Chapter 5
How Bright is the Coast of Brittany?

Shaun Lovejoy*and Daniel Schertzer!

1 Introduction

1.1 Fractal sets and multifractal measures

As long ago as 1913, Jean Perrin noted that the usual notions of mea-
surement were perhaps not adequate for answering the seemingly simple
question ‘How long is the coast of Brittany?’!, and Steinhaus (1954) noted
that rivers were ‘not rectifiable’?. It wasn’t until many decades later that
a clear answer became at all accepted. It now seems obvious that there
is ‘something’ fractal about a coastline, hence today, even laymen under-
stand that the length depends fundamentally on the resolution at which it
is measured.

If there is no unique (scale independent) length of a coastline, then why
should their be a unique fractional cloud cover (forest cover) etc? Indeed,
over the last decade, it has been noticed that as the resolution of satel-
lites improves, the estimates of global albedo are consistently declining.
Estimates of fractional cloud cover are also known to decline -sometimes
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1Mandelbrot, 1967, building on Richardson’s 1961 scaling analyses suggested that a
fractal dimension was the appropriate characterization of the scaling

2¢__the left bank of the Vistula, when measured with increased precision woud furnish
lengths ten, hundred and even thousand times as great as the length read off a school
map. A statement nearly adequate to reality would be to call most arcs encountered
in nature as not rectifiable. This statement is contrary to the belief that not rectifiable
arcs are an invention of the mathematicians and that natural arcs are rectifiable: it is
the opposite that is true...” Steinhaus, 1954. To prove his point, Steinhaus 1962 shows
a (fractal) Peano curve
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precipitously- with improved resolution. Indeed, Gabriel et al. 1988, have
shown that the effect is systematic no matter what brightness thresholds are
used to estimate the cloud fraction®. Similarly, the resolution dependence
of the coastline has now been generalized to all topographic level sets (not
just sea level); Lovejoy and Schertzer 1990 have shown the same effect on
regions exceeding various altitudes on the earth. How is it therefore that
the analogous conclusion - now obvious for coastlines - has not been drawn
for remotely sensed radiances? A partial answer to this question may be
that remote sensing deals with measures and their integrals over various
resolutions (‘pixel elements’), not with geometric points of sets (such as the
borderline between zones above and below sea level). While the framework
necessary for dealing with the latter has been around for quite some time
(see especially Mandclbrot 1983), the corresponding multifractal framework
necessary for dealing with measures and fields, is little over ten years old
(1983). In the following, we argue that there is now ample theoretical and
empirical evidence for recognizing this resolution dependency as a basic
aspect of remote sensing. Its implications must be fully pursued in the
development of resolution independent remote sensing algorithms.

This chapter will review a small part of what is a mushrooming field.
aiming to give a brief synopsis of different aspects of a large body of
work. Several more pedagogical introductions to multifractals are now
available, see especially Schertzer and Lovejoy 1994a. In a companion paper
(Schertzer and Lovejoy 1994b, hereafter labeled SL94), we concentrate on
more recent advances in multifractals and how they can be used in remote
sensing.

1.2 Clouds

Before considering multifractals and multifractal analyses (which involve
an exponent function rather than a unique exponent values), we will give
some examples of the scaling of some basic geophysical fields (clouds, wind
and Earth’s surface) using standard energy spectra (E(k) for the energy
at wavenumber k). Scale invariance implies invariance under ‘zooms’, the
simplest of which is the isotropic zoom z — Az (see section 4 for gen-
eralizations), hence £ — A~'k. Invariance will be associated with power
laws:

E(k) = kP (1)

3They even used statistical hypothesis testing to show that resolution independent
cloud brightness fractions did not exist for any significant brightness levels
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since only power laws retain their form under zooms (in section 4, we shall
see that more precisely, they have the required group properties). We shall
see that the spectral exponent J is related to a single value of the moment
function K(q) (defined in section 2): § = 1 — K(2) (the value 2 because
spectra are second order statistics).

There has long been uncertainty over the exact type and range of scaling
in the atmosphere. Since the 1950’s the basic model postulated isotropic
two dimensional turbulence at large scales, and isotropic three dimensional
turbulence at large scales, the two being seperated by a hypothetical ‘meso-
scale’ gap or ‘dimensional transition’ (supposedly at about 10km, the scale
height of the mean pressure). The recognition of scale invariance as a basic
dynamical symmetry principle (‘Generalized Scale Invariance’, Schertzer
and Lovejoy 1985a,b) in the 1980's made the standard model seem quite
ad hoc since it was much simpler to postulate scaling, but without the
restriction to isotropy. The resulting ‘unified scaling model’ (Lovejoy et al.
1993, Chiriginskaya et al. 1994, Lazarev et al. 1994) seems to be very close
to the measurements (see fig. 1 for a schematic diagram). Indeed, figs. 2, 3
show some recent aircraft and radiosonde spectra indicating that through
the entire atmosphere in the vertical (and right through the meso-scale in
the horizontal), that the scaling is well obeyed, although the exponents
are quite different in the two directions (defining an ‘elliptical dimension’~
23/9, see section 4).

In order to clarify the situation in the horizontal, (specifically to aug-
ment the number of samples of large structures so as to obtain good statis-
tics) satellite radiances are analyzed in fig. 4 with no evidence of a break in
the horizontal scaling over at least the range &~ 300m to ~ 4000km. Since
the cloud radiances are nonlinearly coupled with the dynamics, the absence
of a break in the radiances will reflect the absence of a break in the dy-
namics. To extend this range to smaller scales, figs. 5, 6 show that the
corresponding cloud liquid water content is scaling over at least the range
~ 5m to =~ 330km. Recent results on rain (Lovejoy and Schertzer 1990)
extend the latter limit down to millimeter scales and it has long been known
that atmospheric turbulence is scaling from dissipation scales of less than
millimeters to much larger scales. These findings (combined with many oth-
ers, see Lovejoy et al. 1993 for a review) make it likely that the atmosphere
is scaling over the entire meteorologically significant range.
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Figure 1: Anisotropic cascade scheme showing how the vertical cross-section
of a large (horizontally flattened eddy) gets broken into s. aller sub-eddies
in a scaling anisotropic manner. The elliptical dimension used here is 3/2
(from Lovejoy and Schertzer 1986.)

1.3 Surfaces

The other field fundamental for remote sensing is the Earth’s surface. It
has long been known (Venig-Meiniz, 1951) that the topography has a power
law spectrum over wide ranges. However, during the 1980’s the scaling
properties and limits were somewhat obscured when attempts were made
using inappropriate monofractal analysis techniques to fit the multifractal
topography (see below) into monofractal frameworks. For example, de-
bates arose around which was the most appropriate value of the supposedly
unique fractal dimension of altitude isolines. Research has shown that there
is no unique value; the fractal dimension systematically decreases for higher
and higher altitude thresholds. This implies that the monofractal frame-
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Figure 2: The spectrum of temperature fluctuations. Top: average over the
3 air craft data sets taken roughly at one year interval in the tropics (each
contains 10 samples). Below: 3 individual spectra obtained by averaging
over the 10 samples. The absolute slopes are close to Corssin-Obukhov value
5/3: B, = 1.68 £ 0.05 over the frequencies range wo/20 — wo/20480(wo =
8Hz). From Chiriginskaya et al. 1994.

work of self-affine surfaces (which cannot handle multiple dimensions) is
inappropriate.

