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at scales >10 years, the scale reduction factor dominates, 
it increases the amplitude of the temperature anomalies by 
11 ± 8% (these uncertainties quantify the series to series 
variations). Finally, both the model itself as well as the 
statistical sampling and analysis techniques are verified on 
stochastic simulations that show that the model well repro-
duces the individual series fluctuation statistics as well 
as the series to series fluctuation statistics. The stochastic 
model allows us to conclude that with 90% certainty, the 
absolute monthly and globally averaged temperature will 
lie in the range −0.109 to 0.127 °C of the measured tem-
perature. Similarly, with 90% certainty, for a given series, 
the temperature change since 1880 is correctly estimated to 
within ±0.108 of its value.

Keywords Global temperature · Uncertainty · Scaling · 
Stochastic modelling

1 Introduction

The atmosphere is a turbulent fluid and the tempera-
ture and other state variables fluctuate from the age of 
the earth down to milliseconds, in space from the size of 
the planet down to millimeters (see Lovejoy (2015) for a 
review). Global scale temperature estimates rely on sparse 
(i.e. fractal), in situ measurement networks (Lovejoy et al. 
1986; Nicolis 1993; Mazzarella and Tranfaglia 2000) and 
mapping them onto regular grids (e.g. with interpolation 
or Kriging) involves nontrivial space–time homogeneity, 
smoothness and other assumptions. In the satellite era and 
with other suppositions, remotely sensed data may also be 
used (e.g. Mears et al. 2011).

Even the problem of mapping a single spatially point-
like in  situ measurement onto a finite resolution grid is 

Abstract The earth’s near surface air temperature is 
important in a variety of applications including for quan-
tifying global warming. We analyze 6 monthly series of 
atmospheric temperatures from 1880 to 2012, each pro-
duced with different methodologies. We first estimate the 
relative error by systematically determining how close 
the different series are to each other, the error at a given 
time scale is quantified by the root mean square fluctua-
tions in the pairwise differences between the series as well 
as between the individual series and the average of all the 
available series. By examining the differences system-
atically from months to over a century, we find that the 
standard short range correlation assumption is untenable, 
that the differences in the series have long range statisti-
cal dependencies and that the error is roughly constant 
between 1 month and one century—over most of the scale 
range, varying between ±0.03 and ±0.05  K. The second 
part estimates the absolute measurement errors. First we 
make a stochastic model of both the true earth temperature 
and then of the measurement errors. The former involves a 
scaling (fractional Gaussian noise) natural variability term 
as well as a linear (anthropogenic) trend. The measurement 
error model involves three terms: a classical short range 
error, a term due to missing data and a scale reduction term 
due to insufficient space–time averaging. We find that at 1 
month, the classical error is ≈±0.01  K, it decreases rap-
idly at longer times and it is dominated by the others. Up to 
10–20 years, the missing data error gives the dominate con-
tribution to the error: 15 ± 10% of the temperature variance; 
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nontrivial. At first sight it would appear that the problem is 
even ill-posed because it seems to be an attempt to change 
the resolution of the data by an infinite factor: from zero 
to tens or hundreds of kilometers. However, such spatially 
point-like data are never point-like in space–time and it is 
the effective space–time resolution that is important. For 
example in the weather regime (i.e. for time scales up to 
the lifetime of planetary structures, typically ≈10 days), 
the space–time relation is linear or 2/3 power law for Eule-
rian and Lagrangian frames respectively (see Lovejoy and 
Schertzer 2010, 2013) for both short and extended reviews). 
However for time scales with resolutions longer than 
typical (5–10  day) planetary lifetimes (the macroweather 
regime) to a good approximation the space–time statistics 
factorize (Sect. 2.4) so that there is a quite different time-
scale to space-scale relation (Lovejoy and de Lima 2015; 
Lovejoy et al. 2017). The observed spatial scaling relations 
(which are also respected by the GCM models—although 
with slightly different exponents), indicate that the regu-
larity and smoothness assumptions made by classical geo-
statistical techniques such as Kriging are not applicable. 
Below, we show that a consequence of the scaling is the 
existence of “scale reduction factors” that are nonclassical 
but yet are needed to explain the low frequency part of the 
observations.

In addition to problems due to sparse networks and 
unknown or ill-defined space–time resolutions, there are 
also practical issues such as estimating the temperature 
over the ocean and over sea ice and with frequent series 
discontinuities and biases caused amongst others by the 
heat island and cool park effects (Parker 2006; Peterson 
2003). Sea surface temperatures series also have nontrivial 
issues, see Hausfather et al. (2016).

Even high quality surface networks such as the US His-
torical Climatology Network “have an average of six dis-
continuities per century and not a single station is homo-
geneous for its full period of record” (Peterson 2003). 
Another potential source of bias is the fact that starting at 
around 1950, the rate of increase of nocturnal (minimum) 
temperature values on land was almost twice as high when 
compared to that of diurnal (maximum) temperature values, 
favouring an increase of duration of the frost-free period in 
many regions of moderate and high latitudes (Kondratyev 
and Varotsos 1995; Efstathiou and Varotsos 2010). See also 
Pielke et al. (2007) who enumerates many other issues and 
Diamond et al. (2013) who reviews their implications.

Yet in spite of these problems and in order to provide a 
reliable indicator of the state of the climate, half a dozen 
centennial, global scale surface air temperature estimates 
have been produced. The question of their accuracy is 
essential for many applications, including global warming: 
indeed, one of the oldest climate skeptic arguments against 

anthropogenic warming is that the data are unreliable or 
biased. It is therefore important to quantify their accuracy.

We analyse the six best-documented (at the time of anal-
ysis; May 2015) global, monthly averaged time series. Each 
series was constructed with somewhat different data, with 
different homogenization and gridding assumptions. Since 
no absolute ground truth is available, their authors used 
specific theoretical space–time assumptions and models 
to quantify the accuracy of each temperature series statis-
tics in order to obtain monthly resolution uncertainty esti-
mates. Yet historically, when confronted with the measure-
ment of a new physical quantity—here the global average 
surface temperature—the greatest confidence comes from 
the agreement between qualitatively different but physical 
consistent approaches. We therefore systematically com-
pare each series with the others determining the relative 
accuracy as functions of scale [Sect.  2; this idea and an 
early spectral result were given in Lovejoy et al. (2013a)]. 
This analysis motivates the development of a model for the 
absolute accuracy that is developed in Sect. 3. Whereas in 
Sect.  2, we ask the relative accuracy question: “how well 
do different methods using different empirical inputs agree 
with each other as functions of their time scale?”, in Sect. 3 
we move from relative to absolute estimates of error and 
bias attempting to answer the question “how accurate are 
the data as functions of their time scale?”

The explicit treatment of scale is important because 
over the range of between about 10 days and 10 years (the 
macroweather regime) the fluctuations (precisely defined 
below) tend to cancel each other out: increasing fluctua-
tions tend to be followed by decreasing ones so that tem-
poral averages (of essentially all atmospheric quantities) 
systematically decrease with scale (Lovejoy 2013; Fig.  2 
below). At scales beyond ≈10–20 years (the climate 
regime) the temperature is dominated by anthropogenic 
effects and the fluctuations start to increase with scale. In 
addition, we conventionally expect that lowering the tem-
poral resolution by averaging over longer and longer time 
intervals will lead to the convergence of each globally aver-
aged temperature series to the actual temperature so that 
with sufficient averaging (i.e. with low enough temporal 
resolution) and in accord with the central limit theorem, 
the different series are expected to mutually converge. The 
direct way to analyze this is by considering the fluctua-
tions in the differences between the different series and to 
quantify how rapidly they diminish with temporal resolu-
tion. The only technical complication is that we must use 
an appropriate definition of fluctuation. This is because on 
average, the classical fluctuations (defined as differences) 
cannot decrease with scale, so that for our purposes, they 
are inadequate. Instead, we use the somewhat different 
Haar fluctuations.
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2  Fluctuation analysis

2.1  The data

The series that we chose were all publically available at 
monthly resolutions between January 1880 and Decem-
ber 2012 (133 years = 1596 months). They were (a) the 
NOAA NCDC series GHCN-M version 3.2.0 dataset 
(Smith et  al. 2008), updated in Williams et  al. (2012), 
abbreviated NOAA in the following, (b) the NASA God-
dard Institute for Space Studies Surface Temperature 
Analysis (GISTEMP) series, abbreviated NASA (Hansen 
et  al. 2010), (c) the Combined land and sea surface tem-
perature (SST) anomalies from HadSST3, Hadley Cen-
tre–Climatic Research Unit Version 4, abbreviated HAD4 
(Brohan et al. 2006; Kennedy et al. 2011), (d) the version 2 
series of (Cowtan and Way 2014) (abbreviated CowW), (e) 
the Twentieth Century reanalysis, version 2 (Compo et al. 
2011), (20CR) and (f) the Berkeley Earth series (Rohde 
et  al. 2013) abbreviated Berk. Shortly after these series 
were analyzed, some of the series were updated (notably by 
Karl et al. 2015), but we are not trying to establish which 
series is best, but rather how the errors vary with scale so 
that the updates are unlikely to alter the conclusions.

