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In spite of the unprecedented quantity and quality of meteorological data and numerical
models, there is still no consensus about the atmosphere's elementary statistical properties as
functions of scale in either time or in space. This review paper proposes a new synthesis based
on a) advances in the last 25 years in nonlinear dynamics, b) a critical re-analysis of empirical
aircraft and vertical sonde data, c) the systematic scale by scale, space–time exploitation of high
resolution remotely sensed data and d) the systematic re-analysis of the outputs of numerical
models of the atmosphere including reanalyses, e) a new turbulent model for the emergence of
the climate from “weather” and climate variability. We conclude that Richardson's old idea of
scale by scale simplicity — today embodied in multiplicative cascades — can accurately explain
the statistical properties of the atmosphere and its models over most of the meteorologically
significant range of scales, as well as at least some of the climate range. The resulting space–
time cascade model combines these nonlinear developments with modern statistical analyses,
it is based on strongly anisotropic and intermittent generalizations of the classical turbulence
laws of Kolmogorov, Corrsin, Obukhov, and Bolgiano.
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1. Introduction

1.1. The golden age paradox

As little as 25 years ago, few atmospheric data sets
spanned more than two orders of magnitude in scale;yet
they were challenging even to visualize. Global models had
even lower resolutions, yet required heroic computer efforts.
The atmosphere was seen through a low resolution lens.
Today, in situ and remote data routinely span scale ratios of
103–104 in space and/or time scales and operational models
are not far behind. We are now beginning to perceive the true
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
complexity of atmospheric fields which span ratios of over
1010 in spatial scales (the planet scale to the dissipation scale).

Increasingly we are faced with the problem of achieving a
scale by scale understanding of complex hierarchies of
structures embedded within structures. One (still) popular
approach is through phenomenological models based on
subjectively definedmorphologies or other ad hoc features; in
some schools new models and mechanisms are introduced
every factor of 2 or so in scale. A more theoretically satisfying
approach is via statistical physics, i.e. turbulence theory. The
still “standard” turbulencemodel was elaborated at the end of
the 1960s (see e.g. Monin, 1972's influential book); it was
synthesis for atmospheric dynamics: Space–time cascades,
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critically based on the theory of two dimensional isotropic
turbulence (Kraichnan, 1967; Leith, 1968) with (Charney,
1971)'s extension to geostrophic turbulence. This classical
picture of the atmosphere consists of a 3D isotropic turbulence
at small scales and a 2D isotropic turbulence at large scales
with the two separated by a low energy “meso-scale gap”
somewhere near the 10 km scale thickness. In addition to the
scale at which this “dimensional transition” supposedly
occurs, in principle two additional larger scales are needed:
one for the 2-D energy (velocity variance) flux injection,
another for the enstrophy (vorticity variance) flux injection.
With all these scales to play with, it is easy to concoct
complicated models. The more realistic proposals such as the
“Gage–Lilly” model (Lilly, 1989) involve i) a small scale
isotropic 3D turbulence regime with energy cascading to
smaller scales, ii) an intermediate downscale 2-D isotropic
enstrophy cascade regime and iii) a large scale, 2-D isotropic
upscale energy cascade regime (see the schematic Fig. 4d and
Lilly, 1983; Gage and Nastrom, 1986; Lilly, 1989; Gifford,
1988; Bartello, 1995; Ngan et al., 2004).

One might have expected that with today's quantity and
quality of satellite, aircraft and other remote and in situ
measurements, that this basic picture of the atmosphere
would by now have been either accepted and then refined or
rejected and then replaced, but this has not been the case;
indeed, the status of this hierarchy of isotropic turbulence
models is still under debate today. On the onehand, empirically
the situation in the horizontal is still contradictory (see the
discussion below) on the other hand, theoretically the finding
that the 3D regime may destabilize (“three dimensionalize”)
the 2D regime (Bartello, 1995; Ngan et al., 2004), raises issues
about its internal consistency (see e.g. Takayashi et al., 2006;
Hamilton et al., 2008 for a recent numerical investigations).

The behaviour of the horizontal wind is bad enough, but it
gets worse. Even if we continue to restrict our attention to the
horizontal, the 2D/3D models are clearly in trouble when
considering scalar fields such as temperature or humidity (or
presumably clouds and their radiances). This is because— unlike
the vector wind field with two quadratic invariants (energy and
enstrophy)— these fields have only one quadratic invariant and
so the 2D/3D transitionwould be dramatic, and empirically, such
drastic transitions are not observed anywhere near the purport-
ed 2D/3D transition scales (Schertzer and Lovejoy, 1985b).

If we consider instead the vertical structure of the
atmosphere, the situation is even more embarrassing. This is
because vertical spectra in three dimensional isotropic turbu-
lence are totally different from those in 2D turbulence so that
the violations of the predictions of the classical 2D/3D picture
are all the more flagrant. Indeed, starting in the 1980's
experiments claimed that the turbulence was anisotropic but
scaling (Van Zandt, 1982; Schertzer and Lovejoy, 1985b), and
during the 1990's for the key horizontal wind, the mainstream
experimental community favoured a kz−3model for the vertical
spectrum along with a kx

−5/3 horizontal spectrum, and this out
to scales ≫10 km (kz, kx are vertical and horizontal wave-
numbers respectively), i.e. a fundamentally anisotropic model.
The most popular models reproducing this behaviour are the
SaturatedWave Theory (SWT, Dewan, 1997), and the Diffusive
Filtering Theory (DFT, Gardner, 1994). But both the SWT and
DFT are based on (quasi) linear gravity waveswhich are at best
only weakly turbulent so that the divorce between the
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
dominant strongly nonlinear isotropic theories and the
dominant weakly nonlinear and anisotropic interpretations of
the experimental data is almost total.

1.2. Is the atmosphere irreducibly complex?

These inconclusive attempts to understand the scale by
scale structure of the atmosphere have reinforced the idea that
the atmosphere is irreducibly complex, that it is only amenable
to brute force numerics. Yet, the history of science is replete
with examples showing that apparent complexity can hide
simplicity at another level. In the atmosphere it is ironic that the
possibility of scale by scale simplicity— through the emergence
of cascade processes—was first posed by precisely the pioneer
of the brute force approach, Lewis F. Richardson (Richardson,
1926) (see Fig. 1 for a modern schematic of a cascade).

This paper is an overview of some recent work addressing
this brute force complexity/scale by scale simplicity dichot-
omy i.e. the cascade alternative; it is timely for several
reasons. The first is that the development of a multiscale
synthesis based on an anisotropic cascade alternative to the
dominant 2D isotropic/3D isotropic picture has reached a
point where— profiting from the golden age— it has amassed
a large and compelling body of empirical evidence in its
favour. The second is that it can easily and naturally explain
themost comprehensive existing empirical studies— and this
without resorting to ad hoc/speculative models or reasoning.
The third is that recent studies of large scale numerical
models of the atmosphere show that these models are them-
selves accurately described by multiplicative cascade pro-
cesses (Stolle, 2009; Stolle et al., submitted for publication) so
that if we reject cascades, then we also reject the most
advanced and prestigious numerical models. The final reason
is that the stochastic cascade approach is increasingly needed
for applications. This is particularly true since the last twenty
years has witnessed a revolution in numerical weather
prediction. Twenty years ago the goal of weather forecasting
was to determine the (supposedly unique) state of the
atmosphere at some time in the future, whereas today,
ensemble forecasting systems have instead the goal of
determining the possible states of tomorrow's weather
including their probabilities of occurrence. This new goal
therefore corresponds to a transition from deterministic to
stochastic forecasts. Today's ensemble forecasting systems
therefore require knowledge of the underlying stochastic
structure of the deterministic equations, knowledge that the
cascades conveniently provide.

1.3. The alternative: multiplicative cascades

During the 1960's and early 1970's, intermittency was
increasingly acknowledged as an important phenomenon, but
its effect was usually considered small, associated with small
corrections to the spectral exponents. The main statistical
models (such as those used in statistical closures) assumed
“quasi-Gaussian statistics”. In order to obtain a Gaussianmodel
with the classical Kolmogorov 1941 law Δv=ε1/3Δx1/3 (for
velocity fluctuations Δv over distances Δx) — the real space
equivalent of the Fourier space E(k)≈k−5/3— one simply takes
the energy flux ε as a Gaussianwhite noise process and give ε1/3

a (fractional) integration of order 1/3 (i.e., a power law filter of
synthesis for atmospheric dynamics: Space–time cascades,
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Fig. 1. The left of the figure shows a schematic of an isotropic cascade. Due to nonlinear interactions with other eddies or due to into instability, a large eddy
structure (indicated as a square) breaks up into daughter eddies (smaller squares). Following the left most arrow the energy flux is redistributed uniformly in
space, the result is a homogeneous (non fractal) cascade. Following the right hand arrow, at each cascade step, we randomly allow one eddy in four to be “dead”
the result is that turbulence is only active on a fractal set. At the bottom, we see the average shape as a function of scale of more realistic (isotropic eddies). The
right hand column is the same except that it shows an anisotropic cascade, a model of a vertical cross-section of the atmosphere (on the left a homogeneous, on
the right, inhomogeneous, fractal model). The degree of stratification is characterized by an elliptical dimension Del=1.5 in the example. Adapted from
(Schertzer and Lovejoy, 1987).
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order−1/3): the resulting v is a “fractional Brownianmotion”.
In order to take into account intermittency, it suffices to replace
the Gaussian ε in the above model by the result of a
multiplicative cascade; this is the Fractionally Integrated Flux
model (Schertzer and Lovejoy, 1987), see Section 4.4 for some
mathematical details.

Fig. 1 shows the basic cascade idea: due to instability and/
or interactions with other structures, an “eddy” breaks up into
“daughter” eddies passing on (conserved) fluxes to the
smaller structures. These phenomenological models are
based on three basic aspects of turbulent fluid dynamics; a)
the existence of a quantity conserved by the nonlinear terms
in the equations, b) the existence of a wide range without
characteristic scales, c) the fact that interactions are strongest
between structures of neighbouring size: “locality in Fourier
Fig. 2. a: A schematic of a two-state (binomial, “α model”) cascade in 1-D showing the first step in the cascade with randomly chosen boosts by factor λ0
γ+

and
decreases by factor λ0

γ−. b: 2D extension of the αmodel shown in panel a (figure fromWilson et al., 1991). As we move from top to bottom on the left side, more
andmore cascade steps are added. We see that since on average the integral under the spikes is conserved so that while the strength of the spikes tends to increase
at each step, this effect is offset by low intensities (low ε) throughout most of the region. On the right we indicate the “dressed” cascade obtained by integrating the
completed “bare” cascade over the same scales. Note that occasionally the spikes on the right are much higher, due to the small scale activity which is not fully
“averaged out” this extra activity is associated with the divergence of statistical moments, self-organized critical behaviour.

Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new synthesis for atmospheric dynamics: Space–time cascades,
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
/

,

space”. Some comments are needed. First, the conserved
quantity is usually taken as the energy and/or enstrophy flux;
sometimes potential enstrophy flux, but the cascade notion is
much more general. Second, the notion of a scaling range is
usually reduced to that of an “inertial range”, i.e. a range
without sources or sinks of flux, but this is also unnecessarily
restrictive: it is sufficient that the sources and sinks are
themselves scaling, hence the significance of the cascade
study of the short and long wave radiances (Section 2,
Lovejoy et al., 2009a). In other words, the scaling symmetries
are taken as the basis and these are not restricted to isotropic
scale symmetries. Third, while 3D turbulence is local in
Fourier space, 2D turbulence is not, so that the finding of large
scale multiplicative cascades is prima facie evidence against
the relevance of 2D turbulence models to the atmosphere

http://doi:10.1029/2008GL035863
http://dx.doi.org/10.1016/j.atmosres.2010.01.004
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Fig. 3. a: Examples of continuous in scale anisotropicmultifractals in 3D showing the effect of changing the sphero-scale (Section 3) onmultifractalmodels of clouds.
Only single scattering is used for the radiative transfer rendition. The cloud parameters are: α=1.8, C1=0.1, H=1/3, r=vertical/horizontal aspect ratio at the
horizontal sphero-scale, top to bottom : r=1/4, 1, 4, left to right, horizontal sphero-scale=1, 8. For technical details, see (Lovejoy and Schertzer, in press). b: The
same clouds, but a side view showing how the stratification at each fixed scale changes with changing sphero-scale. However, the exponent (Hz=5/9, Del=23/9)
characterizing the differential (scale by scale) vertical stratification is the same in each case. c: The bottom row shows multifractal simulations of topography; the
parameters (α=1.8, C1=0.12, H=0.7,) are those empirically determined (as discussed in Section 2.4); the only difference is the type of scaling anisotropy. The
top row shows the corresponding scale functions which define the notion of scale. The left is a self-similar model (isotropic), the middle is linear GSI with

generator G = 0:8 −0:05
0:05 1:2

� �
and with a canonical scale function, the right has the same G as the middle but a more complicated unit ball (adapted from Gagnon

et al., 2006). d: This figure shows a model using scale functions respecting the anisotropic (vertically stratified) extension of the Corrsin–Obukhov scaling laws but
which are localized only in space, not in space–time (i.e. they are wave-like). The degree of space–time delocalization increases clockwise from the upper left. The

parameters are, H=0.33, C1=0.1, α=1.8. There is a small amount of differential anisotropy characterized by G = 0:95 −0:02
0:02 1:05

� �
. The random seed is the same

in all cases so that one can see how structures become progressively more and more wave-like while retaining the same scaling symmetries, close to observations
(reproduced from (Lovejoy et al., 2008b)).
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(nevertheless the existence of multiplicative cascades in pure
2D turbulence cannot be ruled out).

In much of the atmospheric literature, cascades are
invoked at a somewhat vague conceptual level. In conjunc-
tion with dimensional arguments based on the scale by scale
conserved turbulent flux (primarily the energy flux ε and the
enstrophy flux η) they are nevertheless able to determine the
basic (nonintermittent) spectra (the classical k−5/3, k−3

respectively) and with the help of statistical mechanical
arguments, they can determine the cascade direction (down-
scale for energy flux in 3D and enstrophy flux in 2D, upscale
for energy flux in 2D), see e.g. Chen andWiin-Nielsen (1978),
Boer and Shepherd (1983), Bartello (1995), Strauss and
Ditlevsen (1999), Ngan et al. (2004) and Fig. 4d.

Further progress requires the development of explicit,
multiplicative cascade models (Novikov and Stewart, 1964;
Yaglom, 1966; Mandelbrot, 1974). We therefore digress to
explain how these explicit cascade models work. Consider
Fig. 2a which shows the development of a 1-D, 2-state discrete
in scale cascadedevelopedwithdiscrete cascade ratioλ0=2. The
unit interval is divided into λ0 parts and then an independent
random multiplier με is chosen for each half (each “daughter
eddy”). In the 2-state process shown, themultiplier is one of two
possible values με=λ0

γ+ or με=λ0
γ− with γ+N0, γ−b0

corresponding to boosts or decreases respectively. To enforce
scale by scale conservation of the flux, we require the average
multiplier to be normalized. Using ensemble (“canonical”)
conservation, bμεN=1 we obtain the “α model” (Schertzer and
Lovejoy, 1985b). If the much stronger “microcanonical” conser-
vation (μεleft +μεright)/2=1 is used — as it is in much of the
physics literature — the result is the “p model” (Meneveau and
Sreenivasan, 1987). Due to the strong limitations that micro-
canonical conservation implies— theyareunrealistically “calm”—

wewill not discussmicrocanonicalmodels further. The process of
division and random multiplication is then continued to
smaller and smaller scales, this limit is discussed below, see
Fig. 2b for a 2D example.

By the mid 1980's, it was recognized that these multipli-
cative cascade models were quite general, leading to the
following generic statistical behaviour:

εqλ
� �

= λKðqÞ ð1Þ
Fig. 4. a: The enstrophy spectrum (=n2E(n) where E(n) is the wind spectrum and
Shepherd 1983. The three curves are from January data; the solid line is for the vertic
the monthly average) and the transient is the deviation from the monthly average. O
transient and vertically averaged atmosphere are extremely close to the vertical val
observed (dashed line). b: This shows the isotropic spectrum of zonal component of
Jan. 2006 between ±45o latitude. The straight lines are not regressions, rather they h
drop sondes in Lovejoy et al. (2007). It can be seen that the isobaric velocity spectra
levels). Reproduced from (Lovejoy et al., 2010). The scaling starts at k=2–3 corres
spectra from commercial aircraft flying on isobars, adapted from (Skamarock, 2004
predicted if the atmosphere has a perfect k−5/3 horizontal spectrum but estimated
(indicated by the arrows) and then following gradually sloping trajectories (eithe
schematic of the standard model updated to take into account the results of the G
illustrates the “Gage–Lilly”model. Note that 2-D enstrophy cascade region spans les
flux cascade (dashed line) spans over two orders of magnitude. e: This shows sample
covering roughly the range 3–9 km in altitude, adapted from (Skamarock, 2004) wh
range of only a factor 2–3 at the relatively unreliable extreme lowwavenumbers (bet
the isobaric predictions k−2.4 (red) very well over most of the range. Reproduced fro
afforded by anisotropic cascades. In accord with the scaling of satellite radiances, the
the large scale (transition at 40–200 km) is due to a (spurious) measurement of the
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where λ≥1 is the overall ratio of scales (largest over
smallest; λ=λ0

n for n steps of a model discrete in scale with
scale ratio λ0 per step) over which the cascade has deve-
loped and ελ is the scale by scale conserved flux. To see this,
note that after n steps, at a given location in the space, the
field εn is given by εn=ε0∏i

n
=1δεi while the overall scale

range is λ=λo
n. If 〈δεq〉=λ0

K(q) we easily see that 〈εnq〉=λK(q)

(Eq. (1)). K(q) is the moment scaling function which contains
the statistical information about the process. In comparison,
the quasi-Gaussian (nonintermittent) classical model is the
(trivial) special case K(q)=0.

Before continuing, a word about notation. In the following,
we use the codimension multifractal formalism (Schertzer
and Lovejoy, 1987; Schertzer et al., 1997) which for stochastic
multifractals has advantages when compared with the more
common dimension multifractal formalism (Halsey et al.,
1986) which was developed for applications to low dimen-
sional deterministic chaos. In the codimension formalism K(q)
quantifies themultiscaling of the density of the turbulentflux;
in the dimension formalism, the corresponding quantity, τ(q)
characterizes the D-dimensional integral of the density (D is
the dimension of space or subspace of integration); the two
are thus related by τ(q)=(q−1)D−K(q). The codimension
formalism has the advantage of being independent of the
dimension of space (D) and is thus well adapted to stochastic
multifractals processes which are defined on infinite dimen-
sional probability spaces (D→∞).

At this very general level, K(q) need only satisfy certain
loose requirements, principally that it is convex and — due to
the scale by scale conservation bελN=1; K(1)=0. However
an appropriate multiplicative extension of the central limit
theorem shows that under fairly general circumstances it is
of the “universalmultifractal” type, see the debate in Schertzer
and Lovejoy (1987, 1997). Since the cascade is multiplicative,
its logarithm Γn=logεn, the “generator” is additive: Γn=Γ0+
∑ i

nΔΓi (with ΔΓi=log(δεi)). It is therefore not surprising
that — due to the additive central limit theorem for the sums
of identical independently distributed random variables —

there exist specific (stable, attractive) “universal” forms for
the exponent K(q) characterized by two basic parameters:

KðqÞ = C1

α−1
qα−q
� � ð2Þ
n is the principal spherical harmonic wavenumber), adapted from Boer and
ally integrated atmosphere, the lines indicated stationary, (spatial spectrum o
ver the range n≈5 to 30 (700–4000 km) the exponents of the spectra of the
ue β≈2.4, but the stationary spectrum exponent is β≈4. No β≈3 regime is
the wind at 200, 300, 400,… 1000 mb from the ECMWF interim reanalysis for
ave the slopes of the horizontal wind in the vertical direction as estimated by
have exponents close to the vertical values (especially at the data rich lower
ponding n=4–6 in Fig. 4a. c: An intercomparison of the GASP and MOZAIC
), reproduced from (Lovejoy et al., 2010). The red lines show the behaviour
from an aircraft following roughly horizontal trajectories until about 100 km
r on isobars or gradual changes in altitude due to fuel consumption). d: A
ASP experiment. The figure is adapted from (Lilly, 1989) and schematically
s than on order of magnitude in scale whereas the speculative inverse energy
spectra fromWRF forecasts of zonal wind averaged over the isobaric surfaces
o claimed a “clear k−3 regime” for the solid (oceanic) spectrum which spans a
ween the arrows, upper left). Except for the extremes, the spectra again follow
m (Lovejoy et al., 2010). f: Same as panel d except for the new interpretation
solar energy flux is input over a wide range of scales in a scaling manner. Also
vertical scale spectral exponent (β≈2.4), shown in blue.

synthesis for atmospheric dynamics: Space–time cascades,
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where 0≤C1≤D is the “codimension of the mean” (D is the
dimension of the space over which the cascade is developed)
and 0≤α≤2 is the “index of multifractality” characterizing the
degree of multifractality: α=0 is the monofractal limit, α=2
the “lognormal” maximum. α is also the Levy index of the
generator (Γ=logε; see Section 4.4).

So far we have described the “bare” cascade quantities, i.e.
the statistical properties of a cascade developed over the
finite scale ratio λ. However, it is important to realize that the
small scale cascade limit (λ→∞) is highly singular. Indeed,
from Eq. (1) we see that the second characteristic functions
of Γ, i.e. logbeqΓN=Κ(q)logλ diverge; it turns out that
meaningful limiting properties only exist for integrals of
the cascade over finite sets (this is analogous to the Dirac
δ function which is defined as a limit of functions and
which is only meaningful under an integral sign). If these
integrals are over sets at scale λ, then the resulting “dressed”
processes (shown as the right hand column in Fig. 2b)
have long probability tails such that all moments qNqD
diverge i.e. Pr(ελNs)≈ s−qD for s≫1 where qD is a critical
order of divergence depending on both the statistical
properties (K(q)) and the dimension D of the space in
which the process is averaged/observed. There have indeed
been many claims of such “self-organized critical” (SOC)
behaviour (Bak et al., 1987) in atmospheric fields ranging
from the wind, temperature and rain (Schertzer and Lovejoy,
1985b, 1987; Lovejoy and Schertzer, 1995, 2007; Tchiguir-
inskaia et al., 2006; Sardeshmukh and Sura, 2009); this
cascade route to SOC is valid in systems with quasi stationary
fluxes in contrast to “classical SOC” which is only valid in the
less realistic zero-flux limit.

The cascades described above and the example in Fig. 2 are
discrete in scale; they only exactly obey Eq. (1) for integer
powers (n) of integer ratios: λ=λ0

n. In themselves they are
academic; real cascade processes are presumably continuous
in scale (i.e. they respect Eq. (1) for any λ within a wide
scaling range). In spite of this shortcoming, they nevertheless
display all the basic features of more realistic continuous in
scale (sometimes called “infinitely divisible”, e.g. She and
Levesque, 1994)models, in physics jargon they are called “toy
models”. Fig. 3a, b, c, d shows examples of more realistic
continuous in scale cascades.

