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Abstract. We have carried out in-depth analyses of boundary-layer wind velocity data within
a universal multifractal (UM) framework. Within the UM framework the statistics of a given
field are characterised with the help of the three parameters a, C; and H. With these three
parameters one fully describes the wind velocity fields up to and including the order gp after
which the divergence of statistical moments intervenes. Studies at different sites have shown
that the parameter o — the multifractality index — of the horizontal and vertical shears of the
horizontal wind remains fairly constant at approximately 1.7. In this study we show how the
two remaining parameters C1 and H vary for two very different sites/datasets and discuss what
the consequences of this variability are for the fluctuations of the torque.

1. Introduction

Modern wind turbines operate in the near-surface part of the atmospheric boundary-layer i.e.
between 50 to 200m above ground level. An improved understanding of turbulence-induced
complexities inherent in this region therefore holds central importance for the wind energy
community ([9] and [10]). To understand such complexities, accurate wind measurements at
these heights require expensive and non-traditional instrumentation. This has led to insufficient
amounts of adequate experimental data. At present, wind speed observations at 10m heights
from meteorological networks are used in conjunction with the standard similarity theory ([20]).
The use of such methods does not fully represent the complexity of the vertical profile of the
wind.

Within the so called surface-layer there exist highly complex three-dimensional time-
dependent turbulent fields involving multi-scale structures whose non-linear interactions and
statistics evolve with the turbulence generation mechanism. Moreover, these turbulent structures
change drastically when generated mostly by buoyancy forces compared to those generated by
wind shear (see [18]). This is partially in agreement with the (isotropic) scaling ‘buoyancy
sub-range’ hypothesised by Bolgiano-Obukhov ([3, 22]) hereafter referred to as BO.

In addition to the complexities involved in changing turbulence generation mechanisms
further complexities arise when inhomogeneous terrains are involved. To take advantage of
the wind speed-up induced by eddies forced up over a hill, turbines are frequently installed on
hilltops. This is done even though there is only a limited amount of knowledge concerning the
mechanisms responsible for the complex fluid dynamics that occur on the upwind side of the
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hill ([11]). What’s more, if the upwind side of the hill contains tall vegetation the turbulent
structures and atmospheric stability will be even further modified ([5]).

Removing the effects of a complex terrain i.e. when the surface satisfies a horizontally
homogeneous terrain assumption, does not make the problem much simpler. A low-level jet
phenomena occurring between 50 to 400m can also cause reason for concern ([1, 2]). In
summary, to establish a reference of the observable space-time variability of wind-inflow events,
in particular of extreme wind speed gusts, very detailed observations need to be made in a
variety of locations and situations.

The wind energy community defines as ‘extreme’, those wind-inflow events, that can
potentially produce, adverse, damaging impacts on modern wind turbines (see [9] and [10] for
a review). This includes events such as: persistent wind gusts, rapid changes in wind direction,
and atmospheric coherent structures; events that are likely to generate critical loads on wind
turbines. If these events occur too frequently the wind turbine will prematurely fatigue. It
is thus of vital importance that the (statistical) predictions of the extreme wind-inflow events
are improved. Improved predictions of the wind turbine loads will help to develop advanced
generator torque controls, thus minimising the potential damage caused by extreme wind events.

The significance of turbulence intensity on the optimal torque control gain for different time
scales was investigated in [12]. The so called ‘turbulence intensity’, deeply rooted in the Reynolds
decomposition, is defined as the standard deviation of the wind speed, normalised by the mean
wind speed over a given interval of time. Within the wind energy community this time interval
is typically from 10 minutes to one hour. Bearing in mind an active torque control must be
responsive down to time scales comparable to the transition time of a few seconds — in order to
mitigate the impact of extreme events — it is unlikely the study of such coarse time-scales could be
truly representative of the variability in the system. Moreover, because the turbulence intensity
is defined through the mean and therefore framework dependent velocity, the normalisation does
not respect Galilean invariance. A tool that has been fundamental in the understanding of the
multi-scale structures in turbulence is ironically lost in a term claiming to be that which it least
describes. And yet, in spite of these facets, the turbulence intensity is still widely used as a
classical measure of the ‘gustiness’ of the wind.