When surfaces are remotely sensed, there is usually no simple or direct
relation between the physical surface or atmospheric parameters and the
observed radiances. Below we will argue with examples, that serious ex-
ploitation of remotely sensed data requires the use of multifractal models of
the radiation/matter interactions. For the moment, we consider another ex-
ample: ice surfaces observed by airborne Synthetic Aperture Radar (SAR);
fig. 7 shows the result at different wavelengths and polarizations. Full
treatment of these correlated multifractals requires (complex) Lie cascades
(see section 5, the accompanying text, and Schertzer and Lovejoy 1994).
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Figure 3: The mean spectrum of 280 radiosondes at 50m resolution, over
a total depth of 13.3km, taken in the tropics (same experiment as fig. 2).
The straight line is the theoretical line (Bogliano-Obhukhov scaling) with
H, = 3/5; 8, = 2.20. The scaling is well respected throughout the entire
thickness of the atmosphere.

2 Properties of Multifractals

2.1 Discussion

The full implications of nonlinear dynamics coupled with scaling have only
begun to be grasped in the last few years. It is now increasingly clear
that this generally leads to multifractal behaviour (see e.g. Schertzer and
Lovejoy 1991). Multifractals have highly singular small scale limits; they
do not converge in the sense of functions, but only weakly, in the sense
of measures. Although at first sight this may seem to be an academic
distinction, it is in fact fundamental. When multifractal fields are measured
by remote or in situ sensors whose temporal or spatial resolution is much
lower than that of the intrinsic variability of the phenomenon (which can
easily be of the order of millimeters and milliseconds), then the result is a
low resolution function whose properties depend fundamentally (in precise
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Figure 4: Average power spectrum for satellite images grouped according to
the satellite and the frequency range of the images (from bottom to top):
LANDSAT (visible) 8 = 1.7, GOES (visible) 8 = 1.4, GOES (infra-red)
p = 1.7, Nimbus-9 (channel 1 to 5) g = 1.67, 1.67, 1.49, 1.91, 1.85. (See
Tessier et al. 1993b, Lovejoy et al. 1993).

power law ways) on the resolution.

Denote the ratio of the largest (e.g. satellite image) scale by L, and
the smallest (e.g. single pixel) scale by I, and the ratio £ = M> 1). We
can then denote the field of interest (e.g. satellite radiance) at resolution /
by ex which will have the following ‘multiscaling’ behaviour (Schertzer and
Lovejoy 1987):

Prex > X)) = A~ (2)

where Pr indicates ‘probability’, v is the ‘order of singularity’ associated
with the threshold value €,, and ¢(y) > 0 is the corresponding ‘codimen-
sion’. As the resolution (v) is increased, the satellite will see more and
more small bright regions; for a scale invariant field, v is the correct way
to remove the systematic resolution dependencies. Similarly, ¢(7y) indicates
how the histograms of brightness values will change with resolution, and
provides the appropriate way of removing the scale dependence of the his-

- 108 -



E(k) (arbitrary units)

Figure 5: Power spectrum of 5 different aircraft liquid water concentration
data sets (averaged to 10 points per magnitude on the k-axis, resolution &
5m). All the sets are very well scaling and have absolute slopes close to the
theoretical value for passive scalars § = % (straight line on top of graph).
In order to avoid overlapping of the different curves, the lines were offset
vertically. Number of data sets from top to bottom with vertical offset
given in brackets: 4 (10°), 3 (10%), 1 (10?), 2 (10'), 5. From Brosamlen et

al. 1994.
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Figure 6: Aircraft liquid water concentration data sets power spectrum (av-
eraged to 100 points per magnitude on the k axis. This shows a remarkably
good scaling right through the meso-scale (~ 10km, the graph covers the
range of ~ 10m to = 300km). From Brosamlen et al. 1994.

tograms. The behaviour indicated in eq. 2 will of course break down for
large enough A (small enough I, often of the order of millimeters), but
over its range of validity, it represents a very strong effect since € and the
probabilities will respectively diverge and converge as A increases. When,
c(v) < D (D being the dimension of the observing space; =2 for images)
c(7) is the (geometrical) codimension ¢(y) = D — D(y) corresponding to the
(geometrical) fractal dimension D(7) of the support of singularities whose
order is greater than . The basic physical model for such behaviour are
cascade processes in which the large scale multiplicatively modulates the
smaller scales, in a mechanism that repeats from one scale to another over
a very large range. Note that for the moment, we consider only isotropic
scale changes associated with self-similar multifractals, full treatment of
geophysical fields requires Generalised Scale Invariance (GSI, Schertzer and
Lovejoy 1985a,b, 1989, 1991) which involves anisotropic scale changes and
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Figure 7: Power spectra of synthetic aperture radar data of two scenes (512
x 512 points each) of sea ice at 12.5m resolution showing that the scaling is
well respected, especially in the HV polarization in both the SAR C-band
data scenes (from top to bottom, the curves are HH, VV and HV for scene
1 and HH, VV and HV for scene 2 respectively. They were offset by 0.5 in
the vertical so as to not overlap. From Francis et al. 1994.

1s necessary to account for the ‘texture’ and ‘morphology’ of structures (see
e.g. Pflug et al. 1993 for a recent study of cloud texture and type and
section 4).

‘The multiple scaling behaviour of this field ¢ at scale ratio A (:% the
ratio of the largest scale L to the scale [) can be also be characterized by the
corresponding law for the statistical moments (via a Laplace transform):

M@ = 9y = /)\m—ch}d? (3)

(the symbol ‘(.)’ indicates statistical averaging). All satellite and radar
measurements of the atmosphere or surface which obey eq.s 2, 3 are strongly
dependent on the characteristics of the sensor (via the ratio v); they are
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Figure 8: The scaling behaviour of the statistical moments of the Dead-
man’s Butte data is illustrated here by the straightness of the curves of the
log(¢{) as functions of log(L/l), with L the largest scale in the Digital Ele-
vation Model: from bottom to top ¢ = 0.5, 1.5, 2.5, 3.5 and 5. The slopes
correspond to the scaling exponent K'(q). From Lovejoy et al. 1994c.

not pure functions of the state of the atmosphere or surface that we are
measuring. Since detailed comparisons of remote measurements at different
resolutions are seldom made, workers in the field are only just starting
to realize the importance of these resolution effects. What we propose is
the systematic development of new resolution-independent algorithms for
calibrating and exploiting remotely sensed data. This will also involve a
systematic characterization of the types and limits of scaling of the various
fields.