This paper is structured as follows. In Section 2 we give
some basic theory (Section 2.1), we then discuss horizontal
analyses of models (Section 2.2), remotely sensed radiances
(Section 2.3), atmospheric boundary conditions (Section 2.4),
aircraft measurements (Section 2.5). In Section 3 we turn
our attention to the vertical, first discussing some theory of
anisotropic scaling/stratification (Section 3.1), implications
for aircraft measurements (Section 3.2), lidar measure-
ments of atmospheric cross sections (Section 3.3), drop
sondes (Section 3.4), and an intercomparison of the stra-
tification of different atmospheric fields (Section 3.5). In
Section 4 we consider the extension of spatial cascades to
the time domain; Section 4.1 is a discussion, Section 4.2
gives some theory, Section 4.2.4 some evidence of space–
time scaling from lidar, Section 4.3 from satellites and
numerical models. In Section 4.4 we discuss the extension
of the model to climate scales arguing that climate may be
a dimensional transition (still) multiplicative process. In
Section 5 we conclude.
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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2. Multiplicative cascades in the horizontal

2.1. Discussion

The ideal test of multiplicative cascades would be to have
large quantities of dynamical wind data in both the horizontal
and vertical directions, preferably on regular grids at fine
resolutions — or failing that — of other high quality in situ
measurements. But in situ data are often not what they seem:
in situ surface measurements are typically spatially clustered
over wide ranges of scale, the networks typically turn out to
be geometrical fractal sets (Lovejoy et al., 1986; Korvin et al.,
1990; Nicolis, 1993; Doswell and Lasher-Trapp, 1997;
Mazzarella and Tranfaglia, 2000; Giordano et al., 2006) and
require statistical corrections (Tessier et al., 1994). Similarly,
aircraft trajectories are also fractal and require a theory of
turbulence (isotropic/anisotropic) to interpret them (Lovejoy
et al., 2004, 2009c) and see Section 2.5 below). Finally the
state-of-the-art vertical analysis device— drop sondes— turn
out to have multifractal outages and also require special
analysis techniques (Lovejoy et al., 2009b) followed by
statistical corrections for biases. Sophisticated data assimila-
tion techniques such as 3D or 4D Var (e.g. Kalnay, 2003) are
increasingly used to attempt to overcome these difficulties,
but this at the price of introducing a number of ad hoc
regularity and smoothness assumptions.

Another obstacle to testing thepredictions of cascademodels
is that the atmosphere is “thin”: its scale height is≈10 kmso for
the cascades to operate over significant horizontal ranges, they
must be stratified, anisotropic: we need a theory of anisotropic
scaling turbulence (Section 3). It turns out that at least with
regard to aircraft data the two difficulties are linked: a theory of
anisotropic scaling turbulence is needed simply in order to
properly interpret the data (Section 3.2).

Alternatively, we can take advantage of the fact that the
different atmospheric fields are strongly nonlinearly coupled
over wide ranges of scale. From a cascade perspective, this
implies a model involving several interacting cascades (one for
each conserved flux); this is a generalization of the classical
Corrsin–Obhukov theory for passive scalar advection, (Corrsin,
1951; Obukhov, 1949) which involves nonlinear interactions
between energy and passive scalar variance fluxes. Due to these
couplings over wide ranges of scale, we expect fairly generally
that atmosphericfields— including remotely sensed radiances—
will display cascade structures. A straightforward way to
progress is therefore to exploit the large quantities of remotely
sensed data, we discuss this in Section 2.3; before that, we start
with an analysis of the output of numerical models which are
particularly easy to interpret.

2.2. Testing the predictions multiplicative cascades

2.2.1. The classical approach, conclusions from analyses and
reanalyses

We have outlined a model of the atmosphere consisting of
interacting cascades, each corresponding to a different scale
by scale conserved turbulent flux. In order to test the model,
we must have some way to determine the fluxes from the
observations. The usual approach has been to use isotropic
(2D, 3D) turbulence theories to decide a priori the appropri-
ate flux (typically the energy or enstrophy flux) and to predict
synthesis for atmospheric dynamics: Space–time cascades,
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the spectral exponent of wind, temperature and other
observables accordingly; the most important exponents
being β=5/3 (energy flux cascades), β=3 (enstrophy or
potential enstrophy cascades).

The existence of the special 2-D exponent β=3 — and the
long absence of a credible alternative theory with βN5/3 —

tempted even early investigators to “shoe-horn” their spectra
into thek−3mold. For example, by “eyeballing” four spectra over
less an octave in scale, (Julian et al., 1970) already concluded that
2.7bβb3.1 for the horizontal wind. When in the 1980's larger
data sets became available it was possible to make more direct
tests of 2D turbulence theory from atmospheric analyses (Boer
and Shepherd, 1983) and later the same methodology was
applied to the ECMWFERA 40 reanalyses (Strauss andDitlevsen,
1999; the result of applyingmoderndataassimilation techniques
to meteorological data). While Boer and Shepherd (1983) gave
cautious support toβ≈3and to a 2D interpretation, inhindsight,
with the benefit of a simple theory predicting β≈2.4 (see
below), their conclusions seem unconvincing (see Fig. 4a).
Similarly, when interpreting their reanalyses, (Strauss and
Ditlevsen, 1999) state that “β≈2.5–2.6… significantly different
than the classical turbulence theory prediction of 3”, but again
close to the value 2.4.

Today, we can revisit wind spectra using the state-of-the-
art successor to the (Strauss and Ditlevsen, 1999) ERA 40
reanalysis — the ECMWF interim reanalysis — and calculate
the spectrum directly without Strauss and Ditlevsen's,
complex 2D preprocessing. Fig. 4b shows the isotropic
spectrum of the zonal wind at each tropospheric 100 mb
level, compensated by the average k−2.4 behaviour so as to
accentuate the small deviations. Also shown in the figure are
straight reference lines. These are not regressions but rather
the predictions of the model presented here: the slopes are
those empirically estimated in the vertical direction from
drop sondes (Lovejoy et al., 2007). Regressions on the
reanalysis spectra from k=2 to k=30 (i.e. 5000–330 km)
give β differing by less than 0.05 throughout the data rich
lower 4 km, rising to only 0.2 at 10 km (≈200 mb). These
small differences could easily be the consequence of either
intermittent aircraft and/or sonde motion, see below (see
Lovejoy and Schertzer, in press). A complicating factor is that
new (unpublished) analyses show that there can be signif-
icant NS/EW anisotropy so that exponents can be different in
the two directions, see the discussion below on Generalized
Scale Invariance.

2.2.2. The classical approach, conclusions from aircraft data
The interpretation of aircraft data of horizontalwind spectra

continues to play an important role in supporting the 2D/3D
model. Fig. 4c conveniently summarizes and compares the two
largest campaigns to date; GASP and MOZAIC; again it can be
seen that any k−3 regime must be very narrow and that in any
case, k−5/3 behaviour at small scales followed by k−2.4 at large
scales (without any k−3 regime) explains the observations
quite accurately. By reproducing key figures and adding
appropriate reference lines, (Lovejoy et al., 2009c) show that
the same k−5/3 to k−2.4 behaviour with similar transition scales
(40–200 km) explains other aircraft wind spectra (Bacmeister
et al., 1996; Gao and Meriwether, 1998), and especially the
little cited but most revealing GASP long haul spectra (up to
4800 km in scale, Gage and Nastrom, 1986) which is nearly
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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perfectly k−2.4 with no hint of any k−3 regime. (Lovejoy et al.,
2009c) also find similar behaviour in tropospheric Gulfstream
4 scientific aircraft spectra (Fig. 9a); more details are given in
Section2.5, including an explanation for theorigin of theβ≈2.4
exponent as caused by small but nonzero aircraft slopes.

2.2.3. Continuing difficulties with the classical model and
inferences from numerical simulations

We have mentioned that theorists have produced a series
of complicated ad hoc conceptual models which involve a
small scale 3D direct (“downscale”) energy cascade, a larger
scale direct enstrophy cascade and finally a very large scale
indirect energy cascade; the whole system involving three
distinct sources of turbulent flux (e.g. Lilly, 1983). For
example, in order to accommodate the results of the GASP
experiment which notably showed that k−5/3 wind spectra
extended out to scales of several hundred kilometers, the
more sophisticated “Gage–Lilly” model (Fig. 4d) was devel-
oped (Lilly, 1989). This model involved many unsatisfactory
ad hoc features, especially the up-scale k−5/3 energy flux
regime from roughly 1 to ≈200 km (dashed line in Fig. 4d)
which Lilly describes as “escaped” 3D energy transformed to
quasi 2D stratified turbulence. The same unsatisfactory
feature was termed “squeezed 3D isotropic turbulence” by
(Högström et al., 1999). Other difficulties are the unknown
flux sinks in the 2-D/3-D transition region, an unknown large
scale energy flux dissipation mechanism (surface drag?), and
speculative energy and enstrophy flux sources at ≈2000 km.

In order to improve on these speculative mechanisms,
efforts have been made to reproduce “realistic” k−3 to k−5/3

transitions in numerical models. As mentioned earlier, this is
not a trivial question because of the possibility of “three
dimensionalization” of two dimensional flows discussed in
(Ngan et al., 2004). For the moment, the results are equivocal.
For example, some numerical weather models do not display
the transition (Palmer, 2001a), while others may display it
although over very small ranges e.g. the (Skamarock, 2004),
WRF (regional) model spectra are in fact very close to k−2.4,
see Fig. 4e. To date, the most convincing k−3 to k−5/3 transi-
tions innumericalmodels havebeenproducedusing the SKYHI
model on the earth simulator in Takayashi et al. (2006) and
Hamilton et al. (2008). In addition, Smith 2004 shows that in at
least some cases, the transition to the high wavenumber k−5/3

spectral “bump” is an artifact due to incorrectly “tuned” hy-
perviscosity. But even if the hyperviscosity is not to blame, as
pointed out in Lovejoy et al. (2009e) they have the poorest fit
to GASP observations precisely over the range≈400–3000 km
which their (painstakingly crafted) k−5/3 to k−3 transition is
supposed to explain. In other words, this model “success”may
make them less rather than more realistic!1

2.2.4. Estimating the fluxes in the dissipation and in the scaling
ranges

We have argued that even if we ignore observations of the
vertical structure, of remotely sensed fields and restrict our
synthesis for atmospheric dynamics: Space–time cascades,
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attention purely to observations of the horizontal wind, that
the 2D/3D model remains unconvincing. Returning to the
GASP (combined, short, medium, long haul) spectrum, we
can replace the complex Gage–Lilley model (schematic
Fig. 4d) by the much simpler wide range scaling model with
spurious k−2.4 behaviour at large scales, Fig. 4f. Below, we
shall see how this (vertical) exponent is spuriously detected
in the horizontal, and we will also show how — starting from
(nearly) first principles with small scale observations of the
solar constant and the efficiency of solar tomechanical energy
conversion— that the newwide range scaling but anisotropic
model can be used to predict the intensity and lifetime of
planetary scale structures.

In order to circumvent the isotropy/anisotropy issue
and to test the general predictions of multiplicative cas-
cades (Eq. (1)), we must analyze the data without relying
on any specific theories of turbulence; we must use an
approach that does not require a priori assumptions about
the physical nature of the relevant fluxes; nor of their scale
symmetries (isotropic or otherwise), the latter will in fact
turn to out to be anisotropic and hence nonclassical. If
atmospheric dynamics are controlled by scale invariant
turbulent cascades of various (scale by scale) conserved
fluxes φ then in a scaling regime, the fluctuations ΔI(Δx) in
an observable I (e.g. wind, temperature or radiance) over a
distance Δx are related to the turbulent fluxes by a relation
of the form:

ΔIðΔxÞ≈φΔxH ð3aÞ

(this is a generalization of the Kolmogorov law for velocity
fluctuations, the latter has H=1/3 and φ=εη, η=1/3
where ε is the energy flux to smaller scales). Without
knowing η or H — nor even the physical nature of the flux —

we can use this to estimate the normalized (nondimen-
sional) flux φ′ at the smallest resolution (Δx) of our data:

φ′ = φ= bφ N = ΔI = bΔI N ð3bÞ

where “bN” indicates statistical averaging.Note that if aflux ε is a
realization of a puremultiplicative cascade then the normalized
η power φ=εη i.e. εη/〈ε〉η is also a pure multiplicative cascade,
(bφN is the ensemble mean large scale, i.e. the climatological
value, it is independent of scale). The fluctuation, ΔI(Δx) can be
estimated in various ways; in 1-D a convenient method (which
works for the common situation where 0≤H≤1) is to use
absolute differences: ΔI(Δx)=|I(x+Δx)− I(x)| with Δx the
smallest reliable resolution and where x is a horizontal
coordinate, (this is sometimes called “the poor man's wavelet”;
other wavelets could be used). In 2-D, convenient definitions of
fluctuations are the (finite difference) Laplacian (estimated as
the difference between the value at a grid point and the average
of its neighbours), or themodulus of a finite difference estimate
of the gradient vector. The resulting high resolution flux
estimates can then be degraded (by averaging) to a lower
resolution L.

Following Eq. (1), the basic prediction of multiplicative
cascades applied to a turbulent flux is that the normalized
moments:

Mq = φq
λ

� �
= φ1h iq ð4aÞ
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obey the generic multiscaling relation:

Mq =
λ
λeff

 !K qð Þ
; λ = Learth = L; λeff = Learth = Leff ð4bÞ

where “bN” indicates statistical (ensemble) averaging and Leff
is the effective outer scale of the cascade. λ is a conve-
nient scale ratio based on the largest great circle distance on
the earth: Learth=20,000 km and the scale ratio λ/λeff is
the overall ratio from the scale where the cascade started to
the resolution scale L, it is determined empirically, although
from the foregoing discussion we expect Leff≈Learth so that
λeff≈1 corresponding to planetary scale cascades. Note that
bφ1N=bφλN=bφN i.e. the first moment is independent of
resolution since in that case the spatial and ensemble
averaging operators commute.

Since empirical data are nearly always sampled at
scales much larger than the dissipation scales, the above
scaling-range based technique for estimating fluxes has
widespread applicability. If instead we have dissipation
range data (for example if we estimate fluxes from the
outputs of numerical models at the model dissipation
scale), then the basic approach still works, but the
interpretation is a little different. To see this, we continue
with the example of the energy flux, recalling that at the
dissipation scale:

ε≈ν v− ·∇2v− ð5Þ

where ν is the viscosity, v the velocity. Standard
manipulations give:

ε≈ν ∑
3

i;j=1

∂vi
∂xj

+
∂vj
∂xi

 !2

ð6Þ

so that if Δx is in the dissipation range (e.g. the finest
resolution of the model) then:

Δv≈ ε
ν

� 	1=2
Δx ð7Þ

Since the models actually use hyper-viscosities with
hyper-viscous coefficient ν* and a Laplacian taken to the
power h (typically h=3 or 4), we have:

ε≈ν*v− ⋅∇2hv− ð8Þ

which leads to the estimate:

Δv≈ ε
ν*

� �1=2
Δxh ð9Þ

In all cases, we therefore have (independent of h):

φ′ =
Δv
Δvh i =

ε1=2

ε1=2
� � ð10Þ

Wesee that this is the same asEq. (3b), theonly difference is
that for the wind field, the exponent η=1/2 holds in the
dissipation range rather than η=1/3which holds in the scaling
regime. If we introduce Kη(q) which is the scaling exponent for
synthesis for atmospheric dynamics: Space–time cascades,
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the normalized η flux φ′=φ/bφN=εη/bεN η, then Kη(q)=
K(qη)−qK(η) which for universal multifractals yields Kη(q)=
ηαK(q) (note: K1(q)=K(q)), i.e. in obvious notation:

C1;η = ηαC1;1 ð11aÞ

(c.f. Eq. (2)) so that comparing the dissipation estimate
(η=1/2) and the scaling range estimate (η=1/3), we have:

C1;diss =
3
2

� �α
C1;scaling ð11bÞ

Since we find (for the wind field) that α≈1.8 we have
C1diss/C1scaling≈1.51.8≈2.07.

The extension of this discussion to passive scalars is also
relevant and shows that the interpretation of the empirically/
numerically estimated fluxes in terms of classical theoretical
fluxes can be nontrivial. Denoting by ρ the density of the
passive scalar, and χ its variance flux, the dissipation range
formula analogous to Eq. (5) is χ≈ρκ∇2ρ (κ is the molecular
diffusivity, assumed constant) leading to Δρ≈(χ/κ)1/2Δx
Fig. 5.Moments offields at 1000 mb for q=0. to 2.9 in steps of 0.1. The x axis is log10λ,
column is the GEM analysis (t=0). The rows top to bottom are temperature, east–west
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whereas the corresponding formula in the scaling range is
Δρ≈χ1/2ε−1/6Δx1/3 (the Corrsin Obukhov law)which has the
same dependency on χ, but which also involves the energy
flux; the combined effective flux φ≈χ1/2ε−1/6 measured by
the scaling method thus involves two (presumably statisti-
cally dependent) cascade quantities rather than just one. In
summary, although both dissipation and scaling ranges can
be used to test for multiplicative cascades and to quantify
their variability, the relation between the two normalized
fluxes is not necessarily trivial.
2.2.5. Tests on GEM, GFS numerical models and ERA40, ECMWF
interim, 20th century reanalyses

We can now return to the reanalyses mentioned above; we
summarize the salient points of (Stolle et al., 2009) who used
three years of the ERA40 project reanalyses based on the
ECMWFmodel (Uppala, 2005). In comparison,we refer tomore
limited results the most recent ECMWF reanalysis product, the
ECMWF “interim” reanalysis; these are somewhat higher
resolution versions of the reanalyses studied by (Strauss and
λ=Learth/L, Learth=20,000 km. The left column is the ERA40 reanalyses, the right
wind, humidity. For the parameters, see Tables 1a, 1b. From (Stolle et al., 2009).
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Table 1b
An intercomparison of the 1000 mb fields, the triplets representing the parameter estimates for integrations of t=0, 48, 144 h.

C1 α Leff (km) δ (%)

T (GEM) 0.125, 0.115, 0.112 1.64, 1.68, 1.69 25,700, 20,500, 25,700 0.27, 0.26, 0.80
T (GFS) 0.142, 0.138 1.72, 1.71 27,900, 26,000 0.59,0.60
U (GEM) 0.121, 0.122, 0.123 1.68, 1.62, 1.61 11,000, 11,000, 12,300 0.32, 0.36, 1.24
U (GFS) 0.114, 0.107 1.80, 1.84 12,300, 11,200 0.54, 0.64
h (GEM) 0.109, 0.106, 0.112 1.81, 1.80, 1.77 15,900, 13,800, 14,100 0.51, 0.49, 1.51
h (GFS) 0.128, 0.128 1.86, 1.81 21,700, 20,900 0.46, 0.46

Table 1a
Intercomparison of initial (t=0) fields for at 1000, 700 mb. The triplets of values are for, ERA40, GEM, GFS respectively. The aircraft estimates are from Section 2.5
and are at about 200 mb (the figure in parentheses is the Section 2.5 result, the second is corrected by the factor (3/2)1.8=2.07 needed— at least for the wind field—

to estimate the dissipation scale C1 from the scaling range C1, see Eq. (11)).

C1 α Leff (km) δ (%)

T (1000) 0.113, 0.125, 0.142 1.94, 1.64, 1.72 21,900, 25,800, 28,000 0.31, 0.27, 0.59
T (700) 0.094, 0.077, 0.080 2.11, 1.94, 2.00 14,500, 8300, 8600 0.29, 0.47, 1.02
T (aircraft) (0.053), 0.110 2.15 5000 0.5
U (1000) 0.105, 0.121, 0.114 1.93, 1.68, 1.80 12,900, 11,000, 12,300 0.33, 0.32, 0.54
U (700) 0.096, 0.104, 0.082 1.93, 1.86, 1.87 12,000, 11,000, 9000 0.24, 0.29, 0.83
U (aircraft) (0.046), 0.095 2.10 25,000 0.8
h (1000) 0.121, 0.109, 0.128 2.03, 1.81, 1.86 19,800, 15,900, 21,700 0.33, 0.51, 0.46
h (700) 0.094, 0.100, 0.091 1.75, 1.60, 1.74 11,000, 11,800, 9000 0.26, 0.37, 0.46
h (aircraft) (0.055), 0.114 2.10 10,000 0.5

Fig. 6. a: EW analysis of 700 mb Laplacian of the zonal wind (left, top),
Laplacian of the surface pressure (right, top) for every 6 h at 42o N. The
bottom row shows the same fields but from the whole planet averaged over a
year and then the Laplacian taken. The parameters are daily wind:
C1=0.090, outer scale=12,600 km (c.f. ERA40: C1=0.096, outer sca-
le=12,000 km), daily surface pressure: C1=0.10, annual wind: C1=0.062,
outer scale ≈105 km, annual pressure: C1=0.054, outer scale ≈107 km. b:
This shows the spatial analysis of the Laplacian of the time flux of the daily
0.995 sigma level (near surface) temperature averaged over longitudes from
1891 to 2006 and for different latitude bands, from the 20th C reanalysis in
the EW direction. The parameters are C1=((0.089, 0.095), (0.095, 0.095),
(0.108, 0.143), (0.092, 0.112)), outer scale=((22000, 170000),
(16000,32000), (34000,34000), (40000,40000)) km (all top to bottom, left
to right). The mean is 0.104±0.018, this is close to but lower than the
1000 mb T in Table 1a, and the outer scale is C1 and the (geometric) mean
outer scale is ≈37000 km which is slightly larger. Note that the reference
scales used in the figure are 20000 cos(latitude) so that the value λ=1
corresponds to 19700, 17300, 12800 and 6800 km for 10, 30, 50, 70 degrees
latitude.
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Ditlevsen, 1999). We also include some results on the
interesting 20th Century reanalysis (Compo et al., 2006, in
preparation), which has the advantage of allowing long time
behaviour tobe studied (≈110 years). Recall that a reanalysis is
by no means a pure empirical field, it is rather a highly
elaborated “product” obtained in the ERA40 and ECMWF
interim cases by using respectively sophisticated 3-D and 4-D
variational data assimilation techniques, and in the 20th
century reanalysis by using an ensemble Kalman filter method
both of which are based on various smoothness and regularity
assumptions (i.e. they don't take the strong resolution
dependencies — Eq. (1) — into account, they assume that at
scales smaller than one pixel K(q)=0).

Fig. 5a–f shows the result for the lowest level (1000 mb)
horizontal wind temperature and humidity fields respectively
(due to topography, the interpretation of the global 1000 mb
field is not without problems; however the results at higher
levels were qualitatively and quantitatively very similar, see
(Stolle et al., 2009) and Tables 1a, 1b). From the existence of
converging straight lines at λ=λeff, we see that the predictions
of the cascade model are accurately obeyed (we quantify this
below). This “effective outer scale” is the scale at which a pure
multiplicative cascade would have to start in order to explain
the observed variability over themeasured range. The fact that
it is of the order of the largest great circle distance 20,000 km is
as expected. In some cases, LeffN20,000 km (λeffb1) which
simply indicates that even at 20,000 km there is a residual
variability due to interactions with other fields. Leffb20,000 km
(λeffN1) indicates on the contrary that it takes a certain range of
scales for the cascade to develop.

