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[1] As magma rises from depth, it forms bubbles by nucleation, followed by diffusion-
decompressive expansion. Expansion induces shearing, and shearing in turn causes
coalescence. As the bubbles grow larger, coalescence gradually becomes more efficient
and can be dominant. Coalescence first as a binary (bubble-bubble) and later as a
(possibly singular percolating) multibody process may thus be central to eruption
dynamics. Here we consider a binary coalescence model governed by the
Smoluchowski or coalescence/coagulation equation. The introduction of decompressive
expansion is theoretically straightforward and yields the nonlinear partial
integrodifferential expansion-coalescence equation; we argue that this is a good model
for bubble-bubble dynamics in a decompressing magma. We show that when the
collision/interaction kernel has the same form over a wide range of interaction volumes
(i.e., it is scaling), exact truncated power law solutions are possible irrespective of
the expansion and the collision rate histories. This enables us to reduce the problem to
a readily solvable linear ordinary differential equation whose solutions primarily
depend on the total interaction integral. In this framework, we investigate the behavior
of several eruption models. The validity of the expansion coalescence model is
empirically supported by analysis of samples of pumice and lava. Theoretically, the
suggested power laws are indeed stable and attractive under a wide range of
conditions. We finally point out the effect of small perturbations and new ways to test
the theory. INDEX TERMS: 8414 Volcanology: Eruption mechanisms; 8439 Volcanology: Physics and

chemistry of magma bodies; 3220 Mathematical Geophysics: Nonlinear dynamics; 3210 Mathematical

Geophysics: Modeling; KEYWORDS: expansion-coalescence, bubbles, fragmentation
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1. Introduction

1.1. Role of Coalescence in Volcano Dynamics

[2] Volcanic bubble growth is a fundamental but not yet
fully understood part of both eruptive and effusive volcano
dynamics. The basic picture starts at depth (see Figure 1)
where the magma rises until nucleation starts. This occurs,
depending on the amount of gas initially dissolved in the
magma and on whether the latter is heterogeneous or
homogeneous [Mangan and Sisson, 2000], somewhere
between 200 and 60 MPa. This is followed by diffusion
and decompressive expansion. However, the rate of
coalescence-expansion will increase with the vesicularity
of the ascending magma; it can, at least in principle,

eventually become the dominant mechanism [Gaonac’h
et al., 1996b]. Somewhere around 10 MPa the vesicularity
reaches a critical value of �70% (e.g., Sparks [1978] gives
75% and Gardner et al. [1996] gives 64%), the magma
fragments, and, if it is highly stressed, explosion occurs.
[3] Recently, there has been a growing consensus about

the importance of coalescence growth processes, at least
for large bubbles at high vesicularities. First, there is direct
evidence for this in dynamical laboratory experiments
[Manga and Stone, 1994]. There is also evidence for this
in natural samples; sections of volcanic products including
those from viscous magmas [e.g., Gaonac’h et al., 2004]
frequently display morphologies highly suggestive of
bubble shear and coalescence (see, e.g., Figure 2a).
Numerous empirical attempts to ‘‘decoalesce’’ bubbles
before estimating their size distributions are based on this
conviction. Perhaps the most compelling argument for the
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central role of coalescence is the growing recognition that
empirical bubble distributions follow power laws; that is,
that the number density is of the form n(V) � V�B�1,
where V is the bubble volume and B is a scaling exponent
[e.g., Gaonac’h et al., 1996a, 2004; Simakin et al., 1999;
Blower et al., 2001; Klug et al., 2002] (Figure 2b).
[4] Although with appropriate extra constraints/boundary

conditions, it is theoretically possible to obtain power law
distributions with pure nucleation-diffusion processes (e.g.,
Blower et al. [2001] for a four bubble hierarchical packing
model) not only does coalescence provide a simple and
natural intrinsic mechanism but, as emphasized by
Gaonac’h et al. [1996b, 2004], binary coalescence imme-
diately provides a unifying explanation for the apparent
empirical universality of the exponent B � 0.85 in diverse
volcanic products. Finally, using Monte Carlo simulations,
Gaonac’h et al. [2003] have quantitatively shown how such
power laws allow bubbles to be very efficiently ‘‘packed’’,
effectively delaying the onset of ‘‘percolation’’ until vesic-
ularities of the order of 0.70 are reached. At the percolation
point, bubbles overlap to such a degree that there is almost
surely a single large (tentacle-like) bubble spanning an
infinite system: the magma is effectively reduced to frag-
ments by the network of overlapping bubbles. If it is
stressed, this triggers an explosion. Note that this is very
different from the usually postulated eruption mechanisms
in which fragmentation is the consequence, not the cause, of
either the stress or the strain rates exceeding critical thresh-
olds. Here we are referring to power law (algebraic) number-
size distributions; this should not be confused with the
totally different single bubble growth rate which may also
be a power law (see Appendix A).
[5] Finally, we should mention that while our results may

help explain some of the early stages in the evolution of
foams, they are not expected to be relevant to the evolution

of foams per se. This is because bubble interactions in
foams are multibubble, not just binary. The picture that
emerges from this is one in which coalescence, both binary
at lower vesicularities and multibody near the percolation
point, plays a central role (see Figure 3 for a schematic). As
before, it starts with a rising magma with nucleation,
diffusion, decompressive expansion. However, diffusion
and other single bubble processes are linear in the number
density where as binary coalescence is quadratic. Eventually,
vesicularities can be high enough so that binary coalescence
becomes dominant over single bubble processes; the coales-

Figure 2. (a) Digitization of a Minoan pumice sample
from Santorini, more details on the eruption are given by
Gardner et al. [1996]. (b) Plots of the number of vesicles
from the digitized surface of a single Minoan eruption
volcanic sample of size larger and smaller thanA (A in mm2),
N2(A

0 > A), N2(A
0 < A) versus A for sample in Figure 2a

(these are integrals of n(A)). The subscripts indicate the
dimension of space, 2 for cross sections. A line with slope
B2 = 0.75 is shown (B2 = �slope, the subscript indicates the
dimension of space of the sampling, for N2(A

0 < A)
the corresponding exponent for small bubbles is �0.20).
The corresponding volume exponents areB =B3 = 0.85 (large
bubbles) and +0.20 (small bubbles). To change dimension
from 2 to 3, we use B3 = 2B2/3 + 1/3 (which is strictly valid
only for convex bubbles [Gaonac’h et al., 1996a]).

Figure 1. A schematic diagram showing the basic picture
for an explosive eruption. See color version of this figure in
the HTML.
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cence power law regime is established (the exact theoretical
criterion for dominance is given by Gaonac’h et al.
[1996b]). As the vesicularity increases further, the rates of
ternary and higher-order collisions become dominant diverg-
ing at a critical vesicularity Pc: at this point, the entire
magma fragments [Gaonac’h et al., 2003]. In stressed
magmas the fragmentation signals explosion; the process is
suddenly quenched; the resulting samples display the entire
range of bubbles. In effusive basalts the gas is nearly
completely exsolved, equilibrium with atmospheric pressure
is achieved, and the coalescence process has time to coalesce
all the small bubbles while simultaneously decreasing the
overall number density.

1.2. Modeling of Coalescence and the Coalescence
Equation

[6] The understanding of bubble growth processes has
mostly progressed in the areas of nucleation and diffusion,
which are single bubble processes and are hence linear with
respect to the bubble number density. They are relatively
tractable mathematically and have been studied in labora-
tory experiments [e.g., Simakin et al., 1999]. In contrast,
coalescence is a binary (or higher-order) process and is
hence nonlinear, accelerating notably as the vesicularity
increases. Unfortunately, theoretical consideration of general
coalescence processes would be intractable without a further
guiding physical principle. Indeed, in spite of its potential
importance, the coalescence equation has only occasionally
been invoked in this context [Sahagian, 1985; Gaonac’h et
al., 1996b].
[7] In discussing effusive eruptions, it was argued

[Gaonac’h et al., 1996b] that until the vesicularity was
very high, coalescence was primarily (but not necessarily
exclusively) a binary bubble interaction. This simplification
allowed the (binary) coalescence equation to be invoked,
enabling the estimation of the relative rates of formation of
bubbles of different sizes. Application of the binary coa-
lescence equation showed that excluding decompression/
expansion which affects all bubbles by an equal factor, for
large bubbles coalescence can quickly become the dominant

process, at least if there is a high enough bubble collision
rate. The second application of the coalescence equation was
to argue that, when the coalescence mechanism was partic-
ularly efficient for bubbles of roughly the same size, the
process would have a cascade-like phenomenology. Beyond
that, the cascade model was not derivable from the coales-
cence equation; indeed, Gaonac’h et al. [1996b] proposed a
quasi-steady state cascade process in which the volume
scaling exponent B was determined by conservation of
volume; hence it had to be near the value 1. Its deviation
from unity could not be determined by the model.

