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Pre-publication	GRL	supplement	
This	is	the	pre-publication	version	of	the	supplementary	material	to	the	paper:	
Lovejoy,	 S.,	 L.	 del	 Rio	 Amador,	 R.	 Hébert,	 and	 I.	 de	 Lima,	 2016:	 Giant	 natural	
fluctuation	 models	 and	 anthropogenic	 warming,	 Geophys.	 Res.	 Lett.,	
43,		doi:10.1002/2016GL070428.	
It	focuses	on	how	to	win	the	$100,000	contest.	

Supplement	

1. Introduction	

1.1	Data	description	

	

In	 this	 supplement	we	 give	 a	more	 complete	 analysis	 and	 discussion	 of	 the	

models	discussed	in	the	main	text	as	well	as	several	contest	details.	

On	Keenan’s	contest	website	(http:	//	www.informath.org/Contest1000.htm),	

he	gives	the	following	explanation	of	the	contest:	

	

"The	file	Series1000.txt	contains	1000	simulated	time	series.	Each	series	

has	length	135:	the	same	length	as	that	of	the	most	commonly	studied	series	of	

global	temperatures	(which	span	1880-2014).	The	1000	series	were	generated	

as	 follows.	 First,	 1000	 random	 series	 were	 obtained	 (for	 more	 details,	 see	

below).	Then,	 some	of	 those	 series	were	 randomly	 selected	 and	had	 a	 trend	

added	to	them.	Each	added	trend	was	either	1oC/century	or	-1oC/century.	For	
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comparison,	a	trend	of	1oC/century	is	greater	than	the	trend	that	is	claimed	for	

global	temperatures.	A	prize	of	$100,000	(one	hundred	thousand	U.S.	dollars)	

will	 be	 awarded	 to	 the	 first	 person	 who	 submits	 an	 entry	 that	 correctly	

identifies	at	least	900	series:	which	series	were	generated	without	a	trend	and	

which	were	generated	with	a	trend."		

	

Significant	additional	details	are:		

	

"During	 the	 generation	 of	 the	 1000	 series,	 ...	 the	 initial	 1000	 random	

series	were	obtained	via	a	trendless	statistical	model,	which	was	fit	to	a	series	

of	 global	 temperatures.	 The	 trendless	 statistical	 model	 is	 preferable	 to	 the	

trending	 statistical	 model	 relied	 upon	 by	 the	 IPCC,	 when	 the	 models	 are	

compared	via	relative	likelihood.)	"		

	

Although	the	contest	started	on	Nov.	18,	2015,	there	were	problems	so	that	within	

only	a	few	days,	Keenan	had	been	forced	to	retract	his	original	series	and	reimburse	

the	 applicants.	 	 The	 contest	was	 relaunched	on	Nov.	 22	 stating:	 “the	prize	will	 be	

awarded	to	anyone	who	can	demonstrate,	via	statistical	analysis,	that	the	increase	in	

global	 temperatures	 is	 probably	 not	 due	 to	 random	 natural	 variation”.		

Unfortunately	 (!),	 at	 an	 unknown	 later	 date	 (but	 after	 Nov.	 30th;	 see	 the	 Corbett	

Report	 posted	 on	 November	 30	 2015	 and	 available	 at:	

https://www.youtube.com/watch?v=YFiCKBgA_eQ),	 this	original	winning	 criterion	

was	quietly	modified	so	that	the	statement	is	now	the	quite	different:	“Anyone	who	
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can	demonstrate,	via	statistical	analysis	that	the	increase	in	global	temperatures	is	

probably	not	due	to	random	natural	variation	should	be	able	to	win	the	contest”.			

1.2	Gelman'	s	contribution	

Before	taking	a	closer	look	at	the	contest,	we	browsed	the	internet	and	found	a	

post	 by	 Andrew	 Gelman	 only	 days	 after	 the	 contest	 was	 started	 (http	 :	 //	

andrewgelman.com/2015/12/09/why	-	i	-	decided	-	not	-	to	-	enter	-	the	-	100000	-	

global	-	warming	-	time	-	series	-	challenge/).	 	 	Gelman	straightforwardly	analyzed	

Keenan’s	 series	 and	 concluded	 that	 the	 requirement	 of	 900	 correct	 trend	

assignments	was	about	5	standard	deviations	above	what	was	possible.	 	Since	this	

corresponds	 to	 probabilities	 of	 success	 of	 less	 than	 one	 in	 a	 million,	 Gelman	

concluded	that	it	wasn’t	worth	the	$10	entry	fee,	and	strongly	discouraged	further	

participants.				

Before	 elaborating	 on	 several	 key	 improvements,	 let	 us	 first	 review	 his	

contribution.		Gelman	used	standard	linear	regression	to	obtain	slope	estimates	for	

each	series,	he	then	plotted	the	histogram	(fig.	S1).	
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Fig.	 S1:	 The	 histogram	 (the	 vertical	 axis	 is	 the	 probability	 density	 function,	 the	

horizontal	 axis	 is	 the	 trend	 in	 oC/year)	 of	 the	 regression	 slopes	 of	 T(t)	 (mean=	 -

0.000218±0.00793).	 	 Notice	 that	 the	 ±	 0.01	 trends	 that	 correspond	 to	 the	 imposed	

1oC/century	trends	are	nearly	invisible.	

	

Gelman	 reasonably	 assumed	 that	 the	 resulting	 distribution	 was	 a	 mixture	 of	

Gaussian	 distributions	 centred	 at	 slopes	 of	 -0.01,	 0,	 +0.01	 (corresponding	 to	 an	

added	slope	of	 -0.01,	no	added	slope	and	an	added	slope	of	+0.01).	 	Note	 that	 the	

spread	around	these	imposed	values	is	due	to	both	real	(but	random)	trends	in	the	

(on	 average	 only)	 “basic	 trendless”	 process	 (Tinit(t))	 and	 to	 an	 additional	 spread	

introduced	by	the	uncertainties	 inherent	 in	the	slope	estimation	process:	here,	the	

regression	procedure.	 	 Since	Keenan’s	 second	 “pure	 trend”	process	with	 trends	of									

-0.01,	 0,	 or	 +0.01	 oC/yr,	 is	 a	 three-state	 Bernoulli	 process	 for	 the	 trends,	 in	 the	

following	we	refer	to	it	simply	as	the	“Bernoulli	process”	(see	section	2	for	a	more	

formal	mathematical	description).				
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From	the	trend	histogram	in	fig.	S1,	Gelman	estimated	the	parameters	of	this	

Bernoulli	 process.	 	 A	 general	 mixture	 of	 three	 Gaussians	 involves	 8	 independent	

parameters:	three	means,	three	standard	deviations	and	two	amplitudes.		However,	

if	 we	 use	 a	 bias-free	 trend	 estimator,	 then	 the	 three	means	 are	 known	 (-0.01,	 0,	

0.01).	 	 Also,	 the	 spreads	 about	 the	 means	 due	 to	 the	 regression/trend	 estimator	

uncertainties	 are	 the	 same	 for	 each.	 	 If	 we	 finally	 assume	 that	 the	 process	 is	

symmetric	with	 respect	 to	 the	 sign	 (+,	 -)	we	are	 led	 to	 two	parameter	probability	

densities	of	the	form:	
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Where	 the	 only	 parameters	 are	 P0,	 A	 and	 G(x)	 is	 a	 “unit”	 Gaussian	 (i.e.	 mean	 0,	

standard	deviation	=	1).			From	this,	we	can	easily	find	the	standard	deviation:	

σ trend = x2
1/2

= A2 + a2 1− P0( )( )1/2 	 (S2)	

which	 relates	 the	 spread	 in	 the	 trends	 σtrend	 to	 the	 distribution	 parameters.		

