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Abstract

Scale-invariant intergalactic dynamics governed by a statistically homogeneous cascade process
generically yields multifractal luminosity distributions with highly inhomogeneous realizations
(the standard nonfractal and fractal models are special limiting cases). The main obstacles for
extending scaling analyses to the spatial distribution of galactic absolute luminosities are the large
“Malmquist” catalogue biases which – for multifractal galaxy distributions – we here show how
to remove. We also derive the theoretical relation between absolute and apparent luminosity mul-
tifractal catalogues (the multifractal extension of the “Hubble 3=2” law; not to be confused with
the more usual Hubble law governing the expansion of the universe) and show that the theory is
compatible with both the observed apparent and absolute luminosities. The results of multifractal
analysis on two galaxy catalogues (depth 150 h−1 Mpc each) show that the observed form of the
dimension function follows if only matter in su�ciently dense (and sparse) concentrations is lu-
minous (with critical dimension Dc ≈ 1:85), i.e., mass and luminosity are tightly correlated only
above a critical mass density singularity threshold (
c ≈ 0:4). Since this critical singularity is con-
siderably larger than that which determines the mean mass, the clusters responsible for the mean
mass are dark and we obtain a “dark mass exponent” � ≈ 0:75. This implies that the ratio of lumi-
nous to dark matter is �′� where �′ is the ratio of the outer and inner cascade scales; taking �′ in
the range 10–100 we �nd that 85–97% of the matter is dark (�′ ≈ 10 is the value most compat-
ible with the microwave background and standard cosmologies and with the data used here, �′ ≈
100 is apparently compatible with some galaxy catalogues). The model also includes a multifrac-
tal phase transition associated with very bright self-organized critical galaxies whose luminosity
we �nd to be algebraic with critical exponent ≈ 4 (not exponential as is often assumed). A basic
problem with the scaling models proposed to date is that there is no satisfactory way of reconcil-
ing the high heterogeneity of luminous matter (fractal dimension 61:85) with the apparently low
heterogeneity of the mass as inferred from the cosmic background or the small peculiar veloci-
ties. Our model concretely shows that the fractal dimension of the regions making the dominant
contribution to the mean density may be as large as D1 ≈ 2:97 which is very close to the space
�lling value 3. We show that this may give deviations from the Hubble law as small as 3–7%
(for �′=10), as required by the observations. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

1.1. The outer scale of mass cascades and the “de Vaucouleurs–Hubble” paradox

The evolution of the universe is governed by gravitational and electromagnetic forces
both of which are power-law functions with no characteristic lengths. It is therefore
natural to assume that the statistics of the distribution of matter and luminosity are
scale invariant over wide ranges of scale. If we hypothesize a scale-invariant cascade
of nonlinear interactions=instabilities this will lead (generically [1]) to multifractal dis-
tributions of galactic mass and luminosity; hence the relevance of a large number of
empirical studies testing the scaling properties and limits of galaxy distributions. As
data have improved, the outer (homogeneity) scale of the scaling has been pushed out
further and further, with a recent review [2] concluding that the outer scale may be as
large as 1000 h−1 Mpc (h is the Hubble parameter; h = 1 corresponds to a Hubble
constant H0 = 100 km s−1 Mpc−1.). In contrast, numerous studies showing relatively
small heterogeneity in the microwave background (especially COBE) coupled with
standard models such as the cold dark matter model have led to a tightening upper
bound on the scaling regime; speci�cally, they are interpreted as showing the universe
to be homogeneous over scales larger than ≈ 100–150 h−1 Mpc. For example, Fig. 1
shows a recent power spectral density P(k) adapted from Ref. [3] which compares the
(favoured) cold and hot dark matter model with a wide variety of observations. The
spectral peak corresponding to ≈ 100–200 h−1 Mpc is probably the largest outer scale
compatible with these (indirect) observations of mass density 
uctuations, and is the
scale imposed by the �nite age of the universe coupled with the estimated expansion
rate (it is the size of the horizon at the time that the density of matter and radiation
were equal). In comparison, the inner scale would be at least as small as the mean
intergalactic distance (≈ 10 h−1 Mpc); hence scale ratios � (largest=smallest) could
be at least 15–20.
If the disagreement in the outer scales was the only problem, given the uncertainties

in both data and theories, it would probably not be serious. However, the scaling
studies of galaxy catalogues have shown that the heterogeneity in the luminous matter
is enormous; even intrinsically dim galaxies apparently are distributed on very sparse
sets which have fractal dimensions of ≈ 1:85–2 or less. As Sylos Labini et al. [2] have
pointed out, if mass tracks the luminosity, then this implies that density 
uctuations are
also enormous. This implies peculiar velocities so large that it becomes impossible to
explain how the Hubble law accurately holds down to distances as small as several Mpc
(as observed). It is probable that this apparent implication of the scaling observations
for mass densities that Sylos Labini et al. [2] call the “de Vaucouleurs–Hubble paradox”
has led to the latter being largely ignored by mainstream cosmology.
In this paper, we propose a possible resolution of this contradiction based on the sys-

tematic application of scaling (i.e., multifractal) notions. By analysing two galaxy cat-
alogues (each 150 h−1 Mpc deep; carefully correcting for the range-dependent biases),
we show that a simple model can explain all the observations. The key assumption of
the model is simply that only su�ciently dense mass concentrations will be luminous;
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Fig. 1. The spectral density of the mass density estimated from cosmic microwave background measurements
(boxes bounded above and below by two standard deviation limits), the cold and hot dark matter model
(curved line), and galaxy catalogues (APM survey (triangles), Las Campanas (squares), IRAS (circles),
SSRS2+CfA2 (crosses); adapted from Ref. [3]. Also shown are two straight lines with absolute slopes
sL = 1:85; s� = 2:93 which are the luminosity and mass density spectral densities of the thresholded multi-
fractal model discussed here (with outer scale 150 h−1 Mpc; slightly better �t is obtained at 100 h−1 Mpc).
The s� value assumes the lognormal multifractal for the mass density; for �¡2; s� lies between this extreme
and sL (i.e., any scaling spectra lying between the straight lines indicated are compatible with the data).

mass tracks luminosity only above a critical singularity (
c ≈ 0:4 corresponding to a
critical fractal dimension of about 1.85). Density singularities below 
c will be con-
centrated on (generally) fractal sets with dimensions less than the space �lling value
3; they will still be sparse but to a lesser degree [it is possible that some �nite 
 exists
which is not fractal (i.e., with D=3). Alternatively, the only truly space-�lling compo-
nent of the density �eld may be the limit of a perfect vacuum: D(
)→ 3 as 
→ −∞].
We quantitatively show that the critical dimension associated with the mean density
can be as large as 2.97 which we show gives acceptably small peculiar velocities. The
impact of this “nontracking” of the nonextreme mass concentrations and luminosity
implies that the spectral exponents of the two are quite di�erent; Fig. 1 shows the
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very di�erent spectra of mass density and luminosity that this would imply. Finally,
the model also implies that most of the mass is dark (at least 85%; depending on the
outer scale), implying values of the density parameter 
 greater than 0.1 (depending
sensitively on �′).