1.3. A New Framework for Handling Coalescence:
Coalescence-Expansion Equation

[8] The problem of binary collisions with the possibility
of ‘‘sticking’’ is important in many areas of science. The
mathematical formulation of the basic problem goes back to
Smoluchowski [1916]; the resulting equation has been
variously called the ‘‘Smoluchowski equation’’, ‘‘the coa-
lescence equation’’, and the ‘‘coagulation equation’’ (see
Drake [1972] for an early review). Today, major application
areas include notably aerosol formation [see Friedlander,
1961; Turco and Yu, 1999], hydrometeor growth [e.g.,
Srivastava and Passarelli, 1980; Brown, 1995], polymer
growth [Lushnikov, 1972; Van Dongen, 1987], nuclear
reactions [e.g., Meunier and Peschanski, 1992], and astro-
physics (especially planetary growth [e.g., Lee, 2000]).
Although this is a nonlinear partial integrodifferential equa-
tion, a great deal is now known about long-time solutions,
especially in the case where the fundamental interaction is
‘‘scaling’’ (i.e., when it depends only on ratios of particle
sizes, the basic mechanism is scale-invariant). Of particular
importance is the work by Van Dongen and Ernst [1987,
1988] and Van Dongen [1987], who provided a fairly
complete classification of interaction ‘‘kernels’’ (see the
function H in equation (1) below) as well as corresponding
large time and large particle behaviors.
[9] When the volcanic bubble collision/collection kernel

is scaling (sometimes also called ‘‘homogenous’’, see be-
low) these power law solutions are stable and attractive. If
the homogeneity exponent is b (see section 2), then the
stable solutions are power laws with exponents B = b and
we can now turn the argument around and conclude that the
observation of a distribution with a given B must have been
the result of coalescence with a homogeneous kernel with
scaling exponent b. The overall picture is thus of a dynam-
ically evolving (still possibly cascade-like, but not quasi-
steady state) cutoff power law distribution with an exponent
fundamentally determined by the exponent of the bubble
collision/collection kernel. Since pure coalescence doesn’t
alter the vesicularity (the total volume of the coalescing
bubbles is conserved in a pure coalescence process), we
must take into account expansion in order to obtain a
realistic overall picture of the bubble size distribution.
[10] Before continuing, we need a few words on the

structure of this paper. The writing has been a difficult task
since the main result, the existence of stable, attractive
truncated power law number distributions, is easy enough
to state, but its derivation is nevertheless technically complex.
We have attempted to put as many of the technical derivations
as possible in appendices where readers may consult them.
For readers primarily interested in results, the key sections are

Figure 3. A schematic of the emerging picture showing
the central role of coalescence. See color version of this
figure in the HTML.
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section 2 where we introduce the notation and explain the
assumptions, and section 3.4 where we give the basic
truncated power law solutions. The rest of the paper consists
of mathematical developments (sections 3.1 and 3.2),
consequences (section 3.3), summary of key results
(section 3.4), consequences for large bubbles (section 3.5),
empirical tests (section 3.6), and conclusions (section 4).
Appendices A and C on single bubble processes and exam-
ples, respectively, are intended to be primarily pedagogical,
whereas Appendix B is concerned with a technically difficult
linear stability calculation which, while fundamentally im-
portant in justifying the use of the equation in physical
modeling, does not directly impinge on the rest of the
development.

2. Expansion-Coalescence Equation

2.1. Mathematical Formulation of the Problem

[11] We first introduce the notation and equations; we
then nondimensionalize them. The dimensional quantities
will be written in bold, the nondimensional in plain (the only
exception will be the time variable t; t will be the nondi-
mensional time); see Table 1 for a summary and definitions.
Let the number density n(V, t) equal the number of bubbles
with volumes between V and V + dV per unit volume (of
space), X(t) be the rate of decompressive expansion (from
any source) and let J(t) be the coalescence rate (the total
change in bubble volume per unit time due to coalescence).
The expansion-coalescence equation can thus be written

@n V ; tð Þ
@t

¼� X tð Þ @ Vn V ; tð Þð Þ
@V

þ J tð Þ

	

1

2

ZV
0

H V � V 0;V 0ð Þn V � V 0; tð Þn V 0; tð ÞdV 0

�n V ; tð Þ
Z1
0

H V ;V 0ð Þn V 0; tð ÞdV 0

2
66666664

3
77777775

ð1Þ

where V0 is a dummy variable. The first term on the right-
hand side represents the decompressive expansion of the
bubble (see Appendix A for a detailed derivation), while the
second term is due to coalescence; putting x(t) = 0 yields
the standard (pure) coalescence equation. Although this
notation for the coalescence processes may seem heavy, it is
standard; in Appendix B we use a simpler though less
conventional form. H(V, V 0) is the fraction of the overall
coalescence per unit time which occurs between bubbles
with volumes in the range V to V + dV and the range V 0 to
V 0 + dV 0; it is the basic collision/collection ‘‘kernel’’. This
interaction kernel describes the intensity of the interaction
of two quantities that are integrated. Note that we do not
consider the slightly more general case H(V, V 0, t) (i.e., the
coalescence rate due to bubbles with volumes in the range V
to V + dV and the range V 0 to V 0 + dV 0), where the
factorization H(V, V 0, t) = J(t)H(V, V 0) is impossible. Such a
factorization of the time dependence of the coalescence
process is justified when the bubble-bubble interaction
mechanism (H) is fixed; only the coalescence rate J(t)
changes in time (reflecting changes in viscosity, strain
rates). The dimensions of J(t) are chosen to be volume/
time, this simplifies the nondimensionalization of H; in the

context of precise models of the interaction, it can be given
a physical interpretation (below). Considering now the
coalescence term, the first integral gives the time rate of
change of bubble number density for volume V bubbles due
to coalescence of smaller bubbles; the second integral
accounts for the loss of bubbles of size V due to coalescence
with either larger or smaller bubbles.
[12] Finally, the first term on the right of equation (1)

represents a single bubble process term, the expansion of
bubbles at rate X(t):(dV/dt) = X(t)V; X > 0 corresponds to
expansion, X < 0 corresponds to contraction. If we add the
term �M(t)[@(nV1/3)/@V], where M(t) is the diffusion rate of
the dissolved gas into bubbles (dimensions area per unit
time), then equation (1) is an expansion-diffusion-coales-
cence equation: see Appendix A for more information for
this and other single bubble processes and terms. In what
follows, we assume that the coalescence and expansion
terms are dominant. In Appendix B we show how to treat
other single bubble processes as small perturbations. Our
results will only depend on certain symmetries of the kernel
H, and one convergence property; these are discussed below.

2.2. Nondimensional Expansion-Coalescence Equation

[13] The expansion-coalescence equation involves both
dimensions of time and volume. Nondimensionalizing the
volume can simply be accomplished by using the mean initial
bubble volumeV0 (the exact numerical value is unimportant):

V ¼ V=V 0

n ¼ V 2
0n

ð2Þ

(note that the dimensions of n are volume�2 since n is the
number density per unit interval of bubble volume dV).
Similarly, we have H(V, V 0) = H(V, V 0) is dimensionless.
We also have for the nondimensional expansion rate

x ¼ X

J
V 0 ð3aÞ

Time can be nondimensionalized either by using the
expansion rate X or the coalesence rate J. It turns out to
be more convenient to use J:

t tð Þ ¼ V�1
0

Z t

0

J t0ð Þdt0 ð3bÞ

(assuming the process starts at t = 0). These definitions
permit us to write the following nondimensional expansion-
coalescence equation

@n

@t
¼� x tð Þ @ Vnð Þ

@V
þ 1

2

ZV
0

H V � V 0;V 0ð Þn V � V 0; tð Þ

	 n V 0; tð ÞdV 0 � n V ; tð Þ
Z1
0

H V ;V 0ð Þn V 0; tð ÞdV 0 ð4Þ

2.3. Scaling Symmetries of Interaction Kernel

2.3.1. Scaling Symmetry (‘‘Homogeneous’’) Kernel
[14] The scaling symmetry is the basic assumption.

Physically, it is justified if over a range of volumes, the
coalescence mechanism involves no characteristic volume.
More precisely, this means that if the volumes of the
interacting bubbles are increased by a factor l that the
interaction (the kernel H) increases by a power of l;
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the form of H is therefore independent of the scale, it is
scale-invariant.
[15] Mathematically, for any bubble volume ratio l:

H lV ;lV 0ð Þ ¼ lbH V ;V 0ð Þ ð5aÞ
where b is the scaling/homogeneity exponent.
[16] Although virtually all interaction kernels studied in

the literature are scaling/homogeneous, the justification here
is both theoretical and empirical. First, a scaling form is
appropriate when there is no qualitative change in the
coalescence mechanism over wide ranges of bubble vol-
ume; such scaling (power law, with scale-invariant expo-
nent) mechanisms are frequently obtained in fluid systems.
Second, the scaling form can be justified ex post facto if the
number densities do indeed display scaling (power law)
regimes (as they appear to do here).
2.3.2. Exchange Symmetry
[17] If we also assume that the collisions are binary and

that the mechanism depends only on the volumes, then we
obtain an ‘‘exchange’’ symmetry:

H V ;V 0ð Þ ¼ H V 0;Vð Þ ð5bÞ

Note that virtually all the kernels that have been studied in
the literature satisfy both the scaling and the exchange
symmetries 1 and 2, these properties are very general.
[18] Combining equation (5a) and (5b) and using l = V0/

