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Abstract The ScaLIng Macroweather model (SLIMM) is a new class of stochastic atmospheric model. It
exploits the large system memory to overcome the biases of conventional numerical climate models, it
makes hindcasts and forecasts over macroweather forecast horizons (≈10 days to decades). Using the
simplest (scalar), SLIMM model with only two parameters, we present various twentieth century hindcasts
including several of the slowdown (“pause”) in the warming since 1998. The 1999–2013 hindcast is accurate
to within ±0.11 K, with all the 2002–2013 anomalies hindcast to within ±0.02 K. In comparison, the Climate
Model Intercomparison Project Phase 3 hindcasts were on average about 0.2 K too warm.

1. Introduction

Numerical climate models (coupled general circulation models: GCMs) are essentially weather models
that are pushed far beyond their deterministic predictability limits (of the order 10 days): the weather
they generate has no relation with the real weather, it is a “noise” forcing the lower frequencies. In this
low-frequency “macroweather” regime, control runs—with fixed climate forcings (boundary conditions)
—converge slowly to the GCM climates [Lovejoy et al., 2013a]. However, due to model “biases,” neither
the statistics of the driving noise (the weather) nor the model climates are fully realistic.

Following Hasselmann [1976], alternative stochastic models have been developed, the most sophisticated of
which are the Linear Inverse Models (LIM), [Penland, 1996; Penland and Sardeshmuhk, 1995], [Newman et al.,
2003], [Sardeshmukh et al., 2000], [Sardeshmukh and Sura, 2009]. In principle, stochastic models have the
advantage that their statistics can be made realistic; and by exploiting empirical data (the system “memory”),
they can effectively be forced to converge to the real climate so that, for example, a 20 component imple-
mentation of the LIM model (with >100 parameters) can already do somewhat better than GCMs for global
annual temperature forecasts [Newman, 2013].

The key question for stochastic macroweather models is thus how big is the system memory and how best
to exploit it? The LIM approach is based on systems of coupled ordinary (integer ordered) differential
equations whose solutions are essentially white noises and their integrals (Ornstein-Uhlenbeck processes).
Their low-frequency limits are (unpredictable) white noises so that for horizons beyond about 2 years,
the errors rapidly increase [Newman, 2013]. However, over the last decades, a scaling paradigm for
atmospheric variability has evolved that implies the existence long-range—potentially huge—memories,
and these can be exploited for forecasting [Lovejoy and Schertzer, 1986; Pelletier, 1998; Koscielny-Bunde
et al., 1998; Franzke, 2010, 2012; Rypdal et al., 2013 Q3; Rypdal and Rypdal, 2014; Yuan et al., 2014; Lovejoy,
2014c] (see the reviews of Lovejoy and Schertzer [2010], Lovejoy and Schertzer [2012], and Lovejoy and
Schertzer [2013]).

In a recent paper, we show how to use the simplest relevant scaling model—fractional Gaussian noise—to
exploit the system memory: the ScaLIng Macroweather Model (SLIMM) [Lovejoy et al., 2015] (hereafter
LDH). SLIMM was shown to make skilful hindcasts of natural variability from monthly to decadal scales
(LDH). The key to overcoming the limitations of an earlier attempt to exploit the scaling [Baillie and Chung,
2002] was to use the empirical effective climate sensitivity (λ2�CO2 ) to remove the anthropogenic effects
[Lovejoy, 2014b]. For annually, globally averaged temperatures, the resulting two parameter SLIMM model
(λ2�CO2 and the scaling exponent H, see below) was already generally better than both initialized GCMs
and LIM, although LIM was marginally better for horizons up to about 2 years (LDH). In this paper, we
demonstrate SLIMM on hindcasts and forecasts, notably showing that the slowdown in the warming since
1998—the pause is well hindcast as a natural cooling event immediately following a massive prepause
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warming event (1992–1998). The present results can be viewed as the conditional probability extensions of
a recent unconditional (return period) analysis [Lovejoy, 2014a].

