Pr φNsð Þ∼s−qD ; s≫1 ; qNqD: ð27Þ

The value qD depends on the cascade, but also on the
space–time dimension D over which the cascade is averaged.
Distributions with an exponent qD have statistical moments
that diverge for all orders q N qD. If the sample size is
sufficiently large, we can observe this hyperbolic tail as a
straight line on a log–log plot. Fig. 10 shows the results for
MTSAT and TRMM fluxes. While VIRS-5 and TMI-8 fluxes
fairly convincingly exhibit this hyperbolic behavior with
qD ≈ 7, MTSAT fluxes have distributions which fall off much
more rapidly. In comparison, Lovejoy and Schertzer (2013)
present a summary of similar analyses including horizontal
wind for which qD = 5–7.5 and temperature for which qD =
4.5–5.5 was found. The existence of hyperbolic tails has
theoretical implications since it means that certain cascade
models such as Log–Poisson (Schertzer et al., 1995) or
microcanonical (Lovejoy, 2010) cascades can be ruled out.
Please cite this article as: Pinel, J., et al., The horizontal space–time
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5.4. Space–time statistical relations from atmospheric
radiance fluxes

In order to further characterize the space–time statistics,
we may estimate the Eulerian size/lifetime statistical rela-
tions. A One method is to find a correspondence between
spatial and temporal resolution for which the variability is
the same:

φq
τref =τ

D E
¼ φq

Lref =L

D E
ð28Þ

i.e. implicit relations between τ and L. The fact that the K(q)
functions are close for space and time shows that this relation
is independent of q and that there is a constant value – with
the dimensions of a velocity – describing this space–time
relation. If the scaling were perfect with identical K(q) in
space and time, we would obtain:

Veff ¼
Leff
τeff

: ð29Þ

To test this, we may estimate Veff by superposing the
curves from Figs. 4, 6 and 7 and horizontally shift one set of
scaling and cascade structure of the atmosphere and satellite
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Fig. 7. Log-log plot of the momentsMq of the normalized flux φ′ for TMI-8 as a function of the scale ratio λ (dots correspond to data). Each curve corresponds to a
single value of q, from q = 0 at the bottom to q = 2.8 at the top, by step of 0.2. Straight blue lines are a fit with the constraint that they all intersect at a unique
scale, Leff. Each graph corresponds to a different direction in which the degradation of the resolution was done. Top-left: east–west, Leff = 12600 km. Top-right:
north–south, Leff = 8000 km. Bottom-left: time, τeff = 57 days. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

Fig. 8. Top-left: characterization of the intermittency of MTSAT thermal IR turbulent flux by its moment scaling exponent K(q) estimated from Fig. 4. In blue
north–south direction, C1 = 0.07. In magenta: east–west direction, C1 = 0.07. In black (superposed to the north–south curve exactly): in time, C1 = 0.07
Top-right: characterization of the intermittency of VIRS-5's turbulent fluxes by its moments scaling exponent function K(q) estimated from Fig. 6. In red: north–
south direction, C1 = 0.06. In green: east–west direction, C1 = 0.05. In brown: temporal direction, C1 = 0.05. Bottom: Characterization of the intermittency o
TMI-8's turbulent fluxes by its moments scaling exponent function K(q) estimated from Fig. 7. In red: north–south direction, C1 = 0.06. In green: east–wes
direction, C1 = 0.05. In brown: temporal direction, C1 = 0.08. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 9. Levy collapse using the value of α that minimizes the deviations. Top-left: MTSAT IR fluxes: α ~ 1.5–1.6. Top-right: VIRS-5 fluxes: α ~ 1.8. Bottom: TMI-8
fluxes: α ~ 2.2 (since theoretically α ≤ 2, presumably, α ~ 2). Note that the reference scale (corresponding to λ = 1) in the spatial analyses was 20000 km
whereas in time it was 2 months (MTSAT) and 359 days (VIRS-5, TMI-8).