In light of these problems (and opportunities), current atmospheric and therefore torque
measurements can be analysed using modern statistical methods. Statistical methods that are
appropriate to the study of events considered to be extreme by the wind energy community. This
paper argues that the current focus of research in wind resource assessment should be devoted
to the multifractal modelling of atmospheric turbulence. A model that, instead of performing
scale-by-scale developments in the design of separate features of a wind turbine, aims to integrate
knowledge across the spatio-temporal scales.

Multifractals are space or space-time fields that have scale invariant structures at all scales.
Their power law statistics therefore do not depend on the scale of observation. This allows us
to understand and to model extremely variable space-time fields over a wide range of scales. At
present one would expect the wind energy community to go beyond the Reynolds decomposition.
This means taking into account the fundamental problem of intermittency and addressing the
fact that the so-called ‘mean’ wind is frame dependent.

2. Intermittency And The Physics Of Extremes

Intermittency means that the activity of a process is confined to smaller and smaller fractions
of the available space-time domain when observed at higher and higher resolutions. We
define the resolution, A, as the ratio of the largest scale, L, and the reference scale, ¢ (\ is
therefore dimensionless). Examples of intermittency can easily be observed in wind farm wind
velocity data. Figure 1 illustrates a twenty-second time-series of the wind velocity fluctuations,
Aug = ug(t+7) —uz(t) (i-e., the velocity fluctuations along the horizontal z-axis), from Corsica
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(France) with A = 200. The velocity increments show a highly variable process with sporadically
occurring extreme values. Moreover, because the flux of energy at a given ratio of scales, ¢y, is
proportional to the third power of the wind velocity increment, will vary by orders of magnitude
in time and in space. The highest values of the flux at any given scale relative to the mean,
increase with increasing Reynolds number. These values could easily therefore be of an order
fifteen times greater than the average energy flux in laboratory scale flows and fifty times that
of the average energy flux in atmospheric flows.
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Figure 1: Twenty second time-series of wind velocity increments for the horizontal u,-component
of the Corsica dataset. The sporadic nature of the large fluctuations is characteristic of an
intermittent process.
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Figure 2: Log-log plot of the probability of exceedance, P(Au, > s), of the (normalised) velocity
increments, Au,, of the twenty second time-series in figure 1. The slope of the dashed line is 6 i.e.
gp = 6. This means velocity increment statistics above an order of 6 are random, i.e., statistical
moments of order larger than 6 are no longer numbers, but random variables that fluctuate with
samples; there is no longer convergence to a given number (the theoretical statistical moment)
with increasing sample size.

The irregular nature of the large fluctuations characteristic of an intermittent process will
often result in the divergence of statistical moments (see figure 2). The divergence of statistical
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moments of a random variable correspond to a ‘hyperbolic’ (algebraic) fall-off of the probability
distribution tail
P(Aug > s) = s = (Aul) =00, ¢> qp (1)

where s is a threshold of intensity with a tail exponent of critical order qp. With respect
to the scaling moment function discussed below, the critical order ¢p > 1 is the solution of
K(gp;1) = (gp — 1)D. The exponent characterises the relative frequency of extreme events
i.e. extremes are more frequent when the exponent gp is smaller. This statistical behaviour
is a consequence of the fact that the sum of the contributions is dominated by the strongest
contribution; rare events have a dominant contribution ([23]). For the statistical moments of
order ¢ < ¢p the wind velocity increments correspond to a non-linear form of the structure-
function exponent ((q) = ¢/3 — K(¢;1/3). The scaling moment function K (q;1/3) characterises
the intermittency of the velocity field.