Each data set has its particular strengths and weak-
nesses, we enumerate a few of these in order to under-
line their diversity. For example, NOAA and NASA use 
essentially the same land and marine data, but use differ-
ent methods to fill (some) of the data holes. In contrast the 

HAD4 series makes no attempt in this direction, thus mak-
ing fewer assumptions about the spatial statistical proper-
ties (especially smoothness, regularity properties). The 
CowW series takes the contrary view: it uses the HAD4 
data but makes strong spatial statistical assumptions (Krig-
ing) to fill in data holes. This is especially significant in 
the data poor high latitude regions. The 20CR series is of 
particular interest here because it uses no temperature sta-
tion data whatsoever. Instead, it uses surface pressure sta-
tion data and monthly SST data (the same as HADCRUT4) 
combined with a numerical model (a reanalysis), it is the 
only series that gives actual temperatures rather than 
changes with respect to a reference period: “anomalies”. 
The fact that the 20CR agrees well with the other (station 
based temperature) estimates is strong support for all the 
series (Compo et al. 2013). Finally, the Berk series uses the 
same SST data as both HAD4 and CowW but it uses data 
from many more stations (≈37,000 compared to only 4500 
for HAD4 and 7300 for the NOAA series for example), and 
it uses a number of statistical improvements in the handling 
of data homogenization and coverage. Our objective here 
is not to attempt to evaluate which assumptions, or which 
products are better—or worse—our point is that there is a 
significant diversity so that the degree of agreement or dis-
agreement between the various series is of itself important.

Figure  1 shows a visual comparison of the series. In 
addition to the temperature (black), we have shown uncer-
tainty limits (gray). These are not theoretical estimates of 
intrinsic uncertainty but rather the dispersion of the five 
other temperature records about the given series (three 

Fig. 1  The six monthly global surface temperature anomaly series 
from 1880 to 2012 (black) with 3 standard deviation uncertainties 
in grey with the mean of all six (top). From bottom to top: NOAA 
NCDC, NASA GISS, Hadcrutem4, Cowtan and Way, the 20 Century 
Reanalysis, the Berkeley series and the overall mean. Each series 
represents the anomaly with respect to the mean of the entire period, 
indicated by the black horizontal axes. For each of the bottom six 
series, the uncertainties are determined from the standard deviations 
of the other five

Fig. 2  The RMS Haar fluctuations S(Δt) averaged over the six series 
(top), averaged over all the 15 pairs of differences (second from top), 
averaged over the differences of each with respect with the overall 
mean of the six series (third from top), and the standard deviation of 
the S(Δt) curves evaluated for each of the series separately (bottom). 
Also shown for reference (dashed) is the line that data with independ-
ent Gaussian noise would follow



 S. Lovejoy 

1 3

standard deviations): it measures the series similitude/dis-
similitude. Where gray regions extend far above and below 
the black lines, they indicate that there is little agreement 
between the curve in question (black) and the other series. 
Where the band is narrow, it indicates is strong agreement. 
Overall we see that each series is very similar to the others 
(including the particularly significant 20CR series); com-
paring any individual curve with that of the overall mean of 
the six (top curve), we see that no particular series stands 
out. In addition, before 1900—but also after 1980—the 
series are the most dissimilar so presumably the least reli-
able. While this is not surprising for the earlier (data poor) 
epoch, a priori, it is not obvious in the more recent period. 
In Sect.  3, it is explained by the differing scale reduction 
factors combined with anthropogenic warming.

2.2  Anomalies, differences, Haar fluctuations

The uncertainties in Fig.  1 are limited to quantifying the 
similarities/differences at unique temporal resolutions: 1 
month. Since as we go to lower resolutions measurement 
errors are increasingly averaged, we expect a progressively 
stronger agreement at longer times. Standard uncertainty 
analyses (e.g. Kennedy et  al. 2011) assume that there are 
both long term biases and short term errors and that the 
latter have short-range (exponential) decorrelations (e.g. 
the errors are auto-regressive or kindred processes). But 
a growing body of work finds monthly resolution atmos-
pheric fields have long range statistical dependencies (wide 
range temporal and spatial scaling, power laws, Lovejoy 
and Schertzer 1986; Bunde et al. 2004; Rybski et al. 2006; 
Mann 2011; Franzke 2012; Rypdal et al. 2013, see Lovejoy 
and Schertzer 2013 for a review). The issue of short ver-
sus long range correlations also has implications for trend 
uncertainty analysis, see Lovejoy et al. (2016).

To quantify the resolution effect, denote the true global 
temperature anomaly by T(t) (i.e. the actual averaged tem-
perature of the entire planet with the annual cycle removed 
and the overall mean of the series removed so that < T > = 0 
where “<.>” indicates averaging). Define the Δt resolution 
anomaly fluctuation by:

(we have suppressed the t dependence since we will assume 
that the fluctuation statistics are statistically stationary; this 
may be true even though—due to anthropogenic warm-
ing—the statistics of the temperature itself are nonstation-
ary). Note that if we have anomaly data at “resolution t”, 
i.e. averaged over time t, Tτ(t), then T� = (ΔT(�))anom a fact 
that will use below.

(1)(ΔT(Δt))anom =
1

Δt

t

∫
t−Δt

T
(
t�
)
dt�

Let us denote the overall deviations from the true value 
Εi(t) (we use the term “deviation” to include both biases 
and errors). Now denote the ith measured anomaly by:

For large enough averaging interval (Δt), 
we expect that the deviation E will be increas-
ingly averaged out so that for the ith and jth series (
ΔTi(Δt)

)
anom

≈ (ΔT(Δt))anom ≈
(
ΔTj(Δt)

)
anom

. Alterna-
tively, by defining the difference:

we have the simple result �Tij(t) = Ei(t) − Ej(t). If the devi-
ations Εi(t), Εj(t) are short range processes (i.e. dominated 
by standard measurement errors with having exponential 
decorrelations such as autoregressive processes and their 
kin), we can use the central limit theorem to conclude that 
at large enough Δt (where Εi(t), Εj(t) are statistically inde-
pendent) that the rate at which the root mean square (RMS) 
anomaly fluctuation approaches zero is:

If the separation of the deviations into short term 
errors and long term biases is at all possible, then for 
large enough averaging scale (Δt) it should display a 
Δt−1/2 regime for the anomaly fluctuations.

Before testing this prediction on the data, we must first 
discuss different definitions of fluctuations and their limi-
tations. Anomaly fluctuations must on average decrease 
with averaging scale Δt, so that are only adequate when 
the fluctuations decrease with scale Δt. For fluctuations 
that increase with Δt, we can use the classical definition 
of fluctuation, the differences:

In contrast to anomaly fluctuations, average differences 
cannot decrease with scale whereas in general, average 
fluctuations may either increase or decrease as over dif-
ferent ranges of Δt. We must therefore define fluctuations 
in a more general way; wavelets provide a fairly general 
framework for this. A simple expedient combines averag-
ing and differencing while overcoming many of the limi-
tations of each: the Haar fluctuation (from the Haar wave-
let). It is simply the difference of the mean over the first 
and second halves of an interval:

(see Lovejoy and Schertzer 2012b for these fluctuations in 
a wavelet formalism). In words, the Haar fluctuation is the 
difference fluctuation of the anomaly fluctuation, it is also 

(2)Ti(t) = T(t) + Ei(t)

(3)�Tij(t) = Ti(t) − Tj(t) = �Eij(t)

(4)
⟨
Δ�Tij(Δt)

2
⟩1∕2

=
⟨
Δ�Eij(Δt)

2
⟩1∕2

∝ Δt−1∕2

(5)(ΔT(Δt))diff = T(t) − T(t − Δt)

(6)(ΔT(Δt))Haar =
2

Δt

t

∫
t−Δt∕2

T
(
t�
)
dt� −

2

Δt

t−Δt∕2

∫
t−Δt

T
(
t�
)
dt�
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equal to the anomaly fluctuation of the difference fluctua-
tion. In regions where the fluctuations decrease with scale 
we have:

In order that Eq. 7 is reasonably accurate, the Haar fluctua-
tions need to be multiplied by a “calibration” factor; here we 
use the “canonical” value 2 although a more optimal value 
could be tailored to individual series.

Over ranges where the dynamics have no characteristic 
time scale, the statistics of the fluctuations are power laws so 
that:

the left hand side is the qth order structure function and 
ξ(q) is the structure function exponent. “<>” indicates 
ensemble averaging; for individual series this is estimated 
by temporal averaging (over the disjoint fluctuations in the 
series). The first order (q = 1) case defines the “fluctuation 
exponent” H:

In the special case where the fluctuations are quasi-Gauss-
ian, ξ(q) = qH and the Gaussian white noise case corresponds 
to H = −1/2 (i.e. ξ(q) = −q/2). More generally, there will be 
“intermittency corrections” so that qH − ξ(q) = K(q) where 
K(q) is a convex function with K(1) = 0. K(q) characterizes 
the multifractality associated with the intermittency.

Equation  9 shows that the distinction between increas-
ing and decreasing fluctuations corresponds to the sign of 
H. It turns out that the anomaly fluctuations are adequate 
when −1 < H < 0 whereas the difference fluctuations are 
adequate when 0 < H < 1 (Lovejoy and Schertzer 2013, ch. 
5). In contrast, the Haar fluctuations are useful over the range 
−1 < H < 1 which encompasses virtually all geoprocesses, 
hence its more general utility. When H is outside the indi-
cated ranges, then the corresponding statistical behaviour 
depends spuriously on either the extreme low or extreme high 
frequency limits of the data.