V, we deduce

V bH 1;lð Þ ¼ V bH l; 1ð Þ ¼ H V ;V 0ð Þ ¼ H V 0;Vð Þ ð6aÞ

H 1;l�1
� 	

¼ H l�1; 1
� 	

¼ l�bH l; 1ð Þ ¼ l�bH 1;lð Þ ð6bÞ

2.3.3. Convergence of the Nondimensional Interaction
Coefficient h0,0
[19] The final property that we need is a bit technical; it

has to do with the convergence (finiteness) of various
coalescence integrals. Define the dimensionless ‘‘interaction
coefficient’’ between bubbles h0,0 as

h0;0 ¼
Z1
0

1� 1

2
1þ lð Þb


 �
l�1�bH 1;lð Þdl

¼
Z1
1

1þ lb � 1þ lð Þb
h i

l�1�bH 1;lð Þdl ð7Þ

Table 1. Symbols Used in the Text and Their Definitionsa

Symbol Meaning

V bubble volume
V0 characteristic bubble volume used for nondimensionalizing the volumes (e.g., the initial mean volume)
V*(t) truncation/cutoff bubble volume, roughly, the largest in the system
z V/V*(t)
f(z) cutoff function specifying the exact form of the large V truncation
g(z) subexponential part of f : g(z) = f(z)ez

t time
t nondimensional time
n(V, t) number density of bubbles between V and V + dV
n0(t) time varying amplitude of the power law number density
N number distribution; the integral of n from small to large (N(V0 > V) or large to small N(V0 < V)).

Subscripts indicate the dimension of space
H(V, V0) time-independent interaction kernel describing the interaction between bubbles of size V and V0

b basic scaling exponent for H
w scaling exponent for the extreme V falloff H
h0,0 fundamental interaction coefficient
hq,q0 generalized interaction coefficient
x(t) expansion rate as a function of time

j(t) coalescence rate (the total volume of bubbles per unit volume of space created by coalescence per unit time)

m(t) diffusion rate as a function of time
E(V, V0) dimensionless efficiency factor for collisions between bubbles size V, V0

l scale ratio
Du(V, V0) absolute velocity difference (shear) between bubbles volume V, V0

u0(t) velocity of bubbles with the reference volume V0 (models with buoyancy generated shearing)
g velocity exponent with respect to volume (models with buoyancy generated shearing)
P(t) vesicularity, the fraction of the volume occupied by bubbles
P0 initial porosity of the system (when coalescence begins to act), equal to P(0)
F total expansion (decompression) factor since the beginning of the coalescence process, equal to P(t)/P(0)
pB numerical factor of order unity relating the porosity and cutoff V*
G standard gamma function
G ratio by which the largest bubbles increase in size purely due to coalescence processes
w(V, t) rate of growth of a bubble of size V
d exponent of w with respect to V
H interaction operator (Appendix B only)
a(V, t) an arbitrary number density (Appendix B only)
b(V, t) an arbitrary number density (Appendix B only)
N V1+B ‘‘compensated’’ number density (Appendix B only)
N0 perturbation of NðAppendixBonlyÞ
N0(q, t) Mellin transform of N 0 (Appendix B only)
wq relative perturbation in the Mellin transform of number density (Appendix B only)
a an exponent in a model eruption characterizing an eruption
t0 a parameter indicating the (dimensionless) time of eruption

aSymbols are in the approximate order in which they are introduced. In addition, we have used the convention that bold symbols are for dimensional
quantities, and standard symbols are for their dimensionless counterparts. The only exception is t (dimensional time) and t (dimensionless time).
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The equality of the two integrals follows from equation (6).
We will assume that h0,0 converges; h0,0 characterizes the
intrinsic strength of the coalescence interaction, indepen-
dently of any particular collision rate or number size
distribution.
[20] We shall see that at least in the power law domain of

attraction (i.e., those initial conditions which evolve toward
power law distributions), the main quantitative aspect of H
which is important is given by h0,0. The subscripts ‘‘0,0’’
are used because h0,0 is simply one of a hierarchy of
coefficients defined by H; the other members of the hierar-
chy turn out only to be important for the stability properties;
see Appendix B.
[21] To determine the conditions on H(V, V0) necessary for

the convergence of h0,0, and following Van Dongen and
Ernst [1987], we introduce a large l exponent w such that

H 1;lð Þ � lb�w; l � 1 ð8Þ

[22] Since for large l the bracketed term in equation (7) is
of order unity when b < 1, we see that h0,0 converges when
w > 0 (if b > 1, then convergence requires w > b � 1); such
convergence corresponds to Van Dongen and Ernst’s [1987]
‘‘class 1’’ kernel. If in addition, w > b, then the interactions
are primarily among bubbles with similar volumes hence
the large bubbles are mostly the result of a hierarchical
series of coalescence of smaller nearly equisized bubbles:
the coalescence process has a cascade phenomenology as
described in Gaonac’h et al. [1996b].
[23] It suffices for our results that H satisfies the fairly

general properties. However, for concreteness, we note that
still under fairly general conditions H is of the following
form:

H V ;V 0; tð Þ ¼ E V ;V 0ð Þ V 1=3 þ V 01=3
� �2

#u V ;V 0; tð Þ ð9Þ

where Du(V, V0, t) is the absolute velocity difference (shear)
between bubbles of size V, and V0 and E is the dimensionless
efficiency factor: it is homogeneous of order b = 0 (see
equation (5a)); that is, it depends only on the volume ratios
l = V0/V. The interpretation of equation (9) is straightfor-
ward; the middle term is the geometric cross section for
collisions, and the collision rate depends on the velocity
differences between the two bubbles. In a volcanic conduit,
this velocity difference will arise primarily because of
shearing: both because the overall flow rate is highest near
the center of the conduit but also locally due to the
expansion of bubbles as they rise.
[24] The efficiency factor E is the fraction of collisions

that result in coalescence. As discussed byManga and Stone
[1994], since small bubbles tend to flow around large
bubbles, E(l) does indeed fall off, for large and small
volume ratio l. Although the value of w is not known
empirically, it is almost certainly >0 (implying convergence
of h0,0) and could indeed be >b (�0.85 [Gaonac’h et al.,
1996a, 2004]) as required for a cascade phenomenology.
Although viscosity may influence the efficiency its effect
will primarily be on the shear term. For example, if we
assume that the bubbles follow the magma field (as, for
example, in Plinian eruptions), then Du is proportional to the
stress, inversely proportional to the local viscosity. The
possible temporal variation of the latter will determine j.

[25] To be even more explicit in our interpretation, it may
be useful to consider the expression Du(V, V0, t) used in
meteorology and introduced into volcanology by Sahagian
[1985] (here representing the absolute difference in bubble
velocities):

u V ; tð Þ ¼ u0 tð ÞVg ð10Þ

#u V ;V 0; tð Þ ¼ F tð Þ V; � V 0gj j

F tð Þ ¼ u0 tð ÞV 2=3
0

ð11Þ

where u0(t) is the (generally time varying) velocity of the
bubble of volume V0 and g = b � 2/3 is the fundamental
velocity exponent. As mentioned by Gaonac’h et al.
[1996b], in low Reynolds number flows if we assume the
bubble velocities are purely due to buoyancy forces, then
we obtain g = 2/3 from dimensional analysis. However,
this is presumably not relevant in magmas where buoy-
ancy-induced shears are unlikely to be important in
comparison with dynamically imposed shears (i.e.,
externally forced). Specific models such as this would
give a more precise physical interpretation of J; for
example u0(t)V0

2/3 is the mean volume swept out per unit
time by bubbles of volume V0.

3. Solutions

3.1. Vesicularity

[26] The first step in the solution of the dimensionless
expansion-coalescence equation (4) is to obtain an equation
for the vesicularity. Defining the latter by

P tð Þ ¼
Z1
0

Vn V ; tð ÞdV ð12Þ

we can immediately obtain the equation for the evolution of
P by multiplying the expansion-coalescence equation (4) by
VdV and integrating over all V. This shows that the
coalescence terms do not change the vesicularity (this can
be seen by straightforward manipulations [see, e.g., Drake,
1972]; hence we obtain

dP

dt
¼ Px tð Þ ð13Þ

Equation (13) is just a restatement of the fact that in the
expansion-coalescence equation, the vesicularity is entirely
determined by the decompressive expansion effect (what-
ever its origins): on its own, coalescence conserves the
vesicularity. Solving this equation, we obtain:

P tð Þ
P 0ð Þ ¼ F tð Þ ¼ exp

Zt
0

x t0ð Þdt0
2
4

3
5 ¼ exp

Z t

0

X t0ð Þdt0
2
4

3
5 ð14Þ

where F is the intrinsically dimensionless total (time
integrated) decompressive expansion factor since the
beginning of the expansion. Note that physically, P(t) 
 1;
in addition the equations will no longer be valid when
P approaches the percolation threshold where ternary and
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higher-order bubble interactions become important (for B =
0.85, this is near 70%; see Gaonac’h et al. [2003]).
Equation (14) establishes a one-to-one relation between the
nondimensional time t and the vesicularity; in principle it
can be inverted: all the solutions developed below can
therefore be expressed purely in terms of P, not t.