2. Methods

In the weather regime, atmospheric dynamics are intermittent; the corresponding stochastic models are
highly nonlinear, they are based on multiplicative cascade processes (see Lovejoy and Schertzer [2013],
Chapter 5 for a review). However, in the macroweather regime, the intermittency is much weaker so that
as a first approximation, nonintermittent (quasi-Gaussian) models may be used (although not for the
extremes, see below). The usual starting point (e.g., for LIM) is the ordinary differential equation:

d
dt

þ ωw

� �
T tð Þ ¼ σγγ tð Þ (1)

where ωw ¼ τ�1w is the “weather frequency,” σγ is the amplitude of the forcing, and γ(t) is a Gaussian white
noise forcing with mean< γ(t)>=0. By putting d/dt≈ 0, we see that in the low-frequency limit, T(t) is a
white noise. The key to realistic modeling of frequencies lower than ωw is therefore to use a (low
frequency) fractional order generalization:

dHþ1=2T

dtHþ1=2
¼ σγγ tð Þ↔ T tð Þ ¼ σγ

Γ Hþ 1=2ð Þ�∞
∫
t

�∞
t � t′ð Þ� 1=2�Hð Þγ t′ð Þdt′; � 1=2 < H < 0 (2)

where the right-hand side is the solution obtained by (Riemann-Liouville) fractional integration of both sides
of the equation by order H+1/2, Γ is the usual gamma function. Equation (2) defines the simplest (scalar)
SLIMM model; the low-frequency part of the LIM paradigm is recovered as the special case with H=�1/2.

The solution T(t) is a (stationary) “fractional Gaussian noise” process. At small scales, it has singular behavior so
that the temporal resolution τ of T(t) is fundamentally important. Although physically, the weather scales are
responsible for the smoothing at τw, in practice, we typically havemacroweather data averaged at even lower
resolutions: for example, monthly or annually. The simplest procedure is to introduce the resolution simply as

an averaging procedure yielding Tτ(t) so that the variance T2τ
� � ¼ σ2T τ

2H diverges in the small resolution limit

(LDH, recall H< 0), it follows that the spectrum of T is E(ω)≈ω �β,ω is the frequency, and β = 1+ 2H. To within
an additive and multiplicative constant, the integral of T(t) (denoted S below) is a fractional Brownian motion
process introduced by Kolmogorov [1940] andMandelbrot and Van Ness [1968]. In Lovejoy and de Lima [2015],
we show how to extend this scalar SLIMM to spatially intermittent space-time SLIMM (accounting for differ-
ent climatic regions).

A straightforward way of predicting the future T̂ tð Þ t > 0ð Þ from past information (T(t), t ≤ 0) is to use the
method of innovations: we discretize equation (2), writing it as a matrix equation. The matrix is then
inverted to yield the corresponding past “innovations” γ(t) for t ≤ 0. To make the forecast at time t> 0,
equation (2) uses the past (t ≤ 0) values for γ(t) but for t> 0, it uses γ(t) =< γ(t)>= 0. A variant, also
illustrated below, is to replace the innovations for t> 0 by independent Gaussian random variables, the
results are future realizations (at times t> 0) conditioned on the past (the values at t ≤ 0). As discussed in
LDH, in future it may be advantageous to use other approaches by notably following Gripenberg and
Norros [1996] (integral equations) discretized with a variant of the Hirchoren and Arantes [1998] method,
which notably has the advantage of requiring less past data.

In LDH, the NASA Goddard Institute for Space Studies (GISS) temperature series were analyzed, the global-
scale exponent was estimated as H≈�0.20 ± 0.03 and the theoretical variance of forecast errors was derived.
It was shown that with this H value, for forecasts of one nondimensional time (resolution) unit (e.g., a month, a
year) in the future, 35% of the error variance can be explained by the forecast (over oceans, H≈�0.1 and
≈ 65% can be explained; note that we found subsequently that other global series tended to have Hs that
were a little closer to �0.1 than �0.2). Hindcasts from 1900 to 2003 confirmed the theoretical error and
correlation estimates and showed that the RMS error for 1 year globally, annually averaged hindcasts was
±0.093 K compared to the range ±0.105 to ±0.11 K for initialized GCMs and ±0.085 K for the LIM model
(Table 2 in LDH). See also Rypdal and Rypdal [2014] for a supporting discussion of scaling versus (nonscaling)
First Assessment Q4Report processes.
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3. Results