2.3  Temporal analysis and the relative measurement 
errors

Figure 2 (top curve), shows the result when we estimate the 
Haar temperature fluctuations and average them over all the 
available disjoint intervals Δt and over all the series, calculat-
ing the RMS Haar fluctuation:

(7)
(ΔT(Δt))Haar ≈ (ΔT(Δt))anom (decreasing with Δt)

(ΔT(Δt))Haar ≈ (ΔT(Δt))diff (increasing with Δt)

(8)⟨�ΔT(Δt)�q⟩ ∝ Δt�(q)

(9)⟨�ΔT(Δt)�⟩ ∝ ΔtH

(10)S(Δt) =
⟨
(ΔT(Δt))2

Haar

⟩1∕2

the “structure function”: below we drop the subscripts, 
all fluctuations are Haar. In a scaling regime, we there-
fore have:

If the intermittency is small (K(q) ≈ 0), then ξ(2)/2 ≈ H 
and S(Δt) ∝ ΔtH. Note that we estimate S(Δt) using all 
available disjoint intervals of size Δt. Since the number 
of disjoint intervals decreases as Δt increases, so does the 
sample size, hence the statistics are less reliable at large 
Δt explaining the somewhat “noisy” appearance of plots 
such as Fig. 2 or 3. The only way to completely quantify 
this effect is with a stochastic model of the process; this 
is done in Sect. 3.

Starting at the smallest (monthly) scales with fluc-
tuations ≈ ± 0.14  K, the latter decrease slowly to ≈10 
years, (roughly as ΔtH, with H ≈ −0.1 see Lovejoy and 
Schertzer (2012a) and below) whereas for Δt > ≈ 10 
years they increase. This increase reflects the increas-
ing dominance of anthropogenic forcing over the natu-
ral variability (Lovejoy et  al. 2013b). How accurate is 
this curve? Figure 3 (top set) shows the individual S(Δt) 
functions for each of the series, we see that they are very 
close to each other. The bottom curve in Fig.  2 quanti-
fies this closeness by determining the standard deviation 
σS of the S(Δt) curves about the ensemble mean at the 
top of Fig.  2. We see that—as expected—σS decreases 
as Δt−1/2—but only over the range over which natural 
variability is dominant—becoming as low as 0.01  °C 
(±0.005 °C) at decadal scales. At the longer time scales, 
the standard deviation increases implying a disagree-
ment over the magnitude of multi-decadal and centennial 

(11)S(Δt) ∝ Δt�(2)∕2

Fig. 3  The top set of curves (solid) are S(Δt) for each of the differ-
ent series, the bottom set (dashed) are the differences of each with 
respect to the mean of all the others: NOAA dark purple, NASA 
(brown), HAD4 (green), CowW (blue), 20CR (orange), Berk (red) 
(indicated at the left in the order of the curves)
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variability i.e. disagreements of the order 0.06 to 0.1  K 
(±0.03 to ±0.05 K) for the total anthropogenic change.

In most applications, we are interested in the accuracy 
of the temperature anomalies themselves whereas the bot-
tom curve in Fig. 2 only tells us about the accuracy of our 
estimate of their RMS statistics. To characterize the for-
mer, we analyze the fluctuations of the differences between 
series: Δ�Ti,j(Δt) (Eq.  3) or alternatively, between the ith 
series and the mean ⟨T(t)⟩ of all the series:

The second curve from the bottom is the RMS of the lat-
ter over all the series is: 

⟨
Δ𝛿T̄(Δt)2

⟩1∕2. In Fig. 2, the third 
curve from the bottom is the RMS of Δ�Ti,j(Δt) averaged 

over all the pairs of series: 
⟨
(Δ�T(Δt))2

⟩1∕2 (for N series, 
there are N (N − 1)/2 pairs, here N = 6 so that there are 15 
pairs). Whereas 

⟨
(Δ�T(Δt))2

⟩1∕2 quantifies the typical dif-
ference between any two randomly chosen series at resolu-
tion Δt, 

⟨
Δ𝛿T̄(Δt)2

⟩1∕2 is the typical Δt resolution devia-
tion of a series when the mean of all the series is considered 
the truth. A similar approach was recently used to estimate 
relative errors in climatological precipitation series in (de 
Lima and Lovejoy 2015).

Figure 2 shows a rather surprising result. While at first 
(from months to about 3–4 years), as expected—at least 
initially—the series do converge (they become closer to the 
overall mean), they do so considerably more slowly than 
expected for series with short range correlations. Rather 
than converging as Δt−1/2 (Eq. 4), they converge as ≈Δt−0.2 
indicating long range statistical dependencies, confirm-
ing earlier results obtained using spectra (Lovejoy and 
Schertzer 2013) (appendix 10 C; scaling fluctuations imply 
power law spectra E(ω) ≈ ω−β with β = 1 + ξ(2) where ω 
is the frequency). Ignoring small intermittency correc-
tions, β = 1 + 2  H so that a “flat” S(Δt) curve (ξ(2) ≈ 0) 
indicates a spectrum E(ω) ≈ ω−1. However, in the scale 
range Δt > ≈ 10–20 years dominated by anthropogenic 
effects, the differences begin to increase and over the entire 
range of time scales, there is an irreducible (minimum) 
error ≈ ± 0.03 °C to ±0.05 °C. Since the standard theory 
predicts a Δt−1/2 fall-off: it fails at all scales so that different 
sources of error must be dominant (the effect of the finite 
sample size that decreases at larger Δt slightly increases 
the “noisiness” of the curves at larger Δt, and is probably 
responsible for the small downturn in the S(Δt) curves of 
the differences at Δt ≈ > 100 years). Indeed, the standard 
theory predicts centennial scale deviations of ≈ ± 0.002 °C 
rather than the observed ± 0.03 °C to ± 0.05 °C (third curve, 
from the top, extreme right). Figure  2 also brings into 
question the utility of attempting to break the deviation 
into distinct short term measurement error and long term 

(12)𝛿T̄i(t) = Ti(t) − ⟨T(t)⟩

measurement bias components. The combination of error 
and bias is apparently present at all scales.

Figure 2 shows how any series differs from any other as 
well from the best estimate of the truth: the average over all 
of them. However, we may further quantify the monthly 
spreads in Fig. 1: for any given series, how close is it to the 
mean of the others (the relative measurement errors)? 
Fig.  3 shows the result: the top gives 

⟨
ΔTi(Δt)

2
⟩1∕2 for 

each of the six curves; we see that these statistics are indeed 
very similar (their dispersion is quantified in the bottom 
curve of Fig. 2). Note that the NASA curve has the steepest 
slope in the macroweather region (∆t ≈ < 10–20 years) cor-
responding to H ≈ −0.2 rather than H ≈ −0.1 for the oth-
ers. More interesting is the bottom set of curves ⟨
𝛿T̄i(Δt)

2
⟩1∕2, the difference between the ith series and the 

mean of the other five. From the top set we see that gener-
ally the NOAA and 20CR series have the weakest variabil-
ity (top curves) whereas the NASA and Berk series have 
the strongest. From the bottom set we see that the NOAA 
and 20CR series are the closest to the other series whereas 
the NASA, Berk and CowW are the furthest (the most dif-
ferent). Aside from its obvious interpretation in terms of 
similitude and difference from one series to another, the 
statistics of 

⟨
�T

2

i

⟩1∕2

 will later be compared with the same 

quantity from stochastic simulations (Sect.  3) in order to 
validate them.

2.4  Space–time fluctuations, statistical factorization 
and the scale reduction factor

The differences between the series are due to the quan-
tity and quality of the data that they use and the assump-
tions they use in order to grid them and then to space–time 
average them. In terms of the statistics of the resulting 
series, the former effect is largely associated with differ-
ent amounts of missing data while the latter will affect the 
effective space–time resolution of the data. Both of these 
effects are important in modelling the errors; to model their 
effects, we require knowledge of the space–time statistics.

A space–time analysis of the 20th C reanalysis of the 
absolute temperatures (with only annual detrending) was 
already given in ch. 10 of (Lovejoy and Schertzer 2013). 
However, for our present purposes, the statistics of tem-
perature anomalies—not temperature data—is needed; 
we therefore used the HADcrut anomaly data from 1880 
at 5° × 5° spatial resolution. Figure 4 shows the result of 
estimating the RMS Haar spatial fluctuations over vari-
ous spatial resolutions in the zonal direction, for the latter, 
the difference in the longitudinal angle Δθ was used, the 
fluctuation statistics being averaged over all latitudes from 
60°S to 60°N (weighted by the grid box size—the latitude 
dependent map factor).
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The top (monthly) resolution curve shows that the fluc-
tuations decrease with increasing spatial scale. Since only 
≈40% of the pixels had data, we used a Haar fluctuation 
algorithm that takes into account the missing data (“Appen-
dix A” of Lovejoy 2015). This is important since if the data 
are interpolated, then the result is too smooth and can give 
spurious scaling (a smooth curve will have a Haar exponent 
H = 1 rather than H < 0 as in the data).

From Fig.  4 we can see that as the spatial resolu-
tion (Δθ) is increased, the anomaly fluctuations decrease 
with scale roughly as: S�(Δ�) ∝ Δ��(2)∕2 with ξ(2) = 
−0.4. To interpret this result, recall that the spatial fluc-
tuation exponent Hs = ξ(1) is defined in terms of the 
mean (i.e. first order moment): ⟨�ΔT(Δ�)�⟩ ∝ Δ�Hs . 
Whereas in the macroweather regime the temporal 
RMS and mean fluctuation exponents are nearly equal 
(
�
ΔT(Δt)2

�1∕2
∝ ⟨ΔT(Δt)⟩ ∝ ΔtH; low intermittency, 

K(q) = 0; see the discussion after Eq. 9)—the spatial fluctu-
ations are on the contrary highly intermittent (see e.g. sec-
tion 10.3.1 of Lovejoy and Schertzer (2013) so that the quasi 
Gaussian approximation no longer holds. In space there is 
an intermittency correction ξ(2)/2 − ξ(1) = ξ(2)/2-Ησ ≈ 
−0.1 so that 

�
ΔT(Δ�)2

�1∕2
∝ ⟨ΔT(Δ�)⟩−0.1 ∝ Δ�Hx−0.1; 

the graphical estimate in Fig. 4 (ξ(2)/2 ≈ −0.2) thus implies 
Hx ≈ −0.1. Since Hx <0, both the mean—and the RMS 
fluctuations—decrease with scale Δθ. (the spatial subscript 
“x” is used since we presume that the zonal angular sepa-
ration Δθ is approximately proportional to the great circle 
distance Δx).

