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Abstract  Models of coalescence-decompressive expansion of the later stages of bubble growth predict
that for diverse types of volcanic products the vesicle number densities (n(V)) are of the scaling form

 where V is the volume of the vesicles and B3 the 3-dimensional scaling (power law)

exponent. We analyze cross sections of 9 pumice samples showing that over the range of bubble sizes
from 10 m to 3 cm, they are well fit with B3 0.85. We show that to within experimental error,

this exponent is the same as that reported in the literature for basaltic lavas, and other volcanic
products. The importance of the scaling of vesicle distributions is highlighted by the observation that
they are particularly effective at packing  bubbles allowing very high vesicularities to be reached
before the critical percolation threshold, a process which—for highly stressed magmas—would trigger
explosion. In this way the scaling of the bubble distributions allows them to be key actors in
determining the rheological properties and in eruption dynamics.
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Introduction

Vesiculation and fragmentation of magmas greatly influence the magnitude of volcanic explosive
energies and contribute significantly to total atmospheric gas emissions; their understanding has long
challenged geologists (e.g., Sparks 1978; Papale and Dobran 1993; Thomas et al. 1994; Gardner et al.
1996; Kaminski and Jaupart 1998; Papale 1999). At depth magma is mostly dominated by a bubble-
free liquid phase; as the magma ascends it reaches a saturated or supersaturated level where bubble
nucleation occurs (Mangan and Sisson 2000). These small bubbles grow at first by diffusion and
decompression (e.g. Sparks 1978) and then, as increasingly recognized, by coalescence (Herd and
Pinkerton 1997; Klug et al. 2002; Polacci et al. 2003) and even binary (Lovejoy et al. 2004) and
multibubble coalescence decompressive expansion (Gaonac h et al. 2003). Finally the highly vesicular
magma undergoes fragmentation (Kaminski and Jaupart 1998). Although in classical fragmentation
processes bubbles play only a passive role, in new percolation models (Gaonac h et al. 2003) they play
a fundamental active role. At a critical vesicularity, the bubbles join together to form infinite networks
catastrophically weakening the magma. In this way bubbles are central at each phase of the eruption
and its aftermath.

Many studies have examined the small to medium vesicles present in silicic magmas and interpreted
their vesicle size distributions (VSD s) purely in terms of nucleation, diffusion and decompression,
hypothesizing them to be from a narrow range of size distributions (often exponential; Cashman and
Mangan 1994; Klug and Cashman 1994; 1996). In these frameworks, the largest vesicles are not
adequately treated even though they can easily dominate the total vesicularities. In contrast Gaonac h
et al. (1996b) showed that in basaltic lavas, power law (scaling) VSD s better represent the overall size
distribution of vesicles, with the cumulative number size distribution per unit volume a power law of V
where V is the vesicle volume. The 3-dimensional scale invariant exponent, B3, has a value of 0.85
from 500 m to a few cm. An obvious and important characteristic of power laws is that they relate

the gas vesicles from one scale or size to another in a way that does not involve a characteristic size.
They can be represented by a linear trend in a log10-log10 diagram between all the measured sizes.

More recently, empirical power law VSD s in explosive (Gaonac h et al. 1997; Simakin et al. 1999;
Klug et al. 2002) volcanic products as well as in laboratory experiments (Simakin et al. 1999; Blower
et al. 2001) have been found, with B3 values not far from 0.85 (see below). To explain this behavior,
mechanisms that repeat themselves from scale to scale are required; several have been proposed, the
basic one being binary coalescence (an effective collision between two bubbles) which under relatively
general conditions leads to power law VSD s (Gaonac h et al. 1996a, Lovejoy et al. 2004). Recently,
Gaonac h et al. (2003) have suggested that in high vesicularity magmas ternary and higher order
multibubble coalescence could give rise to a slightly larger B3 (the theoretical value is B3,per=1.186)
for magma near the critical percolation point. In such a scenario bubbles join into an infinite network
possibly causing the fragmentation of the magma. However, empirical values are invariably from 2-D
cross-sections; the corresponding values are extrapolated to 3-D by assuming convex bubbles leading
to a theoretical value B2–3,per=1.037. The difference between B3,per and B2–3,per is due to the
nonconvexity of the bubbles. This is very close to the scale invariant exponent of 1.1±0.1 found by
Klug et al. (2002). Finally, Blower et al. (2001) suggested a noncoalescence mechanism based on a
nucleation-diffusion process occurring in a fractal hierarchy leading to a B3~0.82. In addition on purely
empirical grounds, Gaonac h et al. (1996a) suggested that the very small bubbles dominated by
diffusion-decompression growth also have a power law regime, although with a lower B3 value of 0
(Gaonac h et al.1996a).