1.2. Cascade properties

Although the nonlinear processes governing the mass cascade are statistically homo-
geneous and hence respect a statistical version of the cosmological principle (i.e., they
are statistically translationally invariant), individual realizations are highly inhomoge-
neous. If, in addition to respecting a scaling symmetry, the cascades are statistically
isotropic, they are termed “self-similar”. More generally, the cascades may only respect
an anisotropic scaling symmetry – “generalized scale invariance” [5]; 1 they are scaling
multifractals but are not self-similar.
Let us now consider a cascade of mass density (a priori, this would include the total

baryonic and nonbaryonic mass) associated with a hierarchy of instabilities. It is now
known that cascades generically yield the following 2 nonclassical statistical behaviour:

〈�q�〉= �K�(q) : (1)

� is the corresponding scale ratio (large scale=small scale; �¿ 1, see Section 2), �� is
the (dimensionless) ratio of mass density at the scale ratio � divided by the (ensemble)
mean density; and K�(q) is the moment scaling function. In the following � indicates
the catalogue scale ratio, �′ the scale ratio of the cascade process itself, and � the
cascade ratio of volume limited sub-catologues. For a monofractal mass distribution,
K�(q) is linear; more generally, it will be nonlinear and convex. The relationship
between �� and the corresponding nondimensional mass (m�) is

m� = ���−d ; (2)

since �−d is the corresponding volume ratio (d = 3, is the dimension of space).
Equivalently, rather than specifying the statistical properties via the statistical moments
(Eq. (1)), we can specify them via probabilities [6]

Pr(�′�¿�
�) ≈ �−c�(
�) ;


� =
log ��
log�

; (3)

1 In general, the scale changing operator relating small and large scales can involve di�erential strati�cation,
rotation or more general transformations; in Ref. [4] it was suggested that galaxies may be classi�ed with
the help of generalized scale invariance. The isotropy of the large-scale universe would follow if the outer
cascade scale was statistically isotropic even though; the scale changing operator itself could involve preferred
directions, since these would only imply anisotropy of smaller scale structures. Hence, we need not assume
a priori that the multifractal cascade is itself self-similar (i.e., scaling and isotropic).
2 The di�erence between isotropic and anisotropic scaling is in the de�nition of the scale and scale ratio �;
the theoretical formulae used throughout the introduction do not presuppose isotropy. The latter is, however,
implicitly assumed in the data analysis section, both the method of de�ning subcatalogues and that of
estimating the scale ratios.
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where �′� is a randomly chosen density at resolution �; �� is a density threshold which
is related to the corresponding singularity 
� in the manner indicated, “Pr” indicates
“probability”, c�(
�) is the codimension function of the mass density, and the equality
“≈” in Eq. (3) is to within slowly varying factors such as log� terms. If d is the
dimension of space, whenever c�(
�)6d, there is a simple geometric interpretation: 3

D�(
�)=d−c(
�) where D�(
�) is the fractal dimension of the set whose mass density
exceeds �
� . The two descriptions c�(
�), K�(q) are related via a Legendre transform as

K�(q) = max

�
[q
� − c�(
�)] ;

c�(
) = max
q
[q
� − K�(q)] : (4a)

This Legendre relation (exactly valid in the limit � → ∞) has fundamental con-
sequences since it implies that there is a one-to-one relationship between orders of
singularity 
� and moments q:

q= c′�(
�) ;


� = K ′
�(q) : (4b)

This means that only a single fractal set (with codimension c�(K ′
�(q))) gives the over-

whelmingly dominant contribution to the qth-order moment.
In order for the cascade to have a well-de�ned small-scale limit, there must be a

quantity conserved scale by scale as the cascade proceeds. Assuming for the moment
that it is the mass density which is conserved, 4 we obtain

〈��〉= constant ; K�(1) = 0 ; (5)

i.e., 〈��〉 ˙ 
 (the density parameter, i.e., the usual density nondimensionalized by
the critical density needed to close the universe). Note that Eq. (5) states only that the
ensemble mean density is independent of resolution; it is a statement of scale-by-scale
mean conservation, not spatial homogeneity, it by no means implies that the density
of any realization of the process is homogeneous. On the contrary, the dominant con-
tribution to the mean density is due to a sparse fractal set with dimension denoted by
D1 = d− C1 below (d= 3; C1 = K ′

�(1); see Eq. (4)).
The scale-by-scale conservation of mass density (Eq. (5)) is theoretically appealing

since it would imply that the (ensemble) mean mass would have “trivial” scaling
(proportional to the volume of space); it would be the fundamental cascade quantity.
If in addition, the corresponding C1 is small enough (the limit C1 = 0 corresponds
to spatial homogeneity on each realization), this would allow – in accordance with

3 This is a major advantage of the statistical codimension formalism of multifractals; c(
) is always ¿0
whereas when c(
)¿d; D(
)¡ 0 and so it cannot be interpreted as a geometric dimension.
4 We are really considering the constancy of the 
ux of mass density from large to small scales during the
cascade and supposing that the mean density is independent of scale. This scale-by-scale conservation is an
additional hypothesis; it does not follow directly from the law of conservation of mass.
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observations – the Hubble law to be accurately linear even at small scales. 5 Indeed,
Sylos Labini et al. [2] have pointed out that if instead the mass distribution follows
that of the luminosity �eld (which they argue is fractally scaling with D ≈ 2 out to
the largest observed scales, i.e., at least 1000 h−1 Mpc), that it would lead to a “de
Vaucouleurs–Hubble” paradox, i.e., to an apparent contradiction between the scaling
and the Hubble law. Indeed, there is a large literature on the relation between galaxy
absolute luminosity (L) and mass (m; see e.g. Ref. [7] for a review), the empirical
evidence favours a power-law relation of the form

L˙ mn; L˙ �� ;

L� =L��−d ; (6)

where L is the luminosity per unit volume and empirically the exponent � is close to
unity. If �= 1, then we obtain

cL(
L) = c�(
�); 
L¿
Lc ;


L = 
� ; (7)

where 
Lc is a critical order of singularity. In our model, for 
L¡
Lc, cL(
L) and
c�(
�) will be di�erent, with cL(
L)=Cc=constant whereas c�(
�) continues to decline
as 
� decreases. This could arise since for 
L¡
Lc the density is not high enough for
galaxy formation, i.e., the corresponding density structures are dark. As we see below,
not only does this model avoid the de Vaucouleurs–Hubble paradox, but also has the
added bonus of automatically and quantitatively accounting for the missing mass: the
latter is simply hiding in dark clusters. 6

Although Sylos Labini et al. [2] do consider the possibility of a multifractal distri-
bution of mass, they do not directly connect this to a possible resolution of the de
Vaucouleurs–Hubble paradox as we do here. Instead, they give two extreme alterna-
tives neither of which they judge satisfactory. In alternative 1, they propose a truly
homogeneous dark matter distribution completely uncorrelated with the galaxies, argu-
ing (using linear perturbation theory) that it would have to have a density very near the
critical density for 
at space-time in order to explain small variations about the Hubble
law. In alternative 2, the matter and galaxies are completely tied together and the Hub-
ble law results from a totally di�erent mechanism such as a cosmological gravitational
redshift. In comparison, our model (backed up by empirical data below) which assumes

5 The “drift” in the mean of many fractal models is due to their nonstationarity=nonhomogeneity. In contrast,
all the cascade processes are by construction homogeneous (statistically translationally invariant) out to
their outer scales. However, if the mean is not conserved, then they will nevertheless display apparent
nonhomogeneity=“drift” on individual realizations for scales smaller than their outer scale. The wide range
validity of the Hubble law limits this apparent nonhomogeneity; of more relevance to the validity of the
Hubble law is the heterogeneity of the density levels which give the dominant contribution to the spatial
means on single realizations, i.e., those with critical orders of singularity 
1 = K ′

�(1). For conservative
multifractal densities, 
1 = C1 = K ′

�(1) where C1 is the codimension of the density level which gives
the dominant contribution to the mean. In Section 5, we show that this can easily be as small as 0.03
(D1 = d−C1 = 2:97) whereas the codimension of the support of the luminosity is Cc ≈ 1:15 which is quite
large; Dc = d− Cc = 1:85.
6 This could be either baryonic or non-baryonic matter. We readily obtain factors of 10–100; see Section 5.