Also shown in Fig. 4 is the effect of increasing the tem-
poral averaging, systematically doubling it from 1 month to 
1024 months (≈85 years). The temporal fluctuations have 
H < 0, so that the temporal fluctuation is simply the anom-
aly at that scale (equal to the temporal average) so that 
Fig. 4 effectively represents the joint space–time RMS fluc-
tuations Sx,t(Δ�,Δt). In ch. 10 of (Lovejoy and Schertzer 
2013; Lovejoy and de Lima 2015) it is argued on both theo-
retical and empirical grounds (monthly temperatures from 
the 20CR) that to a good approximation, the space–time 
statistics factorize. For the second order statistics, this 
implies:

Where Sx(Δ�) and St(Δt) are respectively the space only 
and time only RMS structure functions (we have temporar-
ily added the subscript “t”: elsewhere we continue to denote 
the time only RMS structure function simply by S(Δt)). 
Since log Sx,t(Δ�,Δt) ≈ Const. + log Sx(Δ�) + log St(Δt), 
on a plot of log Δθ versus log Sx,t(Δ�,Δt), factorization 
implies that for various time resolutions Δt, the curves 
for log Sx,t(Δ�,Δt) are simply displaced downwards by 
log St(Δt). We can see that this is relatively well confirmed 
in Fig.  4. In addition, due to the temporal macroweather 
scaling (Fig.  3 for the global series up to about ≈10–20 
years), we expect St(Δt) also to be a power law so that the 
in macroweather regime, the curves will be roughly equally 
spaced as the averaging time Δt is doubled. From the fig-
ure, we find (up to Δt ≈ 256 months, i.e. ≈ 20 years and 
from ≈20° to 180° longitude):

i.e. we have used factorization and space–time scaling. 
Similar space–time factorization (but with different expo-
nents) was found to hold in historical precipitation data 
(Lovejoy and de Lima 2015).

In order to understand the physical meaning of 
space–time factorization, recall that in the weather regime 
the appropriately nondimensionalized structure function 
has a form (very roughly): Ss,t(Δ�,Δt) ∝

(
Δ�2 + Δt2

)s∕2 
(see Pinel et  al. 2014 for more precise, general results). 
This implies that the same amplitude of fluctuation Sx,t will 
typically result from either an instantaneous spatial dis-
placement L (i.e. with space–time lag (L,0)), or from a tem-
poral lag τ at a fixed location (with space–time lag (0, τ)). 
Mathematically, it implies that there is a size (L)—lifetime 
(τ) relationship which is the solution of implicit equation 
Sx,t(L, 0) = Sx,t(0, �); in this nondimensionalized exam-
ple the relation is: L = τ. In contrast, in the macroweather 
regime, due to factorization, the corresponding implicit 
relation between L and τ is Sx(L)St(0) = Sx(0)St(�) whose 
solution will depend on the spurious small L and small τ 
behaviours (where for example, the scaling laws break 

(13)Sx,t(Δ�,Δt) ∝ Sx(Δ�)St(Δt)

(14)S�,t(Δ�,Δt) ∝ Δ�HxΔtHt ; Hx ≈ −0.2; Ht ≈ −0.3

Fig. 4  The zonal spatial analysis of the HADCrut surface data 
(on a 5°  ×  5° grid) as functions of temporal averaging (systemati-
cally doubling from 1 month to 1024 months ≈ 85 years, top to bot‑
tom). Although it is “noisy”, the effect of temporal averaging is the 
decrease the amplitude of the fluctuations at all spatial scales. This is 
as predicted by the macroweather space–time factorization property. 
The double headed arrow shows the predicted downward shift from 
1 to 128 months (red curves) with temporal Ht = −0.3. The reference 
line has slope ξx(2)/2 = −0.2
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down). To avoid this technical issue (in this case with both 
Hx and Ht <0), instead of structure functions, we can use 
autocorrelation functions to obtain new (nondimensional) 
macroweather space–time relations: � ∝ LHx∕Ht (Lovejoy 
et al. 2017).

Notice that the above temporal exponent (Ht = −0.3)—
which is the exponent of 5°  ×  5° resolution data—is 
smaller than the corresponding exponent of the globally 
averaged series (in Fig. 2 it is Ht ≈ −0.1, see Sect. 3 for a 
more accurate estimate). The reason for this apparent dis-
crepancy is that the temporal exponent Ht—while remain-
ing in the range 0 > Ht > −1/2—varies considerably from 
region to region with the oceans typically having Ht ≈ −0.1 
whereas land typically has Ht ≈ −0.3. As we increase spa-
tial averaging from 5°  ×  5° to global, the higher (ocean) 
exponents tend to dominate so that for globally averaged 
temperatures Ht ≈ −0.1.

The space–time macroweather statistics will be more 
fully investigated elsewhere, for this paper, the key point is 
that both the spatial and temporal H’s are negative. When 
H < 0, then we saw (Eq. 1) that the temperature at resolu-
tion τ will scale with exponent H, i.e. as τH (H < 0). Hence 
if a measured series “m” is not sufficiently averaged or on 
the contrary, perhaps over-smoothed by interpolation, then 
it’s effective resolution τm will be different from the nomi-
nal resolution τn and T�m∕T�n ≈ �

Ht

t  where �t = �m∕�n is the 
resolution scale ratio. Since the spatial exponent Hx<0, the 
same argument applies in space (resolutions Θm, Θn) so that 
overall the statistics of the measured anomalies differ from 
the true anomalies by the multiplicative factor:

we have introduced δu which is a convenient characteriza-
tion of the overall space–time factor �Ht

t �
Hx

x . The “δ” is to 
remind us that δu is due to a difference in the logarithms 
of the scaling factors. When δu is not too far from zero—as 
here—we have e�u ≈ 1 + �u, below we empirically estimate 
δu. Note that conventional geostatistical methods such as 
Kriging assume that at small scales, the fields are smooth—
that there are no resolution dependencies. This implies that 
δu = 0 and as we see below, it explains their inability to 
explain the low frequency divergences of the series.

In the precipitation literature, this type of resolution 
dependent multiplicative factor (when of purely of spatial 
origin) is called an “areal reduction factor” (for scaling 
approaches to this, see e.g. (Bendjoudi et al. 1997; Venezi-
ano and Langousis 2005). The analysis in Fig. 4 shows that 
more generally we may expect analogous “scale reduction” 
factors to appear when comparing two different anomaly 
temperature series that have different effective space–time 
resolutions. Two global time series with different effective 
resolutions will have statistics that multiplicatively differ 

(15)T�m,Θm
∕T�n,Θn

≈ �
Ht

t �Hx

x
= e�u

over their entire range of scales, this scale reduction factor 
therefore leads to an overall bias in the statistics.

3  The absolute errors

3.1  Fractional Gaussian Noise (fGn)

The previous section compared the relative errors of six 
global monthly temperature series. We found that the 
dominant statistical behavior of the differences between 
the series �Tij cannot be explained by the usual dichot-
omy of (short term) error and (long term) bias. In order 
to understand this and to estimate the absolute measure-
ment errors, we need a model of both the actual tem-
perature and the measurement process. We have cited 
now numerous studies that show that the temperature 
is scaling over the macroweather regime (Lovejoy and 
Schertzer 2013) has argued macroweather temporal inter-
mittency is low and (Lovejoy et al. 2015b) has shown that 
for macroweather time series, the simplest scaling model; 
fractional Gaussian noise (fGn) is a reasonable approx-
imation (at least if we ignore the extremes) and that in 
addition the long range memory implicit in the scaling 
can be used for forecasting purposes. It may be useful 
to note that fGn is related by differentiation to the more 
familiar Fractional Brownian motion (fBm) process.

For our purposes, an fGn process G
H
(t) with parameter 

H, is defined as:

γ(t) is a unit Gaussian “δ correlated” white noise with 
<γ> = 0 and:

where “δ” is the Dirac function and Γ is the usual gamma 
function. The constant c’H is a constant chosen so as to 
make the expression for the statistics particularly simple. 
Details of this and other, useful properties of fGn are briefly 
summarized in “Appendix A”. A longer review of the prop-
erties relevant for macroweather modelling and forecasting 
are given in (Lovejoy et  al. 2015b) and full mathematical 
treatment is available in (Biagini et al. 2008). From Eq. 16, 
it can be seen that in our range of interest (−1/2 < H < 0), 
GH is a smoothed white noise; like the Dirac function and 
γ(t), it is a generalized function that is strictly only mean-
ingful when integrated over a finite set.

The properties of fGn needed below are:

 1. G
H
(t) is statistically stationary.

 2. The mean vanishes: 
⟨
G

(s)

H
(t)
⟩
= 0.

(16)

G
H
(t) =

c�H

Γ(1∕2+H)

t∫
−∞

(
t − t�

)−(1∕2−H)
𝛾
(
t�
)
dt�; −1 < H < 0

(17)
⟨
�(t)�

(
t�
)⟩

= �
(
t − t�

)



How accurately do we know the temperature of the surface of the earth?  