Although	the	original	problem	did	not	specify	that	the	series	were	symmetric	with	

respect	 to	 the	 sign	 of	 the	 trends,	 this	 is	 not	 important	 since	 by	 analyzing	 the	

absolute	 slopes,	 the	 distribution	 becomes	 symmetrized	 anyway	 (furthermore,	 the	

statistics	of	the	series	are	indeed	nearly	sign	symmetric1).			

																																																								
1	For	example,	there	are	495	series	that	have	T(135)	>	T(1)	whereas	sign	symmetry	
would	lead	to	500±16.	
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Gelman	then	straightforwardly	estimated	the	number	that	would	be	correct	if	

an	 optimal	 threshold	was	 used	 to	 classify	 all	 the	 trends	within	 certain	 bounds	 as	

untrended	and	all	those	outside	as	trended	(see	fig.	S6	for	an	illustration	of	this	idea,	

but	using	a	different	 trend	estimation	 technique).	 	 	Using	 the	above	 form	 for	p(x),	

and	 using	 the	 maximum	 likelihood	 estimator,	 one	 obtains	 P0	 =	 0.537	 and	 A	 =	

0.00401.	 	 If	 we	 now	 classify	 the	 series	 as	 trended	whenever	 	where	 xc	 is	 a	

critical	threshold,	then	we	find	that	the	optimal	xc	(see	table	S1)	is	856±10	correct	

(see	fig.	S7	for	a	P0	-	A	diagramme2).	

To	put	these	results	into	perspective,	if	the	only	information	that	we	had	was	

that	P0	=	0.54,	then	the	probability	of	getting	900	correct	can	be	estimated	using	the	

theory	of	Bernoulli	processes	which	tells	us	that	for	large	N	the	result	is	a	Gaussian	

with	theoretical	standard	deviation	(N	P0	(1-	P0))1/2	where	N	=	1000	is	the	number	

of	Bernoulli	“trials”	(here,	trends).		Putting	in	the	numbers	we	find	that	900	correct	

classification	corresponds	to	a	22.8	standard	deviation	event	i.e.	to	a	probability	of		

9x10-116.			

1.3	Estimating	the	trends	by	assuming	long	range	correlations	in	the	

residuals	

Gelman	had	fallen	into	Keenan's	trap.		The	standard	regressions	that	he	used,	

assume	 that	 the	 residuals	 (what's	 left	 over	 after	 the	 linear	 trend	 is	 removed)	 are	

uncorrelated.	 	 Although	 the	 IPCC	AR5	 does	 obliquely	mention	 the	 issue	 of	 strong	
																																																								
2	Gelman	allowed	the	-0.01	trends	and	+0.01	trends	to	have	different	weights	(rather	than	
the	 same	 value	 (1-P0)/2	 as	 in	 the	 equation	 above	 and	 obtained	 an	 estimate	 of	 854±10	
correct	solutions	(the	nearly	5	standard	deviation	result	alluded	to	above).				

x > xc
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(power	 law)	 versus	 weak	 (exponentially	 decorrelated)	 residuals,	 in	 the	 end	 they	

assume	that	the	correlations	are	indeed	weak	(they	allow	for	residuals	to	be	related	

by	 an	 Auto	 Regressive	 order	 1,	 AR(1)	 process,	 but	 this	 makes	 only	 a	 minor	

difference	with	 respect	 to	 the	 assumption	 of	 independent	 residuals)	 and	 it	 is	 this	

assumption	 of	 weak	 or	 absent	 correlations	 in	 the	 residuals	 that	 Keenan	 was	

criticizing.		However,	as	pointed	out	(and	exploited	notably)	in	L2014	-	as	well	as	in	

two	 other	 papers	 statistically	 explaining	 the	 "pause"	 [Lovejoy, 2014b],	 [Lovejoy, 

2015]	-	the	residuals	are	in	fact	scaling	(scale	invariant)	with	long-range	(power	law,	

not	 exponential	 decorrelations,	 statistical	 dependencies)	 so	 that	 on	 the	 contrary	

they	 are	 highly	 correlated.	 	 If	 one	 assumes	 that	 the	 basic	 process	 is	 Gaussian	 or	

nearly	Gaussian		(as	it	indeed	is,	see	fig.	S8)	-	and	this	is	combined	with	long	range	

dependencies	 -	 then	 a	 good	 model	 for	 the	 process	 is	 either	 fractional	 Brownian	

motion	(fBm,	denoted	BH,s(t))	or	its	increments,	fractional	Gaussian	noise	(fGn)3.	

																																																								
3	The	fractional	Brownian	motion	(fBm)	process	BH,s(t)	is	defined	as:		

	 (S3)	
where	γ(t)	is	a	“unit”	Gaussian	white	noise	process	with	<γ>=0,< γ	2>=1	and		0≤H≤1	and	the	
constant	cH	(s)	is	chosen	so	that	the	covariance	is:	

	 (S4)	
where	s	is	the	volatility	parameter.		Note	that	fBm	has	the	special	point	at	the	origin:	BH,s(0)	
=	0,	it	is	nonstationary.		The	fluctuation	exponent	H>0	fluctuations	tend	to	grow	with	scale	
so	 that	 individual	 realizations	 tend	 to	 “wander	 (the	 classical	 drunkard’s	walk	 –	 the	 usual	
Brownian	motion	has	H	 =1/2).	 	Additionally	–	and	 this	 is	 important	 for	Keenan’s	model	 -		
realizations	have	random	trends.		

In	comparison,	the	increments	of	BH,s	are	fractional	Gaussian	noises	(fGn):	

	 (S5)
	

where	H’	is	scaling	exponent	of	the	fluctuations	of	GH,s	and	H’	=	H-1	so	that	-1≤	H’	≤0.		From	
equation	 S5	 it	 is	 obvious	 that	 fGn	 is	 a	 statistically	 stationary	 process	 and	 because	H’<0	

BH ,s t( ) = cH s( )
Γ H +1/ 2( ) t − ′t( )H−1/2 − − ′t( )H−1/2( )γ ′t( )d ′t

−∞

0

∫ +
cH s( )

Γ ′H +1/ 2( ) t − ′t( )H−1/2 γ ′t( )d ′t
0

t

∫

BH ,s t( )BH ,s ′t( ) = s2 t 2H + ′t 2H + t − ′t 2H( ) / 2
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That	Keenan	used	fBm	is	quite	plausible	since	it	enables	him	to	make	his	point	

about	 the	 inadequacies	 of	 the	 usual	 trend	 analyses	 while	 making	 the	 contest	

unwinnable	 with	 conventional	 regression	 techniques	 such	 as	 those	 employed	 by	

Gelman	and	the	IPCC.		Actually,	given	that	in	his	papers,	Keenan	regularly	uses	Auto	

Regressive	 (AR),	 and	 the	 related	 AR	 Integrated	 Moving	 Average	 (ARIMA)	 type	

models,	in	reality,	he	probably	used	the	fractional	derivative	extensions:	Fractional	

ARIMA	(FARIMA)	but	these	are	implicitly	based	on	fBm.			However,	we	saw	that	the	

increments	of	Keenan’s	process	are	nearly	stationary	(fig.	2)	and	fig.	S8	shows	that	

they	are	nearly	Gaussian	(at	least	for	the	first	differences	at	the	finest	resolution,	the	

increments	at	the	far	left	in	fig.	S8).		Such	processes	have	statistical	properties	that	

are	only	determined	by	their	spectra	-	or	equivalently	by	the	second	order	structure	

function	(fig.	1)	-	so	that	we	can	continue	to	analyse	and	model	the	process	in	terms	

of	an	fBm	with	superposed	additional	trends.		We	underline	"additional"	since	each	

realization	of	an	 fBm	produces	a	 random	trend	 (even	 thought	 the	process	 itself	 is	

trendless),	and	this	was	surely	part	of	Keenan's	idea	to	exploit	this	fact.	 	All	of	this	

just	 implies	 that	 a	 good	 initial	model	 for	 Keenan’s	 process	 is	 fractional	 Brownian	

motion	(fBm)	so	that	we	should	use	the	maximum	likelihood	trend	estimate	from	an	

fBm	model.		Thanks	to	a	handy	function	built	into	the	Mathematica	software	that	we	

used,	this	was	easy.			