The scaling of vesicle size distributions is a central notion in theories of bubble growth and magma
fragmentation (Gaonac h et al. 1996a; Lovejoy et al. 2004). In spite of the emerging consensus about
power law VSD s, even for a single type of volcanic product, there is no consensus on the unicity of
the exponents (e.g. two basic values, one for the binary coalescence, another one for the multibubble
coalescence), nor the corresponding range of scales over which the scaling holds. The resolution of
these issues has immediate bearing on the debate about the bubble growth mechanisms, and hence on
the implications on the possible fragmentation of the magma. In this paper we present additional
empirical evidence in favor of power law distributions of vesicle size distributions in Plinian fallout
products and propose a unifying explanation for the different observed exponents including those from
Plinian and effusive samples. Because the basic value (0.85) allows particularly efficient packing of
small bubbles between larger ones, the creation of infinite bubble networks (percolation) is postponed
until quite large vesicularities are reached ( 70%), thus potentially explaining the eruption as a critical
percolation process (Gaonac h et al. 2003).

Scale invariant distributions

In a scaling regime, the number density n(V) of the vesicles (mm–6) in each sample is a power law as
a function of V, the volume of the gas vesicle (Gaonac h et al. 1996b):

(1a)

where B3 is the 3-D scale invariant exponent. When B3<1, the scaling must have an upper bound
which we will take as V*. For B3<1, The total vesicularity P of the sample is given by:

(1b)



It is much easier to study vesicle area distributions from sample cross-sections rather than vesicle
volume distributions. In Gaonac h et al. (1996b) we developed a method for such 2-D analyses. It is
convenient to use cumulative number distributions which provide a more regular trend than number
densities. We therefore introduced in Gaonac h et al. (1996b) for 2-D measurements:

(2a)

(2b)

where N2(A <A) and N2(A >A) are the increasing and decreasing cumulative numbers of vesicles per
unit area, respectively smaller and larger than A (referred to N2(mm–2) in the figures). A* and N2*
correspond to the characteristic areas and characteristic cumulative number densities of the
distributions; the subscript indicates the dimension of space. The notation is borrowed from probability
theory where Pr(A >A) denotes the probability of a random vesicle A  exceeding a fixed A.

For convex bubbles, the relation between the 2-D and 3-D exponents is particularly simple (Gaonac h
et al., 1996b):



(3)

(4)

Strictly speaking these results are only valid for convex bubbles such as those commonly found in
basalts. However, at high vesicularities, bubbles can be extremely complex and non convex, and a
single such bubble when viewed in cross section may appear as several. Thus, equations (3,4) must be
used with caution. This is why for the pumice analyzed below we do not attempt to extrapolate our
distributions from areas to volumes (see Gaonac h et al. 2003 for discussion).

Plinian pumice vesicles

There is a growing need to characterize the very large range of vesicle sizes observed in Plinian
samples, as well as in other types of volcanic products. Here we present some new analyses and then
compare them with published vesicle size distributions. The samples analyzed have been produced by
the Plinian Minoan and Middle Pumice eruptions at Santorini volcano (see Gardner et al. 1996 for more
details). The Plinian pumices were prepared and analyzed on a cm-scale using the method developed
by Gaonac h et al. (1996b). Some samples were sawn in two perpendicular sections to display the
effect of crosscutting, elongated vesicles on the size distribution. The same samples were analyzed
using back-scattered electron microscopic images at the micron-scale. Fig. 1 shows examples at
various scales. In each case, vesicles of very different sizes are heterogeneously spatially distributed.
Their shapes are very irregular and suggest intense coalescence of smaller bubbles. In some samples,
vesicles appear elongated in variable directions, presumably due to strain forces (e.g., Fig. 1e). While
some authors have proposed that bubbles continue to expand after fragmentation (Gardner et al. 1996),
their deformation is more commonly thought to occur during pre-fragmentation processes where shear
stresses in the magmatic conduit could be locally very strong (Klug et al. 2002; Polacci et al. 2001,



2003). Moreover, Gardner et al. (1996) suggested that the expansion of the bubbles should be limited
when magmas are viscous, as is the case for the Minoan volcanic pumices. We therefore assume that
our Plinian samples mostly reflect the pre-fragmentation state of bubble distributions. Finally, we note
that deformation of the bubbles does not necessarily modify the scaling behavior of the vesicle size
distributions.