To illustrate the method, we used the NASA GISS annually, globally averaged series from 1880 through
2013. The first step was to estimate the natural variability by regressing the temperature against
the CO2 radiative forcing (using λ2�CO2 = 2.33 ± 0.16 K/CO2 doubling) and taking the residues. If one
prefers, one can use the estimated equivalent CO2 (CO2eq), but this involves extra assumptions (includ-
ing on aerosols) and leads to sensitivities a factor 1.12 times smaller. However, since log2CO2 and
log2CO2eq are highly correlated (r2 = 0.993), the residues are virtually identical. Unlike initialized GCM
hindcasts that “optimistically” assume that future solar and volcanic forcings are known, our hindcasts
(statistically) take these into account. The resulting residues (shown in the upper right curve in Figure F11)
have RMS variations of ±0.109 K that are very close to the GCM errors mentioned above as well as to
the variance of preindustrial multiproxies; the residues must be very close to the true natural variability.
This annual resolution zero-lagged forcing-response relation is only the simplest: introducing a time
lag or power law Green’s function (transfer function) may be physically more realistic but makes very
little difference to the amplitudes of the residues and—in any event, as shown in LDH—the zero-lagged
residues have well-defined scaling properties that allow them to be forecast with skill that approaches
the theoretical maximum.

In Figure 1, we compare the annual temperature residues (T) and its running sum s tð Þ ¼
X
t ′≤t

T t′
� �

with their

SLIMM hindcasts (red) and theoretical 1 standard deviation error bars (dashed). As expected, the actual
temperatures are seen to lie almost entirely within the limits. Figure 1 (bottom right) shows a blowup of
the temperature hindcast and the actual temperature residues, and Figure F22a shows the difference (error);
we see that over the entire period 1998–2013, the maximum forecast error is ≈±0.11 K. However, the error
for the hindcast “anomalies” is considerably smaller (i.e., the residues averaged over the hindcast horizon
t: (Ŝ(t)� S(0))/t): Figure 1 (bottom left) and Figure 2a (blue). Beyond 2 years, the anomalies are within the
theoretical 1 standard deviation limits, from 2002 to 2013, the anomaly errors are ≤±0.02 K, i.e., below the

Figure 1. (top left) The summed (natural) global, annual temperature S(t) (blue) with the hindcast (red) from 1998 shown in
red (here and elsewhere, the dashed red lines are 1 standard deviation error limits). (top right) The natural temperature
(blue) with the hindcast from 1998 (red). (bottom left) The anomaly defined as the average natural temperature (i.e., residue)
over the hindcast horizon (blue), red is the hindcast. (bottom right) The temperature since 1998 (blue) with hindcast (red),
a blowup of the hindcast part of Figure 1 (top right).
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estimated temperatures measurement errors (±0.03 K) [Lovejoy et al., 2013b]. (The term “anomaly” is a short
hand for the anomaly fluctuation, for the residues this is simply the series at a specific resolution. For example,
the RMS accuracy of annual GCM hindcasts is often quoted after averaging them over 4 or 5 years, this is the
RMS of the 4 or 5 year anomaly). We could mention that other “mean reverting” processes such as LIM will

(a)

(b)

Figure 2. (a) The hindcast errors: anomalies (blue) and temperatures (red) obtained from Figure 3 (bottom left and right,
respectively). The 1 standard deviation error limits are shown as dashed. The largest absolute errors are ±0.11 K. Also
shown is the estimate of the accuracy of the observations (dashed green), about ±0.03 K. (b) The future natural temperature
as forecast using the past temperature data to 2013 and exponent H =�0.2. We see that the temperature is forecast to
return to the long-term trend (zero) fairly quickly. Also shown are the +1,�1, and�2 standard deviation limits. The dashed
blue lines show the natural cooling trends needed to offset projected anthropogenic warmings of 0.023 K/yr and 0.016 K/yr
(corresponding to dlog2CO2/dt = 0.01/year and 0.007/year, respectively). These allow us to estimate how long the pause
can last without invalidating the anthropogenic warming hypothesis (red circles and vertical lines).
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also show qualitatively the same behavior: the superiority of SLIMM was quantitatively established in LDH
using over 100 hindcasts from 1900 to 2003.