15J. Pinel et al. / Atmospheric Research 140 (2014) xxx–xxx
curves (spatial or temporal), such as to make them overlap as
much as possible (Figs. 11, 12 and 13). From this shift, we can
identify the relation between L and τ (giving the same
variability) and can extract Veff. We found for MTSAT (Fig. 10)
Veff = 33 km/h = 792 km/day (average of east–west and
north–south directions), comparable with V found from
spectral methods (~40 km/h ≈ 1000 km/day, see Table 1).
This effective velocity implies that a structure in the flux of size
33 km will “live” for 1 h. These velocities are typical values of
Fig. 10. Probability distributions for the radiances fluxes exceeding a fixed threshold
100 km, 1 day resolutions. In blue: TMI-8 fluxes at 100 km, 1 day resolutions. The o
the references to color in this figure legend, the reader is referred to the web versio

Please cite this article as: Pinel, J., et al., The horizontal space–time
radiances, Atmos. Res. (2014), http://dx.doi.org/10.1016/j.atmosres
turbulent wind in the atmosphere (~36 km/h = 10 m/s).
Although a linear relation between spatial and temporal
statistics follows if the turbulence is “frozen”; our interpreta-
tion is quite different. In “frozen turbulence”, relative motion
within structures is negligible and Veff is a constant determin-
istic advection velocity whereas in our case, Veff is a turbulent
velocity (e.g. an RMS velocity). Similarly, we can compare
statistics in east–west and north–south directions, a relation
expressed with the parameter a that describes the horizontal
s. In red: MTSAT fluxes at 30 km, 1 h resolutions. In purple: VIRS-5 fluxes at
range reference lines all have absolute slopes qD = 7. (For interpretation of
n of this article.)
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space trivial (scale independent) anisotropy. We found that
a ≈ 1.2 so that structures are typically 1.2 times wider (E–W)
than their N–S extents (c.f. the value a ~ 1.2 from MTSAT IR
spectra; see Table 1).

Figs. 12 and 13 show the corresponding matches of
statistical moments for VIRS-5 and TMI-8. From the shift
applied, we can extract an effective velocity: Veff = 14 km/h =
336 km/day and for Veff = 5 km/h = 120 km/day for VIRS-5
and TMI-8 respectively, smaller than for MTSAT (Table 1).
The spatial anisotropy parameters a are on the contrary all
comparable.

We can also compute the Eulerian space–time diagrams
and their spatial counterparts, space–space diagrams (see
Fig. 14) for MTSAT and VIRS-5 fluxes. Unfortunately, as can
be seen in Fig. 13, in the case of TMI-8 we only have three
data points in the weather regime which is insufficient for a
reliable estimate. From Figs. 4 and 6, we chose an order of
statistical moment (q = 1.8) that is well estimated and, from
the values of the chosen moment, we found a correspon-
dence between spatial and temporal lags (for which the
moments are the same). We see in Fig. 14 straight lines with
slopes 1, reflecting the good scaling we obtained in Figs. 4
and 6. A structure ≈100 km zonal extent will therefore on
average last 3 h, a ≈ 1000 km structure (a little bit less in
the meridional direction) will last 30 h, etc. From Fig. 14, we
can also estimate the parameters Veff and a. We found values
all consistent with those found from the previous method,
when shifting all the moments (for MTSAT: Veff ~ 33 km/h =
Fig. 11. Comparison of statistical moments of radiances fluxes. One set of curves is s
shift, characterizing the statistical size/lifetime relation for atmospheric structures m
Veff = 36 km/h. Upper-right: space (north–south: blue) vs time (black), Veff = 3
(characterizing horizontal trivial anisotropy). Values of q shown: 0.0; 0.4; 0.8; 1.2;
legend, the reader is referred to the web version of this article.)
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792 km/day and a = 1.5—for VIRS-5: Veff = 14 km/h =
336 km/day and a = 1.5).