3. Multifractal Behaviour Of Wind Velocity Shears

Over the past two years we have carried out two in-depth analyses of boundary-layer wind
velocity data within a universal multifractal (UM) framework [23]. In a very general manner,
multifractals are space-time fields that have structures at all scales. The wind velocity field is
turbulent and strongly variable over a wide range of scales. The turbulence in the atmosphere
is produced by an outer force, giving rise to kinetic energy at large scales, transferred to smaller
scales without dissipation until the terms of viscosity can no longer be neglected. Then the
conservative energy flux can be modelled in a multiplicative way from one scale to the next
smaller scale, while at the same time becoming more and more intermittent. The small scale
limit of such multiplicative cascade gives rise to a multifractal field, €, whose statistical moments
are defined by a non-linear scaling moment function

(1) m NE(@D), (2)
Within this framework we consider that the wind shears scale as

Auy L 4N H, (3)

where £ denotes equal in distribution, H is a scaling exponent and a is the power of the flux.
Whereas the energy flux is a conservative quantity, which means that its statistical average is
scale independent, the scaling exponent H measures the non-conservativeness of the velocity
field. Moreover, depending on whether the energy flux or the force variance flux is conserved
one may consider that the buoyancy force variance flux, ¢, plays the same role as the energy
flux, €, in 3D turbulence but only along the vertical:

Au(Az) L (e(Az))/3AzY3 and Au(Az) £ (4(A2) /A, (4)

Within the UM framework the statistical moments of a given field are characterised with the
help of a limited number of parameters: a, C1, a and H. For a conservative field (H = 0) the
scaling moment function reads as

Cy
a—1

K(q;a) = a® (¢" —q) (5)
for ¢ < gp. In order to estimate the parameters a and C; we use the double trace moment
method ([16] and [24] for a review). When the origin of the flux and hence its power, a,
remains unknown, the estimate of C; on velocity fluctuations absorbs the pre-factor and hence
C1 becomes slightly a-dependent.
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Figure 3: Plots of averaged u,-component wind velocity spectra (F,(w)) at a 43m height versus
the normalised frequency, w. The frequency is normalised such that w = 2% /¢, = \/0.1s, where
l, =2"x0.1sforn € [0 : N]and N = 19, 25 and 14 for (a), (b) and (c) respectively. (a) Spectra,
E,(w), for meteorological varying wind directions (see text) shifted vertically for clarity from
bottom to top; (b) The spectra assumed to have the least influence from the turbine (the second
red plot) is compared with even lower frequency spectra achieved by concatenating each daily
sample into a larger continuous file. The largest concatenation consists of about 100 files giving
a maximum ratio of scales, A = 22° (blue). The higher frequencies of the concatenated files have
been removed to give a continuously scaling appearance; (¢) Inversely each daily sample can be
split into sub-samples and averaged in order to get smoother scaling over the higher frequencies.
The slope of the line of best fit is 1.35.
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The non-conservativeness parameter H is estimated through spectral analysis. The Fourier
transform of the second-order-moment structure function yields the energy spectrum E(w) o w?,
where the scaling exponent § = 2H 4+ 1 — K(2;a). Note, using the first order structure-function
will give the same result provided the same ranges of scales are used in the regression procedure.
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Figure 4: (a) Ensemble average of trace moments for ¢ = 1.5 and logn € [—6 : 2]; (b) resulting
double trace moment curve; (c) the local estimate & = Alog K(q,n)/Alogn, of a. The trace
moments are estimated on the energy flux over the mid-frequency sub-range (the green plot from
figure 3b) of the Corsica dataset. The parameters over these time-scales are: a = 1.67,Cy = 0.56
and H = 0.64.
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Figure 5: Distribution of UM parameters a (a) and C (b) estimated on the energy flux of the
Corsica dataset over the frequencies logyw € [5 : 12]. Estimates of & = 2 and the corresponding
C1s have been removed leaving a total of 14 samples from 80.

Figure 3 displays log-log plots of the averaged wu,-component wind velocity spectra at 43m
from the Corsica dataset. The Corsica dataset consists of high-resolution (10Hz) ultrasonic wind
anemometer data taken over six-months. The measurements were taken at 22, 23 and 43m above
the ground in a wind farm test site subject to complex terrain and buoyancy forces from the
nearby sea. Very often, as in the Corsica dataset, only time-series measurements of the velocity
are available from an anemometer in a fixed position r say. By Taylor’s frozen turbulence
hypothesis ([26]) we can consider uz(x,t 4+ 7) = uy(z — UT,t), where U is the mean (advecting)
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wind. Hence, the spectral exponent is still expected to be close to the Kolmogorov-Obukhov
(KO) inertial range 5/3s value.