Since it can be so accurately hindcast, these results support the (unconditional) statistical analysis of
Lovejoy [2014a] that the pause must be due to natural variability. This is consistent with Steinman et al.
[2015] who singled out particular high-amplitude—but narrow-scale range—low-frequency natural
processes including the Atlantic Multidecadal Oscillation (AMO) and argued that they explain the pause.
However, due to the scaling (in space and in time) there is in fact a hierarchy of processes analogous to
the AMO [Held et al., 2010]: our hindcasts statistically account for the whole relevant scale range and show
that they are all important.

While this paper was under review, an improved temperature series appeared [Karl et al., 2015] displaying a
weaker “pause.” Whereas in the series analyzed here, it was strong enough to recur on average only every
20–50 years [Lovejoy, 2014a], in the new series this return period was reduced to only about 10 years
[Lovejoy, 2015] so that decadal trends were not statistically significant.

We can SLIMM Q5to make a decadal temperature forecast (2014–2023), Figure 2b. We see that the forecast is for
a gradual return to the long-term trend (i.e., to zero for the residues, to the anthropogenic warming trend for
the actual temperatures). To forecast the total temperature change (natural plus anthropogenic), we used
projected increases of dlog2CO2/dt= 0.01/year and ≈ 0.007/year (corresponding to warming trends of
0.023 K/yr and 0.016 K/yr) that are, respectively, ≈ 40% larger than and equal to the trend since 2000; the
former gives projections close to the International Panel on Climate Change (IPCC) Fourth Assessment

Figure 3. Hindcasts starting in 1909, 1944, 1992, and 1998 each using the exponent H =�0.2, the effective climate
sensitivity (zero lag) of 2.33 K/CO2 doubling, the prior temperature data back to 1880 as well as the actual global annual
averaged CO2 concentration from Frank et al. [2010], extended to 2013 as described in [Lovejoy, 2014a]. The brown lines are
the actual (NASA GISS) annual global temperature series, and the colored lines are for the percentiles as indicated. The
curves beyond 2013 are forecasts based on log2CO2 concentrations projected to increase by 0.01/year. In 2035, this
yields 460 ppm which is a little higher than Representative Concentration Pathway Q74.5 (RCP 4.5) (450 ppm) but lower
than RCP 8.5 (470 ppm). The extrapolation uses the same effective climate sensitivity implying a 0.58 K increase from
2010 to 2035 which is about the mean of the AR4 SRES scenarios (see Figure 4).
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Report (AR4) SRES Q6scenarios discussed below. With these projections, the forecast for 2023 is for an increase
of 0.28 ± 0.11 K, 0.21 ± 0.11 K above 2013 (the errors come from the predicted SLIMM forecast error and the
uncertainty in λ2�CO2). Even if the CO2 concentrations stay in the lower range, the higher-warming value is
relevant if the somewhat larger 20 year lagged λ2�CO2 is used (see the discussion in Lovejoy [2014a]). The
figure also shows the +1, �1, and �2 standard deviation limits. These allow us to estimate how long the
pause can last without invalidating the anthropogenic warming hypothesis. From the graph, we see that
if natural coolings continue until about 2020 and 2023 (respectively, for dlog2CO2/dt= 0.01/year and
≈ 0.007/year, the dashed vertical lines), they would be 2 standard deviations below the forecast mean (solid
red). This implies that—depending on the emissions and future concentrations—if the temperature in,
respectively, 2020 or 2023 is the same as in 2013, the anthropogenic warming hypothesis may be rejected
with 97.5% confidence.