Some examples of multiscaling of the moments are shown in fig. 8
which shows the scaling of the moments of the quantity ¢ (the quantity
correspoding to €) for the topography at Deadman’s Butte, and fig. 9
shows the corresponding K (¢) function. Monofractal topographies (such
as those of the celebrated monofractal landscapes illustrating Mandelbrot’s
book), would be linear. Below, we indicate how to quantify this degree of
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Figure 9: The scaling exponent K(¢) against ¢ for the Deadman’s Butte
data (see figs. 8). The continuous curve is the theoretical universal multi-
fractal fit with o = 1.9, C; = 0.05 (see eq. 9) For ¢ > 6, the asymptotic
behavior of K(q) becomes linear. This is a second order multifractal phase
transition predicted from the finite sample size. From Lovejoy et al. 1994c.
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multifractality more precisely with the help of universal multifractals.

2.2 A few properties

In general, knowledge of the probability distributions is equivalent to knowl-
edge of all the statistical moments of a process; in multifractals, this rela-
tionship is particularly simple. In eq. 3, only the maximum exponent
dominates in the integral, and the (Laplace) transform relating the mo-

ments and probabilites reduces to a Legendre transform for the exponents
(Parisi and Frisch 19835).

K(q) = maz,(qy — c(v)) c(v) = maz,(q7 — K(q)) (4)

These relations establish a one to one correspondence between orders of
singularities and moments (¢ = ¢/(v),y = K'(¢)). Both the codimension
function ¢(y) and the moment scaling exponent K(g) are convex. Note
that in practice, the maximum order of singularity available in a sample
is bounded simply due to the finite sample size; the resulting restrictions
on the 7 in the above maximization, are associated with multifractal phase
transitions as discussed in SL94.

Various types of multifractals exist; and they can profitably be classified
according to their highest order of singularity (see Schertzer et al. 1991, and
Schertzer and Lovejoy 1992). Unfortunately, those which have been most
extensively studied; the geometric multifractals in strange attractors, or the
microcanonical multifractals often used as a framework for analysing turbu-
lence (e.g. the celebrated ‘p model’, Meneveau and Sreenivasan, 1987), are
artificially restricted so that high order singularities cannot occur. In con-
trast, the general ‘canonical’ multifractals generically produced by cascade
processes do not suffer from these restrictions. In canonical multifractals,
the existence of occasional ‘hard’ (very violent) singularities leads to quite
different behaviour for the (theoretical) process without the small scale
interactions (‘bare’ properties), and for the same process with the small
scale interactions (‘dressed’ properties). The latter are the result for exam-
ple when cascade processes proceed down to infinitely small scales and are
then integrated over finite scales (for example by a remote sensor). The
dressed ), will generally display the phenomenon of divergence of high
order statisitical moments, and are discussed in more detail in SL94.
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2.3 Universal multifactals

One of the most fruitful physical ideas is that of universality; that of all the
complex details of a process, that -if it is repeated sufficiently often for ex-
ample over a wide enough range of scales - that only a few of the details will
actually matter. Each resulting ‘universality class’ has a basin of attraction
which determined by all the set of parameters which give the same limit-
ing behaviour. In multiplicative process and multifractals, the question of
universality has a long history, much of it being connected with the ‘law of
proportional effect’ and lognormal distributions. Unfortunately, for various
technical reasons (discussed in more detail in SL94), for several years, an
anti-universality prejudice developed in the multifractal literature. The ab-
sence of universality would have dire implications for the very possibility of
using multifractals for anything since it would mean that an infinite num-
ber of theoretical parameters would be needed to specify every multifractal
process (e.g. the entire ¢(v) or K (¢) function). Similarly, the corresponding
empirical characterization would also be impossible. Fortunately, stable, at-
tractive universality classes do exist for multifractal processes, a fact that is
being increasingly recognized (Schertzer and Lovejoy 1987, 1989, Fan 1989,
Brax and Peschansky 1991, Kida 1991, Dremin 1994 etc.).

Multiplying processes corresponds to adding generators. We seek gen-
erators which are stable and attractive under addition. Considering for the
moment only stationary (conservative) multifractals, these generators yield
the universal expressions (Schertzer and Lovejoy 1987, 1989) for the scaling
function of the moments of the field K(q) and of the codimension function

c(7):

(=0 (go+)e a#l (5)

C]_ o o
¢

o —

K(q) = 1(@"‘ —q) a#l (6)

where (1+2) = 1, and when a < 2, for ¢ = ¢/(7) > 0. «is the Levy index of
the generator and characterizes the degree of multifractality. The o = 2 case
corresponds to the maximal degree of multifractality and the bare a = 2
multifractal has lognormal probabilities. The o = 0 case corresponds to the
monofractal minimum. C is the codimension of the mean and characterizes
the sparseness of the mean field. H is the degree of nonconservation and
characterizes the degree of nonstationarity of the process. Note that the
lognormal multifractals are compatible with the lognormal phenomenology

of geophysics.
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2.4 The degree of non-stationarity: the Hurst expo-
nent H

Most fields observed in nature are not conserved, i.e. the average of the
observed quantity at scale A (denoted here by:(ps)) is not equal at differ-
ent scales. This requires the introduction of a third* universal multifractal
parameter H (the ‘Hurst’ exponent) which measures the degree of nonsta-
tionarity in the process; it is also a measure of the conservation of the field
over different scales (as the casc ade proceeds to smaller scales), e.g. H =10
is a conserved or stationary multifractal®. For many analysis techniques it
is necessary to isolate the underlying conserved quantity (see below).

To understand this better, consider the relatively well studied case of
passive scalar advection. If cloud droplets were passive scalars, i.e. trans-
ported by the wind without interacting with it, one obtains the Corrsin-
Obhukhov law for passive scalars (Obhukhov 1949, Corrsin 1951):

Apy = $IA~% (7)
2 _1
Py = X§€A2 (8)

where ¢, is the turbulent energy flux and x) is the passive scalar vari-
ance flux® at scale ratio . Eq. 7 indicates that H = 1/3. Apx =
p(z + A"'L) — p(z) is the density fluctuation at scale A. Without inter-
mittency, x» and &, are constants (have trivial scale dependency) with
(scaling) intermittency then x, and &, will be multifractal and ¢ will obey
eqs. 2, 3. More generally, since liquid water is not really passive (for ex-
ample it is associated with latent heat release which modifies the velocity
field) we may still consider that the characteristic fluctuations Ap) are scale
invariant and write the scaling for the density p as:

|Ap|x ~ @52 (9)

4Davis et al. 1994 have proposed characterizing multifractals with just fwo parameters
(C1, H); these are clearly only sufficient to determine the tangent of K(q) near ¢=1, i.e.
the best mono fractal approximation. To discuss any multi fractal characterization, at
least three parameters are necessary, « is the natural choice

5If H > 0 the process is nonstationary i.e. it is statistically translationally invari-
ant. A more restricted notion of stationarity (second order stationarity) depends on the
value of § (a process is second order stationary if 8 < 1). The distinctions between
true stationarity (discussed here) and second order stationarity (which has no special
significance for multifractals) have sometimes been forgotten (e.g. Davis et al. 1994)

§Note that as indicated Corssin-Obhukov scaling involves quasi steady fluxes; these
boundary conditions are totally different from those of point dispersion pollutants
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where ¢, has the conserved property (¢,) = constant (independent of scale).
Since we have as yet no proper dynamical theory for the liquid-water dis-
tribution in the atmosphere, we do not know the appropriate fields ¢, nor
the corresponding value of a. However, changing the value of ¢ corresponds
essentially to changing the parameter ', (Schertzer and Lovejoy 1994),
without loss of generality, we therefore set it equal to 1.