																																																																																																																																																																					
fluctuations	 tend	 to	 diminish	 with	 scale	 (fig.	 2	 indicates	 that	 H’≈	 -0.1	 for	 real	 global	
temperatures)	and	fGn	has	no	random	trends.				
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Fig.	S2:	The	histogram	(the	vertical	axis	 is	 the	probability	density	 function,	 the	horizontal	

axis	 is	 the	 trend	 in	 oC/year)	 of	 the	 fBM	 analysed	 trends	 for	T(t).	 	 Notice	 that	 the	 ±	 0.01	

trends	are	now	noticeable		(the	mean	=	-0.00024±	0.007726).			

	

When	one	estimates	trends	assuming	that	the	residuals	are	from	such	a	power	

law	correlated	fBm	model,	then	one	gets	the	slightly	narrower	distribution	shown	in	

fig.	S2.		 	As	can	be	seen	in	the	figure,	the	±0.01	imposed	trends	are	now	a	bit	more	

visible;	 the	overall	standard	deviation	has	shrunk	from	0.00793	to	0.00772;	 figure	

S3	shows	a	direct	comparison	of	the	regression	and	fBm	trend	histograms.	
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Fig.	S3:	The	histogram	(the	vertical	axis	 is	 the	probability	density	 function,	 the	horizontal	

axis	is	the	trend	in	oC/year)	of	the	regression	trends	(gray),	yellow	are	fBm	trends.		Notice	

the	 slight	 difference:	 the	 yellow	 spikes	 at	 ±0.01	 and	 at	 0.	 	 The	 underlying	 distribution	 is	

slightly	narrower	and	this	makes	a	big	difference.	

	

To	 show	 that	 this	 difference	 between	 the	 regression	 and	 the	 fBm	 trends	 is	

actually	quite	significant,	we	can	now	repeat	Gelman'	s	analysis		(estimating	the	P0,	

A	 parameters	 of	 a	 3	 Gaussian	 mixture)	 on	 the	 fBm	 trends	 (this	 is	 equivalent	 to	

assuming	 long	 range	 statistical	 dependencies	 in	 the	 residuals	 rather	 than	 an	

absence	 of	 correlations	 in	 the	 residuals).	 	 Repeating	 the	 analysis	 of	 the	 previous	

subsection	 but	with	 the	 fBm	 trends,	we	 find	 parameters	P0	 =	 0.544,	A	 =	 0.00361,	

(shown	on	the	histogram	in	fig.	S6,	table	S1)	and	shown	as	the	big	red	point	in	the	

P0-A	 diagram	 (fig.	 S7)	 which	 shows	 contours	 of	 the	 expected	 number	 of	 correct	

-0.02 -0.01 0.00 0.01 0.02
0

10

20

30

40

50

60

70



	 11	

classifications	 as	 a	 function	 of	P0,	A.	 	 The	P0-A	 diagram	 is	 a	 useful	 representation	

since	 the	P0,	A	 are	 all	 that	 is	 required	 in	 order	 to	make	 an	 optimal	 classification.		

From	 fig.	 S7,	 we	 can	 see	 that	 this	 small	 change	 in	 parameters	 from	 Gelman’s	

standard	 regression	 (P0	 =	 0.537,	 A	 =	 0.00401),	 makes	 a	 large	 difference	 in	 the	

probability	of	success.	

From	the	point	of	view	of	obtaining	900	correct	guesses,	this	distribution	in	fig.	

S6	 is	 already	 an	 improvement.	 	 If	 we	 use	 the	 criterion	 that	 the	 error	 should	 be	

minimized	and	select	a	cutoff,	we	find	that	it	should	be	at	critical	slope	xc	=	0.00613,	

this	 gives	 an	 expectation	 of	 886	 correct	 answers	 (fig.	 S7,	 table	 S1).	 	 A	 theoretical	

estimate	 of	 the	 process	 standard	 deviation	 (given	 below)	 in	 this	 estimate	 is	 ±9.		

Therefore,	we	are	close	to	the	900.		In	this	case	we	find	886±9	correct	so	that	now	

the	 odds	 are	 considerably	 better	 than	 one	 in	 a	million	 of	 winning:	 they	 are	 now	

about	a	one	in	13	chance	(see	table	S1	for	the	parameters	A,	P0).			

Before	 continuing,	 how	 do	we	 know	 that	 there	 are	 indeed	 these	 long	 range	

statistical	 dependencies	 that	 lead	 to	 this	 subtle	 -	 but	 for	 the	 sake	 of	 the	 contest	

highly	 significant	 -	 difference	 in	 success?	 	 	 The	 next	 two	 figures	 show	 that	 the	

distribution	 of	 fBm	 parameters	 H	 (the	 key	 scaling	 exponent)	 and	 volatility	

parameter	 s	 that	 controls	 the	amplitude	of	 the	variability)	 are	nearly	 identical	 for	

simulated	and	analyzed	H,	s	 -	 the	only	other	parameter	 is	the	fBm	trend	discussed	

above,	 further	 confirmation	 comes	 from	 the	 stochastic	 model	 that	 we	 develop	 in	

section	S2.	
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Fig.	 S4:	 The	 histogram	 (the	 vertical	 axis	 is	 the	 probability	 density	 function,	 the	

horizontal	 axis	 is	 the	 parameter	 H)	 of	 the	 distribution	 of	 H'	 s	 using	 H	 =	 0.25	 for	 the	

simulations	 (yellow),	 data,	 blue).	 	 Mean	 of	 the	 simulations:	 0.234±0.048,	 of	 data:	

0.240±0.050.	
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Fig.	 S5:	 The	 histogram	 (the	 vertical	 axis	 is	 the	 probability	 density	 function,	 the	

horizontal	axis	 is	 the	volatility	parameter	s)	of	 the	distribution	of	s'	 s	 (data	yellow,	model	

blue	 -	 note	 the	 interchange	 of	 colours	 with	 respect	 to	 the	 previous).	 	 For	 simulations:	 s	

=0.1132±0.007;	for	the	data:	0.1135±0.008.	