3.2. Scaling Solutions

[27] A basic mathematical property of the coalescence
equation known since the 1970s is that if B = b, then the
pure scaling function

n V ; tð Þ ¼ n0 tð ÞV�1�B ð15Þ

is a solution of equation (4); n0(t), which contains all the
time varying information, is the ‘‘amplitude’’ of the number
density n(V, t). In this case, we find by substitution of n(V, t)
from equation (15) into equation (4) that n0(t)

�1, is a
solution of the first-order, ordinary linear differential
equation

dn�1
0

dt
þ Bxn�1

0 ¼ h0;0 ð16Þ

where h0,0 is the coalescence interaction coefficient
(equation (7)). Since the term in the parentheses in
equation (7) is >0 for b < 1 and <0 for b > 1, we find
h0,0 > 0 for b < 1; and h0,0 < 0 for b > 1; the fact that h0,0 > 0
for b < 1 indicates that for x = 0 (pure coalescence) n0(t)
decreases under the action of coalescence whereas for b > 1
n0(t) increases.
[28] As it stands, this exact solution is of purely academic

interest, since in general, pure power law number densities
are physically unacceptable because of various divergences
(infinities) that they imply. Various truncations/cutoffs are
necessary in order for them to be useful physical models.
The full details for any value of B are given by Gaonac’h et
al. [1996a], here for brevity, we only consider the cases 0 <
B < 1, B > 1.
[29] 1. When 0 < B < 1 (the range apparently

empirically relevant for magma), the total number of
bubbles per volume

R
n(V)dV diverges due to the small

V behavior. This is generally not physically important
and can be avoided if necessary by the introduction of a
small volume cutoff in the distribution so that the power
law only holds for larger V. What is more serious is that
the total vesicularity

R
Vn(V)dV also diverges because of

the large V behavior. This is physically unacceptable and
requires a large V truncation/cutoff at V*. The bubbles
with volumes near V* thus give the dominant contribu-
tion to the total vesicularity (full details are given
below).
[30] 2. When B > 1, the total number density still diverges

due to the small V behavior; however, now the vesicularity
also diverges due to this small V behavior so that a small V
cutoff is absolutely necessary. In contrast, at large V there is
no longer any problem, the large bubbles are simply too rare
to give a significant contribution to the total vesicularity.
This is the range of B which is apparently relevant for
multibody coalescence (‘‘percolation’’ [see Gaonac’h et al.,

2003]) and for posteruption volcanic product fragments [see
Kaminski and Jaupart, 1998].

3.3. Similarity Solutions With a Cutoff V*(t)

[31] We are now in a position to present the central results
of the paper. We have mentioned that the problem with the
pure power law solution (equation (15)) is that for B < 1, the
vesicularity diverges; we therefore need to introduce a
cutoff at large V. The simplest way to do this is to generalize
slightly the similarity method of Friedlander [1961], i.e., to
introduce the following ansatz (functional form):

n V ; tð Þ ¼ n0 tð ÞV�1�Bf zð Þ

z ¼ V

V* tð Þ
ð17Þ

where f is a cutoff function and V*(t) is the volume cutoff
(for a given f, V* will determine the vesicularity; see
below). As the overall vesicularity increases because of
compressive expansion, V*, which is essentially the largest
bubble in the system, will evolve as will the amplitude
n0(t); they are both required to determine the vesicularity.
[32] We can now use the result of Van Dongen and Ernst

[1987], who show that the leading large V behavior is
exponential; this suggests the following:

f zð Þ ¼ e�zg zð Þ ð18Þ

where g(z) is expected to be slowly varying (subexponen-
tial). Substituting this ansatz into the coalescence-expansion
equation (4) and using relation (23a) below between P and
V* to eliminate @z/@t, we obtain

dn�1
0

dt
þ Bxn�1

0

� �
g zð Þ 1� z

1� B

� �
þ z

1� B
g0 zð Þ

� �

¼
Z1
0

e�zlg zð Þg lzð Þl�1�BH 1;lð Þdl

�
Z1
1

g
z

1þ l

� �
g

zl
1þ l

� �
1þ l
l

� �B

H 1;lð Þl�1dl ð19Þ

Dividing both sides by the second term in parentheses on
the left, we find that the left-hand side is only a function of
time, while the right-hand side is only a function of z; hence
using standard separation of variables arguments, they must
each be equal to a constant. Without loss of generality, we
can choose the constant as h0,0 so that the equation for n0(t)
is the same as that without the truncation:

dn�1
0

dt
þ Bxn�1

0 ¼ h0;0 ð20Þ

while g(z) satisfies

h0;0 g zð Þ 1� z

1� B

� �
þ z

1� B
g0 zð Þ

h i

¼
Z1
0

ezlg zð Þg lzð Þl�1�BH 1;lð Þdl�
Z1
1

g
z

1þ l

� �
g

zl
1þ l

� �

	 1þ l
l

� �B

H 1;lð Þl�1dl ð21Þ
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We can now verify by substituting z = 0, that g(0) = 1. For
the large z behavior, substitution of the ansatz g � za shows
that for any scaling H exponent b = B, we obtain a = 1, i.e.,
g is asymptotically linear; we conclude

g zð Þ � 1; z � 0

z z � 1
ð22Þ

so that g(z) is indeed slowly varying (subexponential; i.e.,
negligible with respect to an exponential) as required. If H is
known, equation (21) can be solved numerically for g;
however, the exact solution will only lead to small (second-
order) changes in the n(V, t); the first-order effect only
depends on the interaction kernel H via h0,0.
[33] In order to determine V* (parameterized by t or t) we

use the vesicularity relation, equation (14) with f(z) =
e�zg(z):

P tð Þ ¼ pB
n0 tð ÞV* tð Þ1�B

1� B

pB ¼ 1� Bð Þ
Z1
0

e�zz�Bg zð Þdz
ð23aÞ

The constant pB depends only on H and B; the factor 1 � B
in the definition is chosen since for all g, it gives

pB � O 1ð Þ ð23bÞ

[34] For example, in the case of a step-function-type
cutoff function: g(z) = 1, z < 1, g(z) = 0, z > 1, it gives
pB = 1, whereas for g(z) = 1 it gives pB = (1 � B)G(1 � B);
which implies 0.8856 < pB < 1 for 0 < B < 1. Since g(z) is
slowly varying with g(0) = 1, we therefore expect pB to be
close to 1; pB can also be estimated empirically as described
below.
[35] The solution for the first-order, linear ordinary dif-

ferential equation for the reciprocal of the amplitude of the
number density n0

�1 (equation (20)) is straightforward
(using for example the method of integrating factors); we
obtain

n�1
0 tð Þ ¼ P tð Þ

P 0ð Þ

� ��B

n�1
0 0ð Þ þ h tð Þ

h tð Þ ¼ h0;0P
�B tð Þ

Zt
0

PB t0ð Þdt0
ð24Þ

where h(t) is the particular solution; t0 is a dummy variable,
physically h(t) represents the total coalescence interaction
of the volcanic bubbles up to time t, Figure 4 shows a
schematic. Appendix B now shows that the solutions are
stable and attractive implying that initial distributions which
are not truncated power laws will, nevertheless, tend to
evolve toward such solutions, as long as they are within the
power law domain of attraction; i.e., this can remain true
even in the presence of diffusion and other perturbing
processes.

3.4. Summary of the Key Results

[36] Starting from an initial truncated power law solution,
equations (17), (18), (23a), and (24) are the solutions for the
entire system; for any scaling interaction kernel, any coa-

lescence-expansion history. Perhaps the simplest way to
display the solution is to parameterize the process using the
porosity. In this case these key equations can be written as

h Pð Þ ¼ h0;0P
�B

ZP
P0

P0BdP0

dP0=dt0ð Þ ¼ h0;0P
�B

ZP
P0

P0B�1 dP0

x P0ð Þ

n0 Pð Þ ¼ n0 P0ð ÞP�B
0

P�B þ P�B
0 h Pð Þ

V* Pð Þ ¼ 1� Bð ÞP
pB

� �1= 1�Bð Þ
n0 P0ð Þ�1= 1�Bð Þ� 1� Bð ÞP

n0 P0ð Þ

� �1= 1�Bð Þ

n V ;Pð Þ ¼ n0 Pð ÞV�1�Be�V=V*g
V

V*

� �
� n0 Pð ÞV�1�Be�V=V*

ð25Þ

where P0 = P(0) is the initial vesicularity. In order to use
equations (25) to determine the number density of the
vesicles, as a preliminary, we must first start with the
interaction kernel H and calculate the interaction coefficient
h0,0. For mathematically exact solutions, we must also plug
H into equation (21) and then solve it for g; from g we
calculate pB (equation (23a)). In actual fact, we expect to
obtain excellent approximations with pB = g = 1 (hence the
approximate equalities on the far right of equation (25)).
This preliminary step just depends on the type of interaction;
H. For the next step, we require information about the
particular magma history: more precisely, we need the
vesicularity history P(t) which relates the porosity and
(nondimensional) time. From this, we calculate the total
interaction h(P) (top line of equation (25), it is obtained from
equation (24) writing the integral for h in terms of P(t) rather
than t(P); since t is empirically inaccessible, it may be more
practical to use the relation dt = dP/(Px) obtained from
equation (13)). We can then compute the number density
amplitude n0(P) (second line, it is also obtained from
equation (24)). Finally, we calculate the cutoff V* which is
the largest vesicle volume. It can be determined by inverting
equation (23a) (more precisely, V* is the characteristic
exponential volume cutoff; there will be a few slightly larger
vesicles). The actual number density is finally given by using
the above values of n0(P), V* in equation (17) with f(V/V*) =
e�(V/V*) and g either = 1 (the approximation) or g is the
solution of equation (19) as indicated above. Appendix C
gives a number of analytic examples.
[37] A few comments are in order. First, h(t) represents

the total coalescence interaction over the entire duration of
the expansion/coalescence process. With pure decompres-
sive expansion, h0,0 = 0, and h(t) = 0 while for pure
coalescence, h(t) = h0,0. From equation (24), we see that
the relative importance of h(t) with respect to [P(t)/
P(0)]�Bn0

