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In Part I we considered continuous in scale cascade processes which were spatially continuous; these

are needed for modeling many geofields. In this second part we consider the effects of spatial

discretization; this allows us to make numerical simulations. We show how to correct the simulations

for the leading finite size effects, for both space and (causal) space–time processes. The resulting

processes have significantly improved small scale statistical properties; in practice it can lead to great

savings in computer time and memory usage. In an appendix we give a Mathematica code for the

corresponding space–time simulations.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Geofields typically exhibit strong nonlinear variability with
structures spanning such huge ranges of space–time scales that
classical modeling and statistical approaches which rely on
smoothness, regularity or other homogeneity assumptions are
often impotent. Scaling approaches predicated on intrinsic wide
scale range dynamics therefore provide natural geoscience frame-
works. It is thus hardly surprising that, alternative attempts to
conceptualize and model geophenomena using scaling ideas
already have long histories. In solid earth geophysics, they go
back nearly 100 years to when Perrin (1913) eloquently argued
that the coast of Brittany was nondifferentiable. Later, Steinhaus
(1954) expounded on the nonintegrability (‘‘nonrectifiability’’) of
the river Vistula, Richardson (1961) quantified both aspects using
scaling exponents and Mandelbrot (1967) interpreted the ex-
ponents in terms of fractal dimensions. Indeed, scaling in the
earth’s surface is so prevalent that there are entire scientific
specializations such as river hydrology and geomorphology which
abound in scaling laws of all types (see e.g. Rodriguez-Iturbe and
Rinaldo (1997)). In atmospheric dynamics, scaling approaches go
back to Richardson (1922)’s poetic evocation of cascade processes,
and his proposal that the trajectories of air particles resemble
(fractal) Wierstrasse functions (Richardson, 1926). All the classical
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theories of small scale (isotropic 3D) turbulence (Kolmogorov,
1941; Corrsin, 1951; Obukhov, 1949, 1959; Bolgiano, 1959) as
well as their large scale (isotropic 2-D) counterparts (Kraichnan,
1967; Charney, 1971) are built around scaling – and indeed
cascade – assumptions.

Over the last thirty years there has been great progress in
understanding and modeling scaling systems. For example they
have been generalized from the restrictive classical isotropic
scaling notions associated with self-similar fractals: it has been
found that they can respect anisotropic scaling symmetries in
which the small and large scales are related by scale changing
operations involving not only ‘‘zooms’’ but also squashing and
rotation of structures with scale. In addition, it has become
increasingly clear that the appropriate framework for scaling
mathematical fields (as opposed to scaling geometric sets of
points) is multifractals (rather than fractal sets), and that multi-
plicative cascades are the generic multifractal process. Indeed, the
key solid earth field – the topography – has been found to be
scaling over huge ranges (see Gagnon et al. (2006) and the review,
Lovejoy and Schertzer (2007)) and atmospheric radiances at long
and short wavelengths follow very closely the predictions of
multiplicative cascade models (see Lovejoy et al. (2009) and the
review, Lovejoy and Schertzer (2010)). Today, there is hardly a
geoscience in which there have not been claims of multifractal
statistics—at least over some range of scales. While it may be true
that over finite (usually narrow) ranges of scales, nonfractal
processes can always be concocted that approximate the fields,
since multifractals are the generic scaling process they never-
theless provide parsimonious initial wide scale range models of
of continuous in scale universal multifractals, Part II: Space–time
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geoprocesses. Recently, this has perhaps been stunningly demon-
strated on the most prestigious numerical weather models: Stolle
et al. (2009) have shown that these have nearly exactly multi-
plicative cascade structures (and are hence multifractals) over
almost their entire ranges. It is therefore hardly an exaggeration
to say that cascades and multifractals are ubiquitous in the
geosciences.

Paradoxically, the theoretical and numerical techniques
needed to model cascades are still highly underdeveloped;
indeed, as pointed out in Part I of this series, rather than having
dynamics based on a continuum of scales, they are almost all
unrealistically based on integer powers of discrete scale ratios. In
Part I, we considered the main exception, the fractionally
integrated flux (FIF) process which is a continuous in scale
cascade process. By using a pure truncated power law for the
weighting function g, we showed how we can obtain the correct
(power law) one-point statistics for a multiscaling process el at

resolution l: /eq
lS¼ lKðqÞ with KðqÞ ¼ ðC1=ða�1ÞÞðqa�qÞ where a is

the Levy index and C1 is the codimension of the mean field.
However, when considering such a cascade developed over a fixed
range of scales, the internal statistical structure was not perfectly
scaling. For example, when we calculated the corresponding two-

point correlation function /elðxÞelðx�DxÞS we found that it had

extra multiplicative corrections to the pure power law 9Dx9�K 2ð Þ
;

the leading one was eð�2a2=ðða�1ÞDÞ9Dx9�D=a
and its effect disappeared

very slowly, especially for the larger a values. In this second part,
we consider processes discrete in space and in space–time
necessary for numerical implementations; for simplicity we
concentrate on the D¼1 and 2 dimensional (both casual and
acausal) cases while indicating the straightforward generaliza-
tions to higher D.
2. One-point statistics

2.1. The spatially discrete generator

Consider a 1-D simulation with a total of l points with inner
scale 1; distribute them between �l and l using a discretisation
over odd integer x; this implies that the grid elements are of
intervals of length DX¼2. With l points, changing the grid
spacing from 2 to 2d is the same as changing l to ld so that the
range of scales is the same, there is no advantage of using finer
resolution.

We now repeat the steps indicated in Section 2 Part I for the
continuous in scale acausal processes. The generator G is now

GlðxÞ ¼ C1=a
1 N�1=a

D,f

X
�lrxurl,odd

gðx�xuÞgðxuÞ dxu ð1Þ

(cf. the continuous Eq. (18), Part I). Note that the discrete
normalization constant ND,f is not the same as the continuous
ND, see Eqs. (7) and (8) below. The SCF of G are therefore

KGðqÞ ¼ log/eqGlS¼
C1

a�1
qaN�1

D,f

X
�lrxurl,odd

gðxuÞa ð2Þ

as before, we must choose g such that
P

gaplog l. As discussed
in Part I, in causal processes, g(x, t) must be zero for to0. A simple
way to achieve this is to multiply by a Heaviside function y(t)
(such that y(t)¼1 (tZ0),¼0, (to0)) so that an acausal g(x, t) can
be transformed into the causal function: gc(x, t)¼y(t) g(x, t). In 1-
D (with t in place of x), this is equivalent to summing in Eq. (2)
only over 1rx0rl.
Please cite this article as: Lovejoy, S., Schertzer, D., On the simulation
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2.2. The Euler–Machlaurin sum rule