Figure 3a shows the average (over ten samples for each mean direction) of spectra for
meteorological wind directions, O, = 9, 35, 62, 86, 116, 134, 162, 188, 210, 238, 260 and
281 degrees. The direction, Oy, is where the wind is coming from with respect to true North
e.g. 0°is North, 90° is East etc. Due to the effects resulting from the wakes of the turbine it
was important to find a control sample from which to observe undisturbed scaling behaviour.
Based on the spectra with the least amount of fluttering i.e. the least influence from the turbine
(see figure 3 for details), the samples are then compared with even lower frequency spectra (see
[7]). This is achieved by concatenating each individual sample (measured continuously over a
day) into a larger continuous file. The largest concatenation consists of about 100 files giving a
maximum ratio of scales, A = 25 (figure 3b blue). The higher frequencies of the concatenated
files have been removed to give a continuously scaling appearance.

Based on the pseudo-continuously scaling plot we can see there exist three distinct scaling
sub-ranges. Over the lowest frequencies (log, w € [0 : 5]) of figure 3b we have a scaling exponent
that is comparable with low frequency ‘macro’ weather (see [17]). This is then adjoined by an
apparent BO scaling region over the frequencies log, w € [5 : 12]. And finally, for the frequencies
logy w € [12 : 25] we observe something close to KO scaling. Over this high frequency KO scaling
sub-range the spectra are fairly noisy. We can improve the statistics over the higher frequencies
in an inverse fashion to the concatenation for very low frequencies. That is, each daily sample
can be split into sub-samples and the resulting spectra then averaged. Figure 3c displays the
result of this procedure.

Figures 4a, b and c show: the trace moments for ¢ = 1.5 and logn € [—6 : 2], the resulting
double trace moment curve and the local estimate (&) of «, all estimated on the energy flux
over the mid-frequency sub-range (logyw € [5 : 12], see 3b) of the Corsica dataset. The trace
moments show the data scale well if the ensemble average are used. This gives an extended
range of logn i.e. logn € [-3 : —1] over which « is constant. The corresponding UM parameters
are = 1.67 and C; = 0.56. Over the high-frequency range o = 1.66 and C; = 0.23. Using
equation 5 we get H = 0.64 over the mid-frequency range and H = 0.23 over the high-frequency
range, with intermittency corrections K(2;1/3) = 0.16 and 0.06 respectively (see equation 5).

Because the ensemble averaged trace moments give a more stable result we do not have error
bars on the estimates. Figure 5 gives an idea of the dispersion of the individual estimates of the
UM parameters.

Figure 6a displays a log-log plot of the averaged horizontal u,-component spectra at 50m
from the Growian dataset. The Growian experiment in Germany consisted of an array of
cup anemometers recording horizontal wind speeds at 2.5Hz [15]. The array formed a grid of
approximately 75 by 100m, with the lowest point being at 50m. This was comparable, in part,
to the heights of the measurements taken in Corsica. However, due to the spatial distribution of
the measurements, unlike in Corsica, we were able to test if the scaling laws were valid in space
and in time [26]. For the Growian dataset the wind speed and direction are provided and the
corresponding horizontal wind vectors are decomposed such that u, = u-cosf and u, = u-sin6.
For this study we selected a system of coordinates such that (u,) = 0 in order to impose ‘mirror
symmetry’ as suggested in ([13]).