3 Multifractal analysis and simulation tech-
niques

3.1 Summary of multifractal data analyses

Table 1 summarizes some recent studies of universal multifractal charac-
teristics of various fields, many of them remotely sensed. Most of these
estimates were obtained using the Double Trace Moment (DTM) technique
(Lavallé 1991). This method is based a generalization of the above obtained
by first raising the field at the smallest available resolution (indicated by
A) to the power 7, then degrading to resolution A before averaging over the

gth power of the result: _
((€R)3) = A% (10)

Since we are considering the normalized 5 powers, the ¢, 5 scaling ex-
ponent function is related to the usual exponent by:

K(q,n) = K(qn) — qK(n) (11)

The usefulness of the double trace moment technique becomes apparent
when it is applied to universal multifractals since in this case, we have the
following:

K(g,n)=n"K(q,1) (12)

i.e. log K vs. logn will be linear over the region where the above holds.
Since eq. 12 is strictly true only for bare moments, the finite sample and/or
divergence of moments will cause it to break down for large ¢, n (¢ or
qn > gs). At small 5, it can also break down due to the presence of noise
or zero values. Figs. 10, 11, 12 give some examples on surfaces.

Table 1 contains a more complete list including universality parameters,
sampling limits, critical orders and singularities of divergence (correspond-
ing to ‘hard’ multifractals and Self-Organized Critical structures; see SL94),
as well as the effective dimension of dressing (see SL94 for more details).
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Figure 10: The curves of log|K(g¢,n)| as functions of logn, for the Dead-
man’s Butte data. From top to bottom ¢ takes the values 2 and 0.5. All
the curves are parallel as predicted by universality eq. 12. The evaluation
of their slopes, with n taking values between en 0.5 and 2.4, gives the fol-
lowing values of « : 1.90 0.1 and 1.89 & 0.1. The values of C;, obtained
by solving the expression for logn = 0 intercept given by log |K(k,!)| and
using eq. (12), are respectively: 0.044 + 0.05 and 0.045 £ 0.05. The con-
sistency between the estimates of o, () for various values of ¢, are good
indications that they are accurate. For values of 5 too high or too low, the
curve K(q,n) becomes (fairly) constant, and these values of log|K(q,7)]
must not be considered to estimate «. From Lavallée et al. 1993.

Two aspects are worth noting. First, almost all of the a values are > 1,
hence the corresponding processes are ‘unconditionally hard’, i.e. for any
finite D, a finite gp exists; some moments will diverge. Self-organized crit-
icality therefore seems to be prevalent and yp gives a quantitative measure
of the intensities of the self-organized critical strucutres. Second, we see
that C] is often smaller than H (see. e.g. topography or turbulence), hence
the multifractality - while being nearly maximal according to the observed
value of o - will nevertheless not be too pronounced unless we consider the
extreme events; monofractal models can therefore
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Figure 11: Same as Gg. 10 but [or the French topography at lkm resalution.
From Lop Lo bottiom g takes the following values: 4, 2 and 0.5, All the curves
are parallel as predicled by eq. (12). The estimates of the slope for g =
4. with 5 taking values between 0.1 and 0.5, gives &« = LG67T £0.1. The
same analysis for ¢ = 2 and 0.5 {with » taking values belween 0,12 and 1.1
inn Lhe first case and between 0.3 and 2.3 in the second), yield respectively
o= L% =01 and 1.7 £0.1. The values of £, obiained by solving the
expression lor the log n = 0intercept given by log [K(g, 1)) and using eq. 12,
are respectively: 0078 £ 0.05. 0,076 < 0.05 and 0076 + 0.05. Here also the
values of a, ) determined are independent of 1he ¢ values, From Lavallée

et al, 1993.
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Temperature 1.20 0.04 0.30 54 15 -0.2 0.1 0.1s— 1000s
(atmos, time)P oo
Temperature, 1.25+.06 P.04£.01 [33+.0352 | 5.553 13 -0.2 0.10£.02 | 12m—12km
. atmos. (hor.)®
ent  Pollution 1.2 0.8 0.2 32 58 |21 1.5-2 1.5-1.9 | 30m—5km
lars (Seveso)t
Cloud liquid | 2.00+.01 p.07+.01Y 0.28+.03Y b 2+0.1v1 B.810.1 }0.08+.05 |0.15+.01 | 5m—330km
_ water (hor.)" i
ring Pensity of | 0.8 0.3 0.0 3.6 11 0.6 0.6 200km—20000
works| stations™ : km il
es Kea Ice (radar)® | 1.85+.05] 0.01+.01 -15£.05 | >5 17 _ _ 50m—25km
Dcean surface | 1.1 0.25 0.35 3z 6.6 0.2 0.6 Im—50m
(0.95um)Y |
Topography 2 1.8+.1 [0.06£.01]0.5£.02 |>5 7+0.5 - _ 50m— 1000km
Rock fracture| 1.5 0.09 0.85 _ 8 - _ 50um—5cm
_ surfaces®® e
hysics [Galactic 1.2¢0.4 | 1.320.1 | 0.0 1350¢ | 1.5£0.1 | 1.8£0.1 | 1.5+0.1 | 0.15100°
luminoscity? .
Barth _ Beismicity® 1.1 1.35 0.0 0.94d 14 1.2 1.1+.1 | 2km—1000km
[Geomagnetic 1.9 03 0.75 1.4 2.7 -0.14 04 400m— 100km
L field®® .
logy [Low frequency | 2.0 0.1 -0.35 _ 32 _ _ 0.1s—1000s
_ speechff _

Table 1: Empirical estimates of universal multifractal parameters.
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Key to Table 1

[a] Tessier et al. 19%3a; see also Lovejoy et al. 1993

[b] The value of /7 depends slightly on the wavelangth band used.

h I] A 10,21, 370GHz., Lavallée et al. 1993, the valuew of i depends slightly
on the wavelength band nsed.

[e] Tessier et al. 1993,

[c2] Calenlated for a single realisation; 13, = 0.

[d] Schertzer and Lovejoy 1987, Dunean or al, 1993, Lovejov 1981 abiained
gn & 1.6 for integrals of reflactivity of i=olated storms

[o] Tessier ot al, 19932, using a global mingauge network, correcting for the
multifractal sparzenszzs of the network

[f] Tessier et al. 1093a, Ladoy et al. 1992 obiain shnilar values for the global
network and Nimes respectively (for 12, 24 houwr resolution respectively).
Oiher similar valaes were obtained in Réundon and Dédougou, HEabert et al,
1993, Nguven of sl 1993 find the slightly higher o, smaller ) in various
locations near Montreal,

[g] Segal 1979 found a value of 2.5 £ 0.5 for 50 stations, 10 years of data at
3 minute resolution.