We first consider the one-point statistics; since we already
have the results for the spatially continuous process it is
convenient to use the Euler–Maclauren formula which for an
arbitrary function f relates integrals and sums (the first order
formula is the familiar ‘‘trapezoidal rule’’)

Xn

j ¼ 0

f ðuþ jDXÞ ¼
1

DX

Z v

u
f ðxÞ dxþ

1

2
ðf ðuÞþ f ðvÞÞþ DX

B2

2!
f uðxÞ v

u

���

þDX3 B4

4!
f 000ðxÞ v

uþ � � �
�� �

; v¼ uþnDX ð3Þ

with the Bernoulli numbers: B2¼1/6, B4¼�1/30, B6¼1/42.
We see that the difference between the sum and integral

involves a series of ‘‘boundary’’ terms. We must use the above
formula with DX¼2 and apply it to f¼ga

X
�lrxol,odd

gðxÞa ¼
1

2

Z �1

�l
gðxÞa dxþ

1

2

Z l

1
gðxÞa dxþ

1

2
ðgð�lÞa

þgð�1Þaþgð1ÞaþgðlÞaÞ

þ
1

6
�
@gðxÞa

@x x ¼ �l
þ
@gðxÞa

@x x ¼ �1

�
@gðxÞa

@x x ¼ 1

����
����

����
�

þ
@gðxÞa

@x x ¼ l

����
�
�O

@3gðxÞa

@x3

 !
ð4Þ

We can now apply the formula to the symmetric acausal case

X
�lrxol,odd

gðxÞa ¼

Z l

1
gðxÞa dxþgð1ÞaþgðlÞa

þ
1

3

@gðxÞa

@x x ¼ l
�
@gðxÞa

@x x ¼ 1

����
�
þO

@3gðxÞa

@x3

 !�����
"

ð5Þ

Taking g as a truncated power law (Eq. (20)) Part I we obtainP
�lrxol,odd xj j�1 ¼ ðbþ log lÞ; b¼ gEþ log 2þl�1

þOðl�2
Þ ð6Þ

(gE¼0.577 y is the Euler number, see Schertzer and Lovejoy,
1987). We see that to obtain the correct leading log l behaviour
the finite difference normalization factor must satisfy

ND,f ¼ND=DX ð7Þ

In D dimensions, the corresponding formula for acausal processes
is clearly

ND,f ¼ND=DXD ð8Þ

In D¼1, we have ND,f¼2/2¼1. When comparing isotropic acausal
processes (with g(x, t)¼g(x, �t)) and the corresponding causal
processes (with gc(x, t)¼y(t) g(x, t)), the domain of integration/
summing is halved so that the difference is a factor of 2, hence
ND,f,c¼ND,f/2.

To understand the effect of the nonlogarithmic terms, write

el,f ,uðxÞ ¼ e
C

1=a
1

P
�lr xur l,odd

gðx�xuÞgðxuÞ

¼ el,uðxÞe
B

/eq
l,f ,uS¼/eqGl,f S¼ e

C1
a�1

P
�lr xur l,odd

g xuð Þa

¼ l
C1
a�1qae

C1
a�1bqa ð9Þ

(using ND,f¼1). The first equation is for the random field, the second is
for the statistics. We have used the subscript ‘‘f’’ for ‘‘finite element’’
and ‘‘u’’ for ‘‘unnormalized’’; el,u is the theoretical unnormalized
(continuous in space) field discussed in Section 2. In the above, B is
random Levy variable corresponding to the b term in Eq. (6)

B¼ C1=a
1 b1=aga
of continuous in scale universal multifractals, Part II: Space–time
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/eqBS¼ e C1=a�1ð Þbqa ð10Þ

where ga is a unit extremal Levy variable index a. We therefore see
that the effect of the nonlogarithmic terms is to multiply the process
by an exponentiated Levy variable so that the result is too variable
(possibly wildly so) depending on C1, a. Alternatively, defining
log l0 ¼ log l+b, we see that the (bare) statistics are those of a process
with scale ratio l0 ¼leb rather than l. Using the large l limiting value
bE1.27, we find l0/l¼3.56.

2.3. Normalization

We must now produce a normalized process from the
unnormalized spatially discrete realization el,f,u. To understand
this, recall that we seek a finite element approximation to the
continuous in space normalized process

/eq
l,nS¼ lK qð Þ; KðqÞ ¼

C1

a�1
ðqa�qÞ

el,n ¼
el,u

/el,uS
ð11Þ

From this (and Eq. (9)), we see that due to the additional eB

factor that the normalization for the spatially discrete e is a bit
more involved than for the spatially continuous e; at the level of
random variables, we have

el,f ,u ¼ el,n/el,uSeB ð12Þ

The multiplication by the generally widely varying eB factor
suggests that one perform a ‘‘microcanonical’’ normalization, i.e.
to separately normalize each realization by its spatial mean

el,f ,n ¼
el,f ,u

el,f ,u
; el,f ,u ¼ l�1

Xl
i ¼ 1

el,f ,uðiÞ ð13Þ

where the sum/dressing is over all the l values of the simulation;
this normalization is the one used in the simulations shown
earlier. Comparing this with the definition of the dressed and
hidden factors in Part I Section 1.3 combining Eqs. (12) and (13)
we find

el,f ,n ¼
el,n

el,l hð Þ

/eq
l,f ,nS¼ lKðqÞ/e�q

l,lðhÞS ð14Þ

i.e. with this easy to perform normalization, we replace the wildly
varying eB factor with the random factor el,l hð Þwhich for qoqD, is
typically of order unity (Schertzer and Lovejoy, 1987). Since
/e�q

l,l hð ÞSo1 for q41, the microcanonically normalized simula-
tion is therefore a bit too calm at the largest scales (as found in the
simulations, see Part I Fig. 5). In any case, none of these issues
affect the internal statistics (such as the autocorrelation) of
realizations of the process. For reference, for all a we have qDZD/
C1 so that for the simulations here with D¼1, C1¼0.2, qDZ5 so
that the moments shown in Part I Figs. 5 and 6 are of too low an
order to be divergent. A further note on the statistics: even
without the divergence of moments there is another source of
singular statistics (‘‘multifractal phase transitions’’, see e.g.
Szépfalusy et al. (1987)), which arises when the statistical
moments are dominated by a single extreme large value.
Schertzer et al. (1993) show that for finite samples with Ns

realizations that the effective dimension of the sample is D+Ds,
Ds¼ log Ns/log l. There is then another critical moment
qs¼((D+Ds)/C1)1/a and if qsoqD then only moments qoqs will
be reliably estimated. For the simulations shown here,
Ds¼ log(200)/log 214