	

Figures	 S4,	 S5	 also	 show	 that	 the	 analysis	 using	 the	 maximum	 likelihood	

method	of	the	simulated	pure	fBm	process	with	H	=	0.25	gives	a	slightly	lower	mean	

(0.24)	very	close	 to	 the	data	(including	 the	entire	distribution	which	 is	simply	 the	

dispersion	which	is	presumably	due	to	the	relatively	short	(135	point)	length	of	the	

series.		Certainly,	the	data	and	fBm	with	H	=	0.25	and	s	=	0.113	are	very	close.		The	

only	exception	is	the	distribution	(and	standard	deviation)	of	the	trends	that	are	a	

bit	too	small.			
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Fig.	S6:	The	histogram	(the	vertical	axis	 is	 the	probability	density	 function,	 the	horizontal	

axis	 is	 the	 trend	 in	 oC/year)	 showing	 the	 distribution	 of	 the	 fBm	 trends	with	 the	 fit,	 it	 is	

reasonably	 good.	 	 The	 critical	 classification	 boundaries	 xc	 that	minimize	 the	 classification	

error	are	shown	as	dashed	lines.	
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Fig.	 S7:	 A	 contour	 plot	 of	 the	 number	 of	 correct	 choices	 based	 on	 using	 the	 optimum	

regression	 slope	 or	 fBm	 trend	 as	 a	 function	 of	 the	 Gaussian	 width	 A	 (vertical	 axis)	 and	

probability	 of	 an	 untrended	 series	 (P0),	 the	 horizontal.	 	 	 The	 contour	 lines	 indicate	 the	

following	 number	 of	 expected	 correct	 answers:	 850,	 860,	 870...	 940,	 950	 (top	 to	 bottom,	

roughly	 at	 intervals	 of	 one	 standard	deviation),	 the	 thick	 line	 corresponds	 to	900	 correct	

answers.	 	 Trend	 analyses	 of	 the	 data	 are	 shown	 as	 large	 circles,	 brown	 using	 regression	

(Gelman's	 result),	 and	 red	 from	 the	 fBm	 trends.	 	 	 The	 red	 square	 is	 the	 trend	 deduced	

simply	 from	 the	 difference	 of	 the	 temperature	 change	 over	 the	 entire	 series:	 (T(135)	 -	

T(1))/134.		Interestingly	it	is	much	better	than	the	regression	and	nearly	as	good	as	the	fBm	

maximum	 likelihood	 method	 (see	 also	 table	 S1).	 	 This	 shows	 that	 using	 the	 fBm	 trends	

brings	the	data	near	the	critical	thick	line	corresponding	to	900	correct	answers.		The	green	
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is	the	data	analysed	but	bootstrapped	using	100	realizations	of	a	process	with	1000	random	

variables	 from	 the	mixture	of	 three	Gaussian	distributions	 (one	around	each	of	 the	 -0.01,	

zero,	+0.01	slopes);	it	is	an	attempt	to	take	into	account	the	biases	in	the	(P0,	A)	parameter	

estimates	from	regressions	on	the	slope	histograms.					

Model	 results	 are	 shown	 as	 small	 circles	 all	with	 scaling	 exponent	 for	 the	 fBm	H	 =	

0.25,	and	volatility	s	=0.113.		The	black	circle	is	the	model	point	with	randomslope	process	

standard	deviation	σsproc=	0.002375	and	the	rectangle	centred	on	it	indicates	the	1	standard	

deviation	limits	as	inferred	by	the	model	running	10	samples	of	1000	realizations	each;	the	

blue	 is	 the	 same	but	with	σsproc	 =	0.0024	 showing	 the	 sensitivity	 to	 this	 parameter.	 	 	 The	

upper	red	point	is	the	same	simulation	as	the	black	point	but	using	regressions	to	estimate	

the	slopes.			The	orange	point	at	the	bottom	is	the	simulation	but	without	the	slope	process	

(fBm	trends),	the	cyan	point	is	the	same	but	with	slopes	estimated	from	regression.			In	both	

cases	the	contest	would	be	easy	to	win.			

	

How	to	do	better?	The	above	estimated	3	Gaussian	mixture	with	P0,	A,	are	the	

a	 posteriori	 parameter	 estimates.	 	 They	 are	 from	 the	 distribution	 of	 trends	 from	

Keenan’s	model,	and	then	with	the	parameters	P0,	A	estimated	from	regression,	or	

from	 fBm	 trend	 estimates.	 	 The	 estimated	 P0,	 A	 parameters	 will	 thus	 be	 slightly	

biased.	 	We	need	 to	use	Bayes	 theorem...	or	an	equivalent	 to	estimate	 the	original	

model	parameters.	 	To	do	 this,	we	 followed	a	 "bootstrap"	procedure.	 	We	made	a	

model	using	the	above	probabilities	and	a	Bernoulli	process	 	to	take	1000	random	

trends	from	the	above	"three	hump"	distribution	and	then	analyzed	the	result.		We	

did	this	100	times	and	found	that	every	time,	P0	decreased	a	little	and	A	increased	a	

little...	always	by	nearly	the	same	amount	(about	1%	of	the	values).	 	To	first	order,	
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these	 changes	 would	 be	 the	 same	 if	 we	 had	 started	 at	 the	 unknown	 original	

distribution.	 	 Therefore,	 to	 estimate	 the	 original	 parameters,	we	 increased	P0	 and	

decreased	A	 in	order	to	estimate	the	"original"	distribution	corrected	 for	biases	 in	

the	 estimation	 procedure:	 P0original	 =0.549,	 Aoriginal	 =0.00354.	 	 With	 these	 new	

parameters,	 one	 finds	 the	 critical	 slope	 dividing	 the	 untrended	 and	 trended	

populations,	xc	 =	 0.006115	and	 this	predicts	893±9	 correct	 guesses!	 	We	are	now	

close...	but	–	unless	we’re	lucky	-	we'll	need	more	than	one	guess	to	win	(see	table	

S1)!	

S2.	Simulating	Keenan’s	processes	

S2.1		Statistically	characterizing	the	processes	

To	 fully	 understand	 Keenan's	 problem,	 we	 need	 to	 find	 a	 way	 to	 make	

simulations	of	his	processes.		Recall	that	a	stochastic	process	with	specific	statistical	

properties	 can	 typically	 be	 obtained	 through	 many	 different	 construction	

mechanisms	–	the	latter	are	not	unique	(think	of	the	central	limit	theorem:	sums	of	

random	 variables	 with	 varied	 initial	 distributions	 end	 up	 have	 a	 Gaussian	

distribution).	 	 In	 this	 case,	 it	 is	 pertinent	 to	 recall	 that	 a	process	with	 statistically	

stationary	 increments	 (i.e.	 one	 that	 has	 first	 differences	 with	 the	 same	 statistical	

properties	at	all	 instants	 in	 time,	 see	 fig.	1)	and	which	also	has	Gaussian	statistics	

(fig.	S8),	is	entirely	determined	by	its	second	order	statistics,	such	as	the	(Fourier)	

spectrum.			However,	at	the	level	of	spectra,	the	difference	between	the	increments	

and	the	process	is	simply	a	power	law	filter	so	that	if	the	increments	are	Gaussian,	
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then	the	process	is	still	determined	by	its	spectrum.		In	practice	this	means	that	we	

needn't	find	an	identical	recipe	to	Keenan,	only	an	equivalent	one.		

An	 implication	 of	 the	 nonstationarity	 of	 the	 process	 (fig.	 1)	 is	 that	 the	

autocorrelation	 function	 does	 not	 converge,	 (note	 that	 this	 is	 also	 true	 of	 the	

underlying	fBm	process),	so	that	the	autocorrelation	must	be	replaced	by	its	(near)	

equivalent,	the	second	order	structure	function	(unfortunately,	this	technical	point	

is	often	ignored).	