The velocity spectra exhibit scaling over two sub-ranges: approximately log,w € [1 : 7] and
[7:10]. Over the lower frequency sub-range there is a scaling exponent § = 1.2. Over the higher
frequency sub-range the scaling exponent falls closer to homogeneous KO scaling with § = 1.7.
The UM parameters over both low and high frequencies are the same i.e.: a ~ 1.8 and (' ~ 0.7.
This gives an intermittency correction K(2;1/3) = 0.18 and therefore H = 0.19 and 0.44 over
low and high-frequency sub-ranges respectively. The scaling of the spectra is consistent with
that observed in [14] in which a -1 energy production scaling sub-range is adjoined by a KO
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scaling sub-range. Although this scaling behaviour is observable close to the ground we find with
increasing height (figure 6b) the processes become mixed and the scaling exponents deviate from
the two predicted adjoining sub-ranges.
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Figure 6: (a) Log-log plot of average horizontal wind speed spectra, E, (w), at 50m from
the Growian dataset. The frequency is normalised such that w = 2V /¢, = X\/0.4s, where
0, = 2" x0.4s for n € [0: N]. The spectral slopes (black solid lines) are 1.2 over low frequencies
(logyw € [1:7]) and 1.7 is over high frequencies (logyw € [7 : 10]); (b) Spectra of E,, (w) at 50,
75, 100, 125 and 150m (from bottom to top [shifted for clarity]). Corresponding spectral slopes
over higher frequencies are: 1.77, 1.58, 1.64, 1.56 and 1.51, and over lower frequencies are: 1.12,
1.24, 1.25, 1.28 and 1.39.

4. Scaling Anisotropy And The Implications For The Torque Fluctuations

4.1. Scaling Anisotropy

The Generalised Scale Invariance (GSI) approach posits scale invariance (scaling) as the main
symmetry and then considers the remaining non-trivial symmetries. These symmetries are
generally no longer isotropic (see [25] for details). The anisotropy exponent, H., measures the
deviation of scaling laws (self-similarity) from isotropy between two directions. For example,
when taking the horizontal and vertical shears of the horizontal wind, H, = Hp/H, =
C1,h/C1o = 5/9. The subscripts h and v correspond to two different scaling relations (equation
4). This corresponds to the multifractal 23/9-dimensional turbulence model.

When using time-series measurements, the dominant role of the vertical motion of large scale
atmospheric structures may explain (e.g., [7]) why BO scaling becomes apparent over the range
of corresponding frequencies. For the Corisca dataset we find that Hy/H, = 0.23/0.64 = 0.36
and C p,/C1» = 0.22/0.56 = 0.39 which thus (indirectly) validates the anisotropic model of the
wind shears (although with a lower anisotropy exponent H, = 0.4). For the Growian dataset,
since the co-dimension remains the same for all timescales when (u,) = 0, a much simpler model
can be used in which only a modification of H is required. Indeed, the wind shears become
about 0.43 times (i.e., H, = 0.19/0.44) less convoluted over low frequencies. Note, the test of
the ratio of scaling exponents has been performed over different scales for the two datasets. We
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are unable to directly compare the two datasets due to the shorter ratio of scales in the Growian
dataset. If we look at similar smaller scales between the two datasets, i.e., figures 3 and 6 their
scaling properties are indeed comparable in that a small-scale KO range is followed by larger
scale -1 scaling law.

4.2. The Torque Fluctuations

The rotor torque for a wind turbine is given by the cross product of the thrust force F' and the
(gyration) radius of the blade r, i.e. F' x r. This implies that for unit mass, the torque, @, and
its time fluctuations, AQ(At) = Q(t + At) — Q(t), both have the dimensionality of a velocity
squared. If furthermore AQ depends mainly on the velocity fluctuations Awu, as suggested by
[21], and has no characteristic intensity, then:

IAQ(AL)] £ AAU2(At) (6)

where A is a given dimensionless constant. Moreover, by equations 4a and 4b, |[AQ| x g2/3¢2/3
and |AQ| = ¢?/5¢5/5. Using the UM parameters estimated from the two sites we can then
simulate the torque fluctuations.

Figure 7: Two-dimensional (scalar) simulations of velocity fluctuations, Au, for a ratio of
scales A = 2%, Plots (a) and (b) are simulated using the Growian high and mid-frequency
UM parameter estimates for the energy flux: respectively a = 1.7, C; . = 0.7 and H = 0.44 and
H = 0.19. The codimension used to simulate the velocity (using Cj Ay = C1(1/3)%) is then
Ci Ay = 0.097.