1 3

 3. When H = −1/2, the process G(s)

−1∕2
(t) is simply a 

Gaussian white noise.

 4. Anomaly fluctuations: G
H,�

(t) =
1

�

t∫
t−�

G
H

(
t�
)
dt� sat-

isfy: 
⟨
G

H,𝜏
(t)2

⟩
∝ 𝜏2H; −1 < H < 0 .

 5. It follows that in the small scale limit (τ->0), the vari-
ance diverges and H is scaling exponent of the root 
mean square (RMS) value. This singular small scale 
behaviour is responsible for the strong power law res-
olution effects in fGn.

 6. Sample functions GH,τ(t) fluctuate about zero with 
successive fluctuations tending to cancel each other 
out.

 7. Differences: in the large Δt limit:

 8. Haar fluctuations:

using the normalization c′H (“Appendix A”), this 
result is exact.

 9. This implies that Haar fluctuations at time scale Δt 
scale as Δt2H and do not depend on the resolution τ, H 
is the fluctuation exponent (Eq. 9).

 10. In usual treatments,of fGn, the parameter H is the 
fluctuation exponent of the fBm whose increments are 
the corresponding fGn. This conventional fGn param-
eter H is thus one larger and is confined to the range 
0 ≤ H ≤ 1. Here, we define H more generally as the 
fluctuation exponent (Eq. 9), this allows the definition 
to also be valid for nonGaussian, intermittent multi-
fractal processes.

3.2  Modelling the earth’s near surface air temperature

Having defined the basic statistically stationary scaling 
process (fGn), we need only add a nonstationary process to 
represent the anthropogenic warming. In Lovejoy (2014) it 
was shown that anthropogenic effects were roughly linear 
in the  CO2 radiative forcing  (logCO2) rather than linear in 
time. The theoretical justification was that—due to eco-
nomic activity—CO2 concentration is a reasonable proxy 
for all the anthropogenic effects. It would thus be better to 
model the anthropogenic part as a contribution linear in 
 logCO2—i.e. to replace the time axis by  logCO2. However 
for simplicity, here we will use a term linear in time:

⟨(
ΔG

H,�
(Δt)

)2

diff

⟩
∝ 2�2H

(
1 − (H + 1)(2H + 1)

(
Δt

�

)2H
)
.

⟨(
ΔG

H,�
(Δt)

)2

Haar

⟩
= Δt2H; Δt ⩾ 2�.

(18)T(t) = �TGH
(t) + At

where t is the time in units of months and σT is the RMS 
Haar month to month fluctuation, GH is an fGn process 
and A is a linear approximation to the anthropogenic trend. 
With this model, the temperature fluctuates about the mean 
⟨T(t)⟩ = At. However, as analyzed and underlined in Love-
joy et al. (2016), even though on (ensemble) average, fGn 
is trendless, on each realization, it displays a random trend 
that will contribute some uncertainty to estimates of global 
warming.

Using Eqs.  17, 18, the Haar structure function of the 
model earth temperature yields:

(we have used property 8 of Sect. 3.1 and the fact that the 
Haar fluctuation of the function At is AΔt). From the empir-
ical structure functions (Figs.  2, 3) if we regress S(Δt) 
between 8 months and 12 years (this avoids the low fre-
quency part dominated by the anthropogenic contribution), 
we get the H estimate:

Taking H = −0.1 and fitting the other parameters, we 
obtain:

Where the uncertainty estimates come from the 
six different series. This value of A corresponds to 
0.700 ± 0.009  K/century. With these parameters, in the 
model (Eq. 18), we made the simulation in Fig. 5.

(19)S2(Δt) =
⟨
ΔT(Δt)2

⟩
= �2

T
Δt2H + A2Δt2

(20)H = − 0.090 ± 0.042

(21)
A = (5.83 ± 0.073) × 0−4 K∕month; �T = 0.142 ± 0.01 K

Fig. 5  Red is “true earth” (model) temperature using Eqs.  18 the 
parameters of Eqs. 20, 21. Black is the mean of six simulations of the 
measurement process (Sect.  3.4) with 3 standard deviation spreads 
(gray) and shifted one unit upwards. Blue is the difference between 
the mean measured temperature and the true temperature (displaced 
0.5 downward)
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3.3  Modelling the measurement errors and biases

The usual approach to temperature measurement uncer-
tainties is to consider measurement errors that are essen-
tially white noises i.e. G−1/2(t), (i.e. H = −1/2). This 
includes those with short range (exponential) decorrela-
tions such as Auto Regressive (AR) processes and their 
kin. The latter are essentially white noises for scales 
larger than their decorrelation distances/times. In addi-
tion, from the discussion in Sect.  2.4, due to the scale 
reduction factors, we expect there to be multiplicative 
biases eδu effective over the entire range of time scales. 
Since these are close to unity, eδu ≈ 1 + δu. Although δu 
does depend on how missing data is dealt with, it does 
not exhaust the effects of sparse measurements. Recall 
that over the period 1880-present, at 5°  ×  5° resolution 
there are typically >50% missing data and different series 
have different degrees of missing data, this is an impor-
tant additional effect. Since (roughly) the space–time 
statistics factor and are scaling (Sect.  2.4), the effect of 
the missing data is thus to add a third component to the 
error, one which is expected to be of the same statistical 
type as the natural variability i.e. to be proportional to an 
fGn process. These considerations suggest the following 
measurement model:

Where Ti is the measured temperature from the ith global 
temperature series (here i = 1, 6 for the six series discussed 
in Sect.  2) and T(t) is true global temperature (Eq.  18). 
The first term on the right is the scale reduction factor, the 
second term is the missing data term and the third is the 
short range measurement error term. The latter terms have 
been nondimensionalized using the typical monthly (Haar) 
variance σT (Eq. 18) and the nondimensional amplitudes of 
these noises are denoted Bi, εi respectively.

Taking T(t) as the earth model (Eq. 18), we obtain:

The GH
(0) is the realization of the fGn that determined 

the true temperature of the earth (Eq. 18); in the following 
we use the empirical estimate (Eq. 20) H = −0.1 through-
out. Since ⟨GH⟩ = 0, Ti(t) fluctuates around a line with 
slope A

(
1 + �ui

)
.

In order to statistically test the full model (i.e. the model 
of the earth temperature plus measurement errors; Eqs. 22, 
23) we only need the statistical distribution of the param-
eters δui, Bi, εi. For this, we will make some simplifying 
assumptions: (a) that each has a Gaussian distribution, 
mean µ, standard deviation σ, (b) that for each individual 
series, the parameters δui, Bi, εi are statistically independent 

(22)Ti(t) = T(t)
(
1 + �ui

)
+ �TBiG

(i)

H
(t) + �T�iG

(i)

−1∕2
(t)

(23)
Ti(t) = �T

(
1 + �ui

)
G

(0)

H
(t) + A

(
1 + �ui

)
t + �TBiG

(i)

H
(t) + �T�iG

(i)

−1∕2
(t)

of each other. In the development below, there is a further 
independence assumption, that for pairs of different series 
i, j, these terms are statistically independent of each other. 
Since the series share much data, this last assumption is 
clearly not fully justified. However, this really affects our 
interpretation of the results, we are in fact making a statisti-
cal estimate of the effective parameters, i.e. the parameters 
that would be needed in order to explain the observations if 
the series were indeed independent.

3.4  Estimating the measurement errors and biases

A simple way to estimate the measurement model parame-
ters δui, Bi, εi is to consider the temporal (Haar) fluctuation 
for each series:

In the following, we attempt to estimate the statistics of 
δui, Bi, εi from structure functions estimated from the time 
intervals from single series rather than ensemble (statisti-
cal) averaging. To make this distinction clear for time aver-
aging we use the overbar “_”. For example, the time aver-
aged (squared) fluctuation (structure functions) are thus:

(the cross terms disappear because of the independence 
assumption). The “≈” is used because we estimated the 
ensemble average from the temporal averages on the indi-

vidual series so that for example, 
(
ΔGH(Δt)

2
)1∕2

= Δt2H 

(see property 8, Sect. 3.1). Equation 25 shows that there are 
three zones: a high frequency classical error measurement 
term, �2

T
�2
i
Δt−1 a medium frequency missing data and scale 

reduction term �2
T

(
1 + �u2

i
+ B2

i

)
Δt2H, and a low frequency 

scale reduction term A2
(
1 + �u2

i

)
Δt2. In “Appendix B”, we 

show how the measurement model parameters can be esti-
mated from their structures functions and the structures 
functions of the pairwise series differences (as in Figs. 2, 
3). The results are that δu, B, ε are Gaussian random varia-
bles with estimated means and standard deviations (µ, σ):

Since the different random variables are somewhat corre-
lated, using the above equation yields the “effective” values 
needed for the simulations below. For completeness, recall 

(24)
ΔT

i
(Δt) = �

T

(
1 + �u

i

)
ΔG

(0)

H
(Δt) + A

(
1 + �u

i

)
Δt

+ �
T
B
i
ΔG

(i)

H
(Δt) + �

T
�
i
ΔG

(i)

−1∕2
(Δt)

(25)

S2
i
(Δt) ≈ ΔTi(Δt)

2 = S2(Δt) + �u2
i
S2(Δt) + �2

T
B2
i
Δt2H + �2

T
�2
i
Δt−1

= �2
T
�2
i
Δt−1 + �2

T

(
1 + �u2

i
+ B2

i

)
Δt2H + A2

(
1 + �u2

i

)
Δt2

(26)
�
�u

= 0.114; �
�u

= 0.077

�
B
= 0.347; �

B
= 0.175

�
�
= 0.132; �

�
= 0.062
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that we have already estimated H = −0.1, A = (5.83 ± 0.073) 
×  10− 4 K/month and σT = 0.142 ± 0.01 K (Eqs. 20, 21).