The	 classical	 structure	 function	 is	 the	 second	 order	moment	 (mean	 square)	

fluctuation	ΔT(Δt)	over	a	lag	Δt	with	the	fluctuation	defined	as	the	difference	in	the	

function	(here,	the	temperature	T(t))	over	the	lag:	ΔT(Δt)	=	T(t)	-	T(t-Δt).		However,	

a	complication	here	is	that	the	definition	of	fluctuations	in	terms	of	differences	is	not	

adequate,	 we	 use	 a	 slightly	 different	 definition:	 the	 Haar	 fluctuation	 (already	

discussed	in	section	S2),	which	is	defined	as	the	difference	between	the	average	of	

the	first	and	second	halves	of	the	interval.			

S2.2	Structure	Functions	and	Probability	Distributions	

The	previous	subsection	we	indicated	that	if	the	increments	are	Gaussian	and	

stationary,	then	the	process	is	defined	by	the	second	order	structure	function.	 	Let	

us	therefore	begin	with	a	basic	characterization	of	the	process	as	a	function	of	scale,	

using	the	Haar	structure	function.		In	fig.	2	we	already	showed	the	comparison	of	the	

Haar	 structure	 function	 for	T,	Tinit	 determined	 from	Keenan’s	 simulations	 and	 the	

average	of	three	temperature	global,	annual	series	analysed	in	L2014.		
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We	 now	 confirm	 that	 the	 process	 does	 indeed	 have	 nearly	 Gaussian	

increments.	 	We	 calculated	 the	 probability	 distributions	 for	 increments	 with	 lags	

increasing	by	factors	of	two:	Δt	=	1	year,	Δt	=	2,	4,	…128	years.		Note	that	the	usual	

probability	distribution	function	is	the	"Cumulative	Probability	Distribution	"	(CDF)	

which	 is	 the	 integral	 of	 the	 probability	 density	 starting	 at	 -	 infinity.	 	 The	

distributions	 used	 below	 are	 instead	 from	 a	 threshold	 s	 to	 +	 infinity	 i.e.	 they	 are	

equal	to	1-CDF.	
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Fig.	 S8:	 The	 cumulative	 probability	 distributions	 of	 a	 temperature	 difference	 exceeding	 a	

fixed	 threshold	 s	 for	 Keenan’s	 T(t)	 process	 (red)	 and	 the	 simulation	 (black)	 with	

parameters	H	=	0.25	(fBm	scaling	exponent),	s	=	0.113	(volatility,	i.e.	the	RMS	variability	at	a	

given	 reference	 scale),	P	 =	0.54	 (the	probability	of	 an	untrended	series),	  σsproc	=0.002375	

(the	standard	deviation	of	the	random	slope	process).		The	figure	shows	2	different	samples	

of	1000	series	 so	 that	 it	 is	plausible	 that	most	of	 the	differences	between	 the	 simulations	

and	the	data	are	from	random	sample	to	sample	variations.	

The	 curves	 from	 left	 to	 right	 are	 for	 the	 differences	 at	 lags	 1,	 2,	 4,	 8...	 128	 years.		

Although	there	are	some	differences,	to	within	sample	to	sample	variations,	(except	at	the	

largest	scales)	Keenan’s	and	the	simulated	distributions	are	very	close	at	all	scales,	and	are	

also	 close	 to	 the	Gaussians	 (indicated	by	 the	 thin	 lines).	 	 The	 smooth	 curves	 are	 the	best	

fitting	Gaussians.		Note	that	the	amplitude	of	the	distributions	increase	systematically	with	

the	lag	(the	curves	move	systematically	to	the	right	at	longer	and	longer	lags	Δt).		Also,	the	

main	discrepancy	between	the	distributions	from	T(t)	and	from	the	model	appear	to	be	at	a	

time	scale	of	about	64	years.	

	

It	 is	also	of	interest	to	compare	Keenan’s	probability	distributions	with	those	

of	the	real	world,	see	fig.	S9;	these	were	used	to	estimate	the	probability	density	in	

fig.	3.		This	shows	that	the	differences	are	nearly	independent	of	scale4;	that	the	true	

exponent	is	H	≤0	(H	≈	-0.1;	see	e.g.	fig.	2	it	is	approximately	an	fGn)	unlike	Keenan’s	

model	that	has	H	=	0.25	(i.e.	>0,	for	the	fBm).		Also,	notice	that	the	extremes	are	not	

Gaussian,	but	rather	“fat	tailed”	bounded	here	between	s-4	and	s-6	(green)	where	s	is	

																																																								
4	When	 comparing	 fig.	 S8	 and	 S9,	 it	 is	 important	 to	 notice	 that	 for	 clarity	 S9	 has	 been	
multiplied	 by	 the	 lag	 Δt:	 without	 this	 multiplication,	 all	 the	 curves	 in	 S9	 would	 be	
superposed	 on	 top	 of	 each	 other	 unlike	 the	 model	 distribution	 S8	 whose	 amplitude	
systematically	grows	with	lag.	
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a	 temperature	 threshold	 (see	 section	 2	 for	 a	 discussion	 of	 these	 “black	 swan”	

events).	

	

	

	

Fig.	 S9:	 The	 cumulative	 probability	 distribution	 of	 preindustrial	 (1500-1900)	 northern	

hemisphere	 temperature	 changes	 exceeding	 a	 threshold	 s	 after	 being	 rescaled	by	the	time	

lag	Δt	 using	 three	multiproxies,	 reproduced	 from	 [Lovejoy, 2014a]	where	 the	series	used	

are	also	discussed.	 	 	 	The	rescaling	was	used	to	separate	 the	distributions,	otherwise	 they	

would	all	be	nearly	on	top	of	each	other.	 	This	shows	that	the	scaling	of	these	differences5	

has	 nearly	H	 =0	 (unlike	 Keenan’s	 that	 has	H	 =	 0.25	 for	 the	 fBm).	 	 Also,	 notice	 that	 the	

																																																								
5	A	technical	point	is	that	if	the	properly	defined	fluctuations	have	H<0	(the	data	have	H	≈	-
0.1),	then	the	differences	-		as	here	-	will	have	an	exponent	H	=	0.	
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extremes	are	not	Gaussian,	but	“fat	tailed”	bounded	here	between	s-4	and	s-6	(green)	where	s	

is	a	temperature	threshold.	

S2.3	Simulating	the	process,	a	missing	extra	random	trend	process	

In	 the	 earlier	 section,	 we	 argued	 that	 the	 process	 Tinit(t)	 could	 be	

approximated	 by	 a	 fractional	 Brownian	 motion	 (fBm,	 denoted	 BH,s(t),	 see	 eq.	 S3,	

footnote	3,	with	scaling	exponent	H	=0.25±0.004,	and	volatility	s	=0.113±0.007)	and	

we	used	the	maximum	likelihood	method	on	an	fBm	(i.e.	assuming	that	residuals	of	

trends	had	strong,	long	range	statistical	dependencies/correlations)	in	order	to	get	

a	 tighter	 estimate	 of	 the	 trends	 than	 would	 have	 been	 possible	 using	 standard	

regressions.	 	 In	 the	 above	 section	 we	 confirmed	 that	 the	 process	 has	 (nearly)	

Gaussian	 increments	 and	 we	 have	 characterized	 it’s	 second	 order	 correlation	

structure.					