�1 (0) determines the importance of coalescence
with respect to pure decompressive expansion. Assuming a
constant decompressive expansion rate x0, we already
obtain the simple solution of equation (24):

n�1
0 Pð Þ ¼ n�1

0 P0ð Þ P

P0

� ��B

þ h0;0

Bx0
1� P

P0

� ��B
 !

ð26Þ

So that for large enough expansion ratios P/P0, the
distribution achieves an asymptotic state independent of
the initial n0(P0): n0(t) � (Bx0/h0,0). A useful general
result illustrated by the models in Appendix C is that since
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in h(t), (P(t0)/P(t))B < 1 we therefore have h(t) < th0,0 and
for many models/scenarios, h(t) � th0,0. Although they are
of somewhat academic interest, various simplified (analy-
tically tractable) models are discussed in Appendix C.

3.5. Coalescence Enhancement of the Large Bubbles

[38] The main effect of the coalescence is to attract the
distribution of bubbles to the truncated power law form; this
will occur even if the total interaction between these
bubbles h(t) is not so large. However, when h(t) becomes
important, coalescence can also greatly enhance the size of
the large bubbles with respect to the small ones. Using
equations (23a) and (24) we can obtain a formula for the
‘‘enhancement,’’ i.e., the factor G above and beyond the
effect of pure decompressive expansion:

G ¼ V* Pð Þ
V* P0ð Þ

� �
=

P

P0

� �
¼ 1þ 1� Bð Þ

pB
P0

P

P0

� �B

h

" #1= 1�Bð Þ

ð27Þ

Equation (27) shows that there are two coalescence regimes.
When the interaction is small enough, i.e., when

1� Bð Þ
pB

P0

P

P0

� �B

h < 1 ð28Þ

then G(1) � 1 and coalescence can be ignored. If we assume
that the final vesicularity P � 1 and since B � 1, P0

1�B � 1,
pB � 1, we obtain (1 � B)h < 1. In the case of constant

decompressive expansion rate, we further obtain h � h0,0/
Bx0 so that the weak coalescence condition reduces to

h0;0 <
Bx0
1� Bð Þ ð29Þ

When the interaction is weak enough or the expansion rate
strong enough, coalescence is unimportant (see, however,
some of the singular examples in Appendix C).
[39] Conversely, when the interaction coefficient between

bubbles h0,0 is large enough, coalescence can give a large
enhancement of the size of the large bubbles. Under the
same assumptions on pB, h, P we obtain

G � P0

P

1� Bð Þh0;0
Bx0

� �1= 1�Bð Þ
;G > 1 ð30Þ

Even if the interaction coefficient is not very large, we may
still conclude that the main effect of coalescence is to
establish the stable power law form. In any case, it is an
important empirical task to estimate h0,0. As an illustration
of the type of behavior that we might expect, we can use the
particular kernel of equation (9) (with Du given by equation
(11)) and assuming a pure power law E(l) = l�w (l > 1).
Figure 5 shows the result, indicating that h0,0 < 1 for all w >
0.46 (diverging, however, as w ! 0).

3.6. Empirical Tests

[40] The nondimensional solutions we have obtained for
the amplitude of the distribution n0(t) are not always the
most convenient. In practice it is sometimes more conve-
nient (see below) to define a new (dimensional) density
amplitude factor n0*(t):

n0* tð Þ ¼ n V*; tð Þ e

g 1ð Þ ð31Þ

so that the basic solution (equation (17)) can be written

n V ; tð Þ ¼ n0* tð Þ V

V* tð Þ

� ��1�B

e�V=V* tð Þg
V

V* tð Þ

� �
ð32Þ

[41] This leads to

n0*V*2 ¼ 1� Bð Þ
pB

P ¼ n0V* 1�Bð Þ ð33Þ

or

n0 ¼ n0*V* 1þBð Þ ð34Þ

the couple (n*, V *) provides a convenient characterization
of the distribution since it is determined directly by the
truncation point on a log-log plot of n (Figure 4). Using
equations (27) and (14), we have

n0* tð Þ ¼ G tð Þ�2
F tð Þ�1

n0* 0ð Þ ð35Þ

Although the theory can be tested without knowing the
actual time elapsed, only the vesicularity P and large bubble
growth factors F (pure decompressive expansion) and G

Figure 4. (top) Effect of pure coalescence when B < 1,
h0,0 > 1 so that n0 decreases in time. On a log-log plot
the distributions shift downward, while the cutoff (V*)
increases. (bottom) Effect of pure decompressive expansion.
All bubbles increase in size by the same factor, and the
distribution is shifted to the right. See color version of this
figure in the HTML.
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(coalescence enhancement) are needed, this information
may still be difficult to obtain since the only easily
accessible bubble distribution information is from solidified
samples. This explains why for the moment, the main
empirical test of the theory is the near power law
distributions observed in both lava and pumice as demon-
strated in Figure 2 [see also Gaonac’h et al., 1996a, 2004].
However, even at a single time further information may be
obtainable; it may be possible to empirically confirm the
near exponential nature of the large V cutoff: according to
equation (31), we expect log(n(V)V1+B) to be linear with V
which could be used to estimate V*, and hence g(1), n0*

from equations (31) and (32). We could also empirically
estimate pB by estimating P(t) and using equation (23).
Unfortunately, the key dynamical parameters w (charac-
terizes the interaction between bubbles of very different
sizes, equation (8)), h0,0 (the interaction coefficient,
equation (7)), h(t) (the total coalescence interaction up to
time t, equation (24)), are not directly accessible from
single samples at a single time.
[42] If identical bubbling melts could be frozen after

different degrees of decompression in controlled laboratory
experiments, then this would furnish the information (e.g.,
Simakin et al., 1999). Alternatively, we may be able to use
statistics on measured V*, n* parameters. At present, the
only possibility is to follow the approach of Herd and
Pinkerton [1997] who argue that in volcanic bombs, the
change in the bubble size distribution from the center to the
edge of the bomb is primarily governed by the cooling
process that is fastest near the surface. The expansion-
coalescence process therefore has more time to act near
the central region than near the periphery; by comparing the
distributions near the center and edge we might therefore be
able to test the theory and estimate the function h(P).
[43] To illustrate the idea, in Figure 6 we replot the

distributions from Herd and Pinkerton’s [1997, Figure 8]
sample RH/S9. Although the data are noisy (the sample size
was inevitably not large), we see that the theoretical power
law behavior is reasonably followed for the large bubbles.
The rapid rate of bubble falloff of the large edge bubbles is
as roughly predicted by the exponential truncation theory,

although it may be influenced by large bubbles directly
degassing to the atmosphere. In addition, the physical
properties change rapidly near the edge and the actual
distribution measured is thus somewhat of a mixture of
bubbles, which were ‘‘frozen in’’ at slightly different times
(rather than at the same time as assumed for the purposes of
this analysis). We now consider that the distribution at
different distances from the center represents identically
evolving distributions arrested at various t. We have from
equations (33) and (35):

n0;edge*

n0;center�
¼ G centerð Þ2F centerð Þ

G edgeð Þ2F edgeð Þ
V edge*

V center*
¼ G edgeð ÞF edgeð Þ

G centerð ÞF centerð Þ

ð36Þ

From the graph, we find n0 center*/n0 edge* = 10�0.8, and
Vcenter*/Vedge* = 100.6; hence P(center)/P(edge) = F(center)/
F(edge) = 100.4 and G(center)/G(edge) = 100.2. The estimate
of F(center)/F(edge), which is roughly equal to the
vesicularity ratio estimated by Herd and Pinkerton [1997]
(0.60/0.25 = 2.4). Clearly, this method could be applied to
intermediate distances between the center and the edge thus
yielding the function G(F) which could then be analyzed.
[44] If a cooling curve for the sample could be estab-

lished, then the distance from the edge of the sample would
give us the relative times. By systematically comparing the
number distributions as functions of distance from the edge,
we could then estimate (n0*(t), V*(t)) as well as P(t). We
could then directly exploit equation (20) in the form

P�B tð Þ
d PB tð Þn�1

0 tð Þ
� 	

dt
¼ h tð Þ ð37Þ

for small enough time intervals, the derivative could be
numerically estimated and hence h(t) could be determined.
Similarly, the expansion rate could be estimated by

x tð Þ ¼ d logPð Þ
dt

ð38Þ

from the vesicularity values. Once P, x and the collision rate
j are known, then h(t) could be determined. Clearly, large
data sets would have to be analyzed to establish if the
assumptions of this method are really valid and to improve
the statistical significance of the result.