What is particularly striking about thefigure is that not only
are the outer scales near those of the planet, but in addition that
power laws are accurately followed up to at least≈5000 km so
that Eq. (1) holds over nearly the full available range. This is
perhaps surprising since one might have expected a larger
range of scales to be required before this “asymptotic” cascade
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new synthesis for atmospheric dynamics: Space–time cascades,
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Fig. 6 (continued).
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structure is attained at smaller scales. Similarly, Fig. 6a shows
analogous spatial cascade structures in the 20th century
reanalysis, here using both daily and yearly averaged pressure
and wind data. In the latter case, the fluxes and hence the
cascades are different corresponding to weather and climate
scale processes respectively. In Fig. 6b we show the east–west
cascade structures of the daily near surface (0.995 sigma level)
temperatures averaged over the period 1891–2006. We see
that there is somebut notmuch latitudinal variation;we return
to this in the time domain in Section 4. Before proceeding, we
may alreadymention that for the zonal wind analyses, we used
the (absolute, finite difference) Laplacian which is an estimate
of the energy flux. This already indicates that the energy flux
does indeed cascade throughout the available range, a point to
which we return in Section 4.1.

In order to quantify the accuracy to which this cascade
scaling is obeyed, we can determine the small deviations by
estimating the mean absolute residuals:

Δ = j
�

log10 Mq

� 	
−K qð Þlog

10
λ=λeff

� 	j; δ ¼ 100 × ð10Δ � 1Þ ð12Þ

For each q, Δ is determined from the linear regression on
Fig. 4b; the slopes yield K(q) and λeff is determined from the
intercept (fixed to be the same for all q). The overbar in Eq. (12)
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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indicates averaging over the different λ (at intervals of 100.2)
over the available range of scales up to 5000 km and over the
moments 0≤q≤2 (corresponding to N90% of the data). δ is the
percentage deviation; we typically find δ≈±0.5%, the details
are given in Tables 1a, 1b along with estimates of the outer
scales and the corresponding characterization by universal
multifractals (i.e. the parameters C1, α in Eq. (2)).

From the table, we see that very similar results were found
for forecasts of a Canadian global weather model GEM
(Fig. 5b, d, f) and the National Weather Service GFS model;
for example the deviations are of the order ±0.3% for the
reanalyses, ±0.3% for GEM and±0.5% for GFS (Tables 1a, 1b).
These small deviations allow us to conclude that the analyses
and models accurately have a cascade structure. Overall, from
the table we can also see that the K(q) “shape parameter” —
the difficult to estimate multifractal index α — is roughly
constant at α=1.8±0.1. From Table 1a, we see that the scale
by scale characterization of the intermittency near the mean
(C1) has a tendency to decrease with altitude, this effect being
somewhat amplified by a decrease in the external scale
(which decreases all the moments by the same factor).
Interestingly, the C1 is very similar for the different fields (it is
slightly larger for the humidity), although as expected from
our discussion of the difference between dissipation and
scaling range flux estimates the C1 are quite a bit larger than
synthesis for atmospheric dynamics: Space–time cascades,

http://dx.doi.org/10.1016/j.atmosres.2010.01.004


16 S. Lovejoy, D. Schertzer / Atmospheric Research xxx (2010) xxx–xxx

ARTICLE IN PRESS
those measured by aircraft (Section 2.5), also shown in the
table, the difference is roughly the factor of 2 estimated in
Eq. (11b) for the velocity field (i.e. the dissipation versus the
scaling range flux estimate).

In Table 1b, we compare the two forecast models (GEM,
GFS) in order to see if there are any systematic trends as the
model integrations increase (i.e. as the effects of initial
conditions becomes less and less important). No systematic
trends are obvious, although for the 144 hour GFS forecast,
the scaling is notably poorer (although still excellent) with
deviations less than about ±1.5%. Note that because even the
longest available forecast is still statistically influenced by the
analyses, these results do not (quite) establish that the long
time behaviour of the model is cascade-like. Below, we
examine the cascade behaviour in the time domain.

We also show the results using the much longer 20th
century reanalysis. Fig. 6a shows the EW analyses of the
(finite difference Laplacian) flux from the 700 mb zonal wind
and surface pressure. The top row shows the results at
“weather scales”, i.e. the daily or 6 hourly fields with outer
scales and C1's close to those for ERA 40 (Table 1a). the
bottom row shows the result for the climate resolution fields
obtained from the annually averaged fields. The C1 para-
meters are not too different, but the outer scales are much
larger corresponding to very long climate scales (see the
corresponding Figs. 19b, 20a). Finally, we can exploit the long
20th century reanalyses to obtain good statistics at single
latitude bands and hence study the latitudinal dependence of
the cascades; see Fig. 6b for the near surface temperature
(0.995 sigma level). Although there is some variation in both
C1 and the outer scale, they are surprisingly small.

2.3. The cascade structure of radiances

2.3.1. Ground and space radar measurements of rain
An early empirical test ofmultiplicative cascademodelswas

made on radar reflectivities of rain (Fig. 7a, (Schertzer and
Lovejoy, 1987)). This analysis extended over the range 1–
128 kmwhich is roughly the widest range possible for a single
ground based radar. From the linearity of log Mq versus log λ
shown in the figure, we see that it gives strong support for the
multiplicative cascade idea. The radar reflectivity factor is
proportional to the sum of the squares of the drop volumes so
that it is nontrivially related to the rain rate (which is
proportional to the sum over the drops of the products of the
volumeswith thevertical fall speeds).However— at least above
a minimum detectable threshold — the radar reflectivity is an
accurately measured atmospheric signal and is strongly
coupled with the rain rate so that the cascade structure of the
reflectivities is strong evidence in favour of the cascade
hypothesis for rain and the other fields.

In Fig. 7a we see that the regressions over the observed
scales apparently cross at about log10λ=−0.2 corresponding
to a scale 32,000 km. We can extend the ground based radar
range of 128 km by using ground measurements of rain rates
from rain gauges; Fig. 7b shows the result using 29 years of
NOAA's Climate Prediction Center hourly US precipitation
data, gridded and smoothed (Higgins et al., 2000) (the
number of data points used in the figure are 21×13×
254,040: (east–west)×(north–south)×(time). We return to
a temporal analysis of this data in Section 4). We see that the
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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CPC precipitation (here, rainrate) data also has a clear cascade
structure in the EW and NS directions, and that the
extrapolated outer scale is nearly the same as for the ground
based radar reflectivities in Fig. 7a.

In order to achieve even larger scale estimates, networks
of ground based radar can be used to obtain continental scale
reflectivities. However, the resulting mozaics involve large
numbers of partially overlapping radars giving coverage
which is far from uniform. In order to directly verify the
cascade behaviour up to planetary scales, it is therefore better
to use satellite data. Fig. 7c shows the result using the first
orbiting weather radar, the precipitation radar (PR) instru-
ment on the Tropical Rainfall Measuring andMission (TRMM)
satellite (Lovejoy et al., 2008a). From the figure we see that
again, the scaling (log–log linearity) is excellent, the main
exception being for the low q values. Adopting the convention
that any number x0=1 if x≠0 and x0=0 if x=0, we find
that the q=0 curve corresponds to the scaling of the raining
areas. However the PR instrument has a very high minimum
detectable signal: it is double the mean value and such
thresholding breaks the scaling. In Lovejoy et al. (2008a) with
the help of numerical multifractal simulations this scale
breaking (curved lines for low q) was reproduced as a simple
threshold effect. If we use a standard power law Z–R relation:
Z=aRb and assume the statistics follow the universal multi-
fractal form, then Eq. (11a) shows that bα=C1Z/C1R=0.63/
0.50=1.26. Taking the (spatial) α=1.5 (an estimate sensi-
tive to low and zero rain rates, hence to be taken with
caution), then we find b≈1.2 which is a little lower than the
usually cited b≈1.4 for TRMM reflectivities, we return to this
question when considering the corresponding temporal
cascades.

2.3.2. Long and short wave radiances, passive microwaves: the
scaling of the earth's energy budget

By estimating the Laplacian of the horizontal wind at the
model and reanalysis dissipation scales, we have already
given evidence that the energy flux does indeed cascade over
the entire available range of scales. By using satellite radiance
data, we will now show that the corresponding energy
forcings and sinks (i.e. the short and long wave radiances) are
also scaling with corresponding cascade structures — includ-
ing cascade parameters and outer scales. To do this, we again
used the TRMM satellite which in addition to the Precipita-
tion Radar instrument had a visible and infra red (VIRS; 5
wavelengths) instrument as well as a passive microwave
(TMI; 5 wavelengths) instrument. These were analyzed in
Lovejoy et al., 2009a, the corresponding analyses for the key
energy containing short wave (visible) and long wave
(thermal IR) wavelengths are shown in Fig. 7d, e. We see
once again excellent scaling to within about the same degree
of accuracy but with somewhat smaller outer scales;
Tables 2a and 2b show the details and comparison with a
much more limited earlier study (Lovejoy et al., 2001). These
results are bolstered by those from thermal infra red data
from the geostationary satellite MTSAT (Fig. 7f, (J. Pinel, in
preparation)). Sections from 30oS to 40oN, and over a range of
about 13,000 km in the east–west over the Pacific ocean were
used; every hour for two months (1440 images in all). It is
interesting to note that the MTSAT analyses were carried out
in both east–west and north–south directions, Fig. 7f is the
synthesis for atmospheric dynamics: Space–time cascades,
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Fig. 7. a: The moments Mq of the normalized radar reflectivity for 70 constant altitude radar maps at 3 km altitude from the McGill weather radar (10 cm
wavelength, 1 km pulse length for the q values indicated). The basic figure was adapted from Schertzer and Lovejoy (1987) in Lovejoy et al. (2008a) who added the
straight lines converging to an outer scale at 32,000 km. b: Analysis of the CPC hourly gridded precipitation (rainrate) product for the years 1948–1976. The data
were detrended annually and daily, there were 21×13 series, each 254,040 points long. Stations were gridded using a modified Cressman Scheme into 2°×2.5°
boxes that extended over the region long: −122.5o to −72.5o (every 2.5o), lat: 30o to 54o (every 2o). Green points are for the EW analysis, pink are from the NS
analysis of temporal flux estimates. The parameters were C1NS=0.51, outer scale=32,000 km, C1EW=0.49, the outer scale=32,000 km. The curves are for
moments of order q=0.0, 0.1, 0.2, ...1.9, 2.0. c: The same as panel a except for the TRMM reflectivities (4.3 km resolution, 1100 orbits). The moments are for q=0,
0.1, 0.2, … 2, from (Lovejoy et al., 2008a). The poor scaling for the low q values can be explained as artifacts of the fairly high minimum detectable signal.
Lref=20,000 km so that λ=1 corresponds to 20,000 km, the lines cross at the effective outer scale≈32,000 km, C1≈0.63. d: TRMM visible data (0.63 mm) from
the VIRS instrument, channel 1 with fluxes estimated at 8.8 km. Only the well— lit 15,000 km orbit sections were used. Lref=20,000 km so that λ=1 corresponds
to 20,000 km, the lines cross at the effective outer scale≈9800 km (reproduced from Lovejoy et al., 2009a). e: Same as Fig. 7d except for VIRS thermal IR (channel
5, 12.0 μm), external scale 15,800 km (see Table 2a for details, reproduced from Lovejoy et al., 2009a). f: Mq versus log10λ for 2 months (1440 images, 1 hour
resolution in time) of MTSAT, thermal IR, 30 km resolution over the region 40o N to 30o S, 130o east–west over the western Pacific, the average of east–west and
north–south analyses. Lref=20,000 km so that λ=1 corresponds to 20,000 km, the lines cross at the effective outer scale ≈32,000 km (from Pinel et al., in
preparation) and C1≈0.074 (close to the TRMM thermal IR results, Table 2a, VIRS 4, 5).
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Fig. 7 (continued ).

18 S. Lovejoy, D. Schertzer / Atmospheric Research xxx (2010) xxx–xxx

ARTICLE IN PRESS
mean, presumably closer to the TRMM analyses which were
made along the satellite track, typically oriented N–E or S–W.
In Fig. 18a we show the E–WMTSAT analysis (compared with
the temporal analysis of the same data) showing that the
scaling is not so good at larger scales — but that the NS
statistics almost exactly compensate leading to the excellent
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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scaling in Fig. 7f. The scaling behaviour of these radiances is
consistent with the large scale cascade structure of the wind
and temperature fields. This is because while the
corresponding ranges are clearly not the source and sink
free regimes postulated for a turbulent inertial range, these
cascades imply that the energy sources and sinks are
synthesis for atmospheric dynamics: Space–time cascades,
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Table 2a
This shows the characteristics of the five visible and infra red channels (VIRS instrument, TRMM and two AVHRR channels). The H estimates are based on structure
functions. The mean residues (δ, Eq. (12)) are given both with respect to the restrictive hypothesis that the cascades are universal multifractals (i.e. they respect
the cascade Eq. (4) with the universal form for K(q), Eq. (2) with α=1.5, C1=0.08), and for the less restrictive hypothesis, that they only respect Eq. (4).

Channel Wavelength (μm) Resolution (km) δ (%) line b δ (%) uni c α C1 H Leff (km)

VIRS 1 0.630 8.8 0.60 0.71 1.35 0.077 0.19 9800
VIRS 2 1.60 8.8 0.83 1.37 1.41 0.079 0.21 5000
VIRS 3 3.75 22. 1.10 1.58 1.99 0.065 0.27 17,800
VIRS 4 10.8 8.8 0.48 0.53 1.56 0.081 0.26 12,600
VIRS 5 12.0 8.8 0.47 0.81 1.63 0.084 0.33 15,800
AVHRR 14 vis a 0.58–0.68 2.2 1.92 0.075 0.32 18,700
AVHRR 14 IR a 11.5–12.5 2.2 1.91 0.079 0.36 25,200

a These were from 153 visible, 214 IR scenes each 280×280 km over Oklahoma, from Lovejoy et al.( 2001) and Lovejoy and Schertzer (2006).
b This is the residual with respect to pure power law scaling.
c This is the residual with respect to universal multifractal scaling with α=1.5, C1=0.08, only the outer scale is fit to each channel.
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themselves scaling so that the basic assumptions of the
cascade model are still apparently satisfied. In addition, the
radiances and cloud fields are strongly nonlinearly coupled so
that the scaling of the radiances is in itself strong evidence for
the scaling of the clouds and hence presumably of the
dynamics. In this regard the statistical physics problem of the
interactions of radiation and scaling cloud fields is pertinent
see e.g. Lovejoy et al. (1990), Davis et al. (1993), Borde and
Isaka (1996), Naud et al. (1996), Schertzer et al. (1998),
Lovejoy et al. (2009d), Watson et al. (2009).

2.4. Atmospheric boundary conditions: the topography

Physically, the TRMM reflectivity signal comes purely
from the atmosphere whereas the visible and infra red
radiances depend on the states of both the atmosphere and
the surface. Just as various surface features affect the
radiances, so they also directly affect the atmosphere; they
are important lower boundary conditions. Another important
atmospheric boundary condition is the topography; if it had a
strong characteristic scale then it could impose this on the
atmospheric fields and break the scaling. Fig. 8a shows
the spectral analysis of the largest statistical study of the
topography to date showing that it has accurate spectral
scaling (roughly E(k)≈k−2.1) over a range of roughly 105 in
scale. This is the latest update of the original≈k−2 spectrum
first proposed by (Venig-Meinesz, 1951), itself updated re-
peatedly over the last 50 years (Balmino et al., 1973; Bell, 1975;
Fox and Hayes, 1985; Gibert and Courtillot, 1987; Balmino,
1993; Lavallée et al., 1993). Note that a pure multiplicative
cascade has a spectrum E(k)≈k−β with β=1−K(2); this is
because spectra are Fourier transforms of the autocorrelation
function which is a second order (q=2) moment. For
Table 2b
This shows the characteristics of the five TMI channels and the PR reflectivity from L
on structure functions.

Channel Wave-length Resolution (km) δ (%) line a

TMI1 3.0 cm (10.6 GHz) 111.4 1.40
TMI 3 1.58 cm (19.35 GHz) 55.6 1.71
TMI 5 1.43 cm (22.24 GHz) 27.8 1.62
TMI 6 8.1 mm (37 GHz) 27.8 1.73
TMI 8 3.51 mm (85.5 GHz) 13.9 1.40
TRMM Z 2.2 cm (13.2 GHz) 4.3 6.0*

a This is the residual with respect to pure power law scaling.
b This is the residual with respect to universal multifractal scaling with α=1.5, C
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observables related to the fluxes by Eq. (3a) the extra ΔxH

corresponds to k−H
filtering so that β=1−K(2)+2 H.

Fig. 8b shows the cascade structure of the topographic
gradients obtained by combining four different data sets
spanning the range 20,000 km down to sub-metric scales. The
cascade structure holds quite well until around 40 m.
(Gagnon et al., 2006) argues that this break is due to the
presence of trees (for the high resolution data set used over
Germany, 40 m is roughly the horizontal scale at which
typical vertical fluctuations in the topography are of the order
of the height of a tree). Over the range of planetary scales
down to ≈40 m, it was estimated that the mean residue of
the universal scaling form with parameters C1=0.12,
α=1.79 (for all moments q≤2) was ±45% over this range
of nearly 105 in scale (this error estimate was for the
“reduced” moments bφq>(1/q), i.e. the definition is a little
different from Eq. (12) here, so the values are not directly
comparable).

2.5. Aircraft measurements of wind, temperature, humidity,
pressure and potential temperature

2.5.1. The biases in the wind statistics
We mentioned that aircraft do not fly on perfectly flat

trajectories, that over significant ranges of scale, their trajecto-
ries are typically fractal; this opens the possibility that their
verticalfluctuationsmight significantly influence theirmeasure-
ments. This has been confirmed on both stratospheric flights at
roughly constant Mach number (Lovejoy et al., 2004) and in
troposphericflights at roughly constant pressure levels (Lovejoy
et al., 2009c). The latter results are particularlypertinent sinceall
the published tropospheric turbulence campaigns have used
data from roughly isobaric flights (or flights with other sources
ovejoy et al, (2009a). All used vertical polarization. The H estimates are based

δ (%) uni b α C1 H Leff (km)

1.55 1.35 0.255 0.50 15,900
1.93 1.76 0.193 0.331 6900
1.82 1.93 0.157 0.453 5000
1.95 1.76 0.15 0.377 4400
1.70 1.90 0.102 0.238 6300
4.6* 1.50 0.63 0.00 32,000

1=0.08, only the outer scale is fit to each channel.
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Fig. 8. a: A log–log plot of the spectral power as a function of wavenumber for four Digital Elevation Models. From right to left Lower Saxony (with trees, top),
without trees (bottom), continental US (in grey, at 90m resolution), GTOPO30 and ETOPO5 (lower and upper left hand black curves). A reference line of slope
−2.10 is shown for comparison. The small arrows show the frequency at which the spectra are not well estimated due to their limited dynamical range (for this
and scale dependent corrections, see Gagnon et al., 2006). b: Log/log plot of the normalized momentsMq versus the scale ratio λ=Lref/l (with Lref=20,000 km) for
the three DEMs (circles correspond to ETOPO5, X's to U.S. and squares to Lower Saxony). The solid lines are there to distinguish between each value of q (from top
to bottom, q=2.18, 1.77, 1.44, 1.17, 0.04, 0.12 and 0.51). The trace moments of the Lower Saxony DEM with trees for q=1.77 and q=2.18 are on the graph
(indicated by arrows). The theoretical lines are computed with the global K(q) function. Figure reproduced from Gagnon et al. (2006).
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of small vertical drift caused by fuel consumption or other
factors). This paper provides a detailed analysis based on 24
flight segments (“legs”) of the Gulfstream 4 (NOAA) aircraft
each 1120 km long at 1 s (≈280 m) resolution (this experiment
is described in detail in (Hovde et al., 2009); it involved 10
aircraft flights over a roughly 2 week period over the northern
Pacific each dropping the 20–30 drop sondes.

Fig. 9a shows the ensemble spectra for the altitude, pressure,
longitudinal and transverse wind components and for the
temperature and humidity. For clarity, the spectra are displaced
in the vertical and in order to amplify the deviations from k−5/3
Fig. 9. a: Top bottom: this shows the compensated pressure (red), altitude (green
orange, bottom). Reference slopes corresponds to k−5/3 (flat), k−2.4 and k−2. The
magnitude. Units of k: (km)−1. Adapted from Lovejoy et al., (2009c). b: Coherencies
pressure (blue) and altitude (red). Solids are coherencies; those greater than ≈0.2
Thick dashed lines are phases, thin purple dashed lines are the one standard deviatio
to the smaller number of samples). A positive phase means that the wind leads (p
Lovejoy and Schertzer (in press).
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scaling theyhavebeennormalizedor “compensated”bydividing
by the theoretical Kolmogorov spectrum (k−5/3) so that flat
regions thus have spectra≈k−5/3. In addition, in order to show
thebehaviourmore clearly—with the exceptionof the lowest 10
wavenumbers —we have averaged the spectrum over logarith-
mically spaced bins, 10 per order of magnitude. From the figure
we can make out the following features a) the altitude and
pressure spectra show that there are three regimes character-
izing the trajectory (roughly b3 km, 3–40 km and N40 km),
b) there are two regimes characterizing the wind (roughly
b40 kmandN40 km) and c) a single regime for temperature and
), east–west, north south winds (middle), humidity and temperature (blue
spectra are for 24 legs each 1120 km long, averaged over 10 per order o

(C, right axis) and phases (θ in radians, left axis) of the longitudinal wind with
are statistically significant, they are highly significant over most of the range
n confidence intervals for the phases (they increase at lowwavenumbers due
ressure or altitude), a negative phase, that it lags behind. Reproduced from
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humidity. Detailed leg by leg analysis shows that the exact
transition point to the large scale regime varies considerably
from leg to leg, 40 km being only an average. In order to
understand this better, (Lovejoy et al., 2009c) considered the
spectral coherencies and phase relations between the altitude
and pressure wind, temperature and humidity.

Fig. 9b shows an extract of the latter results for simplicity
showing only the results for the longitudinal (the along
trajectory) component of the wind. We calculated the cross-
spectrum which is a kind of wavenumber by wavenumber
cross-correlation coefficient. However, unlike the usual cross-
correlation, it is complex-valued hence it is usual to introduce
the modulus — called the “coherency” (C) — and argument,
Fig. 10. a: Cascade structures for the fields strongly affected by the trajectories: the
left). From Lovejoy et al. (2010). b: Same as panel a but for the fields that are relative
right), log potential temperature (lower left right). From Lovejoy et al. (2010). The

Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
the “phase” (θ; see e.g. Landahl andMollo-Christensen, 1986).
An important difference between the coherency and a cross-
correlation is that C is always positive; in Fig. 9b, CN≈0.2
implies a statistically significant relation. On the other hand,
a positive phase in Fig. 9b implies that the wind leads
(pressure or altitude), a negative phase, that it lags behind.
From the figure we see that between about 4 and 40 km, the
altitude leads the wind but the pressure lags behind: the
situation is reversed at larger scales (smaller wavenumbers).
The direct interpretation is that for the higher wavenumbers
((4 km)−1NkN(40 km)−1, corresponding to time scales of
10–150 s) the aircraft autopilot and inertia cause the change
in altitude with the pressure then following the altitude. For
longitudinal wind (top left), the transverse wind (top right), pressure (lower
ly unaffected by the trajectory: temperature (top left), relative humidity (top
reference scale is at 20,000 km, the resolution is 280m.
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the smaller wavenumbers (kb(40 km)−1), the situation is
reversed with the pressure changes leading (presumably
causing) the change in wind and altitude; this is the regime
where the aircraft tightly follows the isobars.