Equation 6 shows that the torque fluctuations have the same multifractality parameter, «,
as the velocity fluctuations, however, the non-conservativeness parameter increases two-fold.
The mean co-dimension C] is modified by the pre-factor (2a)®. Figures 7 and 8 display the
(dimensionless) UM velocity fields together with examples of resulting torque fluctuations (figure
9). Figures 7a and 8a correspond to the velocity fluctuations resulting from an intermittent KO
scaling velocity sub-range followed by a smoother sub-range (possibly a -1 power law energy
production sub-range, see figure 7b) respectively. Note that the deviations from the predicted
scaling exponents in both cases suggests the processes are more complex, possibly mixed. Given
the vertical scales in both plots are the same we can consider that both processes result in
similarly strong variability of the torque fluctuations, while the velocity increment variability
is fully compatible with that displayed by figure 1. Figure 7b corresponds to a velocity field
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resulting from an adjoining more convoluted sub-range predicted to follow an energy production
sub-range. Figure 8b possibly corresponds to a BO process.

Comparing each of the three processes from the simulations: figures 7a and 8a for a
Kolmogorov-Obukhov process, figure 7b for a -1 energy production process and 8b for a
Bolgiano-Obukhov process, we can see the type of process is very important for quantifying the
fluctuations. From the estimates of C; and H we know the processes are likely mixed between
an 11/5s and a 5/3s power law with intermittency corrections. We can therefore hypothesise
that it is the mixing of such processes that gives the deviation of H, from the predicted 5/9s.

Figure 8: Two-dimensional (scalar) simulations of velocity fluctuations, Aw, for a ratio of scales
A = 28 Plots (a) and (b) are simulated using the Corsica high and lower-frequency UM
parameter estimates for the energy flux: respectively a = 1.8, C1 = 0.23 and H = 0.23;
and C1 = 0.56 and H = 0.64. The codimensions used to simulate the velocity are then
C1,Au = 0.036 and C1 Ay = 0.086.
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Figure 9: Time-series simulations of the torque fluctuations, AQ, for a ratio of scales A = 25.
Plots (a) and (b) are simulated using the high-frequency UM parameter estimates for the Corisca
and Growian datasets. For the Corsica dataset o = 1.8, C1 aog = 0.12 and H = 0.46; For the
Growian dataset o = 1.7, C1 aog = 0.34 and H = 0.88. Similalry the codimensions of the torque
are computed from Cy ag = C1,(2/3), the Hurst parameter is simply twice that estimated for
the velocity.
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The drastic qualitative difference of the variability displayed by figures 8a to 8d is mainly due
to the difference in value of the exponents H. Indeed, its main role is to smooth out the field by
precisely decreasing the field singularities by —H, i.e. smoothing the spikes at resolution A by
a factor A, while other UM parameters remain rather similar. This corresponds to a damping
factor of 289 ~ 27 = 128, i.e. two orders of magnitudes, for figure 8b with respect to figure 8a.
Finally, figures 9a and 8b display the (dimensionless) UM torque fluctuations resulting from the
scaling of velocity fields displayed in figures 7a and 8a.

5. Concluding Remarks

Casting our minds back to figure 3a, for directions influenced by wind turbine wakes, there is
a highly intermittent sub-range with a smoother spectral slope than KO that is followed by a
less intermittent KO scaling sub-range (see [7] for more details). This suggests that there is an
adjoining (high-frequency) range of time and therefore length-scales in which the strong velocity
and therefore torque fluctuations can be smoothed depending on the process. The quantification
of the effect of smoothing for different processes can be estimated with the help of the factor
AH for processes having rather similar other UM parameters. This reduction factor is also
relevant for the estimation of the fatigue.

Finally, the probability tails of the Corsica dataset showed that the critical order above which
statistical moments diverge is about gp = 6. One of the consequences of the second order relation
between the torque and the velocity increments is that for the torque fluctuations the critical
exponent is therefore twice smaller than that of the velocity fluctuations. This implies that for
orders larger than three the empirical statistics will display larger and larger fluctuations with
increasing sample size. Consequently standard statistical methods of analysis will underestimate
the extremes.
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