S. Lovejoy et al. / Physica A 287 (2000) 49–82 55

only that mass and luminosity are tightly correlated above a minimum threshold can
be understood as a kind of compromise between the two alternatives. This is because
on the one hand, the high-order mass density singularities are indeed associated with
the galaxies (which however only contribute a small fraction to the total mass), while
on the other hand, the galaxies themselves are embedded inside (and hence are subtly
correlated with) the lower-order (dark matter) singularities which dominate the mean
mass and hence the Hubble law.

1.3. Galaxy number counts

Since the number distribution and the probability are related by a factor equal to the
volume of space at the inner cascade scale (�−d), we obtain the following galactic
number distribution:

N (L�) = �d Pr(L′�¿�
) ≈ �D(
) ;

=

log L�
log�

: (8a)

N (L�) is the number of galaxies brighter than the nondimensional absolute luminosity
L�. 7 In standard notation, if we had a perfect (unbiased) catalogue, using the luminos-
ity function �(L′) [the number of galaxies per unit volume with absolute luminosity
between L and L+ dL], we have

N (L�) =
∫ ∞

L�

�(L′) dL′ : (8b)

Note that we integrate over the brightest and not the dimmest galaxies. Below, using
this unbiased number distribution, we calculate the volume-limited catalogue number
distributions (the precise result is given by Eq. (32) if we incorporate the singularity
shift given in Eq. (42)).
At the most general level, the only constraint on D(
) is that it is a concave function;

however, under rather general circumstances it falls into universality classes governed
by three basic parameters [6]. In addition, of direct relevance here, for general “canon-
ical” cascades, there exists a generic behaviour of the extreme singularities; D(
) will
become linear (the “multifractal phase transition route” to self-organized criticality; see
Refs. [8,9]):

D(
) = (
s − 
)qD; 
¿
D ; (9)

where 
s, 
D and qD are constants; D(
) is concave for 
¡
D. This behaviour (which
corresponds to a multifractal phase transition at 
 = 
D) leads to the divergence of
statistical moments of order ¿qD. Since almost surely, no sets with D¡ 0 can be
observed, 
s corresponds to the highest singularity (the luminosity of the brightest
galaxy L�;max = �
s , i.e., it depends on the catalogue depth in a power-law manner)
observable in any given realization (more extreme values corresponding to negative D

7 In Section 2, we carefully distinguish biased and unbiased GNCs.
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will only be observed on an ensemble with many realizations). Finally, in our model
only su�ciently high concentrations of mass are luminous (i.e., corresponding to 
¿
c
for some critical 
c), and if in addition we suppose that 
D ¡
c, then we obtain the
thresholded model

D(
) = D(
c) = Dc; 
¡
c ; (10a)

D(
) = (
s − 
)qD; 
¿
c : (10b)

This combination of linear “tail” and constant multifractal “�lter” at 
c is indeed close
to the catalogues analysed here. 8

Up until now, the only scaling models (for analyses, see the next section) for the
absolute luminosity have been the nonfractal and monofractal models [11–14]. 9 These
are the special cases where

D(
) = Dc; 
¡
c ; (11a)

D(
) =−∞; 
¿
c ; (11b)

in which 06Dc6d is the dimension 10 of the mean luminosity. The nonfractal model
is not only generated by a homogeneous process, in addition, each realization is ho-
mogeneous: it has Dc = d (the dimension of space, here d = 3). The fractal model
(corresponding to a “� model” in turbulence) is generated by a homogeneous process
but already has highly inhomogeneous realizations: Dc¡d, hence it is sparse at all
scales. Note that Eq. (11b) is a special case of Eq. (9) with qD =∞. Eqs. (11a) and
(11b) imply that over a fractal set with dimension Dc the distribution of luminosities is
arbitrary (this is a fractal generalisation of the standard assumption that the galaxy lu-
minosity is statistically independent of its location). In contrast, the multifractal model
involves subtle long-range correlations between the location and luminosity because it
predicts that the brightest galaxies are sparser (more clustered) than the dimmer ones
(D(
) is generally a decreasing and concave function).

1.4. Empirical tests of multifractal luminosities; D-biases and 
-biases

Although Eq. (8) is a general prediction for scale-invariant dynamics, it has not yet
been directly empirically tested on absolute luminosities. So far, multifractal analyses
of galaxy catalogues have been limited to the following:

8 Strictly speaking, the model presented here is thresholded in D, not 
. However, the thresholding of a
“bare” cascade process at the �nest cascade resolution would result in a thresholding of the lower resolution
(spatially averaged) “dressed” cascade in D, see Ref. [10].
9 Note that many multifractal analyses have been made of the galaxy number density (see Refs. [15–
17]), which can quantify the spatial clustering. However, this is a totally di�erent multifractal measure (the
multifractality of the “support”); it is not trivially related to the multifractal measure de�ned by the absolute
luminosities, and which – as we show below – is related to the mass distribution.
10 All the dimensions discussed here are correlation dimensions because they are statistical exponents obtained
by averaging over special locations (galaxy centres) rather than over arbitrary centres. The usual (“box”)
dimensions are lower bounds; Ref. [18] shows that for apparent luminosities there is a signi�cant di�erence
between the two.
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(a) The multifractal measure de�ned by the number density of galaxies, or equiv-
alently, the multifractality of the “support” [17,18]. As pointed out in Refs. [18–20],
the number density per se has little physical signi�cance, so we will not pursue this
here; as we see below, su�ce it to say that in general, if the absolute luminosities
are multifractal (Eq. (1)), then the number density estimates will themselves have
range-dependent biases that are best accounted for knowing the multifractal properties
of L.
(b) The multifractal measure de�ned by the apparent luminosities (l; [18] treats

an in�nite family of measures obtained by raising l to various powers: l�). The ad-
vantage of using l is that – as long as the catalogue is unbiased for all apparent
luminosities greater than a threshold – there are no range-dependent e�ects. Indeed,
in Ref. [18] excellent scaling was obtained up to the largest available angles (in the
1-D projection of the CfA2 catalogue; up to angles of ≈ 100◦, see Section 3). The
disadvantage of this approach is that the physical signi�cance of the apparent luminos-
ity dimension function is unclear, and as pointed out in Ref. [21], and Section 4, the
statistics su�er large 
uctuations (due to the strong 1=r2 fall-o� in apparent luminosity)
when the apparent luminosities are determined at various locations (these can, however,
be dealt with either by reprojecting [18], or using double volume-limited catalogues
(see Ref. [21], and text below)).
(c) The multiscaling of the moments of the uncorrected (biased) absolute lumi-

nosity catalogues: In Ref. [20] the multifractal measure de�ned by L was used but
with two important di�erences with respect to the approach used here. First, the data
were gridded to estimate the luminosities at a degraded resolution L� (�¡�). Then,
the sum over the qth-order statistical moments was estimated:

�d∑
i=1

Lq�; i = �
−�(q) ≈ �d〈Lq�〉 : (12)

The “ ≈ ” sign is because the ensemble average was estimated by the spatial average.
Writing out the mean in full

〈Lq�〉=
∫
Lq� dP(L�) =

∫
Lq�
N� tot

dN (L�) = 〈Lq
�〉�−qd = �KL(q)�−qd : (13)

We see that �(q) = (q− 1)d−KL(q), so that from �(q), we can estimate DL(
) from
KL(q) using the Legendre transform 11 (Eq. (4)) and DL(
) = d− c(
).
The most obvious source of bias in this procedure is that it (implicitly) requires

unbiased estimates of the probability density dP�, and hence of the unbiased normal-
ization factor N� tot (the total number of galaxies in an unbiased catalogue at resolution
�). Unfortunately, due to the range dependence, not only will the number of dim (low
L�) galaxies be underestimated, but the number missed will depend on �. This dimen-
sion bias or “D bias” for short, yields a biased dimension function Db(
); it will be

11 Actually, the dimension formalism of multifractals was used. In addition to the moment scaling exponent
�(q) discussed above, the dimensions D(
) are denoted as f(�) for a singularity in the integral of L� order
� =−
.
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explicitly calculated in Section 2.3. To overcome this problem, we construct a series
of volume-limited subcatalogues, Section 2.2.
However, there is also a second, more subtle bias, – the “
 bias” which arises

from the problem of estimating L� in the �rst place. This is because L� is actually
the ratio between the luminosity at two scales separated by a factor �; hence any
scale-dependent bias in estimating L will shift the orders of singularities by an amount

bias. To overcome the 
 bias, we use a kind of the bootstrap method which will be
described in the next sections.

2. The range-dependent biases of multifractal absolute luminosities

2.1. The e�ect of the bias

2.1.1. Absolute luminosity singularities
Up until now, we have discussed the properties (including biases) of the GNCs at a

general level. We will now be more precise. Consider a catalogue with inner scale r0,
and outer scale R (R=r0 =�), and denote by Lu the unbiased absolute luminosity. The
inner scale is the smallest scale of the cascade (we empirically estimate this below); it
is of the order of the typical intergalactic distance. The quantities with subscripts “u”
(for “unbiased”) are dimensionless ratios of luminosities integrated over the indicated
scales

Lu;� =
Lr0
Lu;R

= �
u : (14)

The unbiased catalogue scale luminosity Lu;R is simply the total luminosity of all
the galaxies:

Lu;R =
∑
i; all

Lr0 ; i ; (15)

the sum is over all galaxies in the region, including those too dim to detect.
In comparison, the directly empirically accessible luminosities are biased (however,

since they are directly measureable, for convenience in the following, the biased quan-
tities will be indicated without special subscripts). Note that at the �nest resolution r0,
we typically have a single galaxy, hence if it is detected, there is no bias implying
Lu;r0 = Lr0. The biased L� is therefore

L� = �
 =
Lr0
Lu;R

Lu;R
LR

= �ru�−
bias ; (16)

where we have introduced the bias singularity

�
bias =
LR
Lu;R

; (17)

with

LR =
∑
i; cat

Lr0 ; i ; (18)
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i.e., the sum is over the (biased) subset of galaxies in the catalogue. In terms of
singularities from Eq. (16), we have


u = 
+ 
bias : (19)

Since the e�ect of the 
 bias is only a shift in the singularities, we can �rst analyse the
observed biased catalogue statistics, use this to estimate 
bias and then make appropriate
corrections (shift the 
’s); this is the “bootstrap’.

2.1.2. Luminosity density singularities
The luminosity density is given by

LR =
Lu;R
volBR

; Lr0 =
Lu;r0
volBr0

; (20)

where “vol” indicates “volume”, BR the “ball” size R; for the catalogues here, it is a
region of radius R from the earth subtending a �xed solid angle. Considering only the
unbiased luminosity density so that no subscript “u” is used:

L� =
Lr0

LR
=
Lu;r0
Lu;R

vol(BR)
vol(Br0 )

= �
L = �
u�d : (21)

In terms of singularities


L = 
u + d= 
+ 
bias + d : (22)

2.1.3. Estimating dimension functions using subcatalogues
We have already seen that because of the unknown number of galaxies which are

too dim to be detected, the catalogue probability distributions are both D- and 
-biased.
The way around the D bias is to use number distributions in a sequence of un-D-biased
volume-limited subcatalogues which are un-D-biased for ranges less than r = �r0:

N (Lu;�) = pu(
u)�Du(
u); Lu;� = �
u ;

N (L�) = p(
)�D(
); L� = �
 : (23)

Note that although the resolution of the subcatalogues is �, that of the galaxies remains
�¿� (the luminosity is not integrated over a grid, it is always a luminosity of a
single galaxy taken from a catalogue with full scale ratio � = R=r0). Because the
volume-limited subcatalogues are un-D-biased (at least for 
’s greater than a minimum;
see below), we have

D(
) = Du(
u) = DL(
L) : (24)

The entire procedure for correcting the biases is therefore to estimate the biased D(
),
and then (using the procedure indicated in Section 2.3) �nd 
bias and then determine
Du(
u) = D (
+ 
bias).
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2.2. Construction of the subcatalogues

To construct the series of volume-limited subcatalogues, �rst consider a catalogue
with depth R, maximum ratio of scale � (=R=r0), and sensitivity (minimum apparent
luminosity) lmin. An important characteristic of the catalogue is the lowest absolute lu-
minosity for which the entire catalogue is unbiased: R2lmin. This yields a characteristic
luminosity L�;cat:

L�;cat = R2lmin=LR (25)

or, in terms of singularities


cat =
log L�;cat
log�

(26)

the entire catalogue is un-D-biased for L�¿L�;cat; equivalently for 
¿
cat.
As with all the formulae below, a convenient way of expressing this is in terms

of magnitudes. We therefore introduce the magnitude (Mmean) of the catalogue mean
absolute luminosity (LR=Ncat):

Mcat =− 5
2 log10 Lcat=Ncat +Mmean (27)

(recall that 5 magnitudes = factor of 102 in luminosity and because of the negative sign,
the brightest galaxies have the lowest magnitudes). Ncat is the number of galaxies in
the catalogue. For reference, various values characteristic of the Z40, CfA2 catalogues
are shown in Table 1.
We now construct a series of volume-limited subcatalogues by introducing an abso-

lute luminosity threshold L�;min¡L�;cat; these subcatalogues will be un-D-biased for
distances up to r given by

r = (L�;min=‘min)1=2; L�;min¡L�;cat ;

r = R; L�;min¿L�;cat : (28)