¼0.55 so that with C1¼0.2, for all a, qs42.8.
Please cite this article as: Lovejoy, S., Schertzer, D., On the simulation
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Before comparing this formula with the simulations, there is
one last practical point we should mention. Numerically, it very
advantageous to use transform-based convolution routines and
these are periodic. In all our simulations, we therefore used
periodic convolutions. Since the noise g(x) is statistically invariant
under translations along the x-axis, this will not break the
translational invariance, however it does mean that the left half
of the simulation is statistically dependent on the right half in a
way which is artificially strong (due to the constraint that the
resulting e(x) is periodic). If absolutely needed, zero padding could
be used to avoid the periodicity, or – almost equivalently – only
one half of the simulation could be used. One consequence is that
the periodic el,l hð Þ is somewhat modified with respect to its

nonperiodic value. Note that due to numerical issues the Fourier

filter corresponding to the convolution with 9x9�D=a
is not exactly

9k9�D=au
(where a0 is the auxiliary variable, 1/a0+1/a¼1), so that

the inverse transform of 9k9�D=au
is not strictly positive implying

not strictly extremal noises so that convolutions starting in real
space should be used (rather than simply taking the inverse
transform of pure power law filtered extremal Levy noises).

We can now compare the predictions of Eq. (14) with the
simulations shown in Part I Fig. 5. We see that as expected from
Eq. (14) that the moments are a little below the theoretical lK(q)

values. Also, we see that with the corrections discussed below,
that at least for the lower order moments that the moments are
nearly perfect if we take l-l=2 (as suggested by the periodicity
constraint).
3. The two-point statistics

Following the development for the continuous in scale case,
we have the finite difference estimate of Sf

Sf ðDxÞ ¼
X

�lrodd irl

ðgði�DxÞþgðiÞÞa ð15Þ

(the subscript ‘‘f’’ is to distinguish it from the spatially continuous
S; the sum is over odd indices). There are four boundaries which
give a large contribution: at i¼71, i¼Dx+1, i¼Dx�1, we will
ignore the smaller contributions from i¼7l so that

Sf ðDxÞ �
1

2
SðDxÞþb1þb2þ � � � ð16Þ

(the factor 1/2 is from the 1/DX factor, DX¼2, see Eq. (7)). b1, b2

are the first and second order boundary terms

b1 ¼
1

2
½gð�Dx�1Þþgð�1Þ�aþ

1

2
½gð�Dxþ1Þþgð1Þ�a

þ
1

2
½gð1ÞþgðDx�1Þ�aþ

1

2
½gð1ÞþgðDxþ1Þ�a ð17Þ

b2 ¼
1

6

@½gðx�DxÞþgðxÞ�a

@x x ¼ �1

�
1

6

@½gðx�DxÞþgðxÞ�a

@x x ¼ 1

����
����

þ
1

6

@½gðx�DxÞþgðxÞ�a

@x x ¼ Dx�1

�
1

6

@½gðx�DxÞþgðxÞ�a

@x x ¼ Dxþ1

�����
�����

ð18Þ

In the case where g is even, we obtain

b1 ¼ ½gð1ÞþgðDx�1Þ�aþ½gð1ÞþgðDxþ1Þ�a ð19Þ

We now use

½gð17DxÞþgð1Þ�a � gð1Þaþagð1Þa�1gðDxÞþ � � � ð20Þ

valid for large Dx (to this order, use g 17Dxð Þ � g Dxð Þ). Using the
truncated power law for g (Part I, Eq. (20)), we obtain
of continuous in scale universal multifractals, Part II: Space–time
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(with grid spacing DX¼2)

b1 ¼ 2ð1þaDx�1=aþOðDx�2=aÞÞ ð21Þ

For the b2 term involving the first order derivative, we obtain

b2 ¼�
2a
3

guð1Þðgð1Þa�1
þða�1ÞgðDxÞgð1Þa�2

Þ ð22Þ

b2 ¼
2

3
ð1þða�1ÞDx�1=aþ � � �Þ ð23Þ

Putting all this together, we obtain

Sf ðDxÞ �
1

2
SðDxÞþ 2þ

2

3
þ � � � ::

� �
þ 2aþ 2a�2

3
þ � � �

� �
Dx�1=aþOðDx�2=aÞ

ð24Þ

If we now use Part I Eq. (43) for S(Dx) (with ND¼2 in the place of
ND), we see that aside from unimportant constants and the
leading log terms, we have the leading order Dx�1/a correction

�2a2þ2aþ 2a�2

3
þ � � �

� �
Dx�1=a ð25Þ

we see that the effect of discretization is to somewhat decrease
the magnitude of the correction. However for a¼2 the prefactor is
E�10/3 which is still large (to this order, for a¼1 it is 0).

Combining the above results with those of Appendix A for the
more general g, we obtain the following coefficient of the Dx�1/a

term

2a
Z 1

1
ðgðxÞa�1

�x�1þ1=aÞ dx�a
� �

�2agð1Þa�1
�

2

3
aða�1Þgð1Þa�2guð1Þþ � � �

ð26Þ

4. Removing the Dx�D/a term

4.1. A general method of removing the Dx�D/a term

We have argued that the presence of the slowly decreasing
Dx�D/a term is responsible for significant deviations from pure
scaling of the two-point statistics, and that the spatial discretiza-
tion does not change the problem much. In this section we
propose various small x modifications to the function g(x) that can
eliminate the term.

In Appendix B we show that the Dx�D/a behaviour comes from
a specific term denoted S(1,1) (Eq. (41)). Considering again the
D¼1 case, for the spatially discrete process, the corresponding
term is

Sð1,1Þ
f ¼ 2agðDxÞ

X
1r ioDx=2,i,odd

gðxÞa�1
ð27Þ

with straightforward extensions to dimensions higher than 1. The
factor of 2 between the above and the continuous formula is
because we have used DX¼2. Since gðxÞ � 9x9�1=a

we must apply
the Euler–Maclauren formula to the function 9x91=a�1

which yieldsX
1r ioDx=2,i,odd

gðiÞa�1
¼

X
1r ioDx=2,i,odd

ð9i9�1=a
Þ
a�1
¼ AþDx1=a

�ðBþCDx�1þOðDx�2ÞÞ � AþBDx1=a ð28Þ

where A, B are the constants. The theoretical evaluation of the
constant A is complicated (it comes from the boundary terms at
x¼1) and B¼a2�1�1/a comes from the integral term, C and higher
order Dx�1 terms from the boundary terms at x¼Dx/2. Since
g(Dx)EDx�1/a we see that 2aA is the desired Dx�1/a coefficient.
The values of A and B can be directly numerically obtained as
described Appendix C.