[h] Using a very large data base, Olason 199 finds similar values in Lund,
swieden, over periods of B minules Lo 1 week.

[i] Tessier et al, L993c. 50 rivers.

[i] Schmitt et al. 19924, note that the theorelical {Kolmogoroy) valoe of #
s 173,

(k] Schrmitt et al. 1943, 19494,

[l] Chiriginskaya e1 al. 1994,

[m] Lazarev b al. 1994, radiosondes.

[n] H was firsl estimated using Jmspheres, by Endlch and Mancuse L1963,
ani ronfirmed hy Adelfang 1971, and Schertzer and Lovejoy 19585, The the-
eretical (Bogliano-Obhukoy) value of I is 375,

[o] T'he valoe of g was lirst eatimated in Schertzer and Lovejoy 1985,

[62] F. Schmitt, 5. Lovejoy, and D Schertzer, analvsis of Greenland ice core
pEYEen sotope ratios {in preparation ).

[0d] Lovejoy and Schertzer 1986, analysis of hemispheric tempearatures and
ice core palectemperatures.

[p] Schmitt 1 al. 1992h, the theoretical value for # 1= 1/3 6 1t is approxi-
mated zs a passive scalar.

[] This value was estimated for daily temperatures a1 individoal stations
i Lowvejoy and Schertzer 19806a), regional averages [Ladoy et all 1056}

[=] Chiriginskava ot al, 1004,
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[s2] The theoretical value (passive scalar approximation) is 1/3.

(s3] In the vertical, Schertzer and Lovejoy 1985 estimate H=0.9, ¢p=3.3 ap-
parently for the potential temperture in the range 50m-6km.

[t] Salvadori et al. 1994,

[t2] This value was estimated for U Fg tracer fluctuations by Visvanathan et
al. 1991.

[t3] This value was estimated for C'O, fluctuations over wheat fields Austin
et al. 1991.

[u] Brosamlen et al. 1994.

[v] Davis et al. 1994 obtained similar values for #, C'; with a smaller data
set. The theoretical value (passive scalar approximation) is 1/3.

[vl] Due to the symmetry of the a=2 multifractal, the same value of gp is
obtained for 1/liquid water density.

[w] Using the global meteorological measuring network,considering the sta-
tion density as a multifractal, Tessier et al. 1993,1994

[x] Synthetic aperture radar, 10, 30cm wavelengths, all polarizations, Francis
et al. 1994.

[v] Tessier et al. 1993b.

[z] Kerman 1993.

[aa] Deadman’s Butte Wyoming, 50m-25km; France 1km-1000km; Lavallée
et al. 1993a.

[ab] F. Schmitt, private communication.

[bb] Garrido et al. 1994.

[bc] Schertzer et al. 1993.

[cc] Hooge et al. 1993, 1994.

[dd] This is the well-known Gutenberg-Richter exponent, first estimated by
Gutenberg-Richter 1944, and is somewhat variable, the value cited here is for
the Parkfield region.

[ee] Lovejoy et al. 1994.

[ff] Larnder et al. 1992.

- 122 -



-
-a = e prrE——— T F T T T T

-1.5 ~-1.0 -0.7 0.0 0.5 |

og(T) e

Figure 12: Kig.n) as a lunction of 4 on log,, —log,g scales, Tor the values
{top Lo buLlum} g =2.5, 2.0, L5, .75, As expected for universal multifrae
tals, the curves are linear and parallel for a certain range of the moments
er. The parameter o can be identified as the slope of the straight line parts
of the curves, whereas ) is the value of the straight hne at the intersection

n = 0. From Brosamlen &1 al. 1994,

3.2 Isotropic (self-similar} simulations of universal
multifractals

We now Indicate briclly how to exploit the universalily (and the measured
H, T, o parameters} to perform multifractzal simulations. The first mul-
tifractal maodels of this Lype were discussed 0 Schertzer and Lovejoy 1987,
and Wilsen et al. 11 give a comprebensive discussion including many
practical {numerical) details. In particular, the latier describes the numeri-
cal simulation of clouds and topography, including how to iteratively ‘zoom’
i, caleulaling delails to arhitrary resolution in selected regions, Peclnold
et al. 1993 give a number of improvements and include more systematic
results {including those shown here). Although we will nol repeat these
details, enough information has been given in the previous sections to un-
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derstand how they work.

First, for a conserved (stationary) multifractal process ¢, we define the
generator 'y = log @¢,. To yield a multifractal ¢y, 1t must be exactly a
1/f noise, i.e., its spectrum is E(k) &~ k£~' (this is necessary to ensure the
multiple scaling of the moments of ¢,). To produce such a generator, we
start with a stationary gaussian or Levy ‘subgenerator’. The subgenerator
is a noise consisting of independent random variables with either gaussian
(a=2) or extremal Levy distributions (characterized by the Levy index «),
whose amplitude (e.g., variance in the Gaussian case) is determined by
(. The subgenerator is then fractionally integrated (power law filtered in
Fourier space) to give a k! spectrum. This generator is then exponentiated
to give the conserved ¢, which will thus depend on both €'y and «. Finally,
to obtain a non conserved process with spectral slope 3, the result is frac-
tionally integrated by multiplying the Fourier transform by k= where H is
given in eq. 9. The entire process involves two fractional integrations and
hence four FFT’s. 512 x 512 fields can easily be modelled on personal com-
puters (they take about 3 minutes on a Mac II), and 256 x 256 x 256 fields -
(e.g., space-time simulations of dynamically evolving multifractal clouds)
have been produced on a Cray-2 (Brenier 1990, Brenier et al. 1990).

Figures 13-18 inclusive show series of one dimensional simulations with
various parameters.

It is apparent from them that C; is the measure of the sparseness of
the field: the higher the (', the fewer the field values corresponding to any
given singularity. (Because the field is normalized, the spikes are higher for
the fields with higher C4). It is also again apparent that the higher « fields
are dominated by a few large singularities.

4 Elements of Generalized Scale Invariance
(GSI)

4.1 Discussion

The usual approach to scaling is first to posit (statistical) isotropy and
only then scaling, the two together yielding self-similarity. Indeed this ap-
proach is so prevalent that the terms scaling and self-similarity are often
used interchangeably! Perhaps the best known example is Kolmogorov’s
hypothesis of ‘local isotropy’ from which he derived the k™3 spectrum for
the wind fluctuations. The GSI approach is rather the converse: it first
posits scale invariance (scaling), and then studies the remaining non-trivial
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Figure 18: One-dimensional simulation of length 256, with @ = 1.5 and
C, = 0.4, fractionally integrated with varying H (non-conservation param-
eter). These simulations have been vertically offset so as not to overlap.
From Pecknold et al. 1993.
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svinmetries, For instance, lig. 1 gives a (scaling) anisolropic version of Lhe
uanal isotropie cascade scheme (in which the rectangles in fig. 1 would be
replaced by squares). One may easily check that ibis type of andsotropy -
which veproduces itaelf from scale to scale - does not introduce any charac-
teristic scale. The strajghtforwarnd generalization of scaling shown in Ga. 1
mvolving acaling anisottopy in A fived direction 15 called “self-affinity’. As
far as we know this anisolropic scheme {Scherlzer and Lovejoy 1983) seems
to be the first explicit madel of a phyaical system involving a fundament &l
sell-affine [ractal mechaniso.