4. Conclusions

[45] Magma rising from depth exsolves gas first by
nucleation, diffusion, and decompressive expansion, even-
tually obtaining high vesicularities prior to fragmentation
and explosion. As the bubbles grow, single bubble processes
such as diffusion become increasingly less efficient whereas
coalescence becomes more efficient; the expanding, rising
bubbles induce shearing in the magma, and shearing induces
coalescence; it is difficult to avoid the conclusion that binary
coalescence plays a dominant role – at least for the larger
bubbles at the higher vesicularities. At high enough vesic-
ularities, binary coalescence itself becomes dominated by
ternary and higher-order interactions until, as discussed by
Gaonac’h et al. [2003], a critical percolation threshold is

Figure 5. Interaction coefficient h0,0 as a function of the
exponent w of the collision efficiency (estimated using
the geometric cross section as discussed in section 2,
equations (9) and (11)). A large w indicates interactions are
inefficient unless the bubbles have nearly the same size (see
the definition equation (8)).

B11203 LOVEJOY ET AL.: EXPANSION-COALESCENCE OF BUBBLES

10 of 16

B11203



reached where the magma essentially fragments due to an
infinite network of tentacle-like overlapping bubbles. Binary
coalescence plays a fundamental role since the exponent it
apparently establishes [Gaonac’h et al., 2004] allows the
magma to avoid percolation until realistic values of 70% are
achieved. The observed scaling of the bubble distribution
turns out to provide exactly the necessary ‘‘packing’’
efficiencies.
[46] We argued that to a good approximation, over a wide

range of vesicularities and conditions (e.g., pumice and
lavas), that bubble dynamics can be reasonably modeled
by the decompression and coalescence of an initial distri-
bution of small bubbles using the (binary) expansion-
coalescence equation. A typical scenario would be the
decompression of rising magma followed by exsolution of
gas around nucleation centers. As the magma continues to
rise, these small bubbles expand. At some critical but small
gas concentration level, coalescence starts to dominate the
diffusion and surface tension effects, first for the large
bubbles, then later for all but the smallest. Eventually, near
the percolation threshold, multibody coalescence takes over,
but binary coalescence has already played a key role
primarily in establishing a power law bubble distribution,
and also in enhancing the size of the largest bubbles. Our
theory applies to the expansion- coalescence dominated
regime; we considered first pure expansion-coalescence,
and then consider surface tension and diffusion as additional
small perturbations. The strongest support for the model is
the growing empirical evidence in favor of power law
number densities.
[47] The basic physical assumption is that the collision/

interaction kernel is scaling so that over a wide range, the
fundamental interaction mechanism depends only on the
ratios of the volumes of the interacting bubbles. This

assumption is almost universally made in the coalescence
literature and can be at least partially justified on the basis
of fluid mechanical considerations. The key result is that
exact truncated power law solutions are possible for any
expansion rate history (x(t)). By systematically exploiting
these stable attractive solutions, we reduce the problem
from a nonlinear integropartial differential equation into a
simple initial value problem: a first-order linear ordinary
differential equation for the inverse bubble density ampli-
tude n0(t)

�1.
[48] By considering several eruption scenarios (including

eruption events as singularities in the relative expansion-
collision rates) it was found that as long as the bulk of the
expansion occurred early in the overall coalescence process,
that the result (determined by the collision integral h(t))
was quite insensitive to the details.
[49] Although the cutoff power law solutions are mathe-

matically exact, they would be physically irrelevant if they
were unstable. In Appendix B we therefore performed linear
stability analysis and derived the conditions under which the
power law solutions are stable to small perturbations. We
also showed how to take into account diffusion and surface
tension effects as small perturbations: they both will in-
crease the instability of the singular (q > 0) perturbations,
i.e., lead to breaks in the scaling at small volumes, as
observed. A remarkable aspect of the problem is that most
of the details of the coalescence interaction kernel are
irrelevant; it is primarily the interaction coefficient h0,0
and the scaling exponent B, which are important. The other
details of the coalescence kernel (hq,q0 in Appendix B)
simply determine the stability of the scaling solutions to
perturbations.
[50] So far, the empirical support for this theory has come

almost exclusively from the basic scaling symmetry appar-
ently respected by bubble size distributions in pumice and
lavas. Beyond this, it is not obvious how to test the theory; to
do so would require knowledge about the temporal evolution
of the bubble size distribution. We suggest a possible method
based on the work ofHerd and Pinkerton [1997], which uses
volcanic bombs. The idea is that because of differential
cooling of the bomb after eruption/ejection the outside and
inside have different bubble distributions due to the longer
time available for coalescence near the center. By reanalyz-
ing some of their data we show how this can be used to
obtain information about the fundamental interaction inte-
gral. Unfortunately, information about the fundamental in-
teraction coefficient h0,0 will probably require laboratory
experiments involving binary bubble events.
[51] Although it is generally recognized that coalescence

processes are important in the evolution of bubble popula-
tions in magma, the theoretical treatment of the (linear)
single bubble growth processes has been so much easier
that attention has often been focused on the corresponding
diffusion and surface tension mechanisms. However, in this
paper, the simplifications introduced promise to make the
study of coalescence much easier. Indeed, this reduction
coupled with the agreement between the power law behav-
ior predicted by the expansion-coalescence equation and
the empirical vesicle distributions found in a wide variety
of lava and pumice samples, make this approach quite
seductive. However, it should be recalled that use of a
slightly different scaling symmetry by Gaonac’h et al.

Figure 6. Replot of distributions from Herd and Pinkerton
[1997, Figures 8a and 8c] for the ‘‘edge’’ (triangles) and
‘‘center’’ (circles). The edge distribution has been multi-
plied by 10�0.8 (a downward shift of 0.8 corresponding to
n0 center* /n0 edge* = 10�0.8), and a rightward shift of 100.2

(corresponding to Vcenter* /Vedge* = 100.6, i.e., the ratio of the
large bubble volumes). Note that using n0* rather than n0 is a
bit easier since we attempt to superpose the entire curves
rather than just the small r part. The straight line has the
theoretical slope �(3B + 1) = �3.55. Units are r in m and n
in m�3(mm�1).
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[2003] led to similar power law distributions but implicitly
involved ternary and higher-order interactions. Much more
work, including laboratory studies of bubble interactions,
will be therefore be needed.

Appendix A: Single Bubble Processes:
Expansion, Diffusion, and Surface Tension

[52] In most bubble growth processes (expansion, diffu-
sion, surface tension) we can neglect direct bubble-bubble
interactions and consider the bubbles in isolation. In this
appendix, we consider such single bubble processes and
show how they modify the (two bubble) coalescence
equation.
[53] In single bubble processes, the rate of change in

volume w depends only on the volume and time:

dV

dt
¼ w V ; tð Þ ðA1Þ

[54] As concerns equation (1) (the partial differential
equation for @n/@t), these single bubble processes contribute
the terms:

� @ nwð Þ
@V

ðA2Þ

[55] The single bubble processes of interest are of the
form

wðV ; tÞ ¼ mðtÞV d ðA3Þ

for diffusion we have d = 1/3, m > 0, and Ostwald ripening,
d = 0, m > 0, surface tension, d = 2/3, m < 0. (Strictly
speaking, Ostwald ripening is a multibubble process;
however, the usual ‘‘mean field’’ treatment allows it to be
treated as an ‘‘effectively’’ single bubble process with the
rate given above.) Note that even if w(V, t) is a power law
function of volume (and considering only single body
processes), the evolving number density will be a power
law in V only if very special initial conditions and/or
constraints are imposed. For example, it is usually assumed
that diffusion gives rise to an exponential n(V, t), but Blower
et al. [2001] argue that special hierarchically organized (i.e.,
scaling) constraints could enable diffusion to produce a
power law n(V, t).
[56] The main case of interest here is the case of expan-

sion (d = 1); we introduce the (generally) time varying
expansion coefficient (x(t), i.e., w(V, t) = Vx(t)) which
determines how individual bubbles size V will expand in
time:

dV

dt
¼ x tð ÞV ðA4Þ

(x > 0 corresponds to expansion). Mathematically, expan-
sion is particularly simple since the term it contributes is
‘‘equidimensional’’ (here, this means invariant if the bubble
volumes are replaced by volumes l times larger, see
equation (A2)).
[57] Specializing to the expansion case of primary interest

here, we obtain the expansion-coalescence equation (4).
Equation (4) has been considered in the context of cloud

drop growth by Srivastava and Passarelli [1980] (who
showed how it could be reduced, by transformation of
variables, to a pure coalescence problem). Generalizations
to arbitrary power law growth laws have been considered in
the polymer physics literature [Cueille and Sire, 1997].