To eliminate the Dx�1/a terms, it now suffices to choose a
function g that deviates for small x from the pure power law form
Please cite this article as: Lovejoy, S., Schertzer, D., On the simulation
processes and finite size corrections. Computers and Geosciences (2
in such a way that the constant A in Eq. (28) vanishes. This can be
achieved by choosing g of the form

gðxÞ ¼ ð1þaf ðxÞÞ1=a�19x9�1=a
ð29Þ

where f(x) is a function that falls off rapidly with x (the exact form
is not important; for the one-point statistics use of Eq. (29) will
add a small constant and small l dependent terms). If we use Eq.
(29) for g(x), we find by summing over the gridX
1r ioDx=2,i,odd

gðxÞa�1
� ðAþBDx1=aþaGÞ ð30Þ

where

G�
X

1r ioDx=2,i,odd

f ðxÞ9x91=a�1
ð31Þ

where we have assumed that f(x) has a rapid enough fall-off, so
that the sum in Eq. (31) is nearly independent of the upper limit
Dx/2 (so that G is a constant). For the constant terms in Eq. (30) to
disappear, it suffices to choose a¼�A/G. The only constraint is
that the resulting g must be strictly positive so that af(x)4�1 for
all x. This method has the advantage that the coefficients A, G can
be estimated directly numerically, that it readily generalizes to
higher dimensions (see Section 4.3) and (as discussed elsewhere)
to anisotropic scaling systems (see for example the simulations on
http://www.physics.mcgill.ca/�gang/multifrac/index.htm). In the
simulations shown here, ‘‘Dx�1/a corrected’’ simulations used the
exponential choice f xð Þ ¼ e� xj j=3. Numerical investigation shows
that the coefficient a is indeed small and as expected is not
sensitive to f(x). Indeed, for a41 that even the power law
f xð Þ ¼ xj j�a works and gives nearly the same estimate of the
parameter a (ranging from 0 to E0.4 as a varies from 1 to 2).

In Part I, we gave extensive analyses of the improvements intro-
duced by this correction method, including the conclusion that at
least for a41, that the method leads to significant improvements in
the statistics, we return to this question in the next two subsections.

4.2. A semi-empirical Dx�1 correction method

This paper has primarily been motivated by the desire to
improve simulations of universal multifractals for a41, since this
apparently corresponds to most of the empirically studied
geofields to date. We traced the main difficulty to the Dx�D/a

terms which in 1-D, for a41 were the leading order corrections.
We see however that when ao1 (or indeed, D¼2 or greater) that
this correction will fall-off faster than Dx�1. Although in the
symmetric causal case the Dx�1 terms are zero by symmetry, in
the general asymmetric (e.g. causal and/or anisotropic) case there
will be potentially important Dx�1 terms. This would necessitate
correcting for the Dx�1 terms. Alternatively, since we saw in Part
I, Figs. 3, 5, 6 that numerically correcting for the Dx�1/a term lead
to large improvements in the simulations for a¼2, that as
expected, the benefit decreased with decreasing a, becoming
negligible for ao1. In reality as a decreases, terms of many orders
will contribute to the small Dx corrections and it is therefore of
interest to develop another method of removing them so that
Sf(Dx) is closer to the theoretically desired pure log behaviour.

One way explored here (see also Appendix D), is to perturb the
pure power law g by a small power law correction

gðxÞ ¼
9x9�1=a

ð1þd xj j�xÞ; 9x9Z1

0; 9x9o1
ð32Þ

where d is a small parameter and x is an exponent to be determined.
By substitution into the formula for Sf(Dx), it can be seen that

Sf ðDxÞ ¼ S0ðDxÞþdS1ðDxÞþOðd2
Þ ð33Þ
of continuous in scale universal multifractals, Part II: Space–time
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Fig. 1. (a) Compensated spectra for the D¼1 causal and acausal cases for a¼2,

C1¼0.2 averaged over 200 realizations each 214 long (cf. the comparable figures in

Part I) both with and without Dx�1/a corrections discussed in text; using code in

Appendix C. In top to bottom order, green is the corrected causal spectrum, blue

uncorrected causal red corrected acausal and the cyan uncorrected acausal

simulations. (b) 1-D/2-D (acausal) comparison for a¼2, C1¼0.2 showing

compensated spectra. Pink and cyan are 1-D acausal, compensated spectra

(respectively, corrected and uncorrected, 200 realizations 214 points; the curves

shown to the lowest wavenumbers). Green and blue curves are, respectively,

corrected, and uncorrected 2-D cases, (each 10 realizations, 29
�29 points). They

have been shifted horizontally so that the one and two D highest wavenumbers are

the same, and they have been shifted in the vertical so that corresponding low

wavenumber parts of spectra roughly overlap (i.e. the corrected with the

corrected, and the uncorrected with the uncorrected). Vertical scale is arbitrary.

Black line is theoretical pure power law spectrum. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article).
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where S0 is the unperturbed Sf(Dx) and the first order correction is of
the form

S1ðDxÞ ¼ A10þA1,�xDx�xþA1,�x�1=aDx�x�1=a

þA1,�1Dx�1þOðDx�x�2=aÞþOðDx�2Þ ð34Þ

We therefore see that taking xE1 leads to

S1ðDxÞ � A1,0þA1,�1Dx�1 ð35Þ

(since for any x there are always Dx�1 terms, there is no benefit to
taking xo1).