In terms of scale ratios, this corresponds to

�= r=r0; L�;min¡L�;cat ;

�= �; L�;min¿L�;cat : (29)

Equivalently, the subcatalogues will be unbiased for magnitudes less than

Mmin =− 5
2 log10 L�;min=Ncat +Mmean ; Mmin¿Mcat ;

Mmin =Mcat ; Mmin¡Mcat (30a)

or equivalently, unbiased for singularities greater than


min = log L�;min=log�; 
min¡
cat ;


min = 
cat ; 
min¿
cat : (30b)

We see that by varying the luminosity=magnitude=singularity threshold de�ning the
subcatalogue, we e�ectively change the resolution � of the subcatalogue; however, the
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Table 1
Various characteristics of the catalogues. The overall best �t model parameters for the two catalogues are
qD = 4; 
s =−2:25; 
c = 2:7; 
bias =−0:1; 
Lc ≈ 0:4; 
Ls ≈ 0:85; � = 0:75

Description Z40 CfA2

Catalogue characteristics
Ncat Total number of galaxies in the catalogue 1876 1108
lmin Minimum catalogue apparent luminosity 14.5 15.5
R Maximum depth of catalogue 150 h−1 Mpc 150 h−1 Mpc
Mcat Lowest magnitude for which the entire −21:5 −20:5

catalogue is unbiased

cat Lowest singularity for which the entire −2:37 −2:62

catalogue is unbiased
Mmean The magnitude of the catalogue mean −19:5 −19:1

absolute luminosity

Fitted model parameters
r0 Inner distance of multifractal scaling 13.6 Mpc 17.6 Mpc
� Catalogue scale ratio = R=r0 11 8.5
Dc = d− Cc The dimension of the dim galaxies 1.85 1.85
qD Critical exponent of divergence of moments 4.15 3.8

(algebraic tail of the probability distributions)

Tail parameters, method 1

s Maximum order singularity in a single catalogue −2:1 −2:2
Ms Magnitude corresponding to 
s −22:3 −21:7

c (=Dc=qD − 
s; qD = 4) Threshold absolute luminosity singularity for −2:55 −2:65

luminosity model
rc Distance corresponding to 
c 120 h−1 Mpc 150 h−1 Mpc
Mc Magnitude corresponding to 
c −21:0 −20:5

bias Singularity bias due to the catalogue range −0:05 −0:01

dependence

Lc Threshold luminosity density singularity for 0.5 0.35

luminosity model

Ls Maximum luminosity density singularity for 0.95 0.8

luminosity model
� = Cc − 
Lc Dark mass exponent 0.65 0.8

Tail parameters, method 2

s Maximum order of absolute luminosity −2:3 −2:4

singularity in a single catalogue
Ms Magnitude corresponding to 
s −21:6 −21:3

c (=Dc=qD − 
s; Threshold absolute luminosity singularity for −2:75 −2:85
qD = 4) luminosity model

rc Distance corresponding to 
c 95 h−1 Mpc 130 h−1 Mpc
Mc Magnitude corresponding to 
c −20:5 −20:0

bias Singularity bias due to the catalogue range −0:1 −0:05

dependence

Lc Threshold luminosity density singularity for 0.35 0.2

luminosity model

Ls Maximum luminosity density singularity for 0.8 0.65

luminosity model
� = Cc − 
Lc Dark mass exponent 0.8 0.95
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resolutions of the luminosity values themselves are always at the maximum resolution
�. In terms of singularities, we can rewrite the subcatalogue resolution as

�= �1+(
min−
cat)=2; 
min¡
cat ;

�= �; 
min¿
cat (31a)

or alternatively

log10 �= log10�+
1
5(Mcat −Mmin); Mmin¿Mcat ;

�= �; Mmin6Mcat : (31b)

We can now express the number count statistics of the un-D-biased volume-limited
subcatalogues as

N (
) = p(
)�D(
); �= �1+(
min−
cat)=2; 
cat¿
¿
min ;

N (
) = p(
)�D(
); 
¿ 
cat ;


=
log L�
log�

: (32)

We can now use the above to test the multifractal hypothesis. For convenience, we
rewrite the above in terms of Mmin, M rather than 
min, 
 or Lmin, L:

log10 p(
) = log10 N (
) + D (
)
(
1
5 (Mmin −Mcat)− log10�

)
;

Mmin¿Mcat ; 
cat¿
¿
min ; (33a)

log10 p(
) = log10 N (
) + D (
)log10�; Mmin¡Mcat ; 
¿ 
cat : (33b)

In other words, for �xed 
 (i.e., luminosity), and Mmin¡Mcat, a graph of log N vs.
Mmin will be linear with slope −D(
)=5 (this is a variant of the probability distribution=
multiple scaling technique used in multifractal analysis [22,23]). An important point to
note is that while the subcatalogue (hence N ) has the degraded resolution (�¡�) the
values of the absolute luminosities still have resolution �. Since the depth R values of
most catalogues are such that only a few bright galaxies are visible at distance R, in
practice, few galaxies have M ¡Mcat so that Eq. (33a) is usually relevant (see below).

2.3. Determining the 
 bias

We have seen that by using unbiased subcatalogues, D(
) can be estimated. The
�nal step in correcting the bias is to estimate 
bias, since this is a somewhat involved
calculation, this subsection can be skipped at a �rst reading. We do this by �rst using
the formula for number distribution, to obtain the following biased dimension function
Db(
) (by the method of steepest descents, 12 i.e., by maximizing the exponent over
subcatalogues):

�Db(
) =
∫

min¡min(
; 
cat)

�(1+(
min−
cat)=2)D(
) d
min : (34)

12 If we ignore prefactors, direct integration can also be used to obtain the same result.
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The value of 
min which maximizes the above corresponds to the subcatalogue which
dominates the statistics for a given 
. Physically, this determines the largest radius at
which the singularity 
 can be seen due to the 1=r2 fall-o� in apparent luminosity. The
overall result is

Db(
) =
(
1 +


− 
cat
2

)
D(
); 
¡ 
cat ;

D(
); 
¿ 
cat : (35)

This is presumably the dimension function inferred in Ref. [20].
Now consider the following moment integral:

Mq =
∫

s¿
¿
min

p(
)�D(
)�q
 d
=
∫
�Db(
)�qr d
 : (36a)

The corresponding unbiased quantities are

Mq;u =
∫
�Du(
u)�q
u d
u : (36b)

Using the steepest descents method we can estimate these integrals. Rather than
giving the general result which is straightforward but not too illuminating, we give the
result for the low-order moments of the threshold model (i.e., D(
) given by Eq. 10).
With this thresholded model, we obtain

Mq = �(1+(
c−
cat)=2)Dc+q
c ; −Dc
2
¡q¡qD

(

c + 1− 
s + 
cat

2

)
;

Mu;q = �Du(
u; c)+q
u; c ; q¡qD : (37)

Since the probability is proportional to the number, the above need to be normalized
by the total number in the catalogue Ncat:

Ncat =M0 = �Dc(1+(
c−
cat)=2) : (38)

This shows that if the bias is not taken into account, a naive box-counting dimension
would yield

Dbox =
logNcat
log�

= Dc(1 + (
c − 
cat)=2) (39)

so that (see Table 1) with Dc ≈ 1:85, 
c − 
cat ≈ −0:1 to −0:2, we obtain Dbox ≈ 1:7.
Using this estimate of Ncat, we obtain

〈Lq�〉=
Mq
Ncat

=
Mq
M0

(40a)

or

〈Lq�〉= �q
c ; −Dc
2
¡q¡qD

(

c + 1− 
s + 
cat

2

)
: (40b)

Finally, we obtain the bias

�
bias =
M1
M1; u

=
�Dc(1+(
c−
cat)=2)+
c

�Du; c+
u; c
= �(
c−
cat)Dc=2+
c−
u; c ; (41)
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where we have used Du;c = Dc, and since 
u = 
 + 
bias we have 
u;c − 
c = 
bias.
Substituting this into the above equation we �nally obtain


bias = (
c − 
cat)Dc=4 (42)

so that from Table 1, 
bias ≈ −0:05 to −0:1 (only slightly di�erent for the two cata-
logues, depending somewhat on the method of evaluating 
c).