6. Conclusions

Understanding the space–time statistical behavior of
atmospheric fields as functions of scale is a fundamental yet
unsolved problem. Indeed, it is troubling that in spite of the
plethora of data now available, there is no agreement about
the theoretical or empirical space–time statistical properties
of the atmosphere including their power spectra. However,
we argue that over wide ranges, the atmospheric spatial
variability is well described by an anisotropic scaling model
where two different scaling laws apply in the horizontal and
vertical. In this model, no scale separation exists and Taylor's
frozen turbulence hypothesis is not justified. Since in the
Eulerian frame advection is the key ingredient in relating
spatial to temporal statistics, this anisotropic spatial scaling
will have direct consequences for the temporal scaling.

We discussed this theoretically, making the assumption
that the largest (planetary scale) eddies advect the smaller
ones, averaging over these random advections. The result is
that the structure functions and spectra are both power laws
of scale functions, themselves approximately quadratic forms
in (x, y, t) and (kx, ky, ω) spaces respectively. The parameters
depended on the mean advection velocity as well as the
turbulent velocity and a mean north–south/east–west aspect
ratio.
hifted to match the other set. An effective velocity Veff is extracted from tha
easured by MTSAT. Upper-left: space (east–west: magenta) vs time (black)
0 km/h. Bottom: space (north–south: blue) vs space (magenta), a = 1.2
1.6; 2.0; 2.4; 2.8. (For interpretation of the references to color in this figure
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Fig. 12. Comparison of statistical moments of VIRS-5's fluxes. One set of curves is shifted to match the other set. An effective velocity Veff is extracted from that
shift, characterizing the statistical size/lifetime relation for atmospheric structures measured by VIRS-5. Upper left: space (east–west: green) vs time (brown),
Veff = 15 km/h. Upper right: space (north–south: red) vs time (brown), Veff = 12 km/h. Bottom: space (north–south: red) vs space (green), a = 1.3
(characterizing horizontal trivial anisotropy). Values of q shown: 0.0; 0.6; 1.0; 1.6; 2.2; 2.8. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 13. Comparison of statistical moments of TMI-8's fluxes. One set of curves is shifted to match the other set. An effective velocity Veff is extracted from that
shift, characterizing the statistical size/lifetime relation for atmospheric structures measured by TMI-8. Upper left: space (east–west: green) vs time (brown),
Veff = 5 km/h. Upper right: space (north–south: red) vs time (brown), Veff = 5 km/h. Bottom: space (north–south: red) vs space (green), a = 1.1
(characterizing horizontal trivial anisotropy). Values of q shown: q = 0.0; 0.6; 1.0; 1.6; 2.2; 2.8. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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a)

b)

Fig. 14. a) Left: space–time diagram for q = 1.8 and Δt b 63 h (belonging to the weather regime) for MTSAT fluxes. Magenta: east–west direction; Veff = 36 km/h.
Blue: north–south direction; Veff = 30 km/h. Right: MTSAT fluxes space-space diagramme for q = 1.8; a = 1.5. b) Left: space–time diagramme for q = 1.8 and
Δt b 8 days (~weather regime) for VIRS-5 fluxes. Magenta: east–west direction; Veff = 16 km/h. Blue: north–south direction; Veff = 12 km/h. Right: VIRS-5 fluxes
space–space diagramme for q = 1.8; a = 1.5. Reference lines have slope = 1 corresponding to linear space–time and space–space relations. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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The theory was tested on 1-D and 2-D spectral cross-
sections using infrared radiances measured by geostationary
satellites which allow us to estimate space–time statistics
over wide ranges of scale. Estimating spectra from infrared
MTSAT data, we found that our theoretical spectra accurate-
ly reproduce the observed 3D (kx, ky, ω) spectral density
over the range 2 h to ≈100 h and 60 km to ≈5000 km.
Multivariate regressions provided the best fit parameters
τw ~ 20 ± 1 days (using Lw ~ Le = 20000 km), the mean
lifetime of planetary structures, Vw ~ 41 ± 3 km/h, their
typical relative velocity as well as the average overall
advections in zonal ( vx ~ −12 ± 4 km/h ≈ −300 km/day)
and meridional ( vy ~ 4 ± 3 km/h ≈ 100 km/day) direc-
tions over a ~2 month period for a region centered slightly
south of the equator in the western Pacific. The 1D spec-
tral exponents were the same in the three space-time di-
rections (implying horizontal space–time isotropy for the
exponents), with β ~ 1.55 ± 0.01, comparable to the passive
scalar, Corrsin–Obukhov value with intermittent corrections
(β = 5/3 –K(2) ≈ 1.55).While the data comes primarily from
the tropics, we consider high level emergent statistical laws;
there is no reason to assume that they contradict the usual
(lower level, deterministic) laws of tropical meteorology.