Since the constant term is unimportant, we can use this to
improve the simulations by removing the best fit linear function
of Dx�1. To implement this numerically, we determine the best fit
linear regression of Dx�1 to both Sf(Dx)+(2a�2) logDx (i.e. the
deviation from the desired behaviour), as well as to the
numerically determined S1(Dx)

S0ðDxÞþð2a
�2ÞlogDx� A0,0þA0,�1Dx�1 ð36Þ

The ratio of the coefficients of the Dx�1 terms then determines d

d¼�A0,�1=A1,�1 ð37Þ

The regressions to determine A0,0, A0,�1 were done for Dx up to
20 (the region where these corrections were strongest). The
results for the spectra and moments were shown in Part I Figs. 3,
5, 6, respectively. We see that even for the a¼0.8 case there is
some improvement while for a¼0.4, there is virtually no change.
However, for a41, the corrections were almost as successful as
the more theoretically justified removal of the Dx�1/a terms as
discussed in Section 4.1. Close examination of both the spectra
and scale by scale K(q) estimates (Part I, Figs. 3 and 6a) shows that
the correction is slightly too strong for the a¼2 case, that it makes
little difference for the a¼0.4 and 1.6 cases (Part I Figs. 3 and 6b),
but is a slight improvement for the a¼0.8, 1.2, cases (Part I Figs. 3
and 6b). In the a¼1.6 case, the over-correction in the spectrum
for the Dx�1 term is apparently about the same magnitude as the
under correction in the Dx�1/a method caused by the remaining
higher order terms.

4.3. Causal and acausal simulations

Up until now, we have made little reference to the problem of
space–time simulations, noting mostly that to respect causality,
the cascade el(x, t) at time t must be statistically independent of
el(x, t0) for all t04t so that the future does not influence the
present or past (Part I, Section 3.2.1, see also Part I, 3.3). In Section
2.1 above, it was mentioned that the way to ensure this was to
include a Heaviside function Y(t) so that for example an acausal
g(x, t) is transformed into a causal gc(x, t)¼Y(t) g(x, t). We also
noted that if the acausal g is symmetric so that g(x, t)¼g(x, �t)
then the causal normalization constant was simply related to the
acausal constant via: NDf,c¼ND,f/2 (Section 2.2). Aside from this
straightforward normalization issue, the correction method—and
correction constant a in Eq. (29) are unchanged so that there are
very few changes in the numerical implementation; see Appendix
C for the simple Mathematica code. In this subsection we proceed
to evaluate and intercompare the statistical accuracy of the causal
and acausal simulations, as well as the effect of passing from 1-D
to 2-D. Since the Dx�D/a correction method is simple to
implement, works reasonably well and is mathematically well
grounded, we do not consider the Dx�1 method further. Also, to
evaluate the simulations, we only consider the (compensated)
spectra i.e. the q¼2 statistics rather than statistics of all orders.
This is sufficient since we find: (a) that the statistics are more
accurate for the causal case than for the acausal case, (b) as
expected when going from D¼1 to 2 the convergence is
Please cite this article as: Lovejoy, S., Schertzer, D., On the simulation
processes and finite size corrections. Computers and Geosciences (2
improved, (c) we only consider the case a¼2 since the
corresponding corrections are the largest.

Consider first the causal 1-D simulations. Fig. 1a shows that
even without any corrections (blue, 2nd from top) that the causal
simulations have significantly smaller deviations from pure
power law behaviour than the uncorrected acausal simulations
(cyan); indeed they are even comparable to the corrected acausal
spectra. With the Dx�D/a corrections (green, top) we see that the
causal spectrum is nearly perfect. In comparison, the corrected
acausal curve (pink, reproduced from Part I, Fig. 3a) has
significantly larger deviations.

Turning our attention to simulations in 2-D, we recall the
examples of isotropic acausal realizations of the process in Part I,
Figs. 1 and 2b. As discussed in Part I, we expect the corrections to
of continuous in scale universal multifractals, Part II: Space–time
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Fig. 3. Compensated spectra for D¼2 causal simulations for a¼2, C1¼0.2

averaged over 10 realizations each 29
�29 (cf. Fig. 2) both with and without

Dx�D/a corrections; using code in Appendix C. In top to bottom order; green is 1-D

spectrum of Dx�D/a corrected simulations in t direction; blue corresponding

spectra of uncorrected simulations; red 1-D spectrum of Dx�D/a corrected

simulations in x direction and cyan corresponding 1-D spectrum of uncorrected

simulations (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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be smaller for D¼2 when compared to D¼1, Fig. 1b confirms this,
indeed, we see that the uncorrected 2-D (isotropic, i.e. angle
integrated) spectrum is slightly better than the corrected 1-D
spectrum, but in all cases the correction method makes the
spectra significantly closer to the theoretical pure power form.

In practical terms, the improved convergence in 2-D may not
be quite as beneficial as it appears at first sight. For example, after
applying the Dx�D/a correction, we may attempt to eliminate the
remaining biased small scales by degrading the 1-D resolution by
a factor of f1 and the 2-D resolution by a factor of f2 (when
for a¼2, C1¼0.2, Fig. 1b suggests f1E9, f2E3). This implies
simulations with an extra f1 degrees of freedom in 1-D, but an
extra f2

2 degrees of freedom in 2-D. However, the calculation time
T (using fast convolution numerics) is roughly T¼AN (for N¼LD

degrees of freedom in D dimensions with scale ratio L; for
example with a 2.5 GHz laptop, the Mathematica code in
Appendix C yields the constant AE1.5�10�4 s). We thus see
that if f1E f2

2 that the overall calculation time is the same for the
same final number of degrees of freedom.

Turning our attention to causal simulations, an example of a
realization of a causal process is shown in Fig. 2 where – to
emphasize that the simulation is of the temporal evolution of a 1-
D series – we have plotted a sequence of spatial sections. Since
space and time are no longer symmetric, we evaluated compen-
sated 1-D spectra in the spatial and temporal directions
separately; see Fig. 3. We see that the temporal spectra are very
close to those of the 1-D causal processes (Fig. 1a)—for both the
corrected and uncorrected cases (green, blue, respectively).
Similarly, the spectra of the corrected and uncorrected cases in
the spatial direction (pink and cyan, respectively) have much
larger deviations; very close to the acausal 1-D results (Fig. 1a)
and compare with the 2-D acausal spectra (Fig. 1b). We conclude
that the correction method works well independently of the
dimension of the space and that for the causal extensions that
the temporal statistics have significantly smaller deviations. This
is presumably because of the sharp discontinuity introduced by
the Heaviside function which roughens the simulations along the
time axis, this thereby somewhat compensating for the otherwise
overly smooth behaviour.

As a final comment, it might be thought that one could use this
more accurate causal result to produce improved acausal
simulations by taking the product of two statistically independent
causal realizations, one with the direction of time reversed (and
with the C1’s appropriately reduced). However, numerical experi-
mentation shows that this leads to no improvement whatsoever,
so that the Dx�D/a method is much better.
Fig. 2. Evolution of (left right symmetric) 1-D spatial sections, series of a causal

simulation with a¼2, C1¼0.2, each second time interval is shown, and is displaced

by two units in time axis with respect to previous section.