The coherency and phase analysis suggests that the main
effect of the trajectory fluctuations is on the wind field and that
its influence will be smaller for the other atmospheric fields.
Going beyondphases and coherencies, let's consider the detailed
statistics of the trajectories. For scales less than about 4 km, the
aircraft inertia smoothes them out; the main variations are
smooth and are associatedwith various rollmodes and the pilot/
autopilot response. However, at scales from about 4 to 40–
100 km (and from≈3 to about 300 km for the stratospheric ER-
2 trajectories along isomachs), the trajectory is fractal with the
altitude lagging behind the (horizontal) wind fluctuations.
Finally at scales N≈40 km the aircraft follows the isobars quite
closely so that the wind lags behind the pressure. These
conclusions were reached by considering the average for 24
aircraft legsflying between roughly 11 and13 km, each 1120 km
long as well as through a leg by leg analysis which showed
considerable variability in the scale at which these transitions
occurred. According to this analysiswemay anticipate that there
will be a strong effect of the variability (indeed, intermittency) of
the aircraft altitude on the measurements — at least for scales
smaller than about 40 km where the wind leads the altitude,
imposing its strong intermittency on the aircraft.

From Fig. 9a, we see that this is also the regime where the
wind spectrum follows the k−2.4 rather than k−5/3 law;
(Lovejoy et al., 2009c) argue that it is this “imposed” vertical
displacement that leads to the spurious appearance of the
vertical spectral exponent ≈2.4 (see the discussion of the
vertical statistics in Section 3). It is significant that detailed
re-examination of all the major tropospheric campaigns
(GASP, Gage and Nastrom, 1986), MOZAIC, (Cho and
Lindborg, 2001; Lindborg and Cho, 2001) and also (Gao and
Meriwether, 1998)) display nearly identical statistics i.e.
transitions from ≈k−5/3 to ≈k−2.4 behaviours at average
scales 30–200 km. Finally, application of the anisotropic
scaling model on the individual flight legs discussed in
Section 3 shows that it can explain the first order structure
function statistics to within ±7% over the range 0.28–
500 km so that the break is indeed likely spurious.

It is interesting that the temperature and coherency/phase
analysis shows that over the regime (40 km)−1bkb(3 km)−1

there are only low coherencies and small phases for both,
becoming statistically insignificant for kb(100 km)−1. The
most significant — the temperature phases — indicate that
Table 3a
The optimum parameters at the 200 mb level (roughly the aircraft altitude, bold fac
the ERA40, GFS and GEM reanalysis, models (estimated from the model hyper diss
principle value is the mean and the “±” indicates the model to model spread about
(GEM), 50,000 (ERA40) so that the geometric mean but no spread is given. For the C1
is the same but increased by the factor 2.07 as a rough attempt to correct for the diffe

C1 α

T (200 mb) 0.075±0.05 1.89
T (aircraft) (0.107), 0.056 1.78
U (200mb) 0.078±0.006 1.88
U (aircraft) (0.088), 0.040 1.94
h (200 mb) 0.098±0.012 1.66
h (aircraft) (0.083), 0.040 1.81

Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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there is a lag with respect to the altitude, as expected if the
altitude fluctuations were imposed. The overall weak coherency
between the trajectory statistics and the temperature and
humidity fluctuations is thus consistent with their excellent
spectral scaling k−β over the entire range (Fig. 9a).

2.5.2. Aircraft estimates of horizontal cascade parameters
From the coherency and phase analyses it is at least plausible

that the aircraft can adequately determine horizontal temper-
ature, humidity and potential temperature statistics — since
these have low coherencieswith the altitude and pressure— but
also the transverse wind — at least over the range where the
coherency is low, i.e. up to about 30–50 km. Beyond that, we
expect that the aircraftwill spuriouslymeasure the verticalwind
statistics; e.g. the spectrum k−2.4 indicated in Fig. 9a.

We can now refer the reader to Fig. 10a,b which shows the
flux analysis results for the longitudinal, transverse wind,
pressure, temperature and humidity, potential temperature.
(Lovejoy et al., 2010) analyzed this in detail concluding that as
far as estimating horizontal scaling parameters is concerned, that
the range 4–40 km is optimal (between the dashed lines in the
figures): at smaller scales the trajectory is too turbulent while at
the longer scales, one obtains isobaric rather than isoheight
statistics.Wenevertheless see fairly convincing cascade structure
for the wind (Fig. 10a) — at least while (as in Fig. 9a) the
temperature, humidity and potential temperature (Fig. 10b)
show excellent scaling throughout. We could also mention that
the outer scales (except for altitude) are of the order of the size of
the earth although thewind is somewhat larger— the variability
being presumably increased by the variability of the altitude
(which is also cascade-like with outer scale of 30–50 km see
(Lovejoy et al., 2010)). Table 3a and 3b compares the parameter
estimates using the optimal range.

3. The vertical stratification

3.1. Discussion

The horizontal cascade structures discussed in Section 2
covered scales starting near those of the planet, hence if they
are realizations of an isotropic turbulent process, it must be two
dimensional. However, the same scaling regimes continue on
downto scalesmuchsmaller than the scale thickness (≈10 km)—
in the case of aircraft and lidar— down to≈100–300mwhich is
much too small to be part of a 2-D turbulent regime. We are
therefore lead to the conclusion that atmospheric scaling cannot
have the same exponents in the vertical as in the horizontal. The
e) are given for the temperature, zonal wind and humidity for the analysis o
ipation scales up to 5000 km, taken from Table 2 of Stolle et al. (2009)). The
the mean. For h (200 mb) the model values for Leff were 10,000 (GFS), 33,000
aircraft estimates, the second value is from Table 2, the first (in parentheses)
rence in the fluxes estimated in the scaling and dissipation regimes (eq. 11a)

Leff δ

±0.04 10,500±2000 0.6
5000 0.5

±0.03 13,700±4000 0.4
25,000 0.8

±0.10 25,000 0.6
10,000 0.5
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Table 3b
Horizontal parameter estimates. These are over the range 100 km down to 2 km except for z which is over the range 20 km to 0.5 km. Error estimates only for
those which are apparently unaffected by the aircraft trajectory, they are half the difference of the parameters when estimated over the range 200 km to 20 km and
those estimated from 20 km to 2 km. Note that the aircraft α estimates are a bit too big since the theoretical maximum is α=2. They were estimated with the
double trace moment technique which depends largely on the statistics of the weaker events and these could be affected by aircraft turbulence. The H parameters
were estimated from spectral exponent β and the value K(2) using the equation H=(β−1+K(2))/2. Since the humidity is very low at the aircraft altitude, the
equivalent potential temperature was extremely close to the potential temperature, hence the statistics were indistinguishable and are therefore not explicitly
given in the table. The parameter values for the pressure should be taken with caution since the aircraft was attempting to follow an isobar.

T logθ h vlong vtrans p z B

H 0.50±0.01 0.51±0.01 0.51±0.01 0.46 0.37 0.36 0.43 0.33
C1 0.052±0.012 0.052±0.010 0.040±0.012 0.033 0.046 0.031 0.068 0.076
α 1.78 1.82 1.81 2.10 2.10 2.2 2.15 1.83
Leff (km) 5000 10,000 10,000 105 25,000 1600 50 25,000
δ (%) 0.5 2.0 0.5 0.4 0.8 0.5 2.6 0.5
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schematic Fig. 11a shows the shapes of vertical sections with
various degrees of scaling stratification.

Let us consider a fairly general case of anisotropic but
scaling turbulence so that the fluctuations in the horizontal
velocity over a horizontal lag Δx and vertical lag Δz follow:

Δ v = φhΔx
Hh ;Δv = φvΔz

Hv ð13Þ

where φh, φv are the turbulent fluxes dominant in the
horizontal and vertical directions respectively and Hh, Hv are
Fig. 11. a: A schematic diagramme showing the change in shape of average structure
surface) but with scaling stratification in the vertical; Hz of increases from 0 (upp
structures with scale, the ratio of tropospheric thickness to earth radius has been incr
for clarity) here ls=1/10 the tropospheric thickness, i.e. about 103–104 times the typ
that the smallest is vertically oriented, the second roundish and the rest horizontally
the small distortion is an effect of perspective due to themapping of the structures on
section of an anisotropic multifractal cloud with Hz=5/9. Starting at the upper left co
by factors of 1.21 (total factor≈1000). Notice that while at large scales, the clouds ar
in the opposite direction. The sphero-scale is equal to the vertical scale in the left m
C1=0.1, α=1.8 (The film version of this and other anisotropic space–time mul
multifrac/index.htm).
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the corresponding exponents. The (isotropic) Kolmogorov law is
recovered with φh=φv=ε1/3, Hh=Hv=1/3 where ε is the
energy flux. In comparison, the 23/9 D model of anisotropic
turbulence (Schertzer and Lovejoy, 1985b) in which the
horizontal is dominated by the energy flux (ε, m2 s−3) and the
vertical by buoyancy variance flux (ϕ m2 s−5) is obtained with
φh=ε1/3, φv=ϕ1/5, Hh=1/3, Hv=3/5. Similarly, the popular
quasi-linear gravity wave models (Dewan, 1997; Dewan and
Good, 1986; Gardner, 1994; Gardner et al., 1993) typically take
φh=ε1/3, φv=N so that Hh=1/3, Hv=1 (N is the Brunt Väisäla
s which are isotropic in the horizontal (slightly curved to indicate the earth's
er left) to 1 (lower right); Del=2+Hz. In order to illustrate the change in
eased by nearly a factor of 1000. In units of the sphero-scale (also exaggerated
ical value), the balls shown are ½, 1, 2, 4, 8, 16, 32 times the sphero-scale (so
stratified). Note that in the Del=3 case, the cross sections are exactly circles,
to the curved surface of the earth. b: A sequence “zooming” into vertical cross
rner, moving from left to right, from top to bottom, we progressively zoom in
e strongly horizontally stratified, when viewed close up they show structures
ost simulation on the bottom row. The multifractal parameters were H=1/3,
tifractal simulations can be found at: http://www.physics.mcgill.ca/~gang/
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frequency; actually this is not a turbulent flux, a fact which is a
serious weakness of that theory).

In order to write these anisotropic models in a form valid for
any vector Δr=(Δx, Δy, Δz) we can use the formalism of
Generalized Scale Invariance (Schertzer and Lovejoy, 1985a) and
write:

Δv = φh ‖Δr− ‖
Hh ð14Þ

where the scale function (indicated by the double bars) replaces
the usual vector norm appropriate for isotropic turbulence. In
general, the scale function satisfies the scale equation:

‖Tλ Δr− ‖ = λ−1
‖ Δr− ‖; Tλ = λ−Gs ð15Þ
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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where Tλ is the scale changing operator and Gs is its spatial
generator. For the case of pure stratification in the vertical plane
and assuming horizontal isotropy, we take:

Gs =
1 0 0
0 1 0
0 0 Hz

0
@

1
A; Hz =

Hh

Hv
ð16Þ

(see Section 4 for the generalization to space–time).WhenGs is a
matrix (corresponding to linear group generators), the notion of
scale is position independent. When the generator is nonlinear,
the G's are more general nonlinear operators which will depend
on the coordinates; the notion of scale will be position
dependent. For the case in which G is the identity matrix, we
synthesis for atmospheric dynamics: Space–time cascades,
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have the usual isotropic, self-similar scale changes. In the special
case of “linear GSI”, where G is a diagonal matrix, the system is
“self affine” and we obtain stratification along a coordinate axes
(e.g. Figs. 3b and 11b). Finally, whenG has off-diagonal elements
(Fig. 3c) we have differential rotation and stratification. The idea
is that the basic dynamical symmetries determine theG's and the
scale function is then determined by solving the functional scale
Eq. (15) for specific boundary conditions, i.e. by specifying all the
unit vectors (the “unit balls”; see below). By acting on the unit
vectors in this way Tλ then generates all the other vectors, it
determines the scale.

Figs. 3 and 11b provide visual illustrations of the
“phenomenological fallacy” (Lovejoy and Schertzer, 2007)
i.e. the confounding of morphology with mechanism. This is
because GSI allows for quite striking morphologies which
evolve with scale but yet are generated by the same basic
scale invariant dynamic (via G). GSI concretely demonstrates
that in general this identification is not warranted.

We may now define Ds=Trace Gs as the “elliptical
dimension” characterizing the spatial anisotropy. With the
above dimensionally determined exponents we find Ds=23/
9. Ds is a dimension since changing the scales of the vectors by
λ (by operating with λ−G) changes their volumes by det
(λ−G)=λ− Trace(G), they are therefore exponents which
quantify the change of volume with scale.

In the vertical (x, z) plane, a simple (“canonical”) solution
of the scale Eq. (15) is:

‖Δr− ‖ = ls
Δx
ls

� �2
+

Δz
ls

� �2=Hz
� �1=2

; Hz =
Hh

Hv
; ls =

φh

φv

� �1= Hv−Hhð Þ

ð17Þ

where Hz is the exponent characterizing the degree of
stratification (Hz=1 corresponds to isotropic 3D turbulence,
Hz=0 to isotropic 2-D turbulence) and ls is the “sphero-
scale” so-called because the structures are roundish at that
scale; it is the unique scale defined by the fluxes φh, φv. The
scale function needs only to satisfy the fairly general scale
Eq. (15), so that the above “canonical” form is only the
simplest scale function but is adequate for our purposes. It
can be verified that if we successively take Δr=(Δx, 0) and
Δr=(0, Δz) that we recover Eq. (13).

In this framework the quasi-linear gravity wavemodel has
Hz=1/3 and therefore Del=7/3 and we have noted that the
classical 2D and 3D isotropic turbulences have Hz=0, 1 hence
Del=2, 3 respectively see Fig. 11a. The 23/9 D model of
stratification was found to be obeyed quite precisely for
passive scalar densities estimated by lidar (i.e. with the above
scale function replacing the vector norm in the isotropic
Corrsin–Obukhov law of passive scalar advection ((Lilley
et al., 2004, 2008); c.f. Hz=0.55±0.02). If 0bHzb1, then
structures larger than the sphero-scale become progressively
flatter at larger and larger scales; see the simulations in
Fig. 11b.

3.2. The implications for aircraft statistics

We may now revisit the aircraft measurements analyzed
above. In order to understand the effect of the vertical
trajectory variability on the horizontal wind statistics,
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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consider a large scale section roughly following a sloping
isobar with slope s:

Δv = φhl
Hh
s

Δx
ls

� �2
+

sΔx
ls

� �2=Hz
� �Hh =2

ð18Þ

When considering the stratospheric ER-2 trajectory,
(Lovejoy et al., 2004) pointed out that in the simplest
model of vertical drift where s was constant, then there
would exist a critical lag Δxc = lss1= Hz−1ð Þ such that for
ΔxNΔxc, the second term would dominate the first and we
would obtain:

Δ v = φhΔx
Hh ;ΔxbbΔxc

Δv = φvs
HvΔxHv ;Δx NN Δxc

ð19Þ

We would therefore expect a spurious break in the
horizontal scaling at Δxc after which the aircraft would
measure the vertical rather than horizontal statistics with
exponent Hv rather than Hh. Since empirically, the mean ls
was roughly 0.1m, the empirical Hz was roughly 0.44 and
slopes were often of the order 0.0005, so that we find that Δxc
can readily be less than 1000 km. In the spectra, this transition
corresponds to a transition from k−5/3 (H=1/3) to k−2.4

(H≈0.7); Figs. 4c, d and 9a show that this is indeed a good
estimate of the small wavenumber part of the spectrum, see
the discussion in Section 2.5. See (Tuck, 2008) for more
discussion (and a slightly different view) of a generalized scale
invariance in the atmosphere and aircraft measurements.

3.3. Direct verification of the anisotropic cascades using lidar
backscatter of aerosols

3.3.1. Simultaneous horizontal and vertical analyses
The difficulty with using aircraft data to understand the

nature of atmospheric stratification is that even if we overcome
the aircraft measurement problems, the results must then be
compared to in situ data from a different instrument in the
vertical (unless perhapswe use ascent and descent aircraft legs,
c.f. (Tuck et al., 2004). Clearly, the idealway to study thevertical
stratification is through remotely sensed vertical sections,
hence we start our investigation of the vertical cascade
structure by exploiting a unique dataset of airborne lidar
backscatter. The data were taken over three afternoons in Aug.
2002 near Vancouver, British Columbia, see Fig. 12a, and the
zoom, Fig. 12b for an example showing the extremely fine
details, including hints that at the small scales that structures
are no longer flat, but start to be stretched in the vertical
(Fig. 12b; compare this with the simulation in Fig. 11b). The
lidar backscatter is primarily from aerosols; Lilley et al. (2004)
compared the first order horizontal and vertical structure
functions, and Radkevitch et al. (2007, 2008) studied the
corresponding spectra, including a new anisotropic scaling
analysis technique (ASAT) involving nonlinear coordinate
transformations. Lilley et al. (2008) contain a literature review
and additional anisotropy analyses including of the fluxes
estimated from gradients of the backscatter ratio. The conclu-
sions were broadly that the backscatter statistics can be
accurately described if the ratio of horizontal to vertical scaling
exponents was Hz≈0.55. In addition, the scale at which
synthesis for atmospheric dynamics: Space–time cascades,

http://dx.doi.org/10.1016/j.atmosres.2010.01.004


Fig. 12. a: This is a vertical cross-section of lidar backscatter on 14 August 2001. The scale on the bottom is a logarithmic color scale: darker is for smaller
backscatter (aerosol density surrogate), lighter is for larger backscatter. The vertical is 4.5 km and the horizontal is 120 km. The horizontal resolution is 100 m and
the vertical resolution is 3 m. The range of scales in this data set is 1200×1500 (horizontal×vertical). The region in the red rectangle is blown up in panel b. The
black shapes along the bottom are mountains in the British Columbia region. b: A blow-up of the region within the red rectangle in a, it is 40 kmwide and 1000 m
thick. This panel highlights the high spatial resolution and the wide dynamic range. There is no saturated signal and high sensitivity to low signal return. Note that
while at large scales, the structures are horizontally flat, at the smaller scales, we can begin to see structures that are more roundish, or even vertically aligned;
compare with Fig. 11. This and panel a are courtesy of K. Strawbridge. For other similar examples, see Lilley et al. (2004).
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horizontal and vertical fluctuations are of equal magnitude
(“the sphero-scale”) was directly estimated for the first time (it
varied between about 3 cm and 80m).

A direct horizontal/vertical intercomparison of the nor-
malized fluxes Mq is given in Fig. 13a, b. We see that the
cascade structure predicted by Eq. (4) is well respected: not
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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only are the lines quite straight, they also “point” to the
effective outer scale of the process, — i.e. the scale at which a
multiplicative cascade would have to start in order to account
for the statistics over the observed range. We see that as
before, for the horizontal analysis, Leff is a little larger than the
physical scales (≈25,000 km, 50 km for the horizontal and
synthesis for atmospheric dynamics: Space–time cascades,

http://dx.doi.org/10.1016/j.atmosres.2010.01.004


27S. Lovejoy, D. Schertzer / Atmospheric Research xxx (2010) xxx–xxx

ARTICLE IN PRESS
vertical respectively). Table 4 shows some of the parameters
characterizing K(q) and shows that they are indeed quite
different for the horizontal and vertical directions.

3.3.2. The construction of space–space diagrammes from lidar
data

If we define a “structure” in a field f as a fluctuation in the
value of f of magnitude Δf, then we can use this to statistically
define the relation between the horizontal and vertical extents
of structures. For example, using the first order structure
functionwe can equate the horizontal and vertical fluctuations:
〈|Δf(Δx)|〉=〈|Δf(Δz(Δx))|〉 which gives an implicit relation Δz
(Δx) between the horizontal and vertical extents (Δx, Δz
respectively). Using the scale function (Eq. (17)) and the
relation 14 for thefluctuations in terms of the scale function,we
see that this is equivalent to using ‖(Δx,0)‖=‖(0,Δz(Δx))‖ or
Δz = ls Δx= lsð ÞHz . The same idea is used in Section 4 on space–
time cross-section data to produce classical “space–time”
(“Stommel”) diagrammes, so that here we use the expression
“space–space” diagrammes. The existence of spatial vertical
lidar cross-section data spanning many orders of magnitude in
scale allows us to empirically determine this statistical
correspondence directly and accurately.

Fig. 13c shows the result using 9 vertical cross-sections
(using a slightly different subset of the same data that were
described and analyzed in (Lilley et al., 2004)). We see that
on a log–log plot the inferred log Δx− log Δz relationship is
reasonably linear and that the slope is very near the
theoretical value Hz=5/9 (shown by reference lines; the
scaling is not as good at the larger distances where the
statistics are poor). However, what is particularly striking
about the figure are the implications of extrapolating the
lines both to larger and to smaller scales. First, at smaller
scales, we can estimate the sphero-scale (ls is determined by
the intersection of the extrapolation of the empirical line
with the solid black reference line, Δx=Δz); we find it in
the range 20 cm to 2 m; similar to the other estimates
discussed above; it thus seems that the extrapolation is
quite reasonable down to metric scales or less. However
equally impressive is the extrapolation to larger scales: we
see that extrapolation to the planetary scale (20,000 km)
gives a corresponding vertical extent of ≈10 km i.e. the
thickness of the troposphere. In other words, there is no
obvious reason why the scaling stratification should have a
break anywhere in the meteorologically significant range of
scales. Note that there are various ways to generalize and
extend the method for estimating space–space and space–
time relations. For example, we could use the same method
to determine the horizontal/vertical relations for weak and
strong events by considering structure functions with
exponents qb1 or qN1 (see an example of this method in
Section 4). Alternatively, we could use the statistics of the
fluxes (the normalized moments Mq) to establish the
relation using Mq(Δx)=Mq(Δz(Δx)); this method is used
in Section 4. Also in Section 4 we use this method to
determine space–time (“Stommel”) diagrammes.

3.3.3. Reconciling convection with wide range scaling
On the face it, our claims of wide range horizontal and

vertical scaling fly in the face of the phenomenology of
atmospheric convection which — ever since (Riehl and
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
Malkus, 1958) — has relied on phenomenological models
based on scale separations (although see Lilly, 1986a,b) for
attempts to reconcile it with turbulence theory with the help
of helicity). The apparent incompatibility of horizontal scaling
and convection was debated by Yano (2009) and the
appendix of Lovejoy et al. (2009c). In Section 1, we have
already mentioned the phenomenological fallacy, i.e. the
dangers of inferring mechanism from form, from phenome-
nology. In principle, then convective phenomenology need
not contradict the observation of wide range anisotropic
scaling. To make this more concrete and convincing, we need
to show how to get structures traversing the troposphere in
height while being only 100 km or so across (the “typical”
horizontal scale cited for convection). In terms of Generalized
Scale Invariance this implies vertical cross-sections being
roundish in shape at around 1–10 km i.e. with “sphero-
scales” being much larger than the range 0.01–1 m observed
in passive scalars or in the horizontal wind.