3. Data analysis

3.1. The data

We have shown that a basic consequence of the multifractal luminosity distribution
is that the volume-limited subcatalogues obey Eq. (33). In order to test Eq. (33) we
note that it contains both the unknown function D(
) (equivalent to an in�nite number
of parameters), as well as implicitly the parameter r0. Even with the restriction of D(
)
to the thresholded model, this leaves three parameters (
s; 
c; qD) to determine D(
). In
addition, the available three-dimensional catalogues (Z40, CfA2) had limited numbers
of galaxies, hence simplifying approximations were necessary.
First we brie
y describe the catalogues, then the analysis procedure. The three-

dimensional position of galaxies is obtained via measurements of their angular position
and redshift. In our analysis, all distances are derived from redshift using a Hubble
parameter h such that h=1 corresponds to a Hubble constant H0 = 100 km s−1 Mpc−1

and expansion velocities corrected for virgocentric 
ow, according to the formula in
Ref. [24].
(a) The Z40 catalogue is a subsample of the CfA1 catalogue [25] which contains

1876 galaxies in a cone bounded by (in galactocentric coordinates) bII¿40◦ and �¿0◦

with limiting magnitude lmin = 14:5 and depth R= 150 h−1 Mpc (see Fig. 2).
(b) The CfA2 catalogue (see Ref. [25]) contains only 1108 galaxies located within a

6◦×135◦ strip passing through the Coma cluster and has a limiting apparent magnitude
lmin = 15:5; R= 150 h−1 Mpc); see Table 1 for the basic characteristics (Fig. 3).
(c) CfA2proj: This sample is a projection along constant right ascension � of the

CfA2 sample. It contains information only on the galaxies’ angular position and lumi-
nosity and it is therefore treated as a one-dimensional sample (the intersection between
a one-dimensional strip and a 2-D projection 13 of the actual 3-D distribution). This is
discussed in more detail in Ref. [18], here it is only used to estimate Dc.
(d) MCG80×80 catalogue: This sample is a square 80◦ × 80◦ centred on the north

galactic pole. Its limiting apparent magnitude is 15.5 and contains information on
the luminosity and angular position of 6820 galaxies. Since it can be regarded as
a two-dimensional projection of the actual 3-D distribution, this sample contains no

13 It is not quite a full projection since no galaxies further than 150 Mpc are included. However since
Dc ¡D(
cat), this will not a�ect the statistics here.
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Fig. 2. The radial distribution of the 1876 galaxies in the Z40 catalogue.

information on radial distance. The sample analysed in the next subsection was con-
structed as follows: from the original data �le the angular position of each galaxy (in
� and �) was obtained and then projected onto a plane using a standard equal-area
Lambert projection which retains the density of points of the original distribution. A
cartesian grid with origin at the north galactic pole was then superimposed onto this
plane. Each axis was labeled from −90◦ to +90◦ and only those galaxies contained
between −40◦ and +40◦ (for both axes) were included in the �nal sample. Note that
these were the largest catalogues publicly available at the time the basic analyses were
performed; it would be interesting to test the model on larger catalogues such as the
Las Campanas survey.

3.2. Estimating Dc

Before testing Eq. (33), we will now outline how various parameters can be directly
estimated, showing that they do indeed lead to a D(
) satisfying Eq. (10). First, we
estimated the value of Dc in Eq. (10) using the correlation dimension technique. In
principle, if 
c ¿
cat then rc=R and D(
cat)=Dc and so treating the galaxies as a set
of points and estimating the dimension will yield Dc. Since the sparseness is constant
over the whole catalogue the contribution due to the more intense galaxies (i.e., with

¿
c; D¡Dc) will be negligible (the fractal dimension of any set is the maximum
of the dimensions of all its subsets). However, we shall �nd in both the Z40 and cfA2
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Fig. 3. The CfA2 catalogue of absolute magnitudes M as a function of the distance from the Earth (assuming
a Hubble constant of 100 km s−1 Mpc−1). As an example, an un-D-biased volume-limited sub-sample with
constant threshold was created by selecting those galaxies closer than 100 Mpc and fainter than an absolute
magnitude M = −19:5. There are 229 such galaxies. In total, there are 1091 galaxies represented in this
�gure.

catalogues that on the contrary, 
c ¡
cat ; rc ¡R and D(
cat)¡Dc. This means that the
more distant parts of the catalogue give negligible contributions (it is composed only
of extremely sparse bright galaxies). In addition to this dimensional e�ect, Sylos Labini
et al. [2,21] review the considerable literature on scale (i.e., geometric=�nite size type)
e�ects, showing that due to the often peculiar geometry of the catalogues (for example
the very thin angular slice in the CfA2 catalogue combined with the use of spheres
in the standard correlation technique) in conjunction with the range-dependent biases,
direct estimates are nontrivial. Indeed, early estimates of Dc were of the order 1.23
[12,26], but larger catalogues and more careful accounting for edge and other e�ects
lead to higher values; Sylos Labini et al. [21] discuss these problems at length and
compare many catalogues concluding that Dc ≈ 2± 0:2 is more accurate.
Although our results are essentially compatible with this (we �nd Dc ≈ 1:85±0:05),

it is of interest to consider a slightly di�erent method based on angular projections. As
discussed in Ref. [2] angular projections with Dc¡ 2 will have the same Dc, hence
since we found Dc ≈ 1:85, angular projections can be used. Since the catalogues
are de�ned by their angular extent, the angular projections su�er much less from the
problems of three-dimensional geometry of the catalogue. Use of the projections has the
additional advantage that the much larger apparent luminosity catalogues can be used;
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Fig. 4. (a,b) Correlation dimension analysis for the samples MCG80 × 80 and CfA2proj. The values of
the corresponding Dc’s are obtained from the slopes of the linear region in these �gures. The observed
values are 1:85± 0:04 and 0:85± 0:03; respectively, for MCG80× 80 and CfA2proj, in agreement with the
intersection relation. In this �gure the quantity � characterizes the angular box size (in degrees) used in the
analysis of these samples.