In order to judge the implications, we can determine, the 
contribution of each of the three effects.

3.4.1  The scale reduction bias

This term is:

From Eqs.  26, 27, we have: ⟨
ΔT(Δt = 1 month)2

red

⟩1∕2
= 0.020K (i.e. ±0.01 K) (where 

Δt are in units of months). Conversely, at the longest scales 
(133 years), we find 

⟨
ΔT(Δt = 133 yrs)2

red

⟩1∕2
= 0.134K 

(±0.067  K). In terms of the true earth temperature, from 
Eq. 22 we see that it implies a multiplicative bias of a factor 
1 + µδu, i.e. 

�
⟨Ti(t)⟩ − T(t)

�
∕T(t) = ��u ≈ 11.4% (recall that 

T(t) is the true model temperature). The series to series var-
iation in δu, is given by ��u = ±7.7%; it is significant. We 
can also check that it is plausible that it originates in vari-
ations in the effective space–time resolutions. To see this, 
recall that in Sect. 2.4 we argued that if two series differed 
in temporal resolution by a factor λt and spatial resolution 
by a factor λx, then the overall RMS scale reduction fac-
tor between the two would be e��u ≈ 1 + ��u = λt

−0.3 λx
−0.2. 

Therefore, the mean scale reduction factor µδu = 0.114 
could be explained by perfect spatial resolution (λx = 1) but 
inadequate temporal resolution �

t
 ≈ 0.7, by perfect tempo-

ral resolution (λt = 1) but inadequate spatial resolution λx 
≈ 0.6, or by some intermediate combination of imperfect 
spatial and temporal resolutions. These values correspond 
to differences in the effective degree of temporal and spa-
tial resolutions and they seem reasonable. This scale reduc-
tion factor most strongly affects the scale ranges dominated 
by anthropogenic effects. This can explain the observation 
(Fig.  1) that the global series differs most strongly from 
each other in the recent (post ≈ 1980) which is the period 
that has the strongest rate of anthropogenic warming.

3.4.2  The bias due to missing data

We have:

so that at 1 month, 
⟨
ΔT(Δt = 1 month)2

miss

⟩1∕2
= ±0.028K 

whereas at 133 years 
⟨
ΔT(Δt = 133 yrs)2

miss

⟩1∕2
= ±0.013K. 

To put this in perspective, ignoring the low frequency 
anthropogenic term, the small short-range error term, and 
the scale reduction factor (this is a good approximation for 
resolutions τ ≈ ≤10 years, see Fig. 6) then the missing data 
error variance is 15% of the true temperature variance: ⟨(
T�(t) − Ti,�(t)

)2⟩
∕
⟨
T�(t)

2
⟩
= �B2 = 0.15 (including the 

(27)
⟨
ΔT(Δt)2

red

⟩1∕2
=
(
�2
T
�
�u2

Δt2H + A2�
�u2

Δt2
)1∕2

(28)
⟨
ΔT(Δt)2

miss

⟩1∕2
= �

T
�
1∕2

B2
ΔtH

scale reduction factor increases this to �B2 + ��u2 = 0.17). 
Using �B2 = 0.104 we see that the series to series variation 
about the 15% mean is about ±10%.

3.4.3  The short‑term error

We have:

so that at 1 month we have: ⟨
ΔT(Δt = 1 month)2

error

⟩1∕2
= ±0.010K whereas for 133 

years, it is: 
⟨
ΔT(Δt = 133 yrs)2

error

⟩1∕2
= ±0.0003K. The 

total variance of the biases and errors is the sum of the 
three so that 

⟨
ΔT(Δt = 1 month)2

all

⟩1∕2
= ±0.032K and ⟨

ΔT(Δt = 133 yrs)2
all

⟩1∕2
= ±0.068K. The latter provides 

a good estimate of the centennial scale temperature errors 
relevant for evaluating the amplitude of the industrial epoch 
warming. Converting this to 90% certainty limits (≈1.6 
standard deviations) we can say that with 90% certainty, for 
a given series, that the temperature change since 1880 is 
correct to within ±0.108 °C.

(29)
⟨
ΔT(Δt)2

error

⟩1∕2
= �

T
�
1∕2

�2
Δt−1∕2

Fig. 6  The structure functions of the various measurement errors 
with one standard deviation limits shown as dashed lines (corre-
sponding the variation from one measurement series to another). The 
blue curve is the contribution of the scale reduction factor, the red is 
from missing data (slope = H = −0.1) and the green is the short-range 
measurement error (slope −1/2). The black curve is the sum of all the 
contributions. Notice that most of the contribution to the errors are 
from the scaling parts. These Haar structure functions have been mul-
tiplied by a canonical factor of 2 so that the fluctuations will be closer 
to the anomalies (when decreasing) or differences (when increasing). 
Note that these show essentially the difference between the true earth 
temperature and the measurements; the difference between two dif-
ferent measured series will have double the variances, the difference 
structure function should thus be increased by a further factor  21/2 
before comparison with Figs. 2, 3 or the figures below
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It is useful to graphically assess the result by comparing 
the individual terms that contribute to the error and bias at 
each scale Δt; this is shown in Fig. 6. Starting with the short 
term error, we see that the smallest temporal resolution, it 
is roughly equal to the scale reduction factor but becomes 
quickly negligible at longer times. Until 10–20 years when 
the anthropogenic contribution becomes important, the 
errors are dominated by the missing data term, after that, 
by the scale reduction term. We can see that the total error 
is mostly in the range ±0.03 to ±0.05 °C, although it is a 
little higher at centennial scales. In the next subsection, we 
make stochastic simulations of the series and further evalu-
ate the realism of the model.

3.5  Stochastic modelling of the measurement process

We can now use the simulated “true” earth temperature 
(Fig. 5) with these parameters and Eq. 23 to create six sim-
ulations of the measured earth series. Figure  7 shows the 
result when they are presented in the same way as Fig.  1 
(i.e. the grey “errors” are actually three standard deviations 
of the difference of the given series with respect to all the 
others). Since in this case the true temperature is known, 
we can also display the true errors (Fig.  8), which show 
that due to the variable scale reduction factors and vari-
able missing data terms, some series have errors that are 
significantly different from the others. Figure 5 also shows 
the errors when the mean of the six simulations is used as 
the overall temperature estimate. From these simulations 
we can deduce some fairly simple statistics; for example 
at monthly resolutions, the RMS difference between the 
measured series and the truth is ±(0.057 ± 0.025) °C so that 

we can say that the series are “typically” in error by this 
amount (the series to series variation in accuracy is thus 
44%, see Fig.  8, this is also roughly the amplitude of the 
error curve with respect to the mean of the series shown at 
the bottom of Fig. 5). Also, the difference in the mean of 
each series with respect to the true mean (the bias in the 
temporal means) is: 0.0087 ± 0.040 °C and the correspond-
ing bias with respect to the mean of the six is: 0 ± 0.020 °C 
(Fig. 8).

These numbers mean that if we choose a series at ran-
dom, then there is 90% chance (1.6 standard deviations) 
that its bias is in the range −0.056 to 0.073 °C and that 
is monthly RMS variation about its biased mean is in the 
range 0.017 to 0.082 °C. If we want to determine the abso-
lute earth temperature, we must now choose the 20CR (the 
others only give anomalies). The preceding statistics indi-
cate that for a given month its temperature will be in error 
by 0.010 ± 0.074 °C (one standard deviation) so that with 
90% certainty, the true monthly and globally averaged tem-
perature is the range −0.109 to 0.127 °C of the 20CR abso-
lute temperature value for that month.

In order to test the model, we can use it to reconstruct 
the various structure function statistics discussed in Figs. 2, 
3: the mean structure function 

⟨
ΔT(Δt)2

⟩1∕2, the mean dif-
ference structure function with respect to the mean ⟨
Δ�T(Δt)2

⟩1∕2

, the mean differences between pairs 
⟨
Δ�T(Δt)2

⟩1∕2 and the standard deviation of the difference 
of the individual structure functions with respect to the 
mean of the others (�S(Δt) =

�
(S(Δt) − ⟨S(Δt)⟩)2

�1∕2). The 
results are shown in Fig. 9; we can see that it well repro-
duces the empirical curves (Fig.  2); these are superposed 

Fig. 7  The six simulated earth temperature measurement series are 
shown using the same presentation as for the data in Fig. 1 i.e. with 
the grey indicating the three standard deviation limits of the excluded 
series. The top is the mean of all and the three standard deviation 
spread is the is due to spread of all the others

Fig. 8  The absolute errors of the simulated measurement process, 
with each curve separated by 0.75  K for clarity. Perhaps the most 
obvious difference between the series is due to their differing scale 
reduction factors, these factors amplify all the errors by a given factor 
1 + δu



How accurately do we know the temperature of the surface of the earth?  

1 3

for ease of comparison. Note that since the simulated series 
are analyzed in exactly the same way as the measurement 
series, all nontrivial sampling and analysis issues are 
accounted for in the simulations so that the simulation—
data agreement is highly significant.