To see if this is possible, we can appeal to orbiting radars
on the Tropical Rainfall Monitoring Mission satellite (TRMM,
4.3 km resolution horizontal, 500 m in the vertical, 3.2 cm
wavelength, 1997–present, see Section 2) and CloudSat
(1.08 km in the horizontal, 250 m in the vertical, 3 mm
wavelength, 2006–present, see Fig. 13d for an example). We
have already shown in Section 2 that although the radars
have problems measuring weak effective reflectivity factors
(Z) that the fluxes φ estimated from Z follow the basic
prediction of multiplicative cascades — Eq. (1) — over the
entire range 4.3 km to 20,000 km with accuracies of ±4.6%
(TRMM, 1176 orbits, near surface).

For precipitation the main limitation of the TRMM radar is
its poor measurement of the weak (and zero) rain rate regions.
With itsmuch smallerwavelength (3 mm,94 GHz), the CloudSat
radar can detect signals about 104 times lower (down to
Z≈0.01 mm6/m3) and therefore can detect much smaller
drops. Since Z is proportional to the sum of the squared drop
volumes it is highly correlated with the sum of the volumes, i.e.
the LWC (liquid water content) and is thus a good surrogate for
convection. Also, relevant here is the study of TRMM andMTSAT
short and longwave radiances (Section 2.3.2) that found that the
predictions of multiplicative cascades were obeyed to within
±0.5% over the than 8.8 to 5000 km, i.e. right through the
“convective scale” of 100 km (see Fig. 7e, f).

We can use the CloudSat data to determined structure
functions (as in the previous subsection) and from there,
determine the corresponding space–space diagrammes;
Fig. 13e shows the result for fluctuations defined from
orbit by orbit averages as well from an ensemble average
over all the orbits. The mean of the individual orbit by orbit
Δx(Δz) curves and the ensemble are nearly identical; the
orbit to orbit spread is shown as one standard deviation
curves above and below (the curves are occasionally double
valued along the Δx axis due to statistical fluctuations). In
addition to the empirical curves, we have provided two
theoretical reference lines with slopes Hz=5/9, 1. The basic
behaviour is very similar to that of the lidar backscatter
(Fig. 13c). The main difference is the value of the “sphero-
scale” determined by the intersection of the two lines, here
about 100 m. Structures at larger scales are flat, while at
smaller scales they are elongated in the vertical. Although
the exponents for Z and for lidar aerosol backscatter are
synthesis for atmospheric dynamics: Space–time cascades,
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nearly identical (given by the theoretical anisotropic
Corrsin–Obhukov values), the corresponding sphero-scales
ls are about a factor 1000 larger (although as can be seen
from the error, there is a large scatter; the mean of log10ls
with ls in km is ≈−1.6±0.9 i.e. one standard deviation bars
are 5 m to 500 m, geometric mean 50 m). Fig. 13f shows the
corresponding average contours of cloud reflectivity struc-
tures showing how they very gradually tend to rounder
shapes at the larger scales. It thus seems possible that the
fundamental distinction between of convective as opposed
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
to stratiform dynamics is the much larger sphero-scale in
the former. In the 23/9D model, this would be the natural
consequence of the variations in the buoyancy variance flux
in convection (the φv in Eq. (17)).

3.4. Vertical cascades using drop sondes

3.4.1. Description of the data set
The lidar and satellite radar data analysed in Section 3.3 are

uniformly spaced in orthogonal directions with high signal to
synthesis for atmospheric dynamics: Space–time cascades,
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Table 4
Statistics derived from backscatter ratios of 10 vertical lidar cross-sections.
Table from Lovejoy et al. (2009b).

Field Resolution (m) δ ̅ (%) C1 H α Leff (km)

B vertical 12 m x192m 0.4 0.11 0.60 1.82 50
B horizontal 12 m x192m 0.5 0.076 0.33 1.83 25,000
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noise ratios and are thus relatively straightforward to analyze.
However if we seek to study the usual dynamic or thermody-
namic variables, we are forced to turn to in situmeasurements.
Traditionally over a substantial part of the troposphere, radio-
sondes have been the onlyway to get such vertical information.
However, they have numerous problems including payloads
swinging into and out of the balloon's wake, low vertical
resolutions (typically of the order of 100 m) and slow ascent
speeds which — in areas of strong downdrafts — can even
temporarily become descents. As mentioned earlier, these
technical difficulties have contributed to the absence of
consensus on the nature of the vertical stratification.

In the last ten years, the development of GPS drop sondes has
drastically changed this situation (Hock and Franklin, 1999).
Drop sondes are free of problems with swinging payloads and
wakes and they have rapid descent times (less than 15min from
the topof the troposphere) and—with thehelpofGPS tracking—
they have high vertical resolutions (of the order of 5 m,
although see the discussion below). The data discussed here
were part of the same Winter Storms 2004 experimental
discussed in Section 2.5 using the NOAA Gulfstream 4 aircraft.
Duringa2-weekperiod, tenflights eachdropped20–30 sondes, a
total of 262. Of these, 237 reasonably complete sets were
analyzed in Lovejoy et al. (2007, 2008c), here we consider the
220 sonde subset which started at altitudes N10 km and we
summarize the findings of (Lovejoy et al., 2009b).

3.4.2. Intermittent multifractal sampling: the problem of outages
The cascade structure Eq. (1) is the consequence of

variability building up scale by scale over a potentially large
scale ratio λ. In order to verify Eq. (1) and to estimate K(q), we
attempt to invert the cascade process by systematically
degrading the resolution of the fluxes by averaging. This is
straightforward enough for data sampled at regular intervals,
but for data with highly irregular resolutionswemust take into
account the variability of the resolution. The drop sonde
Fig. 13. a: Horizontal analysis of the moments of the normalized lidar backscatter rat
to λ=1). The curves are for the moments of order q=0.2, 0.4, …2. The largest dire
scale of Leff≈25,000 km. Reproduced from (Lovejoy et al., 2009b). b: The same cro
corresponding to λ=1). The largest directly accessible scale is ≈3 km, the point of
same as for the horizontal analysis; this is a consequence of the scaling anisotropy; t
2009b)). c: A space–space (horizontal/vertical) diagramme from 9 vertical lidar se
different subset of the data analysed in panels a,b). The dashed lines have theoretical
intersection of the empirical lines with the bisectrix. It can be seen that the sphero-sc
scales, we see that the earth size (20,000 km) roughly corresponds to the troposphe
largest scales. We thank A. Radkevitch for help with this analysis. d: This is a small s
plot). The cross-section is 16 km high, 650 km wide (presented with a 1:4 aspect r
space (horizontal)–space (vertical) diagramme estimated from the absolute reflec
Reproduced from Lovejoy et al. (2009c). f: This shows the theoretical shapes of aver
Fig. 2: Hz=5/9, with sphero-scales 1 km (top), 100 m (middle), 10 m (bottom),
fluctuations. The distance from left to right is 100 km, from top to bottom is 20 km. It
that structures 100 km wide will be about 10 km thick whenever the sphero-scale

Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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resolution is variable for two reasons: first, even if the sampling
was at the nominal 0.5 s, the variable vertical sonde fall speed
would lead to variable vertical sampling intervals. This source
of variability is not too large: the mean vertical sonde velocity
decreases from about 18 m/s to about 9 m/s near the surface
(due to increased air resistance); turbulence induced fluctua-
tions increase this range of resolution byabout another factor of
2. However, the variability problem is made much worse
because of data outages— even though these affected only 9.5%
of the observations. The problem is that they affected every
sonde, that they were highly clustered and sometimes very
large (i.e. occasionally several km in size).

By treating the measurement intervals in both the vertical
and in time Lovejoy et al. (2009b) obtained a surprising result:
the outages had almost exact cascade structures with rather
large intermittencies (C1time≈0.21, C1vert≈0.23) with outer
scales near the outer scale of the data (≈200 s and ≈3 km
respectively). In order to overcome this outage problem, two
developments are needed. The first is a robust technique to
estimate the fluxes, the second a method of statistical
correction to the scaling exponents in order to correct for the
strongly variable resolutions (Lovejoy et al., 2009b).

When these techniques were applied to the drop-sonde
data, the moments displayed in Fig. 14a, b were obtained. The
quantities that we analysed can be roughly grouped into two
categories: dynamical and thermodynamical variables. The
dynamic variables (Fig. 14a) were the modulus of the
horizontal wind v, the pressure p, the total air density (ρ,
including that due to humidity), and the sonde vertical velocity
ws.We also separately analyzed the north–south and east–west
components of the horizontal wind but the results were not
much different and we will not discuss them further. For the
vertical sonde velocity, the fluctuations around a quadratic fit
(corresponding to a constant deceleration from 18m/s to 9 m/s)
were used. Due to the parachute drag, the fluctuations in ws

depend on both the vertical and horizontalwind so that it should
not be used as a surrogate for the vertical wind.

The thermodynamic variables are temperature (T), log
potential temperature (logθ), log equivalent potential tem-
perature (logθE) and humidity (h), see Fig. 14b. The logθ and
logθE are proportional to the entropy densities of the dry and
humid air respectively. In addition, their structure is
important for the overall atmospheric (static) stability, for
example gdlogθ/dz is the square of the Brunt–Väisälä
frequency so that where the latter is negative, the
io for 10 atmospheric vertical cross-sections (Lref=20,000 km corresponding
ctly accessible scale is ≈100 km, and the lines converge to an effective outer
ss-sections as in panel a but analyzed in the vertical direction, (Lref=10 km
convergence is Leff≈50 km, see Table 1a. Note that the vertical axis is not the
he exponents are roughly in a constant ratio (reproduced from Lovejoy et al.,
ctions obtained from first order structure functions (this is from a slightly
slopes 5/9, the thick black line is the bisectrix (x=y). The sphero-scale is the
ales are somewhat variable, but mostly between 10 cm and 1 m. At the larger
re thickness (10 km). Note that the empirical statistics are not so good at the
ample of the first of the 16 CloudSat orbits analysed in this paper (log density
atio). Notice the large convective cell about 15 km high, 200 km across. e: A
tivity fluctuations (first order structure functions) from 16 CloudSat orbits.
age vertical cross-sections using the CloudSat derived mean parameters from
roughly corresponding to the geometric mean and one standard deviation
uses the canonical scale function (Eq. (17)). The top figure in particular shows
is somewhat larger than average. Reproduced from Lovejoy et al. (2009c).

synthesis for atmospheric dynamics: Space–time cascades,

http://doi:07110.01029/02008JD010651
http://doi:07110.01029/02008JD010651
http://doi:07110.01029/02008JD010651
http://doi:07110.01029/02008JD010651
http://dx.doi.org/10.1016/j.atmosres.2010.01.004


Fig. 14. a: The dynamical fields v, p, ρ,ws (clockwise from upper left) for q=0.2, 0.4, ...2. Reproduced from Lovejoy et al. (2009b). b: The same as for panel a except
for the thermodynamic fields T, log θ, h, log θE (clockwise from upper left). Reproduced from Lovejoy et al. (2009b).

30 S. Lovejoy, D. Schertzer / Atmospheric Research xxx (2010) xxx–xxx

ARTICLE IN PRESS
atmosphere is considered conditionally unstable. Similarly, it
is convectively unstable when gdlogθE/dz is negative.

From the figures we can see that with small deviations (c.f.
the Table 5) all the fields have small residuals with respect to
the predictions of cascade theories (Eq. (4); the residuals
(Eq. (12)) were averaged over the range 1 km to 10 m).

The H exponents are from the fluctuation analyses (see
Lovejoy et al., 2009b) and are the means of the fits from
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
30–300 m and 300–3000 m, the spread is half the differ-
ence. α was estimated to the nearest 0.05 using the double
trace moment technique which involves repeating the
cascade analysis but with the flux raised to a series of
different powers (Lavallée et al., 1993). All the regressions
were taken over range 1.5b log10 λb3 with λ defined as
the ratio of the reference scale 10 km to the resolution
scale (i.e. corresponding to 300 m to 10 m).
synthesis for atmospheric dynamics: Space–time cascades,
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Table 5
Vertical parameter estimates: These are the vertical parameters from drop sondes, corrected for the sonde intermittency. For C1, and Leff they are estimates for the
part of the trajectory above 6 km.

T logθ logθΕ h v p ρ

H 1.07±0.18 1.07±0.18 0.87±0.10 0.78±0.07 0.75±0.05 1.95±0.02 1.31±0.12
C1 0.072 0.071 0.069 0.091 0.088 0.072 0.077
α 1.70 1.90 1.90 1.85 1.90 1.85 1.95
Leff (km) 5.0 4.0 25. 16. 1.3 5.0 13
δ 1.4 1.2 1.9 1.4 2.3 1.1 1.4
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3.5. Intercomparison of the stratification of different fields,
estimating Hz, Del

We have shown that atmospheric fields are scaling over
much of the meteorologically significant range in both the
horizontal and vertical so that the dynamics are scaling,
turbulent but anisotropic. The simplest anisotropic turbu-
lence model involves a unique scale function for all the fields.
This would imply that the ratio of horizontal and vertical
components is Hhor/Hver=Hz=constant, so that for universal
multifractals αhor=αver and C1hor/C1ver=Hz. In (Lilley et al.,
2008) there was an extensive analysis of this for the lidar data
reviewed in Section 3.3.

Combining the results from the aircraft and the drop
sonde and taking into account a small apparent altitude
dependence of the sonde exponents (so as estimate them at
the ≈200 mb aircraft level), we obtain Table 6. It should be
noted that although in Table 6 we give the ratio of the C1
values, that since they are small, their relative errors are large
and consequently their ratios have large uncertainties. Since
the H's are larger, the ratio Hhor/Hver is more reliable than
C1hor/C1ver, indeed in the latter case the error is very hard to
reliably estimate and is not indicated except in the lidar case.
The main conclusion of is that T, log θ and B are within a
standard error bar of the 23/9D result Hz=5/9 whereas for h
it is somewhat larger. At the same time, the v, T, logθ fields
are apparently anomalously low with regard to the 23/9D
prediction of 5/9; this was the conclusion of detailed
trajectory by trajectory analysis of aircraft data in (Lovejoy
et al., 2009c), see the summary Section 2.5.

If the ratios in Table 6 are taken at face value then we are
lead to the conclusion that two or more scale functions are
required to specify the scale of atmospheric structures. While
this is certainly possible, let us for the moment underline the
various difficulties in obtaining the in situ estimates: the
nontrivial vertical outages, the nontrivial aircraft trajectory
fluctuations. In addition, detailed analysis of the altitude
dependence of the horizontal velocity exponent in Lovejoy
et al. (2007) indicates that starting with the theoretical
Boligano–Obukhov value 3/5 near the surface, that the
Table 6
The table uses the estimate of the vertical Hv, C1v from sondes (Table 2 in Lovejoy et
4–40 km, see above), for the lidar reflectivity B it is from (Lilley et al., 2008). Finally,
the transverse wind component was used since it was not very coherent with the a

T logθ

Hz=Hh/Hv 0.47±0.09 0.47±0.09
Hz=C1h/C1v 0.72 0.71
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exponent increases somewhat with altitude to the value
≈0.75 at 10–12 km. Similarly, the humidity may have both
horizontal and vertical variations whichmay account for their
high Hz values. We should therefore regard these studies as
only first attempts to quantify the stratification.

4. Space–time cascades

4.1. Discussion

4.1.1. The relation between space and time in fluid mechanics
A basic property of fluid systems is that there exists a

relatively well-defined lifetime for structures of a given size,
the “eddy turn over time”. These statistical size/duration
relations are the basic physics behind the “space–time” or
“Stommel” diagrammes presented in meteorology textbooks
as conceptual tools, but which are in practice never
empirically calculated. Likewise, although space–time rela-
tions are in fact used all the time in meteorological
measurements, they are usually implicit rather than explicit,
in the form of “rules of thumb”. For example, many automatic
digital weather stations average measurements at the fairly
arbitrary period of 15 min. If the meso-scale gap existed, this
might have had some justification, but if there is no gap, how
long should the averaging be made? Alternatively, how often
should a weather radar scan if the spatial resolution is 1 km?
If it is 4 km? Conversely if only “climate” time scale (say
monthly) estimates are needed what should be the spatial
scale of the corresponding maps? In the same vein, in situ
measurements are often considered to be “point measure-
ments” i.e. with infinite (or very high) resolutions, but this is
misleading since even if they are at points in space, they are
never also instantaneous, i.e. they are not points in space–
time, and it is their space–time resolutions that are important
for their statistics.

4.1.2. The transition from weather to the climate: first principles
estimates

Turning our attention to time scales of weeks to months,
we may ask what is the distinction betweenmeteorology and
al., 2009b). The (horizontal) values for Hh for T, logθ, h are from Table 2 (from
the C1 for v is for the range 4–40 km using flux moments. For the horizontal v,
ltitude fluctuations and was considered more reliable.

h v B

0.65±0.06 0.46±0.05 0.55±0.02
0.44 0.45 0.69±0.2
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the climate? Although meteorology and climatology are
increasingly considered to be distinct sciences, the actual
boundary between “climate scales” and “meteorological
scales” is not clear and there are no universally accepted
definitions. It is still hard to improve upon the Farmer's
Almanac “the climate is what you expect, the weather is what
you get”. For example, the National Academy of Science
essentially accepts this stating in more scientific terms:
“Climate is conventionally defined as the long-term statistics
of the weather…” proposing only “…to expand the definition
of climate to encompass the oceanic and terrestrial spheres as
well as chemical components of the atmosphere” (Committee
on Radiative Forcing Effects on Climate, 2005).

If there is (at least statistically) a one-to-one relation
between space and time scales, we can ask what is the time
scale of planetary scale structures? Let us briefly consider
the consequences of applying the Kolmogorov relation
V≈ ε1/3 L1/3 —which we have argued holds in the horizontal
up to planetary scales L (V is the typical velocity across a
structure of size L, the corresponding time scale T=L/V).
First, we can estimate the mean energy flux ε by using
the fact that the mean solar flux absorbed by the earth is
200 W/m2 (e.g. Monin, 1972). If we distribute this over the
troposphere (thickness ≈104 m), with mean air density
≈0.75 kg/m3, and we assume a 2% conversion of energy into
kinetic energy (Palmén, 1959; Monin, 1972), then we obtain
a value ε≈5×10−4 m2/s3 which is indeed typical of the
values measured in small scale turbulence (Brunt, 1939;
Monin, 1972); (the geometric mean ε measured in the
aircraft legs discussed in Section 2 was 4.3×10−4 m2/s3). If
we now assume that the horizontal dynamics are indeed
dominated by the energy flux, then we can use Kolmogov's
formula to extrapolate these first principles estimates up
to planetary scales to estimate the large scale velocity
difference across a hemisphere, we obtain V≈21 m/s. The
corresponding eddy-turn over time, lifetime, is therefore
9.5×105 s≈11 days. This is roughly the time associatedwith
synoptic — global scale phenomena; early analyses by (Van
der Hoven, 1957; Kolesnikov and Monin, 1965; Panofsky,
1969) and others who found corresponding “synoptic”
maxima in plots of ωE(ω) versus log ω at around 4–20 days
notably for temperature and pressure spectra (see e.g. Monin
and Yaglom, 1975 for some early references). Below, we will
discuss this with more modern data.

Although this “first principles” calculation of the weather
velocity and time scales from the solar energy input is
seductive, as far as we can tell, it has never been published,
presumably because the Kolmogorov law was believed to
only hold in its isotropic form which couldn't possibly apply
to such large scales. Ironically, (Richardson, 1926)whowasn't
constrained by modern notions of isotropic turbulence and
claimed on the basis of original and ingenious experiments
that the forerunner of the Kolmogorov 1941 law— the scaling
“Richardson 4/3 diffusion” law held up to a thousand or more
kilometers. Interestingly, Monin 1972 states his agreement
with this wide range for the 4/3 law but uses the speed of
sound rather than the eddy velocity to deduce a "synoptic"
length scale! Let us now show with the help of the state-of-
the-art ECMWF interim reanalysis (for Jan. 2006) that use of
the Kolmogorov law in the horizontal up planetary scales
(implying anisotropic turbulence) is indeed well justified. We
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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can estimate ε≈Δv3/Δx at small (3o) scales using east–west,
north–south and “isotropic” estimates (the smallest 1.5o

resolution data was slightly too smooth due to the hypervis-
cosity used in the reanalyses and so that the 3o lags were
used). Fig. 15a shows the resulting ε averaged over the
troposphere (pN200 mb) as a function of latitude; since the
theory assumes that the fluid density is constant when
averaged over different levels, we have weighted the ε
estimates from the different pressure levels by the air density.
Fig. 15b the mean shows ε as a function of pressure level
averaged over latitudes (no density weighting). We can see
that the midlatitudes have up to 10 times the mean ε as the
equator and that it is mostly concentrated in the upper
troposphere (near the 300 mb level) where it is about 5–6
times that of the lower atmosphere. Also indicated (dashed
line) is the overall (isotropic, density weighted) mean
9.25×10−4 m2/s3 which is within a factor of 2 of the first
principles estimate above (the comparable figures for the
east–west and north–south gradients are 7.50×10−4 m2/s3

and 1.40×10−3 m2/s3).
We can now compare this “first principles” estimate to the

observed mean “hemispheric antipode” velocity differences
(i.e. the opposite side of the earth in the same hemisphere;
we found that this is very close to the true antipode
difference). We see (Fig. 15c) that it follows the same pattern
with latitude as the variations of ε. The overall means
(averaging over pN200 mb) are 11.1 m/s, 7.43 m/s, 14.7 m/s
for the east–west component, north–south component and
vector difference respectively. If we now use the ε estimated
at 3o to infer the 180o difference using the Kolmolgorov law
(i.e. over a factor of 60 in scale), then the extrapolated velocity
difference is really the cube root of the mean cube; this is
shown in Fig. 15d (along with the mean and rms values). We
see that the agreement between the predicted hemispheric
antipodes difference and the observed difference is to within
±19% but is even better between 30oN and 10oS. where it is
to within ±7%. We may also compare the overall means to
the “first principles” estimate (21 m/s): the mean of the cubic
estimate is 17.33±5.7 m/s and the mean “extrapolated” large
scale velocity difference is 20.7±7.4 m/s (the error bars
represent the spread in the values for different latitudes).

We can now re-estimate the lifetime (“eddy turn-over
time”) T=L/V of the largest (planetary scale) eddies. Using
the isotropic ε estimate, we obtain T=8.7×105 s=10.0 days
which is quite close to the “first principles” estimate
(11 days) and to those of (Radkevitch et al., 2008) who
used analyses at a scale 6000 km to determine the statistical
distribution of eddy turn-over times finding a mean of
9.5×105 s with only a narrow dispersion.