4.2 The basic elements of GSI

Consider scale invariance under, isotropic dilations/contractions (e.g., sim-

Lo
ple reductions): A7NHE = TWF where T is a scale changing operator. In
our example, Ty = A7'1 where 1 15 the identity matriz. This means that
il s 8= an element in B then x, = Thxg {again, in the previous exam-

ple Ty = A1 = x3 = A7'x;). The subscripts on x indicate the scale.
In meneralized scale mvariance (GS1), 1% can be much more general than
wotropie dilations. Fig. 19 shows a generalized “blow” down of the acronym
WVYAGT showing how the reduetion is eombined with stretching and rota-
tion. In general, a scale invariant system will be one in which the small and
large scales are related by & scale changing operation that involves only the
scale tatios: there is no characteristic stee Inowhatl Tollows we outline the
basic elements necessary for defining such 2 avatem: we follow closely the
development in Schertzer amd Lovejoy 19850,

To be completely defined, G5] needs mare than a scale changing oper-
ator; it alse requires a definition of the unit scale, as well as a deinition of
how to measure the scale. These three basic elements can be summarized
as follows:

{i} The unit ball #; which denes all Lhe unil vectors. I an isolropte ball
(e, circle or aphere) exizta, we call the corresponding scale the ‘sphero-
scale’. For simplicity we often assume this - indeed direct evidenee for this
exists 1o many satellite eloud pletures, but it is not strictly necessary (and
al leask in some cases not at all Loue!).

(1) The scale changing operator Ty which transforms the scale of vectors
by scale ratio A, T is the rule relating the statistical propertics at one
scale to another and involves only the scale ratio (there is no characteristic
Ssige’ ] This hinplies that Ty has certain properties. In pacticular, if and
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Figure 19: A generalized blow-down with increasing A of the acronym
‘NVAG’. If G = I, we would have obtained a standard reduction, with
all the copies uniformly reduced converging to the centre of the reduction
(thanks to S. Pecknold, G. Lewis). Here the parameters determining G are
c=0.3, f = —0.5, e = 0.8 (see section 4), and each successive reduction is

by 28

- 132 -



omly il A A = A, then
B, =Ty, B, =T, By, (L3
e T has the gronp properlicos (see g, 20):
T I, iy = By =TT, (14

Henee 1% 15 a one parameler multiplicative sronp = 1), = A% where (&

g ‘
T Ay -'_?-.E
- Qg

Fioure M Nustration of the gronp property of the scale changing aperator.
Fronn Scherteer and Lovejoy [958,

15 the generator of the group. We e the negative sign since in future we
will be only interested in reductions by factor A since we shall see that in
turbmlent rascades, energy flux 15 transferred from large to small scales [T
will rediwce sizes by factor ). We will nol require thal fnverse operalors
To' = 121 exist, hence we really only have a sembgroup (the inverse will

however usually exist i0 €7 is a matrix).

4.3 Linear GS5] and differential rotation: the exam-
ple of the Coriolis force

In the atmosphere. one expects differential rolation (associated with the
Clorialis foree 1A v, associated for example with clowd textore) as indicated
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above. This can be modelled by a matrix ¢ with off-diagonal elements. To
understand this, we decompose (G into quaternions (or equivalently, Pauli
matrices):

G=dl+el+ fJ+cK (15)

where - ; .
1:{01]?12{1 0] (16)

01 -1 0
J:llol‘K=[0 1] (L7)

These matrices satisly the following anticommutation relations:
{I,J} =0, {LK} =0, {J,K} =0 (18)

Writing © = In A and @® = ¢* + f? — ¢? we obtain:

T5 = Ar® = ArRRORH) o J~0 ll cosh(au) — (G — d1) (19)

sinh(au)

G
When a? < 0, the above formula holds but with |a| replacing a and ordinary
trigonometric functions rather than hyperbolic functions. The case a? > 0
corresponds to domination by stratication, whereas a® < 0 to domination
by rotation. Examples of both balls and trajectories (the locus of points
ry = T,ry, obtained by A varying with r; fixed) are shown in fig.21. To
take into account the spatial variation of anisotropy, the generator can be
taken to be a nonlinear function, or even stochastic (fig. 22).

5 Multifractal simulations for solving prob-
lems in remote sensing, some examples

5.1 Resolution independent algorithms

We are rarely able to directly remotely sense the fields of interest. Typ-
ically, a satellite will observe radiances associated with a field and then
(often complex) semi-empirical algorithms are used to try to infer the var-
ious physical characteristics from the radiances. Above we argued that
such algorithms must at a minimum explicitly take the resolution into ac-
count, preferably removing it entirely so as to obtain sensor independent
algorithms. Ultimately however, a full understanding of the relationship
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Figure ?1: Examples of balls and trajeclories for linear G5 with sphero-
scale. Isotropic case: ¢ = 0.0, f = 0.0, e = 0.0 {top left); sel-alfine casce:
e=035, f=0.0, ¢ = 0.0 {top right); stratification dominant case {a* > 0)
with no motation: ¢ = 0.34, f = 0.25, ¢ = 0.0 (bottom right); rotalion
dominant case (o® < 01 ¢ = 035, f = 0.25, ¢ = 6. For all cases d = 1
with aphero-scale at 30 units (pixels) out of a total of 312, From Lews
159493,



Figure 22: Deterministic non-linear GSI with a stochastic generator.
Schertzer and Lovejoy, 1991.

between the remotely sensed and underlying physical field will only be pos-
sible as the result of explicit multifractal modelling of the radiation/matter
interaction. Our efforts in this direction have been especially aimed at
studying these issues in the rain and cloud fields since radar data of rain
and satellite data of clouds are probably the data sets with the widest range
of spatial and temporal scales available anywhere.

5.2 Scattering statistics in multifractal clouds

We have argued that over wide ranges, atmospheric fields may be expected
to display strong multifractal variability. In a series of papers (Gabriel et
al. 1986, Lovejoy et al. 1988, Lovejoy et al. 1990, Gabriel et al. 1990, Davis
et al. 1990), we argued that scaling models involving ‘monofractal’ clouds
do in fact already display interesting and realistic radiative properties. In
particular, formulae for asymptotically optically thick clouds were derived
and were shown to provide straightforward explanations for the ‘albedo
paradox’. Davis et al. 1991a,b obtained some early results on more real-
istic multifractal clouds, including theoretical formulae for small distance
behaviour, as well as supercomputer simulations. Cahalan 1989, 1994 and
Barker and Daies 1992 studied optically thin monofractal clouds and Evans
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1993 perclocmed numerical simulations oo optically s mutifractal clouds.