The	 simplest	model	would	 thus	appear	 to	be	BH,s(t)	 (fBm,	 footnote	3)	with	a	

Bernoulli	process	b(t)	for	the	added	trends	(or	absence	of	added	trends):	

Pr Bn = 0( ) = P0
b t( ) = Bnt; Pr Bn = a( ) = 1− P0

2
⎛
⎝⎜

⎞
⎠⎟ ; a = 0.01

Pr Bn = −a( ) = 1− P0
2

⎛
⎝⎜

⎞
⎠⎟

	 (S6)

	

where	P0	 is	 the	 probability	 that	 the	 process	 is	 untrended.	 	 If	 there	were	 only	 the	

Bernoulli	trends	and	the	fBm,	then	we	would	have:	

	

T t( ) = BH ,s t( ) + b t( ) 	 (S7)	
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and	(see	fig.	S7,	the	orange	dot	at	the	bottom)	we	find	that	the	resulting	A	value	is	

much	too	small	to	reproduce	the	data:	 it	would	be	able	to	correctly	classify	940	of	

the	 series.	 	 It	 seems	 that	 Keenan	 -	 presumably	 realizing	 this	 –	 added	 an	 extra	

random	slope	process	(or	an	equivalent	complication)	so	as	to	effectively	increase	A.		

If	 this	 is	 correct,	 then	 the	 contest	may	 have	 been	 deliberately	made	 unwinnable.		

Certainly,	with	only	the	fBm	and	Bernoulli	processes	(with	H	=	0.25,	s	=	0.113	and	P0	

=0.54),	the	width	of	the	distributions	of	trends	is	σtrend	=±0.00735,	and	this	may	be	

compared	with	 the	 direct	 determination	 (using	 the	 fBm	 trend	 estimates)	 of	σtrend	

=±0.00772±0.0014	 which	 is	 compatible	 with	 eq.	 S2	 estimate	 0.00768	 (using	 A	

=0.00361±0.000076,	P0	=	0.054±0.016).		

The	 simplest	 random	 slope	 process	 r(t)	 is	 one	 that	 has	 a	 trend	 α	 with	 a	

Gaussian	 random	 trend;	 it	 should	 be	 symmetric	 (zero	 mean)	 so	 that	 only	 it’s	

standard	deviation	σsproc	needs	to	be	determined.		It	is	of	the	form:	

r t( ) = αt; p α( ) = 1
σ sproc

G α
σ sproc

⎛

⎝⎜
⎞

⎠⎟
	 (S8)

	

where	G(x)	is	the	unit	Gaussian	introduced	above	and	α	is	the	random	trend	of	r(t)	

(i.e.	<α>=0,	σsproc	is	the	standard	deviation	of	α).	

The	overall	temperature	process,	the	“full”	model	is	thus:	

	

T t( ) = Tinit t( ) + b t( ); Tinit t( ) = BH ,s t( ) + r t( ) 	 (S9)	
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Since	the	variances	of	the	trend	of	the	new	process	will	just	add	to	the	variance	

of	 the	 previous	 process	 (fBm	 plus	 Bernoulli	 trends)	 we	 have	 the	 variance	 of	 the	

whole	process:	

T t( )2 = s2t 2H + a2t 2 1− P0( ) + σ sproc
2 t 2 	 (S10)	

and	for	the	trends	(see	eq.	S2):	

σ trend
2 = A2 1− P0( ) = ′A 2 1− P0( ) + σ sproc

2 	 (S11)	

where	A’	is	the	width	parameter	without	the	additional	trend	process	r(t).		Equation	

S11	shows	how	the	width	A	increases	(from	A’)	with	the	addition	of	the	r(t)	process.		

It	 is	 thus	 easy	 to	 estimate	σsproc;	we	 find	 the	optimal	 value	σsproc	 =	 0.002375.	The	

resulting	process	P0,	A	values	are	shown	in	fig.	S7,	they	are	extremely	close	(within	

the	uncertainty	limits,	see	the	black	point	and	the	rectangle)	to	the	data	(the	big	red	

point).			
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Fig.	S10:	This	is	root	mean	square	Haar	structure	function	for	the	data	and	simulation	and	

the	 different	 components	 of	 the	 simulation	 (statistical	 independence	 of	 the	 various	

processes	 implies	that	the	variances	add	(the	square	of	the	RMS	S(Δt)	 functions).	 	 	Pink	is	

Keenan’s	T(t)	 (reproduced	 from	 fig.	 2),	 black	 is	 the	pure	 fBm	process	 (BH,s(t),	 s	 =0.113,	H	

=0.25),	blue	is	pure	Bernoulli	slope	process	(b(t)	with	P0	=	0.54)	and	yellow	is	pure	random	

slope	 process	 with	 (σsproc	 =	 0.002375).	 	 Brown	 is	 Tinit(t)	 =BH,s(t)+r(t)	 (the	 fBM	 plus	 the	

random	 slope	process),	 purple	 (near	 the	 top)	 is	 the	 fBm	plus	 the	Bernoulli	 slope	process	

(BH,s(t)+b(t)),	and	green	 is	 the	 full	process	 (T(t)	=	BH,s(t)+b(t)+r(t),	 	 i.e.	 fBm	plus	Bernoulli	

plus	random	slope).		

Also	shown	(upper	right)	is	the	extrapolation	of	T(t)	to	longer	time	scales	(see	fig.	2	

for	Tinit(t)).	 	The	model	T(t)	predicts	typical	temperature	fluctuations	of	±2	oC	at	560	years	

and	±3	oC	at	850	years	and	Tinit(t)	at	160	and	2450	years	(the	rectangle).		Since	going	in	and	

��� ��� ��� ��� ������	

-���

-���

-���

-���

�������(�	)

log10 ΔT Δt( )2
1/2

0.1$oC$

0.01$oC$

1$oC$ log10 Δt Time$scale$

b(t)$
r(t)$

BH,s(t)$

560$years$

850$years$

±3$oC$
±2$oC$

Glacial?
interglacial$
windows$

1600$years$

2450$years$

Tinit(t)$$
=$BH,s(t)+r(t)$

T$(t)$=$BH,s(t)+b(t)+r(t)$



	 26	

out	of	an	ice	age	is	a	change	of	roughly	this	order	this	is	the	“glacial-	interglacial	window”.			

Realistic	 time	 scales	 from	 paleo	 data	 are	 roughly	 100	 times	 longer	 [Lovejoy and 

Schertzer, 1986].	

	

Let	us	now	consider	the	full	model,	eq.	S9	with	parameters	H	=	0.25,	s	=	0.113	

for	 the	 fBm	process	 and	 a	 random	 trend	 process	with	 Gaussian	 distribution	with	

standard	deviation	σsproc	=	0.002375	for	Tinit(t).		Superposed	on	this	(to	yield	T(t))	is	

the	 sign	 symmetric	 Bernoulli	 trend	 process	 with	 parameters	 P0	 =	 0.54	

corresponding	to	54%	untrended	series.			

To	 check	 that	 the	model	 is	 realistic	we	 can	 calculate	 the	 structure	 functions	

figs.	 S10,	 S11	 or	 the	 probability	 distributions	 at	 different	 lags/scales,	 fig.	 S9).	 	 To	

understand	fig.	S10,	start	with	the	fBm	(black)	curve	and	the	pure	Bernoulli	process	

(blue	 curve).	 	 	We	 see	 that	 high	 frequencies	 (small	Δt’s),	 that	 the	 fBm	 simulation	

gives	nearly	exactly	the	same	behaviour	as	the	data	(pink)	out	to	about	20	years.		At	

large	Δt’s,	(beyond	about	30	years	(i.e.	log10Δt	≈	1.5)	the	entire	process	is	dominated	

by	the	Bernoulli	slope	process	(b(t),	blue).	 	Finally,	 the	random	slope	process	(r(t)	

orange)	is	much	smaller	than	the	Bernoulli	slope	process	and	only	gives	a	very	small	

contribution	 to	 the	 structure	 function	 (the	 difference	 between	 the	 purple	 and	 the	

green).	 	 However,	 as	we	 saw,	 it	makes	 it	 just	 a	 little	 tougher	 to	 determine	which	

series	 are	 trended,	 and	 this	makes	 the	difference	between	winning	and	 losing	 the	

contest.		Finally,	a	blow-up	comparison	of	the	full	process	and	T(t)		is	shown	in	fig.	