The extrapolation of the small scale velocity differences to
planetary scales was based on the assumption that the energy
flux was indeed independent of scale, it is important to verify
this directly. Fig. 15e shows the calculation of Δv3/Δx where
Δv is the modulus of the vector difference and Δx is taken as a
zonal and meridional lag, averaging over the entire tropo-
sphere (pN200 mb) and averaging over all longitudes and
latitudes between ±45o latitude. We can see that although
there is a huge variability (the one standard deviation latitude
to latitude variations of the log corresponds to variations of a
factor ≈3 about the mean) that the mean is relatively
constant; to within a factor of ≈1.7 over the range 330–
synthesis for atmospheric dynamics: Space–time cascades,
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Fig. 15. a–d: From ECMWF interim for Jan. 2006. a: upper left: Estimates of ε using gradients of the vector wind at resolution (3o: 330 km at equator), all averages
over b200 mb levels, as functions of latitude starting at 45 N, the contribution from the different pressure levels have been weighted by the air density. Orange is
based on EW gradients, red, on NS gradients and blue is an isotropic average using the mean variance in NS and EW directions. The dashed line is isotropic latitude
average=0.00093 m2/s3. b: upper right: The same (without density weighting) this time averaged over latitudes and given as a function of pressure level. c:
middle Left: This shows the hemispheric antipode mean difference in velocity averaged over b200 mb. Orange is the vector difference, red is the NS component
difference and orange is the EW component difference. Very similar results are obtained for the true antipode differences. d: middle Right: Blue is the predicted
hemispheric antipode large scale difference obtained from the isotropic estimate of ε (upper left; 20.7±7.37 m/s) and Kolmogorov's law, the orange is the cube
root of the mean cube hemispheric difference (17.3±5.7 m/s), the dark blue, the root mean square (15.7±5.2 m/s), the pink, the mean (same as orange at left,
13.8±4.6 m/s). e: This shows zonal (solid red, error bars orange; these are latitude to latitude variations), and meridional (solid blue, error bars thin blue) error
bars are one standard deviation of the logarithm, Δx is in meters. Averaging was over layers below 200 mb and was weighted by the air density. Data, same as
above: Jan. 2006, ±45o latitude. f: The ECMWF interim reanalysis of the zonal wind in the east–west direction (top), and the north–south direction (bottom) for
moments q=0.1, 0.2, ... 1.9, 2.0, averaged over all the layers below 200 mb and obtained by using the finite difference Laplacian at the smallest scales (same data as
above for January 2006). Analysis of the meridional component gave virtually identical results and is not shown. The outer scale (λ=1) is 180 degrees; this
corresponds to an average of 12,700 km in the EW direction (averaging over latitudes; in the NS direction it is 20,000 km.
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10,000 km. From the figure, we can see that the success of the
extrapolation was partially due to the smooth “hump” near
2000 km so that the estimates of ε at large and small scales
are very close. These results are more evidence against the
existence of a 2-D regime, since in the latter, H=1 so that in a
2D regime, Δv∝Δx and velocity differences build up much
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
faster (i.e. ε≈Δv3/Δx≈Δx2 rather than being constant with
scale).

Although small in magnitude, the scale dependence of the
energy flux (the “hump” in Fig. 15e) deserves closer scrutiny,
in particular we should compare it with the direct analysis of
the turbulent flux as outlined in Section 2, i.e. without the
synthesis for atmospheric dynamics: Space–time cascades,
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explicit assumption that the cascading quantity is the energy
flux. Fig. 15f shows the result for the zonal wind; the cascade
is respected extremely well (from 300 to 5000 km, root mean
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
square residues with respect to the regression shown are
≈±0.2%). There is no sign of the “hump” (Fig. 15e) near
2000 km (i.e. log10λ=1), the deviations from pure
synthesis for atmospheric dynamics: Space–time cascades,
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Fig. 16. a (top): The spectral plateau; reproduced from Lovejoy and Schertzer (1986). This is the average of 5 daily temperature series each 6 years long from a
station in France. The red reference slope is −2; this is the estimate for β using H=0.60 (from Tables 3a, 3b) and an intermittency correction K(2)=0.2 (i.e. as
predicted if the horizontal and temporal exponents are equal). The faint black reference lines have slopes 0,−5/3. Note the strong annual cycle and the change of
about a factor of 102 between the daily variance and the low frequency variance. b (bottom): The spectrum is well reproduced by the multifractal model
(Section 4.4) which is simply the extrapolation of the turbulence model to time scales longer than the lifetime of a planetary size eddy (taken here as 16 simulated
days). We show the average of 12 simulations of daily temperature, over 90 years, see the details in Section 4.4. The straight line has the theoretical slope −1.47
corresponding to α=1.8, C1=0.1, H=1/3 (this was a simulation of the horizontal wind so the H was a little lower than for T, but this only slightly changes the
slope at the high frequency “meteorological” part of the spectrum. c: Mean spectrum of daily pressure (P) and rain amount (R) from 24 stations with long (60 year;
22,200 days) records, from a 2o grid. The reference slope is −0.25, and the spectrum was averaged over 1dBω bins (i.e. 10 per order of magnitude in frequency),
every 2o from 30–50 NS, −105 to−71 EW. Note that the actual spectral spike at 1 year is much narrower than this log discretised plot indicates, also the spectra
have been nondimensionalized by their variances. d: Same as c but for variables with slightly steeper “plateau”, here the reference line has slope−0.5 (dew point
temperature, temperature and relative humidity). e: Same as c but for the variables displaying a new low frequency scaling regime: wind (v), “gusting wind”
(vmax) and “effective” extinction coefficient (inverse visibility). The reference slopes are −1, −0.5. f: 20th C reanalysis spectra of daily temperatures by latitude
band. In each graph, the top of the two is always northern hemisphere, the bottom of two is the corresponding southern hemisphere curve. Each is averaged over
10 bins per order of magnitude in frequency.
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multiplicative cascade behaviour are for scales larger than
around 5000 km. Finally here, although the scale by scale
exponents are nearly the same (C1EW=0.095, C1NS=0.092),
the “trivial” anisotropy is quite strong, the effective outer
scales being 6×104 km in the EW direction but in the NS
direction it is only 12,500 km. This implies that the variability
of the turbulent fluxes is greater in the EW direction than in
the NS direction; this is contrary to the observations of Δv
gradients in Fig. 15a, b. We conclude that the cascading
quantity is only approximately the energy flux; this under-
scores the nontrivial relations between the cascades and the
observables (here the wind).

4.1.3. The weather–climate transition, the “spectral plateau”
We have mentioned that early workers noted a maximum

in plots of logω−ωE(ω) at the “synopticmaximum”, which—

due to the apparent validity of the Kolmogorov law in the
horizontal—we have identifiedwith the eddy turn over time
of planetary scale structures. If the same spectra are plotted
on logω− logE(ω) plots then the appearance is no longer of a
“maximum” with a fall-off on either side, but rather a range
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
with a “spectral plateau”; at low frequencies and a linear fall-
off at higher frequencies. More precisely, at frequencies
lower than 1/T, the spectrum is roughly flat (β is low; see
below) while at higher frequencies (ignoring possible spikes
at diurnal frequencies and harmonics) it is roughly a power
law. In otherwords, we apparently have a transition between
two power law regimes (or at least between a high frequency
power law and a broad low frequency transition regime).
Given the foregoing, it is natural to identify the high
frequency one with the weather, and the low frequency
one with the climate. Indeed, breaks with similar interpreta-
tions in temporal scaling have been observed in temperature
spectra (Lovejoy and Schertzer, 1986) and in spectra of rain
rates from gauges (Ladoy et al., 1991; Tessier et al., 1996;
Koscielny-Bunde et al., 1998; Pellieter and Turcotte, 1999;
Talkner and Weber, 2000). Fig. 16a shows the temperature
spectrum for a station in France which — at least for scales
less than≈2 months— is very close to the IR satellite spectra
from MTSAT (see below) as well as to a the temporal
extrapolation of the space–time turbulent “weather” model
(Fig. 16b) discussed in Section 4.4.
synthesis for atmospheric dynamics: Space–time cascades,
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Usingmore recent analyses from stations from the eastern
United States. We can study the behaviour of other fields, see
Fig. 16c, d, e. The stations were taken from a 2o×2o grid from
30o–50o north, 105o to 71o west and only those with
particularly long records (daily for 22,200 days ≈60 years)
were selected so as to identify possible very low frequency
scaling regimes. The available data type and number of near
complete long series stations were for rain rate (3 stations),
pressure (7 stations), temperature (39 stations), dew point
(23 stations), wind (36 stations), maximum wind (27
stations), humidity (23 stations) and effective extinction
coefficient (inverse visibility; 33 stations). We see that the
plateau is not really flat, and that at least for wind and the
“effective” extinction coefficient (inverse visibility) that there
appears to be a new low frequency regime (with β≈1) for
frequencies below ≈ (1 year)−1.

The station data analyzed in Fig. 16c, d, e are from a
relatively narrow latitude band (continental US) so that it is
interesting to study the effect of latitude variation. Fig. 16f
shows this using the near surface (0.995 sigma level)
temperature fields form the 20thC reanalysis. We see that
the plateau is most pronounced (flattest) at midlatitudes and
is symmetric with respect to the equator (the main exception
being ±50o). Indeed, the plateau all but disappears into a
continuous scaling regime near the equator (±10o). In
addition, all the figures show evidence of a new low
frequency regime at frequencies b(10 years)−1. This is
roughly consistent with the in situ station spectrum
(Fig. 16d) and indicates long range correlations in the climate
system. Note that this contradicts the usual assumption that
the correlations decay exponentially on decadal time scales
with little correlation remaining after 10–20 years (Fig. 17).
These are conclusions are strongly supported by the analyses
of Huybers and Curry, 2006.

The same transition from a power law E(ω)≈ω−β with
exponent β≈1.5–2 for frequencies N≈(10 days)−1 to the
lower frequency plateau has been reproduced by several
authors (Koscielny-Bunde et al., 1998; Pellieter and Turcotte,
Fig. 17. The is a space–time (vertical/time) diagramme obtained from the first ord
resolutions. At the largest scales, the statistics are not as good. We see that that t
horizontal) has a time scale of several weeks to amonth, see Section 4.1.2. Assuming
If instead ls=10 cm, the top line implies 400 m/s, the bottom line to 30 m/s. This is es
help with this analysis.
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1999; Talkner and Weber, 2000), but most researchers study
the climate regime directly by considering monthly averaged
data effectively studying the spectral plateau directly. See for
example (Blender and Fraedrich, 2003; Huybers and Curry,
2006) who find β closer to 0 over land and to 1 over oceans,
with the “plateau” regime extending at least to decades.

The scale break marking the weather/climate transition
has been used as the empirical basis for the Stochastic Linear
Forcing (SLF) paradigm modeling of climate scale fluctua-
tions, and the analysis procedure called “Linear Inverse
Modelling” (LIM). The idea is to use the weather/climate
scale separation to define rapidly-varying fluctuations with
respect to lower frequency (e.g. weekly, monthly) averages
and to exploit the short range correlations of the resulting
fluctuations, and the apparently near white noise spectral
“plateau” region discussed above; see (Hasselmann, 1976;
Penland, 1996). SLF models, when interpreted as providing
the most probable forecast, assumes the plateau to be nearly
Gaussian; however, Gaussianity is not required for most of
SLF's diagnostic products, as long as the dynamical descrip-
tion is well approximated as linear. Today, for many purposes
—including sea surface temperature anomalies, diabatic
heating rates and El Nino — SLF techniques are among the
best available for forecasting (Penland and Sareshmuhk,
1995; Newman et al., 2003; Sardeshmuhk et al., 2000). At
present, the impact on LIM techniques of possible long range
correlations in the spectral plateau region — or of the near
log-Levy long-tailed flux distributions discussed below are
not clear.

In the next subsection we extend the anisotropic spatial
turbulencemodel discussed in Section 3 to anisotropic space–
time turbulence (Section 4.1.1); we will see that this analysis
justifies the above interpretation quite straightforwardly. In
any case, convincing justification of the model requires the
systematic establishment of space–time relations over the
entire range of small to large scales. This is our task in
Sections 4.2.4 and 4.3 where we extend the empirically
determination of space–space to space–time diagrammes.
er structure functions of 3 lidar time series at 1 s (red) and 2 s (blue, green)
roposphere thickness (which corresponds roughly to planetary sizes in the
that ls=1m, the top line corresponds to v=60 m/s, The bottom line to 5 m/s.
timated using the formula: vΔt/ls=(Δz/ls)1/Hz. We thank A. Radkevitch for the
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4.1.4. From the spectral plateau to very low frequencies
Lovejoy and Schertzer (1986) proposed a general scaling

framework for analyzing climate fluctuations over huge
ranges, covering the scale range of minutes to hundreds of
thousands of years (using temperatures and paleotempera-
tures). They divided up the frequency domain into three basic
regimes all with roughly power law spectra: the high
frequency weather regime up to scale T with β≈1.8, an
intermediate “spectral plateau” with β small (near zero) and
then — starting at a low frequency corresponding to scales of
several hundred years, another β≈1.8 regime becoming
again a plateau for ωb(40,000 years)−1. The same basic
scaling framework was also adopted by Schmitt et al. (1995),
Pellieter and Turcotte (1999) and Huybers and Curry (2006)
all of whom came to very similar conclusions. For example,
Lovejoy and Schertzer (1986) and Pellieter and Turcotte
(1999) argue on the basis of a nearly four century long series
from central England that the plateau finally ends at scales of
several hundred years. The same conclusionwas reachedwith
the help of paleo temperatures in Lovejoy and Schertzer
(1986), Schmitt et al. (1995) and Huybers and Curry (2006).
Beyond the end of the low β plateau these studies as well as
(Ashkenazy et al., 2003) estimated that a new scaling regime
then begins with agreement that the lower frequency
exponents β are in the range ≈1.3–1.8 and they concur that
the latter scaling regime is apparently again replaced by a new
plateau at frequencies below≈(40,000 years)−1. Lovejoy and
Schertzer (1986) also point out that once the time scale of the
beginning of this new scaling regime is determined, that the
exponent is fairly tightly constrained (according to them, near
β≈1.7) by the requirement that the extraoplation to the end
of the regime at ω≈(40,000 years)−1 leads to plausible
variations in the mean glacial/inter glacial temperature
changes.

The explanation for the end of the low frequency part of
the spectral plateau is not clear, although we could mention
the proposal in Lovejoy and Schertzer (1986). Based on the
observation that the spectra of spatially averaged northern
hemisphere temperatures show that the plateau only con-
tinues out to about five years (rather than several hundred for
the spatially “local” temperatures discussed above), they
quantitatively showed that the extrapolation of the mean
instrumental northern hemisphere temperature fluctuations
from about 5 years to longer periods would lead them to
dominate the local variations at about 300 years. In other
words for scales longer than this, the primary signal is the
fluctuation in the entire temperature of the earth whereas for
shorter scales, it is predominantly due to local variations.

4.1.5. Limits to predictability, forecasting
Clear knowledge of space–time relations are also needed

in forecasting. This is because small scale perturbations grow
progressively, “polluting” the larger scales via an inverse
cascade of errors (Lorenz, 1969). To see how this works,
approximate the inverse cascade via a series of cascade steps,
each over an octave in scale. The time for the error to
propagate from one octave to the next larger one is roughly
the corresponding eddy-turn over time/lifetime. The overall
limits to predictability are obtained by summing over all the
octaves from smallest to largest. If we now consider the
classical 2-D/3-D paradigm, we find in 3-D turbulence
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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(dominated by energy fluxes ε) a structure of size L has the
lifetime τe= ε−1/3L2/3. In 2-D enstrophy cascades it is
independent of size τe=ζ−1/3 where ζ is the enstrophy
flux. The result is that in 3-D the overall limit is the sum of a
converging algebraic series (nearly equal to the turn-over
time of the largest structure), whereas in 2-D it can in
principle be much larger than this depending on the overall
number of octaves in the enstrophy cascade. In our
anisotropic cascade model, the horizontal is still dominated
by ε so that the limits to predictability are still roughly equal
to the eddy turn over time of the largest eddy, i.e. about
10 days. This is indeed the frequently cited predictability limit
(see e.g. Lorenz, 1969) which is based on a statistical closure;
see the update (Rotunno and Snyder, 2008)). It should be
mentioned that the above picture needs important nuances,
since Schertzer and Lovejoy (2004) show that in multifractal
cascades, the error growth is actually highly intermittent,
coming in “puffs”.

4.2. Anisotropic space–time turbulence

4.2.1. Space–time scale functions
In Sections 2 and 3 we have argued that atmospheric

variables including the wind have wide range (anisotropic)
scaling statistics. Dimensionally, a velocity is needed to connect
space and time and physically the wind advects the fields.
Therefore it is hard to avoid the conclusion that spatially scaling
fields should also be (anisotropically) scaling in space–time
(and hence be the result of space–time cascade processes).
While we argue that this is indeed true, space–time scaling is
unfortunately somewhat more complicated than pure spatial
scaling. At meteorological time scales this is because we must
take into account the mean advection of structures and the
Galillean invariance of the dynamics. At longer climatological
time scales, this is because we consider the statistics of many
lifetimes (“eddy-turn-over times”) of structures. We first
consider the shorter timescales. This discussion is a summary
of a more detailed one in Lovejoy et al. (2008).

In order to illustrate the formalism, we shall discuss the
example of the horizontal wind v. Let us consider the 23/9D
model (Section 3) in which the energy flux ε dominates the
horizontal and the buoyancy variance flux dominates ϕ the
vertical so that horizontal wind differences follow:

Δ v Δxð Þ = ε1=3Δx1=3; a

Δv Δyð Þ = ε1=3Δy1=3;b

Δv Δzð Þ = ϕ1=5Δz3=5; c

Δv Δtð Þ = ε1=2Δt1=2;d

ð20Þ

where Δx, Δy, Δz, Δt are the increments in horizontal
coordinates, vertical coordinate and time respectively.
Eqs. (20a), (20b) describe the real space horizontal Kolomo-
gorov scaling and 20 c the vertical Bolgiano–Obukhov (BO)
scaling for the velocity, the equality signs should be
understood in the sense that each side of the equation has
the same scaling properties. The anisotropic Corrsin–Obukov
law for passive scalar advection is obtained by the replace-
ments v→ρ; ε→χ3=2ε−1=2 where ρ is the passive scalar
density, χ is the passive scalar variance flux. We have
synthesis for atmospheric dynamics: Space–time cascades,
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included Eq. (20d) which is the result for the pure time
evolution in the absence of an overall advection velocity; this
is the classical Lagrangian version of the Kolmogorov law.

Following the developments in Section 3, we can express
the scaling (Eq. (20)) in a single expression valid for any space–
time vector displacement ΔR=(Δr,Δt)=(Δx,Δy,Δz,Δt) by
introducing a scalar function of space–time vectors called the
“(space–time) scale function”, denoted 〚―ΔR〛, which satisfies
the fundamental (functional) scale equation:

〚λ−Gst

―ΔR〛 = λ−1
〚―ΔR〛; Gst =

Gs 0
0 Ht

� �
; Ht = ð1= 3Þ= ð1 = 2Þ = 2= 3

ð21Þ

whereGs is the 3×3matrix spatial generator (Eq. (16)) andGst

is the extension to space–time.
Using the space–time scale function, we may now write

the space–time generalization of the Kolmogorov law
(Eq. (20)) as:

Δvð―ΔRÞ = ε
〚―ΔR〛
1 = 3

〚ΔR〛1=3 ð22Þ

where the subscripts on the flux indicate the space–time scale
over which it is averaged.

The result analogous to that of Section 3, the corresponding
simple (“canonical”) space–time scale function is:

〚―ΔR〛can = ls
‖
―
Δr―‖

ls

 !2

+
jΔtj
τs

� �2=Ht

 !1=2

ð23Þ

(see Marsan et al., 1996). Where τs=ϕ−1/2ε1/2 is the “sphero-
time” analogous to the sphero-scale ls=ϕ−3/4ε5/4.

4.2.2. Advection and Gallilean invariance
The above is missing a key ingredient: advection. When

studying laboratory turbulence generated by an imposed flow
with velocity V with superposed turbulent fluctuations,
(Taylor, 1938) proposed that the turbulence is “frozen” such
that the pattern of turbulence blows past themeasuring point
sufficiently fast so that it doesn't have time to evolve; i.e. he
proposed that the spatial statistics could be obtained from
time series by the deterministic transformation VΔt−NΔx.
While this transformation has been frequently been used in
interpreting meteorological series, it can only be properly
justified by assuming the existence of a scale separation
between small and large scales so that the large scales really
do blow the small scale (nearly “frozen”) structures past the
observing point. Since we have argued that there is no scale
separation in the atmosphere this becomes problematic.

However, if we are only interested in the statistical
relation between time and space and the system is scaling,
then advection can be taken into account using the Gallilean
transformation matrix A:

A =

1 0 0 u
0 1 0 v
0 0 1 w
0 0 0 1

0
BB@

1
CCA ð24Þ

where the mean wind vector has components: v=(u,v,w)
(Schertzer et al., 1998). The new generator is Gst,advec=
A−1Gst A and the scale function 〚ΔR〛advec which is symmetric
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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with respect to Gst,advec is: 〚ΔR〛advec = 〚A−1ΔR
¯

〛. The
canonical advected scale function is therefore:

〚ΔR〛advec; can = 〚A−1ΔR〛can = lsð Δx−uΔt
ls

� �2
+

Δy−vΔt
ls

� �2

+
Δz−wΔt

ls

� �2=Hz

+
Δt
τs

� �2=HtÞ1=2

ð25Þ

Note that since Dst,advec=TrGst,advec=Tr(A−1GstA)=TrGst=
Dst, constant advection does not affect the elliptical dimension
(see however below for the “effective” G, D).

4.2.3. Advection in the horizontal
Formula 25 is valid due to the Gallilean invariance of the

equations and boundary conditions; it assumes that the
advection velocity is essentially constant over the region and
independent of scale. We now consider this in more detail.
We will only consider horizontal advection (put w=0; the
interesting but nontrivial effects of the vertical velocity on the
temporal scaling are discussed in Lovejoy et al. (2008b)). If
we apply the formula over a finite region with relatively well-
defined mean horizontal velocity, then it should apply (see
the discussion in (Lovejoy et al., 2008b)). But what about
applying it to very large e.g. global scale regions where the
mean velocity is small (if only because of rough north–south
symmetry)? However, even if we consider a flow with zero
imposed mean horizontal velocity (as argued by (Tennekes,
1975)) in a scaling turbulent regime with Δvl≈ε1/3 l1/3, the
typical largest eddy (size L) will have a mean velocity
V≈ΔvL≈εL1/3 L1/3 and will survive for the corresponding
eddy turn over time τε,L=T=L/V=εL−1/3 L2/3 estimated as
≈10 days above. In other words, if there is no break in the
scaling then we expect that structures will be advected by the
largest structures in the scaling regime.

With this estimate of the horizontal velocities to insert in
Eq. (25), let us compare them to the Lagrangian term (Δt/τs)1/Ht

considering only the temporal variations (i.e. take Δx=Δy=
Δz=0) and taking horizontal axes such that the advection term
is VΔt/ls. By definition, the sphero-time τs satisfies: ls=ε1/2τs1/2

and since T=V2/ε we see that the condition that the pure
temporal evolution term is negligible (i.e. that VΔt/lsN(Δt/τs)3/2)
is ΔtbT so that the term (Δt/T)3 only becomes important for
ΔtNT≈10 days. However, since the physical size of the eddies
with lifetime Δt=T is already the size of the planet (L), presum-
ably the term ceases to be valid for scales ΔtNT. Nevertheless, it
may play amodest role in breaking the scaling forΔt comparable
to T, i.e. for the transition from weather to climate.