Another way of evaluating these effects is shown in 
Fig. 10. This displays the same series of structure functions 
and structure functions of differences that were shown in 
Fig.  9, except that we systematically remove one of the 
terms so as to gauge its effect on the statistics. The upper 

right graph shows that although the short range error term 
is small, that it nevertheless gives a noticeable contribution 
especially to the differences 

⟨
Δ�T(Δt)2

⟩1∕2, 
⟨
Δ�T(Δt)2

⟩1∕2

 

(green and brown respectively). With no missing data (bot-
tom left), the difference curves are (unrealistically) very 
close to each other. Finally (lower right), we see that the 
scale reduction factor is essential for explaining the statis-
tics at long Δt. Rather than displaying simply the means of 
the six simulations, we can also shows the statistics of the 
individual realizations that were used in calculating the 
means (Fig. 11); we see that the series to series variability 
is fairly realistic (c.f. Fig. 3).

4  Conclusions

Accurate global scale temperature estimates are impor-
tant in many applications, especially global warming. 
Deviations of estimated global scale surface temperatures 
from the true global mean (i.e. errors plus biases) arise 
not only from human induced inhomogeneities but also 
because of objective difficulties in determining (spatial) 
temperature fields from point-like station values. The 
difficulties are fundamental since the temperature field 
has nonclassical space–time statistical behaviours (espe-
cially scaling and intermittency), and the measuring net-
works are also sparse (fractal) in both time and in space 
(they have “holes” at all scales). Rather than attempt-
ing to directly quantify the uncertainty with the help of 

Fig. 9  The dashed curves are the empirical curves reproduced from 
Fig. 2, the thick curves are the corresponding simulated curves using 
the simulations from Fig. 7

Fig. 10  The various contribu-
tion to 

⟨
ΔT(Δt)2

⟩1∕2 (pink, 

top), 
⟨
Δ�T(Δt)2

⟩1∕2 (green, 2nd 

from top), 
⟨
Δ�T(Δt)2

⟩1∕2

 

(brown, third from top) and σS 
(orange, bottom) with statistics 
averaged over the six simulated 
series (

⟨
ΔT(Δt)2

⟩1∕2, 
⟨
Δ�T(Δt)2

⟩1∕2

, σS), and pairs 

of differences (
⟨
Δ�T(Δt)2

⟩1∕2). 
The upper left graph shows the 
result with all three error terms 
present, the upper right when 
the short term error is removed 
( = 0), lower left when the 
missing data term is removed 
(B = 0) and lower right after the 
scale reduction factor is 
removed (δu = 0)
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classical statistical assumptions and models, we there-
fore exploited the fact that a half dozen or more series 
have been produced, each using somewhat different data 
and methodologies. Before making specific assumptions 
about the errors and biases in the data and attempting to 
directly quantify them with respect to the real world, we 
first ask (Sect. 2) how well do different approaches agree 
with each other as functions of time scale (what are the 
relative errors)?

In order to isolate the deviations at different time scales 
we estimated fluctuations and determined their average root 
mean square values from two months to 133 years (from 
1880 to 2012). Perhaps the most obvious conclusion was 
that although each series was quite similar to the others—
and this includes one that was based on only monthly SST 
and surface pressure observations (the 20CR)—that even 
at long time scales differences between the series did not 
converge. This is surprising since classical theory shows 
that for short range correlated errors (e.g. AR(1) processes 
or kindred processes that are essentially Gaussian white 
noises at long enough time scales) their RMS differences 
diminish as Δt−1/2. Instead of this, from months to centen-
nial scales, the RMS fluctuations stayed nearly constant, 
mostly between ≈ ± 0.03 °C and ± 0.05 °C (one standard 
deviations); they slightly increased at long times, Figs. 2, 3. 
Since the variability at scales > ≈ 10 years is dominated by 
anthropogenic contributions, this is a direct estimate of the 
accuracy with which the latter can be estimated. Also sig-
nificant is the finding that the statistics of the fluctuations 
can be estimated with much higher relative accuracy (e.g. 
between 3 and 10 years to better than ±0.0005 °C).

The fact that the differences between the series have 
nearly constant deviations—independent of the time 
scale—demonstrates the existence long-range statistical 
dependencies in the series errors and biases that are out-
side conventional geostatistical uncertainty assumptions 
requires the development of new methodologies.

In order to go beyond relative errors (Sect. 2), so as to 
estimate absolute errors (Sect. 3), we need models of both 
the earth’s true temperature and of the measurement pro-
cess itself. For the former, we assumed a combination of 
natural variability modelled by a scaling, fractional Gauss-
ian noise (fGn) process combined with a linear trend repre-
senting the anthropogenic warming. While the former is the 
simplest scaling model (it is nonintermittent), the latter is 
an approximation to an anthropogenic contribution (in real-
ity, the latter is much more linear as a function of the  CO2 
radiative forcing than as a function of time).

For the measurement errors, although we included 
a classical short range error term to account for many 
observer issues, in order to account for the dominant high 
and low frequency errors, we need two new sources of 
error: we introduced both missing data and scale reduc-
tion factors. The error due to missing data must have the 
same type of temporal statistics as the nonmissing data, so 
that it was also modelled as an fGn process. However, as 
fGn processes are averaged to lower and lower resolutions, 
their amplitudes diminish (this affects all the frequencies) 
so that by itself, missing data is not sufficient for explain-
ing the low frequency errors. For the latter, we relied on 
the observation (Sect. 2.4) that the temperature anomalies 
are highly sensitive to their space–time resolutions: in both 

Fig. 11  Similar to Fig. 10 for ⟨
ΔT(Δt)2

⟩1∕2 and 
⟨
Δ�T(Δt)2

⟩1∕2

 except that the 

results for each of the six 
simulated measurement terms 
are shown separately. The 
structure functions ⟨
ΔT(Δt)2

⟩1∕2 (thick, top), and 
differences with respect to the 
mean 

⟨
Δ�T(Δt)2

⟩1∕2

 (bottom, 

dashed) for each of the six 
individual realizations used 
shown in Fig. 6 and used in 
Figs. 9, 10. Compare this to 
Fig. 3 for the data
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space and in time, fluctuations systematically decrease in 
amplitude with increasing scale (in roughly scaling, power 
law manners). This means that if a series is insufficiently 
averaged—in space and/or in time—then its effective reso-
lution will be different from the nominal resolution (here, 
one month, globally averaged). This scale/resolution effect 
is multiplicative so that it affects all frequencies. Follow-
ing the hydrology literature’s analogous “areal reduction 
factor” (due to spatial resolution effects), this more general 
(space–time) effect is a “scale reduction factor”.

In order to test the model we need to estimate its param-
eters; two for the earth model (the amplitude of the natu-
ral variability and the anthropogenic trend), and three for 
the measurement process: ε, B, δu (the amplitudes of the 
short term error, the missing data and the scale reduction 
factor). Since the measurement process is stochastic with 
each series characterized by a different triplet of amplitudes 
we only need their statistics (assumed to be Gaussian, we 
need their means and standard deviations). We showed how 
to make robust parameter estimates using structure function 
analyses of the 6 × 5/2 = 15 pairs of series differences. We 
found for example that the conventional measurement error 
was about ±0.01  K at one month decreasing rapidly for 
longer times. That the missing data term was dominant and 
contributed about 15% to the variance of the temperature at 
all resolutions up to about 10–20 years (the series to series 
variability is about 10% around this mean value). Beyond 
this, (Δt ≈ >10–20 years) the scale reduction factor was 
dominant, so that temperature anomalies (due to inadequate 
space–time averaging) were on average about 11% too large 
with a series to series variability of about 8% around this 
value.

Finally, using the estimated parameters, we made sto-
chastic simulations of both the “true” earth temperature and 
the measurement process (including all the sampling issues 
in the statistical analysis) and showed that all the fluctua-
tion statistics as functions of time—including the pairwise 
difference fluctuations—were very close to the observa-
tions so that the model quantitatively accounts for all the 
differences between the series and all sampling issues. We 
thus have confidence that we have an accurate estimate of 
the absolute temperature errors, and—as for the relative 
errors—these are generally in the range ±0.03 to ±0.05 K 
over almost all the range of time scales (month to 133 
years). More precisely, at monthly scales, we found that for 
a given month and series, its temperature will be in error 
by 0.010 ± 0.074 °C (one standard deviation) so that with 
90% certainty, the true monthly and globally averaged tem-
perature is the range −0.109 to 0.127 °C of the temperature 
value for that month. At centennial scales, we estimated 
that with 90% certainty, that the corresponding temperature 
change since 1880 is correct to within ±0.108 °C (i.e. about 
10% of the industrial epoch warming).

In order to give a satisfactory estimate of the accuracy of 
global temperatures, we showed that a new approach was 
needed and we suggested a simple stochastic temperature 
and measurement model based on the observed scaling of 
global temperatures. This approach can readily be extended 
in a number of directions for quantifying measurement 
uncertainties. For example, for the temperature, it could be 
extended to varying spatial resolutions, indeed the relative 
accuracy method—using pairwise series differences but at 
 5ox5o resolution—has already been applied to global pre-
cipitation (de Lima and Lovejoy 2015). In future it may 
also be applied to determining the accuracy of pre-indus-
trial multiproxies.
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Appendix A: some useful properties of fractional 
Gaussian noise

In this appendix, we give a brief summary of some use-
ful properties of fGn; a longer review is given in (Lovejoy 
et  al. 2015b) and a full mathematical exposé in (Biagini 
et  al. 2008). The standard (“s”) fGn process G(s)

H
(t) with 

parameter H, can be defined as:

γ(t) is a unit Gaussian “δ correlated” white noise with 
<γ>= 0 and:

where “δ” is the Dirac function. The constant cH is a con-
stant chosen so as to make the expression for the statistics 
particularly simple, see below. It may be useful to note that 
fGn is related by differentiation to the more familiar Frac-
tional Brownian motion (fBm) process. We can see by 
inspection of Eq.  16 that G(s)

H
(t) is statistically stationary 

and by taking ensemble averages of both sides of Eq. 16 we 
see that the mean vanishes: 

⟨
G

(s)

H
(t)
⟩
= 0. When H = −1/2, 

the process G(s)

−1∕2
(t) is simply a Gaussian white noise.