We can now compare the full hindcast (natural plus anthropogenic) with the data. Figure F33 shows the result
for four different starting dates (1909, 1944, 1992, and 1998), along with confidence estimates indicated by
various percentiles. Whereas the hindcasts shown in the previous figures were for the theoretical minimum
square hindcast (equivalent here to the expectation conditioned on the observations), the hindcasts and
percentiles below were each determined from 1000 stochastic simulations conditioned on the past observa-
tions as described above using only two parameters: λ2 × CO2 andH. To underline the versatility of the approach,
the noise γ(t) was not assumed to be Gaussian but rather amore extreme distributionwith an asymptotic power
law (“heavy”) tail with exponent qD=4 (i.e., slightly heavier than the observations in Lovejoy [2014b] and calcu-
lated with the method given in the appendix of the latter). Since the distribution was nearly identical to the
Gaussian over the percentile ranges ≈ 2.5–97.5%, only the red 1%, and 99% lines are more extreme than
for Gaussians. The agreement is excellent and any biases due to the method of separating anthropogenic
and natural variability are small. Also shown in Figure 3 are the projections from 2013 to 2035.

Finally, we can compare the hindcast (from 1992) and projection with those made by GCMs (Figure F44).
Although for the AR4 simulations, the results of individual GCM outputs are shown, they appear as a “swarm,”
their mean is near the 90% SLIMM percentile which is about 0.2 K above the empirical mean temperature

Figure 4. Using themethod in Figure 3, this compares SLIMMhindcasts from1992with the individual CMIP3 runs “harmonized”
to start from the same value in 1990 (adapted from Figure 1.4 AR5) and observations (the striped brown-yellow line is the
NASA GISS series used above). The forecast to 2035 is based on the projected CO2 and effective climate sensitivity as in
Figure 2b. The black line is the hindcast/forecast mean, the striped thick lines indicate the percentile values indicated in the
yellow rectangle. While the scaling hindcast is in good agreement, the maximum error—in 1998—is <0.2 K; in comparison,
the swarm of individual GCM forecasts was generally a bit too high, with themean near the 90%mark for the SLIMM hindcast
(from ≈ 2000, too warm by ≈ 0.2 K).
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(see e.g., Guemas et al. [2013], Schmidt et al. [2014], and Steinman et al. [2015] for discussion and theories). In
contrast, the SLIMM hindcast avoids these biases and stays very close to the data.

4. Conclusions

Numerical climate models are biased both because the statistics of their random weather forcings and the
GCM climates are not fully realistic. Stochastic models can improve on this by using empirically based statis-
tics for the noise and by exploiting the system memory to force forecasts to converge to the real climate.
Existing stochastic models (e.g., LIM) assume that there is only a short-term (exponentially damped) memory
and show little skill beyond 2–3 years. In contrast, it has become increasingly clear that the atmosphere and
climate system have a long-range memory and this can be exploited in scaling models. In this paper, we give
examples using the simplest such model, the ScaLIng Macroweather Model (SLIMM), that is based on frac-
tional Gaussian noise. Although in its simplest (scalar, single time series) form discussed here, it has only
two parameters (one to remove the anthropogenic effects, the other an exponent quantifying the memory
of the residuals), SLIMM already makes annual global hindcasts that are somewhat more accurate than
initialized GCMs and displays skill up to decadal scales. Here I illustrated this on twentieth century hindcasts
(from 1909, 1944, 1992, and 1998) as well as with a decadal forecast. I notably found that the pause in the
warming (from 1998) is well hindcast with predicted annual temperatures errors <±0.11 K (1999–2013)
and with anomalies from 2002 to 2013 having errors ≤±0.02 K. In comparison, the Coupled Model
Intercomparison Project Phase 3 (CMIP3) hindcasts discussed in the IPCCs AR5 are on average about 0.2 K
too high. These results are consistent with Steinman et al. [2015] but effectively extend them over a wide
range of scales using the observed scaling statistics.

In future publications, we investigate space-time extensions of SLIMM andmake regional monthly to decadal
scale forecasts.
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