Fig. 4a shows the result for the M80 with 6842 galaxies, showing Dc ≈ 1:85. Even
for three-dimensional catalogues, projections can make analysis particularly simple,
especially when, as for the CfA2 catalogue, it can be treated as nearly an intersection
(very thin slice) in one of the angular directions. In this case, we expect the dimension
to be reduced by 1 by the intersection; Fig. 4b shows that such a 1-D reprojection of
the CFA2 catalogue does indeed yield a 1-D dimension of 0:85 ± 0:03 (up to 100◦,
i.e., virtually the entire range of angles available) implying Dc = 1:85 once again. For
comparison, Sylos Labini et al. [2] review the more limited angular correlation analyses
and conclude that Dc ≈ 1:8 with the di�erence (cf. Dc ≈ 2) arising from �nite size
e�ects and the special nature of the angular projections. For the Z40 catalogue the
angular projection was less advantageous; we show below that the same result, Dc ≈
1:85, approximately holds by testing Eq. (8) directly. Finally, nearly the same estimate
can be obtained by generalizing the “Hubble 3=2 law” to multifractals (Section 4) and
then using apparent luminosity histograms. The exponent of the latter (when suitably
averaged over the viewing galaxies – see below) yields a direct estimate Dc=2 ≈ 0:93.

3.3. Estimating 
s; 
c; qD

Contrary to Dc which is determined primarily by the numerous low-brightness galax-
ies, the parameters 
s; 
c; qD characterize the extreme bright galaxies and – because of
their small number – are much more di�cult to accurately estimate. We shall see that

c and 
s – the beginning and end of the power-law tail regions – are particularly
poorly estimated; indeed it is advantageous to estimate qD and then use the constraint
from Eq. (10b) to obtain 
c − 
s = Dc=qD.
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An interesting method of estimating the parameters 
s; qD is to use the extremes
directly. Combining Eqs. (10b) and (32)

N (L) =p(
)�qD(
s−
) = p(
)eqD(log Ls−log L)log �=log �

=p(
)
(
L
Ls

)−qL
; 
¿
min¿
c ; (43)

qL = qD
log �
log�

;

with �¡� determined by Mmin as in Eq. (30) with Mmin¡Mcat. We see that the
subcatalogues with Mmin¡Mcat will give biased exponents qL¡qD dependent on the
subcatalogue via �. To test this on the Z40, CfA2 catalogues, several volume-limited
subcatalogue probability distributions are shown in Figs. 5a and b where we have used
the equivalent formulae

N (M) = log10 p(
)− 2
5 (Ms −M)qL ;

qL =
qD(Mmean −Mmin)

5 log10�
;

M ¿Mmin ; Mcat¿Mmin ; (44)

with Ms being the magnitude corresponding to 
s. These formulae show that as we
vary the subcatalogue (change Mmin), we obtain straight lines with catalogue-dependent
slopes qL converging at Ms just as indicated in Figs. 5a and b. From these �gures,
we obtain the estimates Ms = −22:3;−21:7 (Z40, CfA2, respectively); we only need
estimates of the total scale ratio � in order to determine 
s.
To estimate qD; �, we introduce the easily measurable ratio �= R=r = �=�. Hence,

qL = qD

(
1− log �

log�

)
(45)

so that a graph of qL vs. log � is linear with intercept qD, and slope qD=log�. Note that
as �→ 1, qL → qD as expected. Fig. 6 shows the variation of the slope as a function
of log �. For both catalogues, the curves display a linear pattern in agreement with
Eq. (43), the intercept with log �=0 gives qD, combined with the slope, we obtain �.
The straight lines correspond to estimated parameters qD = 4:15± 0:15; 3:8± 0:15 for
Z40, CfA2 catalogues, respectively. The di�erence in qD estimates is not considered
too signi�cant; rather, due to poor statistics and also due to the di�culty in accurately
determining Mc and hence the region over which the regression to determine qL is
made. We take qD ≈ 4 as our best overall estimate. However, the di�erence in �
re
ects the fact that the two catalogues have di�erent inner scales r0 (13.6, 17.6 Mpc
for Z40, CfA2, respectively) and hence their corresponding �’s are di�erent: �= 11,
8.5, respectively.
The actual values accessible from the catalogues vary for deep subcatalogues from

qL ≈ 3:9 down to qL ≈ 2 for shallow subcatalogues, the latter being the value cited in
Ref. [28]. Because of this relatively low value (e.g. implying a diverging luminosity
qL = 2 order moment, i.e., the variance), an exponential cut-o� at bright galaxies was
introduced in Ref. [28] and the use of cut-o�s has become quite popular since; the
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Fig. 5. (a) The histogram of the tails of volume-limited subcatalogues (de�ned with magnitudes
Mmin = −20:5;−20;−19:5;−19, top to bottom, respectively) for the Z40 catalogue. Lines are �tted with
the parameters �= 11; 
s =−2:09; qD = 4:15: (b) Same as Fig. 5a except for the CfA2 catalogue (de�ned
with magnitudes Mmin = −20;−19:5;−19;−18:75, top to bottom, respectively). The straight lines are for
the parameters Mc =−20:5; � = 8:5; qD = 3:8; 
s =−2:17.
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Fig. 6. Variation of the probability exponent qL as a function of the distance ratio � = (R=r); CFA2=open
circles, Z40=crosses, reference lines, slope = −qD=log10 �; qD = 3:8; 4:15; � = 8:5; 11; respectively. Each
value of qL was obtained from a di�erent subcatalogue de�ned by a speci�c limiting magnitude Mmin and
range r. For the two samples CfA2 and Z40 the linearity of the curve �ts is compatible with Eq. (7).

critical cut-o� magnitude being denoted as M∗. However, our analysis shows that qL
is very sensitive to the Malmquist bias, that the relevant unbiased exponent is ≈ 4,
and we no longer need an ad hoc cuto�. It is interesting to note that a survey of
estimates of M∗ [2] �nds values of M∗ very close to those of Mc found here (for most
catalogues, including CfA2, they report M∗ ≈ −19:5). However, rather than a rapid
exponential fall-o� (which would contradict the scaling hypothesis), over essentially
the same range we �nd long-tailed algebraic distributions – as generically expected for
multifractal processes.
The correspondence between the values of M∗ and our Mc is probably better than

the above estimates would indicate. This is because Mc is very indirectly estimated:
using the equation 
c = 
s − Dc=qD. Even if we consider that Dc, qD are reasonably
accurate, the parameter 
s is quite poorly estimated so that it is best to consider that the
width of the algebraic range (
s − 
c = Dc=qD ≈ 0:46) is �xed, but that the beginning
is determined by the magnitude where the multifractal phase transition occurs. On
inspection of the probability distributions – see the extent of the linearity in Figs. 5a
and b – and in line with the estimates of M∗ – we �nd Mc ≈ −20:5 and −20:0 for
CfA2 and Z40, respectively, corresponding to 
c ≈ −2:75;−2:90 respectively, and
hence 
s ≈ −2:3;−2:4, respectively. We call this “method 2”, see Table 1 for a
comparison with the above “method 1”. Overall, both catalogues and both methods are
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Fig. 7. Above, the p(
) function estimated with Eq. (5); curves bottom to top are for 
’s corresponding
to M = −21:4;−21:2;−21:0;−20:8;−20:6;−20:4;−20:2;−20:0;−19:6;−19:2;−18:8;−18:4;−18:0;−17:6;
−17:2;−16:8;−16:4. The bottom three (dashed lines) are those for which 
cat¿
¿
c (= − 2:09 here
corresponding to, Mc = −21:0). Since Mcat = −21:5, there will be no Mmin dependence for M less than
this (the entire catalogue is unbiased for these very bright galaxies). The multifractality of L is veri�ed by
the approximate 
atness of the curves. The depth (r) of the subcatalogue is determined by the minimum
absolute luminosity (Mmin) and is found from r = r010(Mcon−Mmin)=5 with r0 = R=�= 150=11 = 13:6 Mpc. r
(on a logarithmic scale) is indicated at the top of the graph.

roughly compatible with the parameters Dc ≈ 1:85; qD ≈ 4; 
c ≈ −2:7; 
s ≈ −2:25.
Converting to unbiased absolute luminosity density singularities (using 
bias =−0:1 and
Eq. (22)), we have 
Lc ≈ 0:4; 
Ls ≈ 0:85.