Fig. 1  Digitized sections of a Minoan eruption sample at various resolutions: a, b and c; digitized sections of a
Middle Pumice eruption sample at various resolutions: d, e, and f. The viscosities of the degassed magma were
5×106Pas, 4×105Pas and the eruption temperatures were 870°C, 890°C respectively (Gardner et al.  1996)



By first considering the cm-scale Plinian pumice, we observe a common scaling (power law) behavior
of their vesicle distributions with a scale invariant exponent B2 0.75 (B3 0.85) indicated by a
reference line (Fig. 2). The outer limit of the scaling corresponds to the largest cm-scale vesicle present
in each sample (see Table 1, Amax values); the inner limit corresponds to the smallest observable
vesicles at this cm-scale resolution (0.085 mm corresponding to the digitized image resolution of
300 dpi). The empirical vesicle size distributions (Fig. 2) are biased by two effects. First, the largest
cm-scale vesicles, with areas comparable to the image area, are often truncated so that their areas are
artificially low. Second, the smallest vesicle number densities are biased due to insufficient resolution
with this method. These two effects cause artificial decreases at both ends of the distributions. With
these caveats, we consider that power law fits in Fig. 2 are quite reasonable. We may expect the scaling
to continue beyond these two external limits since larger bubbles are present in larger samples and
smaller bubbles are evident on magnified images.

Fig. 2  The cumulative vesicle size distributions N2(A >A) of Middle Pumice and Minoan cm-scale samples show
a common scaling behavior described by a reference line with a slope (scale invariant exponent) B2 0.75 (B3
0.85).  For clarity, starting at the bottom, the nth curve has been offset vertically by (n-1) orders of magnitude.
The two top plots are from a single Minoan sample cut along two perpendicular directions (to study possible
effects of anisotropy); the others are Middle pumice

Table 1  Estimates of the largest vesicle size (Amax) are based on the macroscopic sample; the vesicularity
(Pmax) is based on the largest vesicle (Amax) and the total vesicularity (Ptotal) of the pumice sample

Sample Amax (mm2) Pmax(%) Ptotal (%)

Middle Pumice 611.5 18.3 47.8



Middle Pumice 125.8 5.7 41.3
Middle Pumice 492.7 19.9 55.2
Middle Pumice 558.0 18.5 47.5
Middle Pumice 392.9 16.6 47.8
Middle Pumice 1132.1 39.5 54.4
Middle Pumice 248.0 20.4 49.5
Minoan 57.9 3.3 32.1
Minoan 60.4 4.7 31.6

Eq. 1b shows that for B3<1 the variability of the vesicularity P of a pumice largely may be explained
by the presence or absence of large vesicles. This theoretical result (Gaonac h et al. 1996a) is also
confirmed in the Santorini pumice samples. The contribution of the vesicularity (Pmax in Table 1) of
the largest vesicle (for example 1132.1 mm2, see Table 1) to the total vesicularity (P in Table 1) in the
samples studied varies from 10% (3.3/32.1 for a Minoan sample) to 73% (39.5/54.4 for a Middle
Pumice sample). Such domination by the few largest vesicles to the total vesicularity of a sample has
important consequences for estimates of the amount of degassing and for bubble growth dynamics.

For investigation at higher resolutions, we have analyzed Plinian micron scale images. While data from
the different scale ranges (e.g., Fig. 1a,b,c for a Minoan sample) are grouped in a single diagram
(Fig. 3), we note the same decreases at large and small volumes of each data set as in Fig. 2. In
addition, there is another more subtle bias which must be taken into account when comparing enlarged
microscopic sections with macroscopic centimeter sized samples. This arises because each micron scale
sample (e.g., Fig. 1c, where the size of the image is millimetric) is deliberately selected from a plain
region of a larger sample area (e.g., Fig. 1a) situated between millimeter or centimeter sized vesicles; if
we had randomly chosen the micro-scale data sets, we would have often selected void vesicle sections
of micron or larger dimensions. In other words our microscopic sampling is conditioned on the absence
of large vesicles. Such biases lead to micron-scale vesicle cumulative numbers which are artificially
too high when considering the whole cm- range of scales (e.g., Fig. 1a). This multiplicative bias, which
grows with zooming , has been removed by translating log10N2 (mm–2) downwards by an
appropriate amount (by –0.8, –1.4, –0.7, –1.0 for Fig. 1b, c, e, f, respectively; see below for discussion).
The translation is performed so that the cumulative numbers of medium to large vesicles of the micron
scale image of a pumice sample overlap vesicles of similar area from the cm-scale image. Such
processing effectively renormalizes the micro-scale count over the whole sample surface.