Neglecting the Δt3 term, we can now use this information to
rewrite the horizontal scale function (Eq. (25) with w=0) in
terms of L, T and V instead of ls, τs. First consider overall (non-
random) advection (vx,vy), the nondimensional scale function is:

〚―Δr〛 =
Δx−vxΔt

L

� �2
+

Δy−vyΔt

L

� �2� �1=2

= Δx
L

� 	2
+ Δy

L

� 	2
+ Δt

T

� 	2−2 vx
Δx
L

+ vy
Δy
L

� 	
Δt
T

� 	� �1=2
; ΔtbT

ð26Þ

where T=L/(vx2+vy
2)1/2. The statistics of the intensity gradients

of real fields influenced by random turbulent velocity fields
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should involve powers of scale functions such as the above but
with “average” velocities. In this case we introduce the
nondimensional variables:

Δx′ =
Δx
L
; Δy′ =

Δy
L

; Δt′ =
Δt
T

; μx =
vxh i
V

; μy =
vy
D E
V

ð27Þ

with:

T =
L
V
; V = v2x

D E
+ v2y
D E� 	1=2 ð28Þ

Note that here V is a large-scale turbulent velocity whereas
bvxN, bvyNare givenby theoverallmeanadvection in the region
of interest. In terms of the nondimensional quantities:

‖Δr―‖≈ Δr′―

TB Δr′―

� 	1=2
; B =

1 0 −μx
0 1 −μy

−μx −μy 1

0
@

1
A;

Δr′― = Δx′;Δy′;Δt′
� 	

ð29Þ

Ifwe assume that the structure function of afield I (e.g. an IR
radiance) is scaling, then this implies the scaling of the spectral
density (P in a space dimension with D=3), with a (different)
Fourier space (represented by a tilda) scale function:

ΔI2
D E

≈‖―Δr‖
2H; P ―K

� 	
= j Ĩ ―K

� 	j2D E
≈‖K

¯
‖
−s; s = D−2H

ð30Þ
‖―K ‖ = ð―KT

――
E ―K Þ1=2

;
――
E =

1

1− μ2
x + μ2

y

� 	×
1−μ2

y μyμx −μx

μyμx 1−μ2
y −μy

−μx μy 1

0
BBB@

1
CCCA; ―K = kx; ky;ω

� 	

These equations imply that the space–time anisotropy can
be approximated by ellipsoids whose characteristics are
determined by the magnitude of the dimensionless horizontal
wind. But these ellipsoids have the same shapes at all scales; in
space–time the scale by scale anisotropy is thus “trivial”, the
effective space timegeneratorGs,eff in (x,y,t) space is the identity.
In Pinel (in preparation), this spectral formwas used to analyze
the MTSAT images discussed in section 4.3.1; with optimum
parameters s=3.5, L=35,000 km, T=930 hrs (=39 days),
V=9.3 m/s andbvxN=−3.1 m/s andbvyN=0.0 m/s.

The turbulence analysis just described can be compared
with themore traditional wave space–time analyses.Wheeler
and Kiladis (1999), Hendon and Wheeler (2008) have
pioneered the use of space–time spectra of daily mean fields
of outgoing long wave radiation to infer the presence and
activity of various atmospheric wave modes. Aside from
certain minor (preprocessing) differences, probably the most
significant difference is that in order to find evidence of
waves, theWheeler–Kiladis technique attempts to remove an
ill-defined “background”. This is necessary since any wave
signal is very small compared to the main spectral level. Our
method on the contrary attempts to analyse/model this main
“background” (i.e. turbulence) signal, ignoring residual wave
contributions. Work in progress attempts to bring the wave
induced residuals into a scaling framework.
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
4.2.4. Space–time diagrammes from lidar
Following the construction of the “space–space”diagramme

showing the relation of horizontal to vertical scales (Section 3),
we can use first order structure functions to determine “space–
time” or “Stommel” diagrammes from the lidar (z,t) data
described in Radkevitch et al. (2007), Radkevitch et al. (2008).
To do this, for a given Δt, the corresponding Δz(Δt) is
determined by the solution of the implicit equation for the
first order structure functions 〈|ΔB(Δz)|〉= 〈|ΔB(Δt)|〉 (B is
the lidar backscatter ratio). For three of the longer (z,t)
sections from Section 4.3.1, the results are shown in Fig. 18a,
we see that the data follow reasonably accurately the
theoretical curve (assuming horizontal wind dominated
temporal statistics and Hz=5/9). In addition, if the sphero-
scale is assumed to be 1 m (roughlywhatwas determined for
the vertical section data in Fig. 13c), then we find horizontal
wind in the range 5–60 m/s which is quite reasonable. We
also see that the space–time diagramme gives direct
evidence that the top of the troposphere (10 km) corre-
sponds to the outer time scale ≈2 weeks.

4.3. Evidence from satellite radiances: horizontal–time analyses

4.3.1. MTSAT thermal IR
The lidar data considered in the previous section allows us

to determine the space–time properties of vertical spatial
scales up to kilometers and time scales of seconds to hours. If
we seek to study the relation of horizontal to temporal scales,
then satellite data is ideal. In Section 2.3 we used TRMM and
MTSAT satellite radiances to examine the large horizontal
scale statistical properties of passive and active microwaves,
visible and infra red radiation. We can use the same
methodology — the systematic degradation of fluxes esti-
mated from absolute gradients— to degrade the same data in
the time domain. For this purpose, the TRMM satellite has the
disadvantage of having an average 2–4 day return time
(depending on the wavelength and location) so that it has
poor temporal resolution. Let us therefore first examine the
MTSAT thermal IR data with 1 hour resolution. Since we find
that 1 hour corresponds to about ≈30 km, we degraded the
nominally 5 km resolution data to 30 km; Fig. 18a shows the
result using 2 months of data (1440 images each between 30o

N and 40o S by 130o east–west). The temporal statistics are
shifted left–right on the log–log plot so that they coincide
almost exactly with the east–west spatial statistics; this
implies that the spatial statistics are identical to temporal
statistics if time is transformed into space with a velocity of
≈900 km/day (≈10 m/s) which is nearly the same as that
determined using space–time spectra (9.3 m/s; the same
data, Section 4.2.3) and which is similar to that determined
earlier from the mean energy flux and from the lidar space–
time diagramme.

We can now use the normalized flux moments to
determine the space–time diagramme, here the Δz, Δt
relation is determined by Mq(Δt)=Mq(Δz) where Mq is the
normlized qth order moment. Note that in principle, we could
obtain a different space–time relation for low and high order
moments q (corresponding to different relations for weak
and intense events/structures). However inspection of
Fig. 18a shows that since the time and space moments for
all q are very similar, that there will be only very small
synthesis for atmospheric dynamics: Space–time cascades,
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Fig. 18. a: An intercomparison of log10Mq(Δt) for east west radiance fluxes (blue) and time (pink) for q=0.4, 1.2, 2, 2.8. λ is defined with respect to a time scale of
2 months for the temporal analyses. The spatial log10Mq(Δx) has been shifted so as to superpose as closely as possible on the log10Mq(Δt) curves. The
corresponding speed is ≈900 km/day (10 m/s) and the outer cascade scale is ≈40 days in time, ≈35,000 km in space. The deviations from scaling become
important at about ≈5000 km or about ≈6 days. Compare this with the nearly perfectly scaling Fig. 7f which is the mean of the east west above with the north–
south analysis (from Pinel, in preparation). b: The horizontal space–time diagramme constructed from panel a (red) and the corresponding diagramme from the
north–south Mq (orange, from Pinel, in preparation). c: The normalized moments of the TRMM thermal IR data averaged over 100×100 km pixels at 12 hour
resolution from 5300 orbits (1 year corresponding to λ=1). The long time variability has been fit to a cascade with outer scale at 1100 days, but it is not clear that
this is a goodmodel (see Section 4.4). We thank V. Allaire for the help with this analysis. d: The same normalizedmoments of the TRMM thermal IR data as Fig. 18a
but with temporal and spatial moments superposed corresponding to a velocity of 400 km/day. The pink is the temporal analysis (from Fig. 18c), the blue is the
east–west spatial analysis (corresponding to Fig. 7d except that the analysis is not along orbit, and is at lower resolution). We thank V. Allaire for the help with this
analysis. e: CPC hourly precipitation, 29 years (254,040 points in each series, 21×13 series over continental US, see Section 2.3.1). C1=0.37, outer scale=42 days.
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differences, Fig. 18b shows the corresponding space–time
diagramme. Comparing this with the mean east–west/north–
south statistics (Fig. 7f) we see that the latter is very similar to
the TRMM thermal IR (at typically in the NE or NSW
directions, i.e. at ≈45o to the equator); it has excellent
scaling. However, taken individually the north–south and
east–west scalings are not so good at the largest scales, but
nevertheless, time and (east–west) space are virtually
identical including the deviations from scaling at large scales.
The result is that the east–west space–time diagramme is
nearly perfectly scaling over the entire range.

4.3.2. TRMM thermal IR
Returning to the TRMM data at a 12 hour resolution we

averaged one year (≈5300 orbits) of the thermal IR over
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
100X100 km grids. The results are shown in Fig. 18a. Note
that the below 2 days the statistics are poor since only a
fraction of the 100X100 “pixels” are visited at time intervals
less than this. We see that the plot can be divided into three
regions. Up to about 10 days, the moments are relatively
linear as expected from space–time multiplicative cascade
processes. If we extrapolate the lines to larger scales, they
cross at about 25 days; the variability at less than 10 days is
accurately that which would result from multiplicative
cascade starting at 25 days. At scales larger than this they
have yet another behaviour which we discuss later. To aid in
the interpretation, Fig. 18b shows the superposition of the
east–west spatial analysis of the same data. We see that
although the resolution is much lower and hence the scaling
region much shorter — that up to about 10,000 km and 10–
synthesis for atmospheric dynamics: Space–time cascades,
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15 days, the fit is comparable to that of the MTSAT although
the velocity is somewhat smaller,≈400 km/day. According to
our theoretical discussion about space–time statistics in
Fig. 19. a: These are the temporal cascades estimated from the GEM data, every 6 h
(submitted for publication). b: Temporal cascades in the 20th century reanalysis. Th
Laplacian estimate of the flux at “weather scales” (resolution 1 day for the 700 mb
42oN, averaged over all longitudes). The parameters are: C1=0.085, outer scale=
corresponding analysis of the temporal (second) fluctuation but of annually aver
variations. The parameters are: C1=0.08, outer scale=150 yrs, C1=0.061, outer sc

Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
anisotropic turbulence, it is natural to identify the scales
where the space–time relation is linear with the weather, and
those at scales larger than the outer temporal cascade scale
, temporal (second derivative) flux estimates. Reproduced from Stolle et al
is is the temporal companion to Fig. 6a. The top row shows the analysis of the
zonal wind (u), left and 6 h for the surface pressure (right), both shown for
27 days, C1=0.11, outer scale=16 days respectively. The bottom shows the
aged Laplacians. The pressure shows some evidence of long range climate
ale ≈106 yrs respectively.

synthesis for atmospheric dynamics: Space–time cascades,
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with the climate, with an intermediate “transition” region
between the two; we return to this in Section 4.4.

4.3.3. Hourly precipitation
In Section 2.3.1 we already discussed the spatial cascades

displayed by NOAA's CPC hourly US precipitation product up
to scales of ≈4000 km (Fig. 7b). This data set is perhaps the
highest time resolution set of its sort (254,040 points in each
of 21x13 series) so that it is of interest to examine its
temporal cascade structure, Fig. 18e shows the result. Note
that the scaling was slightly improved by detrending the
strong daily and annual cycles. Interestingly, C1 was found to
be a little lower (≈0.37) than for the corresponding spatial
analyses— (C1≈0.50), and were more compatible with radar
reflectivities (Z) using Z–R relations classical exponents
β≈1.6; see the discussion in Section 2.3.1). The outer
temporal cascade scale is 42 days compared with
≈32,000 km in space which implies a (reasonable) mean
velocity of≈760 km/day. However, this should be takenwith
caution since the spatial and temporal C1's are somewhat
different, so that either the space–time relation is nonlinear
(so that a scale dependent velocity must be used), or the
moments are affected by the poorly estimated low and zero
rain rate statistics (or other artifacts of the data and the
preprocessing to “homogenize” it onto a regular grid).

4.3.4. Temporal cascades in Numerical models
We can also perform scale by scale temporal analyses of

the numerical model fluxes discussed in Section 2.2 and
compare them with the corresponding spatial analyses.
Fig. 19a shows typical results for the GEM (the full results
are in (Stolle, 2009)). We see that it is very similar both
qualitatively and quantitatively to the thermal IR, although
with somewhat smaller external cascade scales (varying
between 8 and 13 days). The best space–time transforma-
tions typically correspond to a velocities of ≈400–600 km/
day which is comparable to that of the IR imagery. (Stolle,
2009) makes the comparable analyses for the ERA40 and GFS
model and calculates many space–time diagrammes; the
results are sufficiently similar that we do not repeat them
here. Table 7 summarizes and compares the parameters for
various fields showing only a weak latitude dependency and
even little field to field variation in outer time scales or
intermittency parameter C1.

Because it is particularly long (116 years), we also show
results from the 20th century reanalysis project, Fig. 19b. These
are the same 700 mb zonal wind and surface pressure fields
Table 7
Parameters characterizing the temporal cascade for the tropical (±30o) and
the midlatitude (±45o) regions. Adapted from Stolle et al. (submitted for
publication).

Field α C1 Teff (days)

±30o ±45o ±30o ±45o ±30o ±45o

u ERA40 1000 mb 1.8 1.7 0.14 0.15 38 48
hs ERA40 700 mb 1.6 1.6 0.15 0.15 15 15
T GEM 1000 mb 1.8 1.8 0.14 0.14 17 18
T GEM 700 mb 2.0 2.0 0.12 0.13 42 34
u GFS 700 mb 1.7 1.7 0.13 0.13 30 25
hr GFS 1000 mb 1.7 1.7 0.14 0.14 25 25

Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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analyzed spatially in Fig. 6a, we show both analyses at
“meteorological scales” (top row) and “climate scales” (annually
averaged fields, bottom row). Considering the meteorological
scales, we see the familiar cascades signature of converging
straight lines (although herewith slightly larger outer scales, 17,
26 days), and we note that after a year or so that the moments
are nearly constant. If there were no more correlations,
increasing the averaging scale would continue to smooth out,
hence decrease the moments; this constancy indicates the
presence of long range correlations. In the lower row at climate
scales — analyzing a different (nontrivial!) flux — the Laplacian
fluctuation of the annual mean fields — we see evidence for
cascades at climate scales. The behaviour of the zonalwind is not
clear: either the converging lines at the smaller time scales
(those shown) indicate a cascadewith outer scale of the order of
a century, or— possibly more likely given the pressure cascade,
lower right— it could simply represent convergence to a cascade
with amuch larger outer scale. In any event, the mere existence
of near constant or linear regimes indicates the presence of long
range statistical dependencies. In the next section, we back this
up further by considering “Levy collapses” of the moments.
4.3.5. Levy collapse and universality
Up until now, we have primarily concentrated on

establishing the fundamental prediction of multiplicative
cascade models, Eq. (1). However, we also argued that there
are basic physical, mathematical reasons (essentially the
existence of a kind of multiplicative central limit theorem)
that make it plausible that the model fields fall into special
universality classes in which the basic scale invariant
exponent K(q) is given by Eq. (2) characterized by just two
parameters C1, α. In the analysis of spatial cascades (Stolle
et al., submitted for publication), it was directly shown that
universality works well — at least up to a critical moment qc
beyondwhich there is a “multifractal phase transition”where
K becomes asymptotically linear (a sample size dependent
effect corresponding to the domination of the statistics by the
largest flux values present, (Schertzer et al., 1993)). If the flux
follows Eq. (1) with K given by Eq. (2), it implies that the
generator Γ of the cascade (=log φ) is a Levy variable, index
α. In that case, one can attempt to “collapse” the momentsMq

to a unique curve by dividing log Mq by the theoretical K(q)
for (say) C1=1, i.e. by dividing it by (qα−q)/(α−1); if Mq

does indeed follow Eqs. (1) and (2) with parameters C1, α,
then we obtain (α−1) logMq/(qα−q)=C1logλ which is
independent of the moment q so that all the curves with
different q values “collapse” onto a single curve whose slope
is given by C1. The interest of such plots goes beyond just
testing for the universal cascade behaviour: on a single plot
we can independently evaluate both the scaling (the
straightness of the collapsed lines) as well as the log-Levy
nature of the generator— by the thinness of the collection of
lines i.e. how well at a given scale the different moments
collapse, how well they follow the form (qα−q). this is
particularly interesting in the weather/climate transition
region since a breakdown in Eq. (1) does not necessarily
imply that the distribution is no longer log-Levy (see the next
section), it need only retain a more general multiplicative
structure. This means that themoment curves (α−1) logMq/
(qα−q) can still “collapse” even if there is no longer scaling.
synthesis for atmospheric dynamics: Space–time cascades,
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Fig. 20. a: These are the Levy collapses for the 700 mb zonalwind (left column) and surface pressure (right column) from the 20th century reanalysis, top in the time
domain (6 hours resolution), bottom in the spatial domain. These are the collapses of the cascades shown in Figs. 6a and 19b. The α for the collapse (to the nearest
0.1) and the C1 values corresponding to the linear (cascade regime) are: (1.9, 0.090), (1.9, 0.085) (zonal wind, time, space respectively, outer scales 21 days and
12,600 km) and surface pressure, time, space (1.9, 0.11), (1.9, 0.10), outer scales 10 days and 15,800 km. b: These are Levy collapses of the analyses of US daily
station data discussed in Section 4.1.3 (Fig. 16c, d, e), series 12,400 days long (≈34 years, 1975–2008; the series were shorter and hence more numerous set of
stations were used to get the best statistics), moments up to q=3.8 were used. The number of stations used were: pressure (18 stations), temperature (158
stations) humidity (84 stations), the collapses used the Greek α values shown.
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In Fig. 20a we see that the collapse for the 20th century
reanalyses is excellent, and this out to scales way into the
“climatological” regime (typically the spread of the collapsed
curves about the mean is 2–10 percent of the mean,
comparable to that in found in spatial analyses, see Stolle et
al., submitted for publication) for other examples. Note that
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
the largest deviations are at the very smallest scales (largest
octave in λ) due to the “finite size” effects mentioned earlier,
and at the very largest scales (smallest λ)where the statistics
are poor. The apparent Log–Levy nature of the fluxes even at
very long time scales is significant and hints at a deep
relationship between weather and climate processes. These
synthesis for atmospheric dynamics: Space–time cascades,
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Fig. 21. The result of averaging over 12 realizations of the (x, t) section of the
cascade weather–climate model on a 24×215 point grid (discussed in the
text) with C1=0.1, α=1.8, H=1/3. The resolution is taken as 1 day in time,
≈1200 km in space (1/16 of T, 1/16 of L respectively, so that according to the
analysis, the model temporal outer scale has been increased a bit with
respect to the theoretical T). The curves are for the moments q=0.1, 0.2, …
1.9, the spatial and temporal analyses are shown superposed.
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conclusions are supported by analysis of the daily station
data for T, p, h shown in Fig. 20b. Although the statistics are
much poorer than those of the 20th century reanalysis —

leading to visible statistical fluctuations at the longer time
scales — they nevertheless support the Log–Levy (hence
presumably multiplicative) character of the fluxes out to
scales of a year or more. In Section 4.4 we discuss a simple
weather/climate model which roughly reproduces this
behaviour.

4.4. The climate as a dimensional transition from the weather:
extending the cascade model to long time periods

4.4.1. Discussion
Considering just the horizontal and time domains, we

have argued that the velocity scale linking time and space
should be precisely the typical velocity of the largest eddy V
which is determined by the external spatial scale L (the size of
the planet) and the driving global mean energy flux εL (itself
determined by the solar radiation modulated by the clouds
and dynamics; V=εL1/3 L1/3 and T=L/V). In other words, L, V,
T are determined from basic principles, they are not simply
adjustable model parameters. Considering the scale function
for a planetary scale region with small overall mean velocity
(but not small rms velocity V), we argued that for scales lbL
and τbT, it was essentially isotropic (Eq. (29), Geff=the
identity, trivial anisotropy only).

While we have spent effort testing the prediction of the
basic model for scales lbL and τbT, we have not examined
the behaviour of the model for scales τNT. Can the same
model account for the weather — climate transition, and to
what extent can it account for the climate regime (e.g. the
spectral plateau)? In other words, what are the limits of the
model, at what scales does it finally break down?

As a step toward answering this question, we turn to
explicit space–time stochastic cascade models. We now recall
the basic features of (continuous in scale) cascade model for
the turbulent flux ε. First, since it is assumed to be a
multiplicative process, it can be expressed in terms of the
exponential of an additive generator Γ:

ε �r; t
� 	

= εLh ieΓ �r;tð Þ ð31Þ

where Γ is the (dimensionless) generator. If we assume that
the basic statistics are translationally invariant in space–time
(statistically homogeneous, statistically stationary), then G is
given by a convolution between a basic noise γ(r,t)
(independent, identically distributed random variables),
and g(r,t) is a Green's function (a deterministic weighting
function that correlates them over (potentially) large space–
time distances):

Γ �r; t
� 	

= γ �r; t
� 	

� g �r; t
� 	

ð32Þ

For the stable and attractive processes leading to uni-
versal multifractals, γ(r,t) is taken as a unit (and extremal)
Levy noise, index α, i.e. whose second characteristic function
is log 〈eγq〉=qα/(α−1). In addition for universalmultifractals,
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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g must have a particular form:

g �r; t
� 	

= nDC
1 = α
1 〚 �r; t

� 	
〛
−D=α

ð33Þ

with the singularity cutoff at the inner, dissipation scale and D
the dimension of space time (= the trace of the scale
generator G for isotropic space–time), nD is a normalization
constant, C1 the intermittency parameter of the mean
intermittency, α is the Levy index of the (extremal) uncorre-
lated space–time unit amplitude Levy noise γ(r,t) (see
(Schertzer and Lovejoy, 1987) for the basic model, (Marsan
et al., 1996) for the extension to causal space–time processes,
(Lovejoy et al., 2008b) for the extension to turbulence driven
waves, and (Lovejoy and Schertzer, in press) for a technical
treatment of numerical issues.

The observable v (e.g. a horizontal wind component)
whose statistics obeys Eq. (20) can be obtained from the flux
by taking:

v �r; t
� 	

= ε �r; t
� 	1=3

L1=3 � 〚 �r; t
� 	

〛
− D−Hð Þ

ð34Þ

(the L1/3 is needed since the scale function is nondimensional).
In Eqs. (33), (34), we have ignored the issue of causality

which can be taken into account with the use of a Heaviside
function in the convolutions (Marsan et al., 1996); for our
present purposes, this complication will be ignored; Eq. (34)
for the observable is called the “Fractionally Integrated Flux
model”.