Here we give a glimpse at some more recent results which mayv provide
Lhe basis for systematic study of radiative Lransport in mullifractal inedia.
Specifically, we indicate how formulae analogons to egs. 2, 3 for the mul-
Lilractal optical density Geld arse for radiative propecties. Consider the
tollowing definitions:

el

k= extinction coefficient [m*ky™"]

fp1 = mean clond density [fgm ™)

| = random photon path distance [m]

L= size of clond [

L= mean free path (m.f.p.) of & photon in the eqguivalent homogeneous
cloud = (k{p})~" [m]

2 =L =171 pandom photon distance, (fraction of cloud}

1 4

= = random photon distance, (no. of oulp's = k)

m

A= !T = scale ratio < A, (A = maximom cascade resolution)

e = IL — extinclion parameter — ne of mufp s across clond = mean
™

optical depth = extinction coefficient in units such that £ = 1,{p} = L.
Detailed analvsis (Lovejoy et all 199400 of radiative transfer in multi-
fractal clouds indicales that in a clond whose large seale mean aptical depih
is k& Lhat the photon oplical path statistics can be described by a formalism
extremely similar to the multifractal density statistics but with & playing
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the role of resolution A. First, the optical distance between

(1) = fl kpa(2')d2' = kpyal (20)

where we have written p; for the average density at resolution [. Using the
above notation, we obtain:

_p~yal
(p) I

which is the optical thickness over a distance { through a singularity of order
7. The direct (unscattered) transmission 7' across this distance is thus:

=\ (21)

T() =e"0 (22)

Since the transmittance is the probability distribution for photon path
lengths, we can average over the singularities, and obtain:

Pr(l'> 1) = (T(1)) = (=) (23)

Take 7, as the dimensionless photon path and write it as a function scaling
with an ‘order of singularity 7,’ defiined as follows:

ki

g BB kAT (24)

— P
Tp = K =

or:
A = g (25)

We can now obtain a multifractal scattering formalism in which the ex-
tinction coefficient x takes the place of the scaling parameter X. Instead
of the codimension function ¢(v) of the singularities of the cloud density
v we rather talk about an analogue codimension function ¢,(+y,) which de-
scribes how the single photon path distance singularity -, varies with the
extinction coeflicient:

Pr(z7gz &%) =Pr(l sdym goole), (26)

<T;’p> ~e o Hrlan) (27)

and anticipate that the two will be linked by a Legendre transform as in
the standard multifractal case. The mean transmission in equation 23 is
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ubtained by averaging over the singularities, using eq. 2 to obltain the
probability density of ~:

=
H—q.['\-_,.l s !:T'[',-...-:'I.:I:l — f t:_'-[.-r"":lpl:_“_\-'._ .]l.:ll'll"_r [-..,5:!

-

| | S R B Tl et
2 II|I- e._.—x'.'-"'_]l.—i'['\-h.lr..:l =}|r K T '[I' I '-pJ“' lP:I{.!I"I-',. [qu
- [

o =

where we have introduced the tranfermation of variables:
I —_— = —I ! ]
- (307

In the lognormal case, the above integral can be done exactly; move gen-
erally. we can nse the method of “moving maximum’ lo obtain an asymp-
totic estimate of the integral by considering where the maximum oeeurs,
This method will work as long as the latter is well-defined. This in Lurn
hinges upon the existence of a solution Lo the [ollowing equation ahtained
by equating Lhe v, derivative ta zero:

gt — —I'.'rl:","] = = |:.:|'|]

where the g s the Legendre conjugate of ~, i1 is the corresponding mo-
menl of the density distribution, We see immediately, that some o = 0.
st exist, e some negative moments must exist. While this seems rather
general, in fact for universal multifracials, it is only troe of the lognormal
multifractal, all other universals have divergent moments for all negative
maomenis, Assuming that the moments do exist, we obtain two {amilies of
carllimension ane mement sealing lunctions; their motual relations are given
n table 2.

| Photon statistics Cloud stalistics |
_ q = —q+ K(q] _
Ko{ap) = eawaliyt, — Gl | = Ki@) = maz,lgy — (7]
1=, BT
| nﬁl:’:"',-_-.] = i-;q.;::_t",l,l.l:]"",r!. — f‘:jl[‘nl':ll_:ll . ;:—- = ;I!.JIE[E'-_.':"”!

Table 2 Suminary of relations between multifractal cloud and pheton seat
tering cxponents
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To give an example of the above, consider the & = 2 (lognormal multi-
fractal). We have:

o) =i (& +1) (32)
_(1-(1+C)(1-))°
ep(p) = TORTE (33)
K(q)=Cil¢*—q) (34)
l+012+4-01(p— 1—|~Cl
Ky(g) = ap — \/( J 20, L ) (35)

Numerics have shown (Brosamlen 1994) that these formulae are accurate
even for clouds with mean optical thickness of the order of 4-10. Since
the A,(g,) function is linear in homogeneous clouds, and the above K,(¢,)
function is close to linear -especially near ¢, = 0 which corresponds (see
table 2) to the most probable photon path and singularity, we can use
the above to approximately ‘renormalize’ the cloud, obtaining an effective
extinction parameter:

i3

Koff & K1FCT (36)

This result quite accurately predicts the numerical estimates of transmission
through multifractal clouds discussed in the next section, and the exponent
is the same as that obtained for anomalous difusion in lognormal multifrac-
tals (also below). In a forthcoming paper (Lovejoy et al. 1994), we give
many more details and extensions to multiple scattering.

Finally, a full understanding of the cloud radiation interaction involves
a detailed understanding of the relation between cloud and radiation sin-
gularities. This is the subject of a paper by Naud et al. 1994.

5.3 Visible light scattering in multifractal clouds

To further understand the relations between the cloud and radiation fields,
we seek to statistically relate the multifractal singularities of the various
fields. From a numerical point of view, this is very demanding. Monte Carlo
techniques avoid this problem, but require enormous numbers of simulated
photons in order to yield good estimates of the internal cloud fields.

In optically thick clouds, photons undergo many scatterings and the
details of the scattering phase function is not too important (according to
the monofractal studies - Lovejoy et al. 1990, Gabriel et al. 1990, Davis
et al. 1990 - it will affect prefactors, not exponents). In order to concen-
trate study on the effect of inhomogeneity, and to simplify calculations, a
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two dimensional svstemn wis stadied with phase funetions which only per-
mit scattering through 90 degress; (discrete angle -ThA- radiative transfer)
the radianees deconple inlo non-interacting funilies with only four radiace
directions each (details in Davis et al. 19%1&]. The phase functions were
position idependent; Tor stimplicity we wsed motropic DA phase Tonetions.
For validation purposes. the calenlations were made nsing hoth Monte Carlo
and relaxation techiygues, The four radiances were then used 1o calculate
the tolal radiance, the vertical and horizontal Hoxes. as well a5 & compao-
nent characterizing the anisotropy of the feld, By varving the extinction
cocflicient, we were able to study the effect of increasing clond thickness,
optical thicknesses between 12 anel 195, The caleulations were performed
on large (1024 = 1022 point grids nsing the Cray-2. at Palaiseao, Franee.
The main conclusions were:

(1] Hortzental Duxes were typically less than 10radiance felds were elose
ta plane parallel, even though glohabily the radiative responae was far from
pliane parallel,

{2] The anisolropic component was often very large; Lhis points Lo the
nnportance of “streaming’ or ‘channelling’ of photons through the more
tenmous regions. 1t alsa indicates that the diffusion approximation will be
poor even in aptically thick clonds.