Fig. 3  A comparison of a Middle pumice distribution (top, shifted upwards by a factor of 10 for clarity), a Minoan
Pumice (middle) and the mean of over a dozen Etnean basaltic lavas (bottom, shifted downwards by a factor of
10, from Gaonac h et al.  1996b). The symbols for N2(A >A) are: empty triangles (from Fig.  1a), empty circles
(from Fig.  1b), empty reversed triangles (from Fig.  1c), filled triangles (from Fig.  1d), filled dots (from Fig.  1e),
filled reverse triangles (from Fig.  1f). The symbols for N2(A <A) are x s  (from Fig.  1c) and the filled squares

(from Fig 1f). Crosses are for Etnean N2(A >A) distributions. The reference slopes ( –B2) are –0.75 for N2(A

>A) and 0.45 for the Middle Pumice N2(A <A) distribution (the best theoretical fit for Minoan is 0.20).  The
symbols A**2 and N**2, presented for the Middle Pumice sample, represent the upper end of the small vesicle
range and the beginning of the medium to large vesicle regime. Note that for the lavas, B2 0.8 provides a
slightly better fit

In Fig. 3 the B2 0.75 reference line for Middle Pumice and Minoan samples indicates that this power
law behavior may extend from the largest observable vesicle down to the characteristic size A**
(10–4.3 mm2 equivalent to  m for Middle Pumice) and characteristic number N2**

(N2**=101.8 mm–2 equivalent to N3** 1013 m–3 for Middle Pumice). As can be seen from the figure
in several instances, the lower limits of the B2 0.75 regime roughly coincide with the upper limits of
a small bubble B2<0 (N2(A <A)) regime, hence the double star notation A** and N2**. Analyses of
additional micro-scale samples confirm the same exponent and show  to be between 3 m and

10 m. Etnean lava vesicle distributions shown for comparison confirm that the exponent B2 0.75

closely fits the distributions for all the products. However, the Plinian pumice has much higher
cumulative numbers of much smaller bubbles. For example, the lower bounds on the B2 0.75 regime,
A**, is 3×10–11 m2 in pumice (log10A(mm2)=–4.5) compared to 3×10–7 m2 (log10A(mm2)=–0.5) in
Etnean basalt (Gaonac h et al. 1996b), corresponding to 100 times smaller linear sizes of pumice
bubbles. To compare the pumice and basalt values, the parameter N2** as presented in Fig. 3 is not so
useful since it is estimated at very different A**. If in both cases we consider the number which
exceeds the fixed reference value 1 mm2, we find N2(>1mm2) 5×104 m–2 (log10N2(/mm2)=–1.3),
3×104 m–2 (log10N2(/mm2)=–1.5) for the mean pumice and mean basalt, respectively, corresponding
to a small decrease in the amplitude of the basalt cumulative number.

It is also of interest to estimate the total bubble number density of each pumice sample. We first



remark that the combination of macroscopic/microscopic distributions in Fig. 3 has allowed us to
eliminate the bias that would be introduced by normal use of SEM imagery. With this adjustment, the
total number per unit area larger than the minimum resolution (0.3 m, 1.26 m for Figs. 1c, 1f,

respectively) estimated over the observed range is N2,tot 108 m–2 corresponding to N3,tot
3×1014 m–3 which is comparable to other published pumice data (Klug and Cashman 1994; Polacci et
al. 2001; Klug et al. 2002). However, before using these values as estimates of the absolute total
number density, we must verify that we have not missed too many sub-micron bubbles. To do this, we
formulate a hypothesis regarding the small bubble distribution. If it also is considered as a power law,
Fig. 3 indicates that below A**, the pumice vesicles have B2 –0.20 (B3=0.20) for the Minoan
samples and B2 –0.45 (B3=0.03) for the Middle Pumice samples. Unfortunately, exponents B3>0 ( 

 ) imply a divergence in Ntot due to small bubbles; since this B3 is so close to the critical

value of 0, we conclude that we need higher magnification SEM images in order to obtain correct
estimates. The cited values for Ntot are simply lower bounds.