Please cite this article as: Lovejoy, S., Schertzer, D., On the simulation
processes and finite size corrections. Computers and Geosciences (2
5. Conclusions

When nonlinear dynamical systems respect a (possibly
anisotropic) scale invariant symmetry, it is common to observe
multifractal statistics with corresponding underlying (turbulent-
like) fluxes following cascade processes. This has just recently
been strikingly demonstrated both in the case of conventional
global weather models – which display nearly perfect cascade
structures down to their inner dissipation scales (Stolle et al.,
2009) – and in the case of short and long wave satellite measured
radiance fields (Lovejoy et al., 2009; see Lovejoy and Schertzer,
2010 for a review). Similarly, the key solid earth field – the
topography – also accurately shows cascade behaviour down to at
least 40 m (Gagnon et al., 2006). Due to the importance of these
fields in many areas of geoscience, techniques to produce realistic
(continuous in scale) cascade processes are widely needed. It is
therefore at first sight paradoxical that the relatively few attempts
at direct stochastic simulations of cascade processes have almost
invariably been discrete in scale. This implies that power law
scaling only holds for scale ratios which are integer powers of
integers so that for almost all scale ratios there are strong
statistical deviations; these turn out to be associated with the
appearance of unsightly artifacts on random realizations.
Although a visually and theoretically attractive alternative
continuous in scale cascade process with the desired pure power
law scaling was proposed over twenty years ago, their internal
structures had strong ‘‘finite size effects’’ so that convergence to
the theoretical behaviour was often painfully slow.

In Part I of this two part series, we showed that for spatially
isotropic processes (leading to self-similar cascades, to self-
similar multifractals), that the leading contribution to these
corrections was a exp(�Dx�D/a) term multiplying the pure power
law autocorrelation function. In this second part, we examined
the consequences of spatially discretising a continuous in scale
cascade process—finding that it added smaller terms of essen-
tially the same type so that the basic problem was unchanged.
Our next task was therefore to consider various methods of
reducing the bias, the preferred method involving removal of the
Dx�D/a term altogether. Although there are still residual biases
due to the even higher order terms, the method makes a
significant improvement for the empirically significant large a
of continuous in scale universal multifractals, Part II: Space–time
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part of the range. We also considered a semi-empirical correction
method that was somewhat better than the Dx�1/a method for
ao1 as well as a less successful complex singularity method
(Appendix D).

Although we mostly concentrated on the acausal 1-D case, we
showed how to generalize to the higher dimensional isotropic (self-
similar) cascades as well as to the causal simulations needed for
simulating space–time processes; all that was required was the
multiplication by a Heaviside function and a small change in the
normalization coefficients. We found that the corrections for the
temporal statistics in 1-D time or in space–time processes were
significantly less important than for the corresponding spatial
statistics. This was probably because the discontinuities introduced
by the Heaviside function ‘‘roughened’’ the process, partially
compensating for the smoothing associated with the finite size
corrections. While we did not explore further generalizations, all of
these results (including the correction method) can be generalized to
anisotropic scaling, essentially by replacing the fractional integra-
tions defined by convolutions with powers of the usual vector norm
by the corresponding fractional integrations defined by convolutions
with powers of anisotropic scale functions. Investigating these
anisotropic simulations will be the subject of a future publication.
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Appendix A. The Dx�1/a term for general g in 1-D

We have seen that S(Dx) can be expressed as the sum of an
(unimportant) constant, a logarithmic term followed by a Dx�1/a

term which for a pure power law g, can be fairly large. In Section
4, we modified g in order to eliminate this leading correction
term, we therefore seek a formula for more general (but still
symmetric acausal, even) g (c.f. Part I, Eqs. (36) and (37)) only
constrained such that gðxÞ � 9x9�1=a

for large enough 9x9.
The first step is rewrite S as

SðDxÞ ¼ 2

Z Dx=2

1
gðDxÞa 1þ

gðx�DxÞ

gðDxÞ

� �a
þ 1þ

gðxþDxÞ

gðxÞ

� �a� �
dx

þ2

Z l

Dx=2
gðxÞa 1þ

gðxþDxÞ

gðxÞ

� �a
dx

�

Z l

l�Dx
gðxÞa 1þ

gðxþDxÞ

gðxÞ

� �a
dx ð38Þ

and to note that the origin of the Dx�1/a term is in the second
term of a binomial expansion of the first term on the right Sð1ÞðDxÞ

Sð1ÞðDxÞ ¼ 2a
Z Dx=2

1
gðxÞa�1

ðgðDxþxÞþgðDx�xÞÞ dx ð39Þ

To estimate this, we can make a Taylor expansion of
g(Dx+x)+g(Dx�x) about the point Dx to obtain

Sð1ÞðDxÞ ¼ 4agðDxÞ

Z Dx=2

1
gðxÞa�1 dx

þ2agð2ÞðDxÞ

Z Dx=2

1
x2gðxÞa�1 dxþOðgð4ÞðDxÞÞ ð40Þ

where g nð Þ denotes the nth derivative of g. If g is asymptotically
x�1/a (i.e. if gðxÞ � 9x9�1=a

; 9x9b1) then the expansion converges
since x2ng(2n)(x)Ex2n�1 +1/a, and g(2n)(Dx)EDx�2n�1/a. The result
Please cite this article as: Lovejoy, S., Schertzer, D., On the simulation
processes and finite size corrections. Computers and Geosciences (2
is that the upper bounds of the integrals contributes to
(unimportant) constant terms while the lower bounds to terms
of order Dx�2n�1/a.

The contribution to the Dx�1/a term is thus from the first term
of the Taylor expansion

Sð1,1ÞðDxÞ ¼ 4agðDxÞ

Z Dx=2

1
gðxÞa�1 dx ð41Þ

since for large Dx, g(Dx)EDx�1/a this expression can be estimated
using the identities

Sð1,1ÞðDxÞ ¼ 4agðDxÞ

Z Dx=2

1
ðgðxÞa�1

�x�1þ1=aÞ dxþ4a2gðDxÞ
Dx

2

� �1=a
�1

 !