Spectra are only second order statistics; to obtain a more
complete description, we found that we can describe atmo-
spheric radiances (including TRMM's infrared and passive
microwave) turbulent flux statistics by amultiplicative cascade
model over large ranges of spatial scales with typically slight
deviations at small and large scales. Analogous temporal
analyses showed similar agreement at small scales, but with
significant deviations at scales larger than a few days (2 to
Please cite this article as: Pinel, J., et al., The horizontal space–time
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14 days), marking two regimes. It was proposed that these two
regimes are separated by this temporal scale break (associated
with planetary scales in space) and could be identified as a
“weather regime” at short time scales and a “macroweather”
regime at longer time scales, providing a concrete way to
characterize the dynamical processes associated with weather
and determine their corresponding space–time scales. (This
break in the scaling symmetry is also present in the temporal
spectrum, although only for the few low frequency data
points.) With the help of a multiplicative cascade model, we
were able to describe how the space–time statistics change
with scale with the help of only a few parameters C1 (the
intermittency near themean),α (the degree ofmultifractality),
Leff (the effective outer spatial scale), Veff (the effective space–
time transformation speed) and a (the zonal/meridional aspect
ratio). Although the values of C1 and a are all close to each other
for our three data sets (MTSAT, VIRS-5 and TMI-8), we observe
some differences in the remaining parameters. The values of
Leff are somewhat different for the three datasets, but its values
(in the north–south direction) are comparable to those
obtained by Lovejoy et al. (2009d) (along with C1) in the
direction of the orbit of the satellite. The three datasets were
associated with different wavelengths and were sensitive to
different types of structures (rain, clouds, etc.). The parameter
αwhich gives a measure of how “extreme” (or multifractal) is
the field was found to vary between 1.5 and 2.We also showed
that TRMM's VIRS-5 and TMI-8 fluxes exhibit nonclassical
behavior regarding the extreme values in the fact they follow
hyperbolic probability distribution with an exponent charac-
terizing the extreme tails qD = 7. MTSAT fluxes seemed to
involve much higher values of qD. A finite qD rule's out some
scaling and cascade structure of the atmosphere and satellite
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cascade models such as microcanonical and Log–Poisson
cascades.

These results contribute to our understanding of atmo-
spheric dynamics at a fundamental level, but could also be
useful in applications such as improving the efficiency of
meteorological measurements, as they prescribe the space–
time resolutions at which these measurements should be
made. This framework also provides a theoretical basis for
interpreting IR satellite derived “atmospheric motion vectors”
in terms of turbulent winds. Although the model presented in
this paper was used to describe turbulent field statistics, it can
be extended to take into account atmospheric waves as well.
For this, our theoretical form can be used to determine the
“turbulent background” and the residual can be interpreted in
terms of waves. This follows Wheeler and Kiladis (1999) who
similarly argued that atmospheric waves would be detectable
from IR thermal spectral densities, after the removal of a
multiplicative turbulent background. The difference is that
their method of estimating the background was essentially
ad hoc whereas ours is theoretically motivated. Note that in
any case, whereas the background spectral density varies by
5 orders of magnitude over the scaling range, the residual
varies only by a factor 2–4, so that as a first approximation
(treated here), the waves can be ignored. We pursue this
question in Pinel and Lovejoy, 2013, 2014.
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