Discussion

Simakin et al. (1999), Blower et al. (2001) and Klug et al. (2002) also obtained power law bubble
distributions in various samples but the authors claimed a range of exponents. Since a priori, a binary
coalescence-decompression mechanism would tend to generate distributions with the same scale
invariant exponent, even if many details of the process were different (Gaonac h et al. 1996a), it is
important to test the hypothesis of one or two exponents (one for binary, one for multibubble
coalescence) with as many data sets as possible. We therefore reanalyzed the several accessible
published power law distributions. The distributions were obtained by extrapolating from 2-D to 3-D
using the equivalent of eq. 3 i.e., by implicitly assuming bubble convexity.

Fig. 4 shows natural data from Simakin et al. (1999) with a scale invariant exponent compatible with
B3 0.85 (hence B2 0.75). However, on the same figure, we also show the distributions of their high
vesicularity laboratory samples that displayed coalescence. The low volume regime of these data is
reasonably fit by B3 0.85, but the large volume part is a bit steeper. It may be a reflection of the
presence of another exponent. This is possible because Gaonac h et al. (2003) show that when nearing
the percolation threshold (numerically estimated as 70±5% vesicularity for B2=0.75), the percolation
can become dominant with a theoretical value of B2–3,per 1.037, close to the 1.1±0.1 value found in
Klug et al. (2002). The B3=0.85 value is only appropriate for binary coalescence. Alternatively, the
higher value compared to B3=0.85 may be an artifact resulting from attempts to decoalesce  bubbles.
Since the larger bubbles are likely to be preferentially decoalesced, this could systematically decrease
the number of large bubbles with respect to small bubbles and hence raising B2 and B3 values.



Fig. 4  Replotted from Simakin et al.  (1999), this figure demonstrates scaling behavior of pumice (sample
GS91.42c, filled squares), scoria (sample 19.05.92, triangles) as well as laboratory samples (those exhibiting
coalescence: ET8 squares, ET9, circles).  The B3 0.85 reference line fits most of the data; the B3 1.037
reference line (the theoretical percolation exponent) gives a slightly better fit to the largest laboratory vesicles

Gaonac h et al. (2003) show that power law bubble distributions with exponent near the observed value
are particularly efficient in packing  bubbles. This is important since percolation theory shows that
otherwise monodisperse distributions with a vesicularity of only 29% would already yield overlapping
bubbles, the largest of which would almost surely span an infinite system implying fragmentation at
unrealistically low vesicularities. In highly stressed conditions, this would imply explosions at these
unrealistically low vesicularities. Gaonac h et al. (2003) quantitatively show how the observed power
law distributions delay such explosive percolation  until the observed high vesicularities ( 70%) are
reached.

In this picture, the similarities and differences between effusive and explosive products are relatively
straightforward to explain. At small scales, nucleation, diffusion and decompressive expansion create a
population of bubbles from sub micron scales up. As the magma violently ascends during a Plinian
eruption, acceleration of the magma and rapid expansion of the bubbles induce shear stresses causing
locally intense deformation of the bubbles which in turn favour coalescence, especially for the largest
bubbles. Observations of Plinian pumice samples confirm the common occurrence of deformed and
coalesced vesicles, such as in Fig. 1. The complex anisotropic texture of pumice directly reflects the
shear stresses present in the magma (Polacci et al. 2001; Polacci et al. 2003; Klug et al. 2002).
Extensive local shearing may eventually lead to the formation of pumice tubes (Polacci et al. 2003;
Marti et al. 1999). On a particularly anisotropic sample, we were able to confirm that deformation of
bubbles still respects scale invariant properties (Lovejoy et al. 2004).