ð42Þ

andZ Dx=2

1
ðgðxÞa�1

�x�1þ1=aÞ dx

¼

Z 1
1
ðgðxÞa�1

�x�1þ1=aÞ dx�

Z 1
Dx=2
ðgðxÞa�1

�x�1þ1=aÞ dx ð43Þ

The first term on the right is a constant, the second of order
Dx�1 +1/a so that obtain

Sð1,1ÞðDxÞ � 4agðDxÞ

Z 1
1
ðgðxÞa�1

�x�1þ1=aÞdx�4a2gðDxÞþB ð44Þ

where B is an unimportant constant. Finally, for large Dx,
g Dxð Þ � Dx

�� ���1=a
so that

Sð1,1Þ � C�1=aDx�1=aþB;

C�1=a ¼ 2a
Z 1

1
ðgðxÞa�1

�x�1þ1=aÞ dx�a
� �

ð45Þ

We can see that for the pure truncated power law case,
g xð Þ ¼ xj j�1=a, the integrand vanishes and we have

C�1=a ¼�2a2 ð46Þ

which is the result we obtained earlier (Part I, Eq. (43) with D¼1).
Appendix B. 2D and higher

B.1. D¼2

In Part I, Section 3, we explicitly treated the D¼1 case but
anticipated the higher dimensional results by writing key
equations with D as a parameter. Consideration of the D¼2 case
justifies this further and demonstrates how to generalize this to
the treatment of higher dimensional isotropic systems. First, for a
D-dimensional vector, in standard vector notation the unnorma-
lized log autocorrelation function is

SðDxÞ ¼

Z
1o 9x 9ol

1þ
gðx�DxÞ

gðxÞ

� �a

gðxÞadDx ð47Þ

As discussed earlier, since are considering isotropic multi-
fractals, gðxÞ ¼ gð9x9Þ so that without loss of generality, we can
take Dx parallel to the x-axis and we can introduce the same basic
transformations of variables as in the 1-D case

r¼
9x9

9x�Dx9
ð48Þ

From geometrical considerations in D¼2, we find that the distance
ratio r is constant on circles radius R centred at (�Rr, 0) where

R¼
rDx

1�r2
ð49Þ
of continuous in scale universal multifractals, Part II: Space–time
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(in higher dimensions, r is constant on (hyper) spheres with the
same R and centre). Rather than using the usual planar polar
coordinates centred at the origin ð9x9,jÞ we can therefore specify a
point in space by polar coordinates centred at (�Rr, 0) with angle
from the x-axis y and with the distance from this centre
parametrized by r—which from Eq. (49) we see is a nonlinear
function of the radius R. In D¼2, we find the following relation
between the coordinates

x¼ 9x9cos j¼ Rðcos y�rÞ

y¼ 9x9sin j¼ R sin y ð50Þ

The region ro1 corresponds to the half plane xoDx/2 whereas the
region r41 corresponds to the half plane x4Dx/2; extensions to
higher dimensional spaces are straightforward.

Now consider expressing the integral Eq. (47) in terms of the
new coordinates. Fig. 4 shows a schematic with the region of
integration shown between the large radius l black circle and the
two small black unit circles (due to the truncation of g). The large
and small blue and pink circles are respectively the largest and
smallest r¼constant circles which can be inscribed within the
region of integration.

To evaluate the integrals, we now take

gðx Þ ¼ 9x 9�D=a
; 9x941;0; 9x9o1; D¼ 2 ð51Þ

and notice from Eq. (47) that the important measure density is
gðxÞadDx. From the transformation of variables (Eq. (50)) and
using ga � x

�� ���D
we find for D¼2

gðxÞad2x ¼
dx dy

ðx2þy2Þ
¼ d log9x9dj¼ dr dy

rð1�r2Þ
ð52Þ

Now consider just the integration over r values corresponding to
circles between in the inner and outer blue and inner and outer
pink circles in the figure (indicated in the figure So , S4 ,
respectively); for these the y integral just gives 2p and we obtain
Scircles Dxð Þ

ScirclesðDxÞ � So þS4 ¼ 2p
Z 1=ð1þDx=lÞ

1=ð1þDxÞ
ð1þrD=aÞa

dr

rð1�r2Þ

þ2p
Z 1=ð1�Dx=lÞ

ðDx�1Þ
ð1þrD=aÞa

dr

rð1�r2Þ
ð53Þ

with D¼2. The difference between Scircles Dxð Þ and S Dxð Þ due to the
mismatch in the upper limits of integration is O(Dx/l) and that
Fig. 4. Schematic showing various regions of integration with large, thick black

circle at radius l; small black circles have radius 1 and are around the origin and

the point (Dx,0); which cutoff off singularities (to avoid clutter, axes have not been

shown: horizontal is x direction, vertical, y direction). Dx is in x direction as shown

and satisfies 1oDxol. So is the set bounded between blue lines with r¼1/(1+Dx)

(small blue circle) and r¼(1+Dx/l) (large blue circle). S4 is the set bounded

between pink circles with r¼(Dx�1) (small pink circle), and r¼1/(1�Dx/l) (large

pink circle) (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article).
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due to mismatches in the lower limits of integration is O(Dx�2),
therefore for our purposes, ScirclesðDxÞ � SðDxÞ.

Finally, we note that the integrand is invariant under the
transformation r-1=r, and we find that – again to within errors of
the order Dx�2 and (Dx/l)�2 – the two integrals in Eq. (53) are in
fact equal so that we finally obtain

SðDxÞ ¼ 2ND

Z 1=ð1þDx=lÞ

Dx�1

ð1þrD=aÞa
dr

rð1�r2Þ
þO

Dx

l

� �
þOðDx�2Þ;

D¼ 2; ND ¼ 2p ð54Þ

where the normalization ND¼2p in D¼2 dimensions. We see that
this is identical to the D¼1 result, Part I Eq. (41) so we can
immediately conclude that the leading correction to the logarith-
mic behaviour is

�
2a2

D
Dx�D=a ð55Þ

and that the overall correction to the correlation function is the
factor

exp �
2a2C1

Dða�1Þ
Dx�D=a

� �
ð56Þ

valid for D¼1, 2; below we argue that it is also valid for D¼3 and
higher dimensions.