Appendix B: Stability of the Power Law Solutions

B1. Linear Stability

[58] The coalescence-expansion equations are nonlinear;
hence there is the possibility that the exact solutions
discussed above may be unstable and hence be physically
irrelevant. Van Dongen and Ernst [1987] use scaling argu-
ments on the pure coalescence equation to argue that for a
wide variety of initial conditions, at large times the cutoff
power law will be obtained. To our knowledge, however,
direct investigation of the stability using linear stability
theory has not been performed. In this appendix we consider
the linear stability of the pure power law solution of the
coalescence-expansion equation. To simplify the equations
and to simultaneously emphasize the quadratic nonlinearity
with respect to n, we introduce the following quantum
mechanical like ‘‘bra’’ and ‘‘ket’’ notation:

hn V ; tð ÞjH jn V ; tð Þi ¼ � 1

2

ZV
0

H V � V 0;V 0ð Þ

	 n V � V 0; tð Þn V 0; tð ÞdV 0

þ n V ; tð Þ
Z1
0

H V ;V 0ð Þn V 0; tð ÞdV 0 ðB1aÞ

which indicates the operator H acting on the function n; the
resulting dimensionless expansion coalescence equation can
now be written

@n V ; tð Þ
@t

¼ �x tð Þ @ n V ; tð Þð Þ
@V

� hn V ; tð ÞjH jn V ; tð Þi ðB1bÞ

This makes the writing much more compact while
emphasizing the quadratic nonlinearity with respect to n.
[59] Continuing to simplify notation, we introduce the

normalized density:

N V ; tð Þ ¼ VBþ1n V ; tð Þ ðB2aÞ

which satisfies

@N V ; tð Þ
@t

¼ �x tð ÞVBþ1 @ V�BN
� 	
@V

� NjHjNh i ðB2bÞ

with the normalized kernel H defined by

a Hj jbh i ¼ VBþ1 aV�B�1 Hj jbV�B�1
� �

ðB3Þ

for any functions a(V, t), b(V, t). Finally, define the V-
independent generalized interaction coefficient hq,q0:

V�q Hj jV�q0
D E

¼ V�q�q0hq;q0 ðB4Þ
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Note that the pure power law solution n(V, t) = n0(t)V
�1�B

corresponds to N (V, t) = n0(t). Introduce N 0(V, t) which is
the perturbation around the pure power law solution:

N V ; tð Þ ¼ n0 tð Þ þ N0 V ; tð Þ ðB5Þ

substituting this into equation (B2) and identifying the
V-dependent and V-independent terms, we obtain the
unperturbed equation

dn�1
0

dt
þ Bxn�1

0 ¼ h0;0 ðB6aÞ

for n0(t), yielding the solution

n�1
0 tð Þ ¼ n�1

0 0ð ÞF�B tð Þ þ h tð Þ ðB6bÞ

(F(t) = P(t)/P(0)) and the following equation for the
perturbation:

@N0 V ; tð Þ
@t

¼� x tð ÞVBþ1 @ V�BN0� 	
@V

� n0 tð Þ

	
�
1 Hj jN0� �

þ N0 Hj1j i
� �

� N0 Hj jN0� �
ðB7Þ

The linear perturbation equation is obtained by
neglecting the quadratic term hN 0jH jN 0i. Since homo-
geneous kernels have simple behaviors for power law
distributions, it is convenient to introduce the Mellin
transform and its inverse:

N0 q; tð Þ ¼
Z1
0

N0 V ; tð ÞVq�1dV

N0 V ; tð Þ ¼ 1

2pi

Zi1þe

�i1þe

N0 q; tð ÞV�qdq

ðB8Þ

where e is any real constant which allows the integrals
to converge. Substituting this into the above and in
the nonlinear term we therefore obtain

@

@t
� x tð Þ qþ Bð Þ þ n0 tð Þ h0;q þ hq;0

� 	
 �

	 N0
q; tð Þ ¼ � 1

2pi
N

0
q; tð Þ

Zi1þe

�i1þe

hq;q0N
0 q0; tð Þdq0 ðB9Þ

Neglecting the right-hand quadratic term and introdu-
cing the relative perturbation wq(t):

wq tð Þ ¼ N0 q; tð Þ
n0 tð Þ ðB10Þ

we obtain the linear perturbation equation for wq(t):

@ logwq

@t
¼ qx tð Þ þ n0 tð Þ h0;0 � h0;q � hq;0

� 	
ðB11Þ

If the amplitude of the relative perturbation decreases in
time, then the perturbation is stable, i.e., if for all time,

@ log wq

�� ��
@t

< 0 ðB12Þ

Since logjwqj = Re(log wq), the condition for stability is

Re qx tð Þ þ n0 tð Þ h0;0 � h0;q � hq;0
� 	� 	

< 0 ðB13aÞ

with n0(t) given by equation (B6b) and with Re(q) = e fixed
but allowing for any value of y = Im(q) (this is because the
Mellin transform involves the integral along a line parallel to
the imaginary axis). It is not hard to show from the definition
of hq,q0 that

maxy Re h0;eþiy þ heþiy;0

� 	� �
¼ h0;e þ he;0

so that a necessary and sufficient condition for the decrease
of wq = jN 0(q, t)/n0(t)j is that

ex tð Þ þ n0 tð Þ h0;0 � h0;e � he;0
� 	

< 0 ðB13bÞ
e ¼ Re qð Þ

Finally, we use the following inequality

h0;0 < h0;e þ he;0
� 	

; e < 1� Bð Þ=2 ðB14Þ

to conclude that for B < 1, that e < 0 is a sufficient condition
for stability is that wq = jN0(q, t)/n0(t)j decreases (since,
assuming expansion, i.e., x > 0, both terms in equation (B13)
will be <0). More precisely, depending on the exact values of
x, n0(t), there will be a critical value ecr with 0 < ecr < (1 �
B)/2; all perturbations in N of the form V�q (perturbations in
n of the form V�1�B�q) will be stable for Re(q) < ecr. When
Re(q) < 0, the perturbations correspond to regularities in V
(dominated by large V), when Re(q) > 0, they correspond to
singularities (dominated by small V).
[60] To summarize, our stability analysis has shown that

under expansion (x > 0) all perturbations nq
0(V, t) = N0(q,

t)V�q�B�1, with systematic excess of large bubbles (Re(q)
< 0) with respect to unperturbed solution n0(t)V

�1�B will be
stable; indeed, stability continues up to 0 < Re(q) = ecr <
(1 � B)/2. For Re(q) > ecr > 0 stability is no longer
guaranteed. These perturbations will grow at least initially
(they could be stabilized by the nonlinear term, or by other
physics) and will correspond to deviations from pure V�1�B

behavior primarily for small enough V.

B2. Large Volume Cutoff as a Perturbation

[61] Since the similarity (scaling) solution with the expo-
nential cutoff is an exact solution, which does indeed
approach a pure power law as t ! 1 (as V*(t) ! 1),
it is clear that the domain of attraction of the pure power law
is quite large. It is quite straightforward to show that the
basin of attraction extends to drastic (step function) cutoffs.
[62] To show that an initial distribution with such a

drastic cutoff does indeed approach a pure power law at
large t, note that such a cutoff distribution can be repre-
sented as a pure power law with the following perturbation:

N0 V ; t ¼ 0ð Þ ¼ �n0 0ð Þ;V > V* 0ð Þ

N0 V ; t ¼ 0ð Þ ¼ 0;V < V* 0ð Þ
ðB15Þ

[63] Therefore, performing the Mellin transform, we
obtain

N0 q; 0ð Þ ¼
Z1
0

N0 V ; 0ð ÞVq�1dV ¼ n0 0ð Þ
q

V*
q

; Re q < 0

¼ �1; Re q > 0 ðB16Þ
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[64] The perturbation is small if the ratio

N0 q; 0ð Þ
n0 0ð Þ ¼ V

*q

q
� 1 ðB17Þ

this smallness criterion can be satisfied for any V* > 1 by
taking Re(q) = e < 0 sufficiently negative. We conclude that
the above perturbation theory is applicable with perturba-
tions having e < 0; hence the drastic cutoff is in the power
law domain of attraction, and solutions will be asymptoti-
cally pure power laws.