4.4.2. A simple model of (x, t) sections of the weather, the
transition and the climate

We will now consider the consequences of assuming that
a multiplicative model of the type defined by Eqs. (30)–(33)
holds for climate scales τNNT. In order to understand the
synthesis for atmospheric dynamics: Space–time cascades,

http://dx.doi.org/10.1016/j.atmosres.2010.01.004


46 S. Lovejoy, D. Schertzer / Atmospheric Research xxx (2010) xxx–xxx

ARTICLE IN PRESS
basic features of the weather, the transition and the climate
we can study restrict our attention to a D=2, (x− t) section
of the full (x, y, z, t) model. The spectrum of such a model was
shown in Fig. 15b, and in Fig. 21, we show the corresponding
normalized moments. If we rewrite Eq. (31), Eq. (32)
nondimensionalizing x with L and t with T, then we obtain
for the generator Γ(x, t)=log(ε(x, t)/ 〈εL〉):

Γ �r; t
� 	

= ∫
1

Λ−1
w

∫
1

Λ−1
w

γð�r−�r
′
; t−t′Þgð�r

′
; t′Þd�r

′dt′

+ ∫Λc

1
∫
1

Λ−1
w

γ �r−�r
′
; t−t′Þg �r

′
; t′Þd�r

′dt′
��

ð35Þ

Λw=L/Li=T/Ti is the total range of meteorological scales Λ c=
ToNT is the overall outer scale of theweather/climate process.
Denoting the first term by Γw(x,t) “w” for “weather” and the
second climate scale term Γc(t) (“c” for “climate”) then for
ToNNT, we have approximately:

Γ x; tð Þ≈Γw x; tð Þ + Γc tð Þ

Γw x; tð Þ = ∫
SΛw

γ x−x′; t−t′
� 	

g x′; t′
� 	

dx′dt′

Γc tð Þ = ∫Λc

1
�γ t−t′
� 	

g 0; t′
� 	

dt′

ð36Þ

where�γ t−t′
� 	

is a spatially integrated Levy noise and SΛ is the
quarter unit circle in (x,t) space with the quarter circle around
the origin of radius Λw

−1 removed (or squares: for our present
purposes the difference is unimportant). The approximation in
Eq. (36) consists in assuming gðx; tÞ≈gð0; tÞ; t N N x so that
for long enough lags the spatial lags are unimportant. Γw(x,t) is a
2D (space–time) integral corresponding to the contribution to
the variability from the weather regime (tb1, xb1), and the
second Γc(x,t) is a 1D (purely) temporal contribution due to the
climate regime. This drastic change of behaviour due to the
change of space–time dimension over which the basic noise
driving the system acts is a kind of “dimensional transition”
between weather and climate processes.

In this simplest model it is only this separation into
independent weather and climate terms with correlated
noises integrated over spaces of different effective dimen-
sions which is responsible for the statistical difference
between weather and climate, at the level of the fluxes it
means that the climate process modulates the weather
process at the larger time scales:

εΛ
w;1–1

x; tð Þ≈eΓw x;tð Þ + Γc x;tð Þ = εΛ
w;1–1

x; tð ÞεΛ
w;1–1

tð Þ ð37Þ

with εΛw,1–1
(x, t), having the high frequency variability, ε1,Λc

(t) the low frequency. The generic result is a “dimensional
transition” in the form of a spectral plateau which we
investigate in more detail in (Lovejoy and Schertzer, in
preparation), see also Fig. 15b.

To understand the statistics of the model we can calculate
the second characteristic functions of logε (=log〈eqΓ〉) ; we
can use the general formulae (valid of the i.i.d. Levy noise g
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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and deterministic function and any positive function f):

f = ∫γ sð Þg sð Þds; log efq
D E

=
qα

α−1
∫gα sð Þds ð38Þ

We find:

εqΛ
w;1−1


 �
≈ e

qα

α−1 ∫
1

SΛ

gα x′ ;t′ð Þdx′dt′

εq1;Λc

D E
≈ e

qα

α−1∫
Λc = Λ

1
gα 0;t′ð Þdt′

ð39Þ

To see how the weather term results in a multiscaling
power law we use the scale function appropriate for a
meanbvN≈0 but bv2N=V2, (Eq. (27)) and nondimensiona-
lizing x, t we have:

g x; tð Þ = nDC
1 = α
1 〚 x; tð Þ 〛

−D=α = nDC
1 = α
1 x2 + t2 + t3

� 	−1=α

≈nDC
1 = α
1 x2 + t2

� 	−1=α
; tb1 ð40Þ

where we have used D=2 and (the cubic — pure time
development term — is only significant near t=1). If we now
use polar coordinates r2=x2+t2, dxdt=rdrdθ, we see that
choosing nD=(π/2)−1/α the integral (over a quarter circle) in
expression for εw yields the required log behaviour. In addition,
normalizing εw by dividing by the mean so that bεwN=1, we
obtain 〈εΛ,wq 〉≈Λw

K(q) with K(q)=C1(qα−q)/(α−1).
The key point about the weather–climate transition is thus

the dimensional transition; the difference in the dimensions of
space over which the integrals in the weather and climate terms
of Eqs. (36), (39) are carried out. In order for the climate regime
to displaymultiscaling,we require g(0,t)≈t−1/α for tN1whereas
the extrapolation of theweatherg(x,t) yieldsg(0,t)≈t−2/αwhich
falls off too quickly. In other words, unless the weather noise
becomes substantially more correlated (i.e. the exponent for g
becomes lower for tN1) for the climate regime, the correlations
will be relatively short ranged leading to the spectral-plateau
white noise — like regime of Fig. 15.

In summary, thismodelpredicts the following for thefluxes:

a) the flux statistics factorize into a weather and climate
contribution:

ε x; tð Þ≈eΓw x;tð Þ + Γc x;tð Þ = εw x; tð Þεc tð Þ ð41Þ

with εw having the high frequency variability, εc the low
frequency. The generic result is a “dimensional transition”
in the form of a spectral plateau.

b) Sinceweighted sums of independent Levy variables are still
Levy variables, this models predict that the climate
variability εc(t) (estimated by space–time averaging over
the weather scales) has the same (Log Levy) form at time
scales much larger than T. In other words, a prediction that
follows simply from Eqs. (31), (32) (i.e. the multiplicative
nature of the process), is that [log(〈ελq〉/〈ελ〉q)]/K(q)≈F(λ)
where F is a function only of λ, not q. In Section 4.3.5 we
have shown that this is apparently well verified both on
daily in situ data and on reanalyses, in the latter case for
scales up to 100 years (Fig. 19b). This is evidence that the
multiplicative model applies at least to some climate scales.

c) If we consider an observable v=ε*g, then we again have a
separation of the convolution into a space–time integral
synthesis for atmospheric dynamics: Space–time cascades,
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over the weather scales and (approximately) a time only
integral for the climate scales, we again have a dimen-
sional transition at T.

The model shows that at least some of the statistical
features of the transitional and climate regimes— particularly
the white noise like spectral plateau — are simply long time
(NT) consequences of the same basic fluid physics that
describes the weather regime at scales (bT). A future task is
to see how far we can take the model before it breaks down
(see the discussion in Section 4.1.3) and the relation of this to
the stochastic linear forcing approach which is used in the
“near climate” regime of weeks and months.

5. Conclusions

5.1. Outstanding issues

We have proposed a synthesis of state-of-the-art data
and nonlinear theory which potentially unifies atmospheric
dynamics over huge ranges of space–time scales. However, in
many respects this picture is still tentative; below we list just
a few of the outstanding scientific issues that it raises.

5.1.1. The relation between the phenomenological cascade
model and the underlying dynamical equations

Although it would be satisfying to be able to rigorously
derive the cascade model from the underlying dynamical
equations, we should recall some history. The embarrassing
fact is that in spite of intense efforts over more than 50 years,
analytic approaches have been surprisingly ineffective at
deducing the statistical properties of turbulence. The devel-
opment of explicit multiplicative cascade models starting in
the 1960's, was precisely an attempt to overcome the
limitations of statistical closure, renormalization, and other
kindred analytical techniques. Indeed, in understanding high
Reynolds number turbulence (whether geophysical or oth-
erwise), we are increasingly faced with two main alterna-
tives: brute force numerics and phenomenological models,
especially cascades.

While to our knowledge there have been no attempts to
directly check the validity of multiplicative cascades (Eq. (4))
on either direct numerical simulations (DNS) or (until (Stolle
et al., 2009)) on geophysical numerical simulations, there
have been some relevant developments. The closest is
perhaps the multifractal characterization of time signals in
turbulent shell models (Biferale, 2003) or in “scaling cascade
of gyroscopes” models (Chigirinskaya and Schertzer, 1996;
Chigirinskaya et al., 1998). While the former discretizes the
Navier Stokes equations in Fourier space while keeping a
small and fixed number of degrees of freedom per octave in
scale, the latter more realistically discretizes the equations on
a dyadic tree structure such that the number of degrees of
freedom increases with wavenumber. Other relevant con-
nections between the cascade prediction, Eq. (4), and
dynamical equations are the studies of temporal scaling
(Syroka and Toumi, 2001; Blender and Fraedrich, 2003;
Fraedrich and Blender, 2003), and temporal multifractality of
climate models (Royer et al., 2008).

In spite of slow progress in reconciling the cascades with
classical numerical models, the finding that atmospheric
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
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models accurately respect cascade structures over essentially
their entire ranges will surely provide an impetus for
resolving this basic issue.

5.1.2. The relevant fluxes: their physical nature
We have criticized the classical turbulence approach for

deciding a prioriwhich turbulent fluxes are relevant, and this
coupled with additional a priori isotropy assumptions.
Indeed, the (occasionally spectacular) confirmations of the
predictions of cascades detailed throughout this review were
possible because we only made use of the weaker assumption
of scaling — which in any case we tested — and we did so
without the need to assume in advance the physical nature of
the fluxes.

We now need to investigate this further. On the one hand
using high quality space–time remotely sensed data sets— or
outputs from numerical models — we can use the classical
techniques of turbulence theory to study fluxes in Fourier
space i.e. the wavevector/frequency domain. Since the
turbulent fluxes are Fourier space fluxes (e.g. large to small
scale energy transfers), this is the natural framework for
doing this. On the other hand, we must try and clarify the
physical nature of the cascading fluxes, and eventually their
inter-relations, including basic questions such as the number
of different cascades and the nature of their inter-relations,
inter-dependencies.

5.1.3. The robustness of the exponents
Anisotropic cascades involve two qualitatively different

sets of exponents: the first characterize the change in the
statistics of the fluctuations with scale, (H, C1, α) the second,
the exponents that define the notion of scale itself (G). Each is
characterized by a (mathematical) group and its generator.
From a theoretical point of view, the difficulty is that without
knowing G, we can't rigorously define the scales and hence
determine the statistical exponents H, C1, α. The solution
adopted in the empirical analyses was to take advantage of
two rough empirical facts a) that in the horizontal, the
anisotropy was not so strong: or at least not strong enough to
prevent most of its effects being washed out by using
isotropic analysis techniques (such as averaging over wave
vector directions to obtain isotropic spectra), and b) that the
vertical eigenvector of G is roughly perpendicular to the
horizontal direction. These two properties allowed us to
effectively avoid the very difficult estimation of off-diagonal
elements of G ((Lewis et al., 1999); although the latter are
presumably important for cloud and other morphologies).

Bearing in mind this need to “bootstrap” our analyses by
first guessing an appropriate definition of scale (G, ‖(r,t)‖), and
then using it to estimate the statistics (H, C1, α), we must then
consider the robustness of the parameter estimates. This has
two aspects: first there must be attempts at reproducing the
existing exponent estimates with other instruments, other
methodologies, different analysis techniques. This is especially
true of in situ measurements which typically have nontrivial
problems (Section 2). Second, we mentioned that there are
already indications that there appear to be some systematic
variation of exponents with altitude (especially the horizontal
wind); and why not with latitude? In principle such spatial
variations can be accounted for in a scaling cascade framework,
but at the price of introducing a nonlinear generator G.
synthesis for atmospheric dynamics: Space–time cascades,
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5.1.4. Scale functions and stratification
The justification of generalized scale invariance is that one

should not impose a priori notions of scale (such as isotropic
metrics), one should rather allow them to be determined by
the nonlinear dynamics; the appropriate scale notions are
expected to be “emergent quantities” determined by the
turbulent fluxes. This idea is similar to general relativity
where the distribution of matter and energy determine the
distance notion — the metric — although here the scale
function need not be a metric. In the simplest model, there
would be a single space–time scale function valid for all the
atmospheric fields. Although this idea is seductive there are
indications that things are more complicated; for example
our inter-comparison of the empirical stratification parame-
ter Hz (Table 6) suggests that there may be at least two scale
functions needed — one for the humidity and passive scalars,
and one for temperature, potential temperature and hori-
zontal velocity.

The stratification issue could also be profitably studied
with the help of numerical models of the atmosphere. At
present, the models that have been examined (Section 2.2)
are hydrostatic and the vertical statistics have not been
fully investigated because in the vertical the model levels
are so unevenly spaced that the statistics are difficult to
interpret. However, preliminary investigations on the
ECMWF interim reanalysis suggest that to within intermit-
tency corrections, the vertical scaling of the horizontal
wind has H=1 (i.e. it is statistically linear) and that the
isobaric wind spectra are apparently different from the
isoheight spectra. This is because of the scaling stratifica-
tion of the wind combined with the small but non
negligible slopes of the isobars. In addition, there are
physically based (meteorological) correlations between the
wind and pressure fields. At present it is therefore not clear
that the numerical models are at all capable of reproducing
the observed scaling stratification. However, due to the
importance of stratification — and the acknowledged
unsatisfactory nature of the hydrostatic approximation, it
would be worth returning to vertical model analyses
perhaps using nonhydrostatic models with more evenly
spaced vertical levels.

5.1.5. The weather–climate transition and the limits of the
model and stochastic linear modelling

We have given evidence that the cascade picture
extends up to planetary scales and to time scales of a
week or more. We have argued that the observed weather–
climate transition is in fact a generic consequence of the
basic multiplicative cascade model; that it follows because
at long time scales, the spatial correlations are essentially
cut-off by the finite size of the earth. We even gave
evidence that at least into the beginning of the climate
range (beyond the scaling regime, even up to tens of years)
that the model may still apply (Section 4.4). This would
mean that at least up to these scales that in some
respects, climate variability is still fundamentally of the
same type as the weather variability. It is therefore
important to determine its real temporal outer limits. The
validity of the model — even over just part of the climate
range — would be important in improving our understand-
ing of natural climate variability, of SLF type linear
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stochastic modelling, and our ability to discern anthropo-
genic effects.

5.2. Applications

Atmospheric science labors under the misapprehension
that its basic science issues have long been settled and that
its task is limited to the application of known laws — albeit
helped by ever larger quantities of data themselves pro-
cessed in ever more powerful computers and exploiting ever
more sophisticated algorithms. Atmospheric science is thus
increasingly being reduced to the application of techniques,
to the development of “products”. We have already argued
that a consequence of its undervalued theoretical compo-
nent is the failure to profit from the technological manna
itself to reach a consensus on the atmosphere's basic scale by
scale properties. Unfortunately in many areas we have
reached the point where even the expenditure of vast
resources on urgent applications have been (and will
continue to be) inadequate for overcoming longstanding
problems, precisely because often these problems are linked
to issues of extreme variability, heterogeneity and space–
time resolution.

Conversely, if the cascade synthesis is even approximately
correct, it will open up new vistas for applications, many of
which are of as yet difficult to discern. Below we list a few of
the more immediate ones.

5.2.1. The development of resolution independent remote
sensing algorithms, resolution independent objective analyses

The empirical analyses summarized in earlier sections
directly demonstrate the strong scale dependencies of many
atmospheric fields, showing that they depend in a power law
manner on the space–time scales over which they are
measured. While remotely sensed fields are radiances — in
themselves usually of limited interest — they are often used to
determine surrogates for dynamic and thermodynamic fields
(e.g. satellite “products”). Well-known examples include radar
estimates of rain rates or passive microwave estimates of
temperature andhumidity profiles. Inmany cases, considerable
effort is exerted to calibrate (“validate”) algorithmsusing in situ
data. This leads to two resolution dependent difficulties: first
that the space–time resolution of the calibration data is not
equivalent to those of the radiances, and second that even if the
radiance based surrogate is well calibrated at the calibration
scale, this may not be true at any other scale. Yet there is
typically nothing special about the surrogate resolution beyond
the fact that it is thebest availablewith existing technology; it is
essentially a subjective limitation. A typical symptom of this
implicit resolution problem is that when new satellites with
improved resolutions become available, that the (sometimes
numerous) algorithm/calibration constants have to seriously
revised.

On the contrary, if we use the space–time scaling
exponents to characterize the resolution dependencies, then
these can be used as the basis for developing new scale/
resolution invariant techniques (Lovejoy et al., 2001),
possibly including resolution-independent Bayesian techni-
ques. As an example, estimates of the earth's radiation budget
should be revisited taking into account the cascade scaling of
the radiances discussed in Section 2.3. The failure of current
synthesis for atmospheric dynamics: Space–time cascades,
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energy budget estimates to take these strong resolution
dependencies into account implies the likely presence of
biases.
5.2.2. Stochastic Forecasting, stochastic parametrisation
In the introduction, we mentioned the ongoing ensemble

forecasting revolution, the fact that today meteorologists' goal
is increasingly a stochastic one: to predict the possible states of
the atmosphere as well as their corresponding probabilities of
occurrence. However, the current ensemble forecasting tech-
nique is essentially a stochastic— deterministic hybridwhich is
indirect and problematic on several counts. The main difficul-
ties are a) that it is based on a deterministic framework for the
initial objective analysis—whichuses statistics only to describe
measurement errors — and not the fields themselves — and b)
which assumes that thefields evolve according to deterministic
nonlinear partial differential equations. While deterministic
assumptionsmay be appropriate for descriptions andmodels at
the dissipation scale, stochastic ones are more appropriate at
lower space–time resolutions (if only because an infinite
number of different dissipation scale fields give rise to the
same low resolution analysis fields). The reason that ensemble
forecasts are ultimately stochastic is that one attempts to
deduce an initial probability distribution of atmospheric states
at t=0 (“ensemble breeding”), and then the model maps this
initial distribution onto a future distribution. In this approach,
even thefinal step— the analysis of themembers of the forecast
ensemble is nontrivial.

In contrast, cascades have the important advantage of
(potentially) providing a consistent and natural stochastic initial
distribution followedbyanoptimumstochastic forecast. First, the
initial state of the atmosphere can be specified in terms of
probabilities conditioned by the observations (at the appropriate
space–time resolutions). They can then (in principle) take this
initial conditional probability distribution and give the (theoret-
ically optimum) stochastic forecast, i.e. the conditional expecta-
tions or conditional probabilities of the fields at future times, and
this at whatever space–time resolutions are required (see e.g.
Salvadori et al., 2001) for an attempt in this direction).While this
purely stochastic forecast procedure has yet to be proven in
practice, it has the additional advantage that it can in principle
(statistically) take into account as wide a range of scales as
necessary rather than the current 102–103. At present, its main
limitations are that it has mostly been developed for handling
individual scalar fields; generalizations are needed for vector
cascades to describe the evolution of atmospheric state vectors
(Schertzer and Lovejoy, 1995).

While pure stochastic forecasts are not likely any time soon
(except perhaps for nowcasting, (Macor et al., 2007)), it should
be soon possible to apply cascade models to “stochastic
parametrisation” of the type introduced by (Buizza et al.,
1999; Palmer, 2001b). Stochastic parametrisation is an attempt
to increase the variability of the deterministic forecasts so as to
increase the rate that the different members of the ensemble
diverge from each other. It does this by introducing random
numbers at each pixel, representing the random effect of the
unmodeled sub grid scales. While at present this is done on a
fairly ad hoc basis, the finding that the stochastic structure of
themodels canbedescribed by cascades promises to put this on
a more sound theoretical basis.
Please cite this article as: Lovejoy, S., Schertzer, D., Towards a new
Atmos. Res. (2010), doi:10.1016/j.atmosres.2010.01.004
5.2.3. Distinguishing natural from anthropogenic variability and
the problem of outliers

Conclusions about anthropogenic influences on the
atmosphere can only be drawn with respect to the null
hypothesis, i.e. one requires a theory of the natural
variability, including knowledge of the probabilities of the
extremes at various resolutions. At present, the null
hypotheses are classical so that they assume there are no
long range statistical dependencies and that the probabilities
are thin-tailed (i.e. exponential). Howeverwe have seen that
cascades involve long range dependencies and (typically)
have fat tailed (algebraic) distributions in which extreme
events occur muchmore frequently and can persist for much
longer than classical theory would allow. Indeed, the
problem of statistical “outliers” may generally be a conse-
quence of the failure of highly variable cascade data to fit into
relatively homogeneous, regular, classical geostatistical
frameworks.
5.3. Perspectives

In this paper, we have given an overview of a body of work
carried out over the last 25 years aiming at a scale by scale
understanding of the space–time statistical structure of the
atmosphere and its models. The new synthesis we propose
would not be possible without technologically driven
revolutions in both data quantity and quality as well as in
numerical modeling and data processing. Also key for this
synthesis are advances in our understanding of nonlinear
dynamics (especially cascades, multifractals, and their aniso-
tropic extensions), and in the corresponding data analysis
techniques. Although there are many gaps to fill, it is
remarkable that a relatively simple picture of the atmosphere
as a system of interacting anisotropic cascades seems to be
consistent with some of the largest and highest quality
satellite, lidar, drop sonde and aircraft campaigns to date
collectively measuring passive and active radiances over the
long and short wave regimes, as well as in situ wind,
temperature, humidity, potential temperature, pressure and
other variables. It also holds remarkably well for reanalyses
and other numerical models of the atmosphere. It leads to a
natural distinction between the weather and climate and
successively predicts the transition to the climate at
≈10 days as a dimensional transition from a weather system
(where both long range space and time correlations are
important) to a climate system dominated by long range
temporal correlations.

At first sight, it may seem surprising that this essentially
phenomenological model works so well. However, it is
basically a generalization of the most successful laws of
classical turbulence, those of Kolmogorov, Obukhov, Corrsin
and Bolgiano and it is based three basic features of the
governing equations: the scale invariance of the nonlinear
terms, the existence of scale by scale conserved fluxes, and
the fact that interactions are strongest among structures
with similar sizes. The key points of the generalization are to
anisotropy so that the finite scale thickness of the atmo-
sphere need not break the horizontal scaling, and to
intermittency to account for the extraordinary variability
of the atmosphere explained in this picture as a
synthesis for atmospheric dynamics: Space–time cascades,
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consequence of the wide range of scales over which the
variability builds up.

Although taken individually different parts of the picture
presented here can (and must) be criticized. However, given
the coherence of all the pieces and the fact that the synthesis
is based on fundamental symmetries, we feel it is a promising
paradigm for unifying atmospheric dynamics. In any case,
some coherent picture is urgently needed to replace the aging
and untenable (but still dominant!) 2D isotropic/3D isotropic
turbulence model. We are confident that the challenge of
improving or replacing this new synthesis will help atmo-
spheric science forward during a period where scientific
understanding has all too often been sacrificed for operational
expediency.
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