Now, take the average of GH over τ; the “τ resolution 
anomaly fluctuation”:

If cH is now chosen such that:

(30)

G
(s)

H
(t) =

cH

Γ(1∕2+H)

t∫
−∞

(
t − t�

)−(1∕2−H)
𝛾
(
t�
)
dt�; −1 < H < 0

(31)
⟨
�(t)�

(
t�
)⟩

= �
(
t − t�

)

(32)G
(s)

H,�
(t) =

1

�

t

∫
t−�

G
(s)

H

(
t�
)
dt�
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then we have:

This shows that a fundamental property of fGn is that in 
the small scale limit (τ ≥ 0), the variance diverges and H is 
scaling exponent of the root mean square (RMS) value. 
This singular small scale behaviour is responsible for the 
strong power law resolution effects in fGn. Since ⟨
G

(s)

H
(t)
⟩
= 0, sample functions GH,τ(t) fluctuate about zero 

with successive fluctuations tending to cancel each other 
out; this is the hallmark of macroweather.

A comment on the parameter H is now in order. In treat-
ments of fBm, it is usual to use the parameter H confined to 
the unit interval i.e. to characterize the scaling of the incre-
ments of fBm. However, fBm (and fGn) are very special 
scaling processes, and even in low intermittency regimes 
such as macroweather—they are at best approximate mod-
els of reality. Therefore, it is better to define H more gen-
erally as the fluctuation exponent (Eq. 9); with this defini-
tion H is also useful for more general (multifractal) scaling 
processes although the common interpretation of H as the 
“Hurst exponent” is only valid for fBm in the usual fGn lit-
erature, the parameter H is the fluctuation exponent of it’s 
integral, fBm, i.e. it is larger by unity that that used here.

Anomalies

An anomaly is the average deviation from the long term 
average and since 

⟨
G

(s)

H
(t)
⟩
= 0, the anomaly fluctuation 

over interval Δt is simply GH at resolution Δt rather than τ:

Hence using Eq. 34:

Differences

In the large Δt limit we have:

(33)
cH =

(
�

2cos(�H)Γ(−2H − 2)

)1∕2

(34)
⟨
G

(s)

H,𝜏
(t)2

⟩
= 𝜏2H; −1 < H < 0

(35)
(
ΔG

(s)

H,𝜏
(Δt)

)

anom
=

1

Δt

t

∫
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G
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H,𝜏

(
t�
)
dt� =

1

Δt

t

∫
t−Δt

G
(s)

H

(
t�
)
dt� = G

(s)

H,Δt
(t); Δt > 𝜏

(36)
⟨(

ΔG
(s)

H,𝜏
(Δt)

)2

anom

⟩
= Δt2H; −1 < H < 0

(37)

⟨(
ΔG

(s)

H,𝜏
(Δt)

)2

diff

⟩
≈ 2𝜏2H

(
1 − (H + 1)(2H + 1)

(
Δt

𝜏

)2H
)
;

Δt >> 𝜏

Since H < 0, the differences asymptote to the value 2τ2H 
(double the variance). Notice that since H < 0, the differences 
are not scaling with Δt.

Haar fluctuations

For the Haar fluctuation we obtain:

this scales as Δt2H and does not depend on the resolution τ 
(Lovejoy et al. 2015a).

Since we will use Haar fluctuations throughout, it is con-
venient to define the fGn GH(t) with a nonstandard normali-
zation replacing the constant cH in Eq. 30 by cʹH:

With this we can define GH,� =
G

(s)

H,�

2
√
2−2H−1

 so that:

Appendix B: estimating the parameters 
of the measurement model

In this appendix, we describe how we estimated the statistics 
of the amplitudes of the measurement series noises (δu, B, ε, 
for the scale reduction factor, missing data and conventional 
measurement error respectively).

The idea is to use second order structure functions 
(Sect. 3), however from structure functions we can only esti-
mate the squared quantities (δu2, B2, ε2). We therefore used 
an easily verifiable result, valid for a Gaussian random vari-
able x:

where �
x
, �

x
 are respectively the means and standard devia-

tions of x and �
x2

, �
x2

 of x2. Finally, the sign of �
x
 is not 

determined. In the case of B, ε, this is unimportant since 
they are multiplied by sign symmetric random functions so 
that without loss of generality we can we take µB > 0, µε > 
0, but for δu, there is an ambiguity. However, since presum-
ably the series are insufficiently averaged, we expect δu > 0 
so that below, we use the plus sign.

(38)
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ΔG
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(Δt)
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⟩
= 4Δt2H
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)
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2
√
2−2H − 1
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The error in the squared fluctuation variance at each 
scale Δt is therefore:

where S(Δt) is the ensemble averaged true earth structure 
function (see Eq.  25). Since at large Δt the Δt2 term is 
dominant, regression of this equation against Δt2 can con-
veniently be used to estimate ��u = 0.114 and ��u = 0.077. 
However the other terms are smaller and to obtain robust 
estimates it is advantageous to consider the pairwise differ-
ences as in Figs. 2, 3. Since there are six series, we have 
6 × 5/2 = 15 pairs, giving us substantially more statistics 
with which to estimate the missing data and error ampli-
tudes Bi, εi of the ith series (here, the index i runs from 1 to 
6). Therefore, consider the differences between the ith and 
jth series of measurements:

where �u2
ij
= �u2

i
+ �u2

j
 and we have used the mathematical 

result:

where “ d
=” indicates equality in probability distributions 

(so that G(ij)

H
(t)

d
=G

(i)

H
(t)

d
=G

(j)

H
(t)). These results follow since 

sums and differences of independent Gaussian variables are 
also Gaussian and their variances add.

Therefore the fluctuations in the differences are:

With this, squaring and averaging, we obtain for the cor-
responding squared structure function:

We can now estimate the parameters by regression of 
S2
ij
(Δt) on the fifteen i, j pairs of difference structure func-

tions against Δt−1, Δt2H (with H = −0.1) and Δt2. To make 
the problem numerically more robust, we used the fact that 
the trend A was estimated earlier from regressions on the 
individual series Ti(t). Similarly, for each of the six Si(Δt)2 
functions, we estimated the trends A2δui

2; using the esti-
mates for A this leads to estimates of μδu, σδu, δuij

2 = δui
2 + 

δuj
2. These trends were then removed to obtain the (quad-

ratically) detrended difference structure function 

(42)
S2
i
(Δt) − S2(Δt) = �u2

i
S2(Δt) + �2

T
B2
i
Δt2H + �2

T
�2
i
Δt−1

= �2
T
�2
i
Δt−1 + �2

T

(
�u2

i
+ B2

i

)
Δt2H + A2�u2

i
Δt2

(43)
�Tij(t) = �T�uijG

(0)

H
(t) + A�uijt + �TBijG

(ij)

H
(t) + �T�ijG

(ij)

−1∕2
(t)

(44)
BijG

(ij)

H
(t)

d
=BiG

(i)

H
(t) − BjG

(j)

H
(t); B2

ij
= B2

i
+ B2

j

�ijG
(ij)

−1∕2
(t)

d
= �iG

(i)

−1∕2
(t) − �jG

(j)

−1∕2
(t); �2

ij
= �2

i
+ �2

j

(45)

�ΔTij(Δt) = �T�uijΔG
(0)

H
(Δt) + A�uijΔt + �TBijΔG

(ij)

H
(Δt)

+ �T�ijΔG
(ij)

−1∕2
(Δt)

(46)
S2
ij
(Δt) = �ΔTij(Δt)

2 = �2
T
�2
ij
Δt−1 + �2

T

(
�u2

ij
+ B2

ij

)
Δt2H + A2�u2

ij
Δt2

S2
ij,det

(Δt) = �2
T
�2
ij
Δt−1 + �2

T

(
�u2

ij
+ B2

ij

)
Δt2H; when 

regressed against Δt−1, Δt2H, these gave robust estimates of 
the prefactors �2

T
�2
ij
 and �2

T

(
�u2

ij
+ B2

ij

)
. Combined with the 

trend based estimates of δuij
2, we thus obtain 15 estimates 

for each of the random variables, �2
ij
, B2

ij
. If we assume that 

the parameters are independent identically distributed ran-
dom variables then Eq. 38 shows that:

Therefore, we use the estimates of �2
ij
, B2

ij
 to obtain esti-

mates of the statistics of �2
i
, B2

i
, and then from Eq. 35, by 

assuming the variables are Gaussian, we obtain estimates 
for the means and standard deviations of �

i
, B

i
. For com-

pleteness, we give the means and standard deviations of 
δui, obtained from Si(Δt) as explained earlier.

(due to the ambiguity in the sign, we did not take the square 
root of Eq. 41 to more directly yield Bi, εi). Since the dif-
ferent random variables are somewhat correlated, using the 
above equation yields the “effective” values needed for the 
simulations below. For completeness, recall that we have 
already estimated H = −0.1, A = (5.83 ± 0.073) ×10−4 K/
month and σT = 0.142 ± 0.01 K (Eqs. 20, 21).
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