B3. Diffusion and Surface Tension

[65] The presence of diffusion adds a term: �m(t)@(Vdn)/
@V (with m(t) > 0 for growth, d = 1/3 ‘‘parabolic’’ growth
law, d = 0, Ostwald ripening, m(t) > 0 is the rate) to the basic
equation while surface tension adds a corresponding term
with d = 2/3 (but with m < 0). If the absolute rate m(t) is
small, we can treat such effects as perturbations. To see this,
consider the equation for the normalized density N (V, t) but
with a diffusion/surface tension term added:

@N V ; tð Þ
@t

¼� x tð ÞVBþ1 @ V�BNð Þ
@V

� N Hj jNh i � m tð ÞVBþ1

	
@ V d�B�1N
� 	

@V
ðB18Þ

If we now take N(V, t) = n0(t)N
0(V, t) and assume that n0(t)

is the power law solution of the unperturbed equation (B6a),
then we obtain

@N0 V ; tð Þ
@t

¼� x tð ÞVBþ1 @ V�BN0� 	
@V

� n0 tð Þ 1 Hj jN0� �
þ N0 Hj j1
� �� �

� n0 tð Þm tð ÞVBþ1 @ V d�B�1
� 	
@V

� m tð ÞVBþ1 @ V d�B�1N0� 	
@V

� N0 Hj jN0� �
ðB19Þ

Since m is taken to be small, for linear perturbation we may
neglect the last two terms which will be second order in
small quantities. The remaining diffusion/surface tension
term

n0 tð Þm tð Þ 1þ B� dð ÞV d�1 ðB20Þ

will only affect the q = �d + 1 Mellin coefficient N0(1 � d,
t); so these effects add an inhomogeneous term to equation
(B9). Ignoring the second-order terms this becomes

@ logwq

@t
¼ x tð Þ 1� dð Þ þ n0 tð Þ h0;0 � h0;1�d � h1�d;0

� 	
þ w�1

q m tð Þ 1� dþ Bð Þ ðB21Þ

Even without the new (far right) term, we can see that the
above is unstable for any 1� d > ecr i.e., for any d < (1 + B)/2
and that the new term with m(t) > 0 (diffusion) makes it more
unstable while m < 0 (surface tension, d = 2/3), will be more
stable. Taking B = 0.8, we see ecr = 0.1, so that terms with d <
0.9 (which include the surface tension and diffusion effects)
will indeed lead to increased instability of the power law, and
since these correspond to q > ecr > 0, these effects will be
most important at small V; indeed, Gaonac’h et al. [1996a,

2004] show that for small V the power behavior does indeed
break down.

Appendix C: Some Empirical and Analytic
Eruption Models

[66] In order to better understand the expansion-coales-
cence processes it is useful to consider analytic solutions,
even if these may seem a little academic. In this appendix,
we examine several.
[67] Recalling F(t) = P(t)/P(0) and using the identity

F�B
d FBn�1

0

� 	
dt

¼ dn�1
0

dt
þ B~xn�1

0

equation (19) may be rewritten

d FBn�1
0

� 	
dt

¼ FBh tð Þ ðC1aÞ

Since F(0) = 1, this implies that

n�1
0 tð Þ ¼ F�B tð Þn�1

0 0ð Þ þ h tð Þ ðC1bÞ

where n0(0) is the initial n0 at the beginning of the process
and the interaction strength h(t) is

h tð Þ ¼ h0;0

Zt
0

F t0ð Þ
F tð Þ

� �B

dt0 ðC1cÞ

Since t simply parameterizes the evolution and the entire
process is of finite duration, for convenience in the rest of
this appendix, we will take t = 0 at the beginning of the
process and t = 1 at the end. Since in the above integral
F(t0)/F(t) < 1, we see that the total interaction strength at
the end of the expansion-coalescence process h(t = 1) is
bounded above by h0,0 for any non contracting process (x >
0). This is easy to see since the expanding process which
gives the largest h(t) clearly is

x tð Þ ¼ x0d tð Þ

F tð Þ ¼ ex0 ; t > 0

h tð Þ ¼ h0;0; t > 0

ðC2Þ

In addition, for reasonable physical models, we expect
h(1) � h0,0 as we show below via examples.
[68] The expansion-coalescence process begins in the

magma chamber when gas-laden magma rises to a level
where exsolution can begin, i.e., where the pressure is low
enough for the magma to be supersaturated and where the
nucleation rate is sufficiently high. We can now consider
several simple expansion-coalescence models and their
corresponding interaction functions h(t).

C1. Pure Coalescence

[69] When x(t) = 0, we obtain pure coalescence, F(t) =
P(0) = 1 and

h tð Þ ¼ h0;0t ðC3Þ

n�1
0 tð Þ ¼ n�1

0 0ð Þ þ h0;0t ðC4Þ

So that h(1) = h0,0 (the theoretical maximum).
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C2. Constant Expansion Rates

[70] In this case we may take

x tð Þ ¼ x0 ¼ const

n�1
0 tð Þ ¼ n�1

0 0ð Þ þ h0;0t
ðC5Þ

this yields

F tð Þ ¼ ex0t

h tð Þ ¼ h0;0

Bx0
1� e�x0t
� 	

¼ h0;0

Bx0
1� F�B
� 	 ðC6Þ

Note that for large total expansion (F � 1), h(1) � h0,0/B.
This yields

n�1
0 Fð Þ ¼ n�1

0 F ¼ 1ð ÞF�B þ jh0;0

B~x0
1� F�B
� 	

ðC7Þ

where we have written n0(F(t)) with the initial n0 =
n0(F = 1). This shows that for large F, n0(F) asymptotes

to the value Bx0/h0,0. The actual time elapsed (including the
detailed changes in collision rate and expansion rate) is thus
irrelevant; it is only the total expansion (F) that matters.

C3. Singular Eruption Models

[71] The above two examples show a general feature: that
we may parameterize the process by the vesicularity ratio F
rather than t, indeed from equation (14) we see that

F
dt
dF

� ��1

¼ x tð Þ ðC8Þ

h Fð Þ ¼ h0;0F
B

ZF
1

F 0B dt
dF 0

� �
dF 0 ¼ h0;0F

B

ZF
1

F 0B�1 dF
0

x
ðC9Þ

We can use this to generate some rather general models in
the following way. Consider a single term in a (generalized)
power expansion for the normalized expansion rate x:

x ¼ AFa ðC10Þ

this implies

t ¼ �F�a

Aa

h Fð Þ ¼ h0;0 F�a � F�Bð Þ
A B� að Þ

ðC11Þ

Similar simple results hold for log terms. We can now use
linear combinations of such terms to create a singular model
for an eruption event. For example,

x ¼ a

FH � FH
0

� 	2 ðC12Þ

Figure C1. (a) Plot of t(F) for F(1) = 160, with F0 = 5,
10, 20, 40, 80 (top to bottom), H = 0.5. (b) Plot of x(F ) for
F(1) = 160, with F0 = 5, 10, 20, 40, 80 (left to right), H =
0.5. (c) Plot of h(F ) for h0,0 = 1 and F(1) = 160, with F0 = 5,
10, 20, 40, 80 (top to bottom on right).

Figure C2. (a) Singular model with F(1) = 100, for t0 =
0.1, 0.3, 0.5, 0.7, 0.9. (b) Corresponding interaction integral
for F(1) = 100, for t0 = 0.1, 0.3, 0.5, 0.7, 0.9.
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This represents a second-order singularity at F = F0 (the
exponent H is added for somewhat greater flexibility but it
doesn’t change the order of singularity at F0). The
parameter A is a normalization constant which determines
the total overall expansion factor. This singular model yields

t Fð Þ ¼ 2

aH
FH
0 1� FH
� 	

� 1

2aH
1� F2H
� 	

þ F2H
0

a
logF

h Fð Þ ¼ h0;0

a

�
F2H � F�Bð Þ
Bþ 2H

� 2FH
0 FH � F�Bð Þ
Bþ H

þ FH
0 1� F�Bð Þ

B

�
ðC13Þ

Figures C1a, C1b, and C1c show the typical evolution of
t(F), x(F), and h(F)/h0,0 for various model parameters. If it
is specified that the total expansion factor is F(1), then a is
determined by the condition t(F(1)) = 1.
[72] From equation (C12) (and Figure C1a) we see that

the smaller F0, the sooner the bulk of the expansion occurs;
that is, the eruption occurs for smaller t. Figure C1c
indicates that the earlier the eruption the larger the overall
effect of the coalescence h(t) (for small F0, it is close to its
theoretical maximum (=h0,0 = 1 in Figure C1c).

C4. Other Singular Models

[73] Continuing with the idea of representing an eruptive
event as a singularity, we can use the following model with
singularity order 1/2 (with respect to t, not F) at t = t0:

x tð Þ ¼ t0 � tj j�1=2

2
ffiffiffiffiffi
t0

p þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t0

p
 !

logF 1ð Þ ðC14Þ

logF tð Þ ¼
Zt
0

x t0ð Þdt0 ¼

ffiffiffiffiffi
t0

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 � t

pffiffiffiffiffi
t0

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t0

p
 !

logF 1ð Þ; t < t0

ffiffiffiffiffi
t0

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
t� t0

pffiffiffiffiffi
t0

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� t0

p
 !

logF 1ð Þ; t > t0

ðC15Þ

(the order 1/2 was chosen because the integrals for x, h are
both analytic). Figures C2a and C2b show the correspond-
ing F(t), h(t) functions for a fixed total expansion factor
(=100) and with the eruption event occurring at different
relative fractions of the overall coalescence process. Once
again, as long as the eruption is fairly early on we find h(t =
1) � h0,0.

[74] Acknowledgment. We acknowledge several very useful discus-
sions with Claude Jaupart and critical comments by Sylvie Vergniolle and
an anonymous referee.
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