S11;	we	see	that	over	the	entire	range	the	structure	functions	of	our	model	and	T(t)	

are	nearly	identical;	the	only	region	over	which	they	are	noticeably	different	is	near	
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10	 years	 where	 the	 logs	 are	 different	 by	 about	 0.03,	 corresponding	 to	 the	

simulations	being	 about	7%	more	 variable.	 	 	 But	 the	 fluctuations	 at	 this	 scale	 are	

practically	irrelevant	for	determining	slopes	so	that	this	small	difference	is	probably	

not	significant	for	estimating	the	trends.	

	

	

	

Fig.	S11:	A	blow	up	of	the	root	mean	square	Haar	structure	functions	in	fig.	S10	for	Keenan’s	

data	(red).		The	black	curve	is	the	full	model	with	the	optimal	values	H	=0.25,	s	=	0.113,	P0	=	

0.54,	σsproc	=0.002375.	

	

Before	concluding	let	us	make	a	comment.		Keenan	only	stated	that	he	started	

with	a	“trendless	process”	and	of	course	 fBm	models	already	have	random	trends.		

However	the	contest	would	have	been	too	easy	so	that	he	clearly	did	something	else	

that	effectively	increased	(a	little	bit)	the	amplitude	of	the	random	trends.	 	At	first	
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sight	it	might	seem	that	the	method	that	we	propose	to	reproduce	his	statistics	–	the	

addition	 of	 the	 random	 slope	 process	 r(t)	 to	 the	 fBm	 -	 seemingly	 contradicts	 his	

statement	that	he	 first	made	1000	series	of	a	 trendless	process	and	then	added	 in	

the	 Bernoulli	 process.	 	 However,	 since	 the	 added	 random	 slope	 process	 also	 has	

stationary	 increments	 and	 is	 Gaussian,	 the	 sum	 of	 this	 process	 with	 the	 fBm	 is	

indeed	itself	a	trendless	process.	 	 Ironically,	since	his	data	T(t)	are	essentially	sign	

symmetric,	 it	 would	 appear	 that	 his	 overall	 process	 –	 i.e.	 including	 the	 Bernoulli	

slope	process	-	is	also	trendless	(indeed	in	fig.	1,	µT(t)≈0)!	 	In	any	event,	 it	 is	quite	

possible	 –	 even	 likely	 –	 that	 Keenan	 produced	 his	 series	 with	 a	 different	

construction	mechanism,	 one	 that	 has	 statistical	 properties	 very	 close	 to	 the	 one	

described	here.		It	is	possible	that	the	small	difference	–	associated	with	the	model’s	

slight	excess	of	variability	near	10	years	is	enough	to	allow	the	contest	to	be	won-	at	

least	in	principle.		Good	luck	to	any	new	attempts!	

S2.4	Using	the	model	to	better	understand	the	problem	

With	the	model,	we	have	full	information	about	the	T(t)	process	and	we	know	

exactly	 which	 series	 were	 trended	 and	 which	 were	 untrended.	 	 Table	 S1	 shows	

some	of	the	results	that	we	obtained	by	running	the	model	for	ten	samples	of	1000	

series	of	135	points	each	with	slightly	different	σsproc	parameters	(it	was	sensitive	to	

this!).		Aside	from	the	derived	parameters	A	and	xc,	σtrend,		we	can	make	a	posteriori	

estimates	of	P0.				

We	can	also	estimate	other	interesting	properties.		For	example,	if	the	absolute	

trends	 are	 sorted	 in	 increasing	 order,	 then	 the	 optimum	 index	 is	 the	 rank	 of	 the	
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trend	that	should	be	chosen	to	yield	the	maximum	number	correct	(third	row);	note	

the	large	sample	to	sample	fluctuations.		Since	we	know	in	advance	which	series	are	

trended	and	which	are	not,	we	can	also	estimate	the	maximum	possible	number	of	

correct	choices	in	a	sample	of	10,000	(fourth	row);	or	the	equivalent	for	1000	series	

samples	10	times	(fifth	row).	 	 If	only	the	ensemble	best	 threshold	was	known	(i.e.	

we	had	no	 information	about	the	underlying	trends/no	trends	(this	 is	 the	realistic	

case),	then	we	obtain	the	number	correct,	in	row	6	(out	of	1000	series).				
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Simulations	 fBm	
(Data)	

Regression	 T(135)	
-	T(1)	

Model		
σsproc	

0.00230	 0.00235	 0.002375	 0.0024	 Raw	 Boot-
strapi	

Data	 Sims	 Data	

Optimum	
indexa	

550±32	 547±17	 552±18	 541±29	 551	 550±17	 	 	 	

No.	correct	
in	10,000b	

8933	 8886	 8896	 8842	 	 	 	 	 	

No.	correct	
optimumc	

897±9	 893±8	 892±9	 888±10	 	 	 	 	 	

No.	correct	
ensemble	
thresholdd	

892±10	 887±9	 888±9	 887±9	 886±9	 893±9	 856±9	 872±9	 880±9	

Critical	
thresholde	

0.00606±	
0.00059	

0.00593±	
0.00032	

0.00569±	
0.00031	

0.00639±	
0.00055	

0.00613	 0.00612	 0.00635	 0.00630	 0.00627	

Αf	 0.00354	 0.000358,	
0.00356	

0.00360,	
0.00356	

0.00368	 0.00361	 0.00354	 0.00401	 0.00380	 0.00373	

P0			g	 0.535	 0.527,	
0.543	

0.540,	
0.541	

0.538	 0.5435	 0.549	 0.537	 0.551	 0.554	

σtrend			h	 	0.00772	 0.00781,	
0.00763	

0.00771±	
0.00036	

0.00773±	
0.0037	

0.00772	 	 0.00793	 0.00775	 0.00772	

Table	S1:	 	The	model	parameters	are:	H	=	0.25,	s	=	0.113	(H	 is	 the	 fBm	exponent,	s	 is	 the	
volatility	 parameter	 of	 the	 fBm,	 see	 equation	 in	 footnote	 3).	 	 P0	 =	 0.54	 for	 the	 Bernoulli	
process	 and	 σsproc	 for	 the	 random	 slope	 process	 (with	 the	 exception	 of	 the	 third	 line	 (a	
single	sample	of	10,000),	all	the	numbers	are	with	respect	to	a	sample	of	1000	series,	each	
135	 points	 long	 and	 the	 uncertainties	 are	 with	 respect	 to	 such	 samples).	 	 	 With	 the	
exception	 of	 those	 indicated	 “regression”	 (two	 far	 right	 columns)	 all	 the	 trends	 were	
estimated	using	 the	maximum	likelihood	method	assuming	an	 fBm	process.	 	The	 far	 right	
column	is	from	the	data	when	slopes	are	estimated	by	the	difference	between	the	first	and	
last	member	of	the	series	(see	fig.	3).	
		