Because of the generality of the coalescence mechanism and its robustness in yielding power law
distributions, this basic model can apply to both explosive and effusive eruptions. In the case of an
explosive eruption, the vesicularity is high while great stresses combined with bubble expansion
produce shear, bubble overlap and coalescence. At first the vesicularity is low enough so that only two
bubble (binary) interactions occur, while at higher vesicularities overlap/coalescence becomes
extensive. In multibubble processes, a new exponent characterizes the distributions of the largest



bubbles. Finally, as the critical percolation threshold is approached, coalescence is so extensive that the
magma begins to fragment. At the 3D percolation point a single bubble spagghetti-like effectively
spans an arbitrarily large section of magma; at the slightly higher 2D percolation point, any planar
cross-section is almost certainly cleaved by an infinite bubble. Presumably, the stressed magma will
explode somewhat before this point is reached. In effusive eruptions, the initial steps (nucleation,
diffusive growth, then binary and multibody coalescence decompressive -expansion) may occur in
rather similar ways, although at different rates, and with perhaps different causes of shearing. The key
difference is that in effusive eruptions, the existence of an infinite bubble network would have little
rheological significance, although it would presumably favour degassing. The basic processes can then
continue quite a bit longer than in the explosive stressed case. This would give sufficient time for the
nucleation/diffusion processes to exhaust the source of dissolved gas, and the bubbles would have the
time to reach near atmospheric pressures. In these circumstances, as long as shearing is still present,
coalescence will continue until the liquid bubbly magma reaches the surface. According to the
coalescence equation, its effect will be to increase both the lower and upper scaling limits V** and V*
of coalescence while simultaneously decreasing the number densities. By contrast for B3>1, pure
coalescence would increase the number densities (Lovejoy et al. 2004). This picture thus explains the
key similarities and differences of the vesicle size distributions of pumice and basaltic lavas.

Conclusions

Explosive volcanic products commonly display bubbles with sizes ranging from sub micron to
centimeters. There is now a growing consensus that to adequately characterize distributions with such
huge ranges, power law approaches are required. However, we expect that different exponents
correspond to different mechanisms; it is therefore important to systematically analyze samples of as
many different products as possible, over as wide a range scale as possible. We have presented
systematic studies of macroscopic analyses of 9 Plinian pumice samples including two with joint
microscopic analyses. This is the first time that samples have been analyzed over 8 orders of magnitude
in bubble areas (12 in volumes) from micron to centimeter scales. A method has been developed in
order to avoid overestimating the contribution of small bubbles when comparing microscopic and
macroscopic samples; this permitted a more precise estimate of the total number density of Plinian
pumice vesicles. We found an overall scaling of over 9 orders magnitude in bubble volumes, and
exponents (B2 0.75, B3 0.85) which are within statistical uncertainty the same as those found in
basalts in Gaonac h et al. (1996b). We also investigated the prediction, arising from the fact that B3<1,
that the largest single vesicle could significantly influence the total vesicularity of each sample, leading
to large fluctuations in porosity among samples.

Reanalysis of results by Simakin et al. (1999) also supports the scale invariance (power law)
characteristic of the vesicle size distributions. The near constancy of the exponent (B3 0.85) for
volcanic products from a wide range of volcanic conditions was predicted in Gaonac h et al. (1996a)
via a cascade-like scaling mechanism. Higher values need to be considered when the pumices exhibit
multicoalescence. On the other hand, such samples are more difficult to observe before the percolation
and fragmentation of the magma.

While power law distributions have important implications for modeling ascending magmas, perhaps
the most important consequences of such distributions are for the fragmentation stage of an eruption.
All the contending theories involve highly stressed magmas evolving past critical thresholds. In the
classical theories the thresholds are either critical stresses or critical strains. For example, some authors
favor brittle fragmentation through a glass transition phase when the magma is under a large strain rate



(e.g., Marti et al. 1999; Papale 1999) or large stresses within bubbles (Zhang 1999). Other authors
propose that a downward decompressive wave impinges upon brittle or ductile magma which then
exceeds a critical stress for fragmentation (Alidibirov and Dingwell 1996). In these classical models the
bubbles play essentially passive roles; they merely prepare the magma rheology which evolves in a
continuous way as the vesicularity increases and an external dynamical trigger is necessary for an
eruption. We have presented an alternative scenario (Gaonac h et al. 2003) in which the bubbles play
an active role in the sense that the rheology evolves discontinuously with vesicularity; at a critical
value of vesicularity, quite independently of the stresses or strains, the magma fragments. This critical
vesicularity corresponds to the percolation threshold where bubble overlap is so extensive that an
infinite bubble is essentially produced. Under high stress forces, the whole vesiculated system breaks
down, and an explosion occurs.

Work in progress involves the analyses and interpretations of vesicle size distributions of explosive
products which have evolved in different volcanic conditions. The search for the nature of scaling of
bubble distributions represents an important opportunity to better understand the eruptive dynamics of
volcanoes.
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