B.2. Isotropic D¼3 (and higher) cases

From the 2-D isotropic analysis, it can be seen that in D¼3
(and higher) the same approach based on the distance ratio
transformation of variables can be used (Eq. (49)). In this case, the
(hyper) surfaces of constant distance ratio r are (hyper) spheres,
and the only difference is the form of the D-dimensional measure

density dDx=9x9D
¼ d log9x9 dOD; we saw that in 2D this was

particularly simple. Direct calculation of the basic logarithmic

integration element d log9x9 dOD in 3-D yields (cf. Eq. (52))

d log9x9 dOD ¼
dr

rð1�r2Þ

sin y dy dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr2�2r sin y
p ð57Þ

where y, f are the spherical polar angles of the r¼constant spheres
with respect to the centres of the spheres at (0,0,�Rr); we have

taken the Dx vector parallel to the z-axis. Comparing this to the 2-D

result (Eq. (52)) we see that the basic singularity with respect to r is

the same, but that there is an extra term that depends on y.

However, integrating over all the y, f angles we findZ p

0

Z 2p

0

sin y dy dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þr2�2rsin y
p ¼ 4p¼OD ¼ND; D¼ 3 ð58Þ

(independent of r) so that the 3D isotropic results are identical to
the 2-D isotropic results. The fundamental reason is that the
r¼constant (hyper) surfaces are (hyper) spheres displaced form
the origin by –Rr, the total angle subtended is the same. We can
see that in higher D, the same structure will remain: if we
integrate over the angles in the r¼constant (hyper) spheres,

we will obtain:
R
OD

dDx=9x9D
¼ dr=rð1�r2ÞOD so that using ND¼OD,

we recover Part I, Eq. (23) and find that the SCF (which depends
on ND

�1S Part I, Eq. (27)) is the same.
Appendix C. Mathematica code

The Mathematica code reproduced in Fig. 5 implements the
Dx�D/a correction scheme described in Section 4.1 in both 1D and
2D for causal and acausal processes. Levy generates random
extremal Levy variables attention is paid to avoiding underflows
of continuous in scale universal multifractals, Part II: Space–time
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Fig. 5. Code for producing causal and acausal isotropic 1-D and 2-D universal multifractals corrected for Dx�1/a terms. If switch¼0, the simulation is acausal, otherwise it

is causal. The code Chop[E� ^(-(scal/lcut)^4 /. x_ /; xo�200. �4�200.)] indicates thresholded exponentiation (with small remainders chopped to zero), necessary to

avoid underflows. Extensions to isotropic 3-D simulations are straightforward.
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when exponentiating (important for a). The basic functions epsa,

epsc generate the corrected multifractal acausal, causal
simulations; l is the length of the resulting vector, a, C1 are the
basic parameters. Note that as mentioned in the text, the built-in
function Convolve performs a periodic convolution (no zero
padding was used).

The routine Frace evaluates the sums in Eqs. (30) and (31) by
using the scaling property of the summands. The basic idea is to
replace the sum with upper cutoff Dx/2 (Eqs. (30) and (31)) by an
infinite sum but with a smooth cutoff function h(x)

t1 ¼
X1
i ¼ 1

gðiÞa�1hð2i=DxÞ

t2 ¼
X1
i ¼ 1

gðiÞa�1hð2i=ðrtDxÞÞ ð59Þ
Please cite this article as: Lovejoy, S., Schertzer, D., On the simulation
processes and finite size corrections. Computers and Geosciences (2
Then using the scaling property of g, we obtain

A�
t1r�1=a

t �t2

r�1=a
t �1

ð60Þ

Here we take hðxÞ ¼ expðx�4Þ, rt¼2 (in the code, the symbol "rat").
This has the advantage of being numerically robust (especially
when generalized to higher dimensions and strongly anisotropic
cascades). A similar technique was used to estimate G in Eq. (31).
Appendix D. Complex singularities

The correction terms to the pure logarithmic behaviour of
Sf(Dx) are due to summing/integrating singularities which lie on
the real axis. It is therefore tempting to explore the consequences
of continuous in scale universal multifractals, Part II: Space–time
010), doi:10.1016/j.cageo.2010.07.001
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Fig. 6. Compensated spectra for conservative multifractals a¼1.1, 1.3, y, 1.9

(bottom to top) offset for clarity. Each is average of 20 realizations of 212. Note that

we use the g(x) of the form given in Eq. (63) with u¼p/2, w¼p/(2a) (this is a

convenient, not optimum choice).
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of moving the singularities off the real axis, following for example
the idea of the ‘‘Cauchy’’ wavelet (Holschneider, 1995). The
straightforward application of this idea is to take

gðxÞ ¼ Re½ð1�i9x9Þ�1=a
�; a41 ð61Þ

the Mathematica code of a 2-D version of this method was given
in Schertzer et al. (2002).

More generally, we may consider

gðxÞ ¼ sec
u

a

	 

Re eiu9x9 �

seio

xj j

� �� ��1=a" # p
2
4 uj j40

p4 uþoj j4
p
2

ð62Þ

where the parameters u, o, s are constrained so that g is positive
for xj jZ1. It turns out that this is only possible for a41 so that
this ‘‘complex singularity’’ method does not work for ao1
(various extensions for ao1 can be made but they are proble-
matic due to the rapid variation of the exponent 1/a which is 41;
these extensions did not lead to large improvements). Note that
the normalization in the above has been chosen so that to leading
order g � xj j�1=a

gðxÞ ¼ 9x9�1=a
1þ

cos o�u=a
� �

acos u=a
� � s

9x9

 !
þO

s

9x9

 !2
0
@

1
A; 9x9Z1

ð63Þ

We see that this correction to the pure power law xj j�1=ais of
the type discussed in the Appendix D with x¼1, i.e. it leads to
Dx�1 corrections. In fact, detailed analysis shows that for S(Dx)
the sum of the Dx�1/a and Dx�1 terms are

�4a2þs
cosðo�u=aÞ

cos u=a

� �
4a�8ð1þ2�1=a

ÞDx1=a�1
h i� 

Dx�1=a ð64Þ

The problem is that the quantity in the square bracket is only a
function of a and changes sign at a fairly small cross-over point
Dxc. For example in the main range of interest 1.5oao2 we have
10oDxco3. From the formula, one can see that the three free
Please cite this article as: Lovejoy, S., Schertzer, D., On the simulation
processes and finite size corrections. Computers and Geosciences (2
‘‘shape’’ parameters s, o, u simply modulate this ‘‘sliding’’ term so
that there will always be a sizeable combined Dx�1/a, Dx�1

correction. A simplified form of this method was given in
(Schertzer et al., 2002)—and as can be seen in Fig. 6 it does
improve over the pure truncated singularity results (especially for
a near 2). However, the method of Section 4.1 which just removes
the Dx�1/a term without introducing a new Dx�1 term is
preferable.
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