a	 If	 the	absolute	trends	are	sorted	 in	 increasing	order,	 then	the	optimum	index	 is	rank	of	 the	trend	
that	 should	 be	 chosen	 for	 the	 maximum	 number	 correct.	 	 Note	 the	 large	 sample	 to	 sample	
fluctuations.	
b	This	 is	 the	maximum	possible	number	of	correct	choices	 in	a	sample	of	10,000;	 it	was	calculated	
with	knowledge	of	the	correct	classifications.	
c	Same	as	b	except	for	mean	(and	standard	deviation)	of	the	ten	samples.	
d	 If	 only	 the	 ensemble	 optimum	 threshold	 was	 known	 (this	 is	 the	 realistic	 case),	 this	 is	 number	
correct,	samples	of	1000.			It	is	slightly	less	than	the	“optimum”	number	in	the	row	above.	
e	This	is	the	mean	(and	standard	deviation)	of	the	optimum	threshold.	
f		A	is	the	width	of	the	Gaussian	of	the	slopes	about	the	three	values	-0.01,	0,	0.01	(see	eq.	S1).		From	
the	simulations,	the	uncertainties	with	respect	to	the	process	parameters	A	is	±0.000076	and	for	P0,	
±0.016.		
g	This	is	the	fraction	of	untrended	series	(Bernoulli	trend	process	b(t)	=	0).	
h	This	is	the	standard	deviation	of	the	raw	trends.		
i	The	bootstrap	parameters	were	estimated	as	discussed	 in	 the	 text;	 they	are	probably	optimal	 for	
Keenan’s	series.	
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As	 expected,	 the	 estimate	 from	 the	 ensemble	 trend	 threshold	 yields	 slightly	 less	

than	 use	 of	 the	 “optimum”	 threshold	 indicated	 in	 the	 row	 above.	 	 Although	 the	

model	parameter	space	is	big	(H,	s,	P0,	σsproc),	as	explained	above,	the	parameters	are	

in	 fact	 constrained	 by	 a	 number	 of	 statistics:	 recall	 that	 H,	 s	 were	 chosen	 to	

reproduce	 the	 fBm	 maximum	 likelihood	 estimates,	 P0,	 the	 empirical	 trend	

distribution,	σsproc	the	width	A	and	the	overall	standard	deviation	of	the	trends	σtrend.		

Overall	it	seems	that	we	can	get	tantalizingly	close,	to	900	correct,	but	not	quite	get	

there.	

Appendix:	Some	theory	on	randomly	classifying	trends	

In	 the	 climate	 contest	problem	 there	 are	 trended	and	untrended	 series.	 	We	

saw	that	we	could	get	 to	within	one	standard	deviation	of	a	winning	technique	by	

using	the	fBm	(strong	correlation)	based	trend	estimates	and	a	bootstrap	procedure	

for	determining	the	optimum	classification	threshold	xc.		It	is	therefore	tempting	to	

“shuffle”	 or	 randomize	 the	 classification	 method	 so	 as	 to	 obtain	 many	 possible	

guesses	so	that	at	least	one	will	be	a	winner.		Unfortunately,	the	theory	below	shows	

that	this	is	not	a	very	fruitful	approach.			

Denote	the	(unnormalized,	relative)	probability	density	of	an	absolute	trend	x	

from	the	untrended	population	as	pu(x),	from	the	trended	population,	pt(x).		Let	here	

be	a	total	number	of	N	draws	(i.e.	series,	here	N	=	1000).	

The	expectation	for	the	number	of	untrended	and	trended	series	is:	
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If	we	now	use	the	rule	that	any	trend	x’≤x	is	classified	as	untrended,	and	any	with	

trend	x’>x	is	trended,	then	the	mean	number	of	errors	is:	

	 (A2)
	

The	condition	to	minimize	the	total	mean	error	is:	

	 (A3)
	

Which	implies	that	the	critical	xc	satisfies:	

	 (A4)	

	

Fluctuations:	

For	 a	 large	 number	 of	 series,	 the	 probabilities	will	 approach	 a	 Gaussian,	we	

need	to	calculate	the	variance	of	the	total	error	<E2>.			From	a	random	sample	of	N	

trends,	the	probability	that	the	above	procedure	will	misclassify	a	given	series	is	PE:	

	 (A5)	
	

Nu = N pu ′x( )d ′x
0

∞

∫ ; Nt = N pt ′x( )d ′x
0

∞

∫

pu ′x( ) + pt ′x( )( )d ′x
0

∞

∫ = 1; N = Nu + Nt

Eu x( ) = N pu ′x( )d ′x
x

∞

∫ ; Et x( ) = N pt ′x( )d ′x
0

x

∫

∂ E
∂x

= 0; E = Eu + Eu

pu xc( ) = pt xc( )

PE x( ) = pu ′x( )d ′x + pt ′x( )d ′x
0

x

∫
x

∞

∫
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We	 seek	 the	 variance	 of	 the	Bernoulli	 process	 for	which	 for	 a	 single	 series,	E	 =	 1	

with	probability	PE,	0	otherwise.	 	The	overall	variance	for	N	series	 is	 then	N	 times	

larger:	

	 (A6)	

Thus,	the	random	variable	E	should	be	a	Gaussian	with:	

	 (A7)	

(the	notation	indicates	a	Gaussian	with	mean	NPE	and	standard	deviation	after	the	

“±”).		In	our	case,	E	≈100,	N	=	1000,	PE	≈	0.1	so	that:		E	≈100±9	as	confirmed	by	the	

numerics.	

	

Randomization	by	a	Flipping	process:	

We	can	now	see	the	effect	of	randomizing	the	variable	by	flipping	each	choice	

with	 a	 probability	 density	 pf(x);	 this	 means	 that	 we	 first	 choose	 as	 before:	 we	

classify	 a	 series	 as	 untrended	when	 x<xc,	 and	 as	 trended	when	 x>xc,	 but	 then	we	

reverse	the	choice	with	probability	pf(x).	

	

By	similar	reasoning	to	above	(calculation	of	the	mean)	we	find	that	there	will	be	a	

shift	δE	in	the	number	of	errors	from	E(x)	to	E’(x):	

	 (A8)	

	

Mean	shift	δE:	

E2 = NPE x( ) 1− PE x( )( )

E = NPE x( ) ± NPE x( ) 1− PE x( )( )⎡⎣ ⎤⎦
1/2

δE x( ) = ′E x( )− E x( )
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	 (A9)
	

since	from	the	above	condition	for	the	critical	xc	we	have:	

		 (A10)	

and	 from	 the	 fact	 that	 pf≥0,	 we	 can	 see	 that	 δE≥0,	 so	 that	 no	 choice	 of	 pf(x)	 can	

improve	the	initial	choice	xc.		But	what	about	fluctuations?	

	

Variance	of	shift:	

Repeating	the	same	Bernoulli	argument	for	the	variances,	we	obtain:	

	 (A11)
	

Thus,	the	overall	result	is	that	“flipping”	increases	the	error	by:	

	 (A12)	

Since	δE	≈	9,	σδE	≈	3	(also	confirmed	by	numerics).	 	 	We	see	that	flipping	will	only	

decrease	the	error	at	the	3	standard	deviation	level	i.e.	only	0.13%	of	the	time,	and	

that	the	method	of	flipping	(pf(x))	is	(surprisingly)	irrelevant!		If	we	are	1	standard	

deviation	(9	counts)	below	900,	then	we	need	a	6	standard	deviation	event	in	order	

to	win,	i.e.	we	would	need	about	a	billion	entries	to	the	contest.		

δE = N pf ′x( ) pu ′x( )− pt ′x( )( )d ′x
0

xc

∫ + pf ′x( ) pt ′x( )− pu ′x( )( )d ′x
xc

∞

∫
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

pu x( ) > pt x( ); x < xc
pu x( ) < pt x( ); x > xc

σδE = δE1/2 1− δE
N

⎛
⎝⎜

⎞
⎠⎟
1/2

≈ δE1/2

δE ± δE1/2
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