(%) The overall trasmmitlences were compared with those of equivalent
plane parallel clouds and with these obtained using Lhe independent pixel
approximation (each column independent ),

The agresment was generally poor, althongh the independent pixel ap-
proximation was much better than the plane-parallel approximation. Sach
elfects conld readily accounl Tor the "albedo paradox’ (divergences of Factors
of ten or more between plane parallel and in situ estimates of cloud higmd
waler|.

5.4 Diffusion on multifractals

The simplest noontevial transport process in multifeactals is diffusion and
the diffusion eguation is often taken as a simplified radiative transport
mudel, Using this approximation, and taking J as the total intensity and
Dz} as the (multifractal) diffusion constant, we have:
if s
i

- 141 -



where again, the diffusion constant is related to the cloud properties via:

1
e = e

where (as above) k is the extinction coefficient, and p(z) is the multifractal

(38)

cloud density. In one dimension, many aspects are particulary simple. For
example, the steady state J 1s a multifractal since:

o 1 0]

Oz kp(x) 0z (39)
which implies:
aJ
5 = kp(x) (40)

i.e. J(x) will be multifractal with conservation parameter H (see eq. 9)
increased by one (since J is an integral order one of the density, and H
specifies the degree of fractional integration necessary to obtain the field
froom a conserved multifractal). The time dependent case is less straight-
forward, but still can be solved -at least in 1-D - (for details, see Silas et al.
1994). Because of the scaling, we anticipate that for photon random walks,
the distance r after time ¢ will vary as:

(r1(t)) = 3 (41)

where S(q) is the walk scaling exponent. Since the walk is an additive
(monofractal) process, S(gq) will be linear, defining as usual the ‘walk di-
mension’ d,, we have:

Sq) = L (42)

In one dimension, Silas et al. 1994 obtain the following result which (when
applicable, i.e. K(-1) is finite), is believed to be exact:

In the above, the dressed scaling exponent K is used; since this 1s always
positive, d,, > 2, hence the photon walk is subdiffusive (‘normal’ diffusion
has d,, = 2; here, the photon gets partially ‘trapped’ between large singular-
ities, this subdiffusive behaviour was noted in a numerical example studied
by Meakin 1987). Eq. 43 shows that as expected from the monofractal be-
haviour of the path, only a single multifractal singularity is important for
the walk (v = K’(—1)). Indeed, the critical role of this singularity can be
considered to produce a dynamical ‘phase’ transition, since truncating the
high multifractal singularities () has no effect on the transport. As long
as ¥ > Yer, the transport is anomalous, becoming ‘normal’ discontinuously
for v < vep.
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5.5 Radar reflectivity of multifractals ‘speckle’

Radar remote sensing of sea ice, ocean or land surface or rain involves in
homogenaities due to mualtifractal structures thal exlend down below Dot
only rarlar pulse volumes but also helow microwave wavelengths | Lovejov
and Scherizer 19%0a.b, Duncan et al. 1993). This leads to the speckle’
phenomenan whereby small changes in look angle will be associated with
large changes n intensity, It also implies that the usual way of remov-
g s elfect {by assuming subpulze volume statistical homogeneity and
hence incoherent scattering) will lead to systematic errors, To correct the
standard theory for Uhiese elfects, we can model the rellector as a mmlii-
rartal distribntion of dielectrics. In the simplest case appropriate for raimn,
a scalar approximation is sufficient for mosl purposes since the scattering
from drops is nearly sotropic, Other situations such as sea ice will invelve
mntifractal disteibutions of dielectrie tensor and will reguice the Tormalism
ol Lie cascades {Schertzer and Lovejoy 1993].

Actually, even for the scalar caze basic results can be obtamned using
complex { Lie] cascades, since the radar detects a (complex) Fourier compo-
nent, To aee this consider a one (spatial)] dimensional distebuation of radar
scalterers ax(z, £, varving in Ume, with an inner (dissipation scale] A7T,
the radar numhber is &£/2 [the factor 2 i3 for simplicity: it will take into
account the round trip distance to the scatterer=), and the pulse voluine s
length A ' We will he taking the suter scale of the process to be 1, hence
we will be interested in A = 1. Similacly, we will use upits such that the
velocity 35 unily (il is assumed to be independent of scale, we use isotropic
space/timel. The spatizal average of the amplitude of the reflected wave (s

=1
Aplk) = f gl rds EEN

i

]
=1
If we consider oy (] (& < A) as a complex (bare) cascade quantity, then,
lor A =7 & - A, Auik] 18 simply a dressed complex cascade. Using results

on complex cascacdes, we obtain
Fe{falgl) = halg) + g0 R £1a)

where only ) g = felf 4013 remaing to be determined. This cesult has
been tested numerically by Duncan 1993, Duncan et 2], 1999 and indicated
that the statistics of the cross-section field (o, K, (¢)} and the modules of che
amnplitude (| A], el K4{g)) are the same except for & term linear in g which
represents a scale dependent bias. By using space-lime translonnations, il
15 also possible to model the temporal hehavionr of the reflectivity lield.
Dunecar et al. 1994 shows excellent agreement 15 found with rain data.



6 Conclusions

We have summarized a growing body of work indicating that - as theoret-
ically predicted - due to underlying nonlinear but scale invariant dynam-
ics, that many geophysical fields are multifractal over substantial ranges of
scale. This implies that they are strongly dependent on the resolution at
which they are observed and that remote sensing algorithms must system-
atically remove these effects if sensor independent measurements of geo-
physical fields are to be obtained.

We also summarized the basic properties of multifractals. Although the
properties of multifractals are more fully discussed in the accompanying
paper SL94, we concentrate on the discovery of universal multifractals. In
particular universality classes exist in which most of the details of the de-
tails of the dynamics are ‘washed out’ leaving a dependence on just three
basic universal parameters. Without such universality classes, multifractals
would be sensitive to an infinite numer of model paramters and would have
little use. We summarised the empirical evidence for these two distinct
properties in over 20 geophysical fields (many of them remotely sensed).

We also indicated that since scale invariance 1s a dynamical symmetry
principle, it may be expected to hold widely; however, the scale changing
operator will generally not be 1sotropic, hence we do not expect to ob-
serve self-similar multifractals and estimates of the generator of the scale
changing operator using the Scale Invariant Generator technique confirm
this. However, by allowing for very general (even stochastic) generators, we
can take into account the observed texture and morphology of geophysical
processes.

We also showed how to simulate multifractal fields, and we examined
some of their properties. We argued that a full understanding of the re-
lation between physically interesting quantities, and the remotely sensed
radiances will require the use of such models, and we illustrated these ideas
on radiative and diffusive transport, as well as on the problem of radar
speckle.
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