3.4. Direct test of N (
) ≈ �D(
)

Using the above estimates for Dc; 
c; 
s; qD; �, we can now test Eq. (33) directly
by checking the constancy of p(
). Fig. 7 shows the result when this is done for the
Z40 catalogue. The relative 
atness of the estimates of p(
) as Mmin (and hence the
scale ratio �) is varied for �xed M (i.e., 
) con�rms that the parameter estimates are
reasonable.

4. The multifractal Hubble 3=2 law: how apparent luminosity distributions can be
explained by multifractality

4.1. The relation between absolute and apparent luminosity distributions

Garrido et al. [18] did not attempt to resolve the range-dependent bias problems dis-
cussed above; rather, the view was taken that the apparent luminosities were relatively
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well estimated, and that scale invariance should imply that they are also multiscal-
ing, a prediction empirically veri�ed on the M80 and the 1-D projection of the CfA2
catalogues. However, we can now return to the problem of interpreting the apparent
luminosities taking into account (a) the large statistical 
uctuations (emphasized in
Ref. [21], and (b) the theoretical connection between multifractal absolute luminosities
obtained by generalizing Hubble’s “3=2” law for apparent luminosities.
We �rst recall the classical derivation of the Hubble 3=2 law [29]. Consider a cat-

alogue limited by a constant apparent luminosity l (apparent magnitude �m). Suppose
�rst that all galaxies in the catalogue have the same absolute luminosity L. Then,
the number of galaxies with apparent luminosity greater than l(N (l′¿l)) equals the
number of galaxies which are closer than r ∼ √

L=l. For galaxies distributed with a
dimension D, this implies that N (l′¿ l) ∼ rD ∼ (L=l)D=2 (Hubble took D=3). Since
not all galaxies have the same absolute luminosity L, we can generalize this result by
integrating over all L values:

N (l′¿ l)˙
∫ (

L
l

)D=2
dL˙ l−D=2 = l−ql ;

ql = D=2 ; (46)

where ql is the apparent luminosity exponent. At the Earth, the observed value of ql
is ≈ 1:35 [18,21]; signi�cantly larger than the value ≈ 0:93 – 1 predicted by using the
monofractal model with Dc in the range 1.85–2. Sylos Labini et al. [21] have argued
that in spite of this discrepancy the monofractal picture is nevertheless correct and
that the discrepancy is due to local bias. They demonstrate this by averaging over all
the galaxies (using a kind of double volume-limited statistic), a procedure we follow
below and which indeed yields ql ≈ 0:93 (although – due to multifractality – not over
the whole range of l; see below).
Now consider a multifractal absolute luminosity distribution. We de�ne the apparent

luminosity (analogue) dimension function and singularity 
l:

N (L′¿L)˙ �D(
); L= �
 ;

N (l′¿ l)˙ �Dl(
l); l = �
l : (47)

Extending the monofractal Hubble law to the multifractal case, we obtain

N (l′¿ l) ≈ �Dl(
l) ∼
∫
�(
−
l)D(
)=2 d
 : (48)

Now, rather than integrate over singularities, we can consider 
 as a function of D,
and integrate over dimensions

N (l′¿ l) ≈
∫
�D
(D)=2−
lD=2 dD : (49)

This expression shows that N (l′¿ l) is the Laplace transform of �D
(D)=2, and hence
N (L) can be obtained from N (l′¿ l) by the inverse Laplace transform. The Laplace
transform pair �D
(D)=2, �Dl(
l) is analogous to the multifractal probability-moment pair:
�c(
), �K(q) (see Eq. (4)) introduced earlier. In the case of large L, it also reduces (via
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the method of steepest descents) to a Legendre transform pair for the exponents

2Dl(
l) = max−D
[(−D)
l − (−D
)] ; (50a)

− D(
)
=max

l
[(−D)
l − 2Dl(
l)] : (50b)

The values of D and 
l where the maximum occurs provide one-to-one relations be-
tween D (and hence 
) and Dl (and hence 
l). The �rst (Eq. (50a)) yields


l =
D (
)
D′(
)

+ 
 (51)

which is the relation between 
l and 
 showing that it is one to one except over ranges
where D(
) = constant. Di�erentiating this and using the fact that D′′¡ 0 (D(
) is
concave) and D′¡ 0 (D(
) is monotonically decreasing), D¿ 0 shows that d
l=d
¿ 0,
i.e., we �nd that 
l is an increasing function of 
.
The second maximization (Eq. (50b)) leads to a particularly simple relation

D′
l(
l) =−D (
)=2 ; (52)

i.e., the absolute logarithmic derivative of N (l′¿ l) is half the fractal dimension of
the contributing set. In order to obtain an even simpler expression, consider the ql
moments of l:

〈lql〉= �Kl(ql) =
∫
�
lql−(d−Dl(
l)) d
l; d= 3 : (53)

Once again, we obtain Legendre transform relations between cl(
l) = d − D(
l) and
Kl(ql). The �rst of these leads to the standard multifractal relation between statistical
moments order ql and the singularity (and dimension) dominating the moment

ql(
l) =−D′
l(
l) ; (54)

i.e., ql is the (negative) logarithmic derivative of N . Hence, combining this with the
above relation between D and Dl, we obtain the following generalization of the Hubble
3=2 law:

ql (
l) = D (
)=2 : (55)

This generalizes the nonfractal (D = 3) or monofractal case (D is constant ¡ 3),
which would imply that Dl is linear (Eq. (52); D‘ = q‘
‘) as expected. However, in
the more general multifractal case, D is variable, leading to nonlinear Dl. A general
property of dimension functions D(
) is that they are decreasing concave functions;
however, by di�erentiating Eq. (52) and using the fact that D′¡ 0; d
l=d
¿ 0 we can
easily show that Dl is convex; it is not a true dimension function. This is perhaps not
too surprising since the apparent luminosities are angular projections; a given angular
separation involves galaxies with widely varying spatial distances. The relationship
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between the angular multifractal dimensions in Ref. [18] and (�ne scale) luminosity
exponent Dl(
l) is not known at present.

4.2. The multifractal Hubble 3=2 law with the threshold model for D(
)

We have argued that the actual D(
) for the absolute luminosities can be reasonably
approximated by the model equation (10) with the parameters given in Table 1. Before
comparing the model to the empirical apparent luminosity data we will �rst give the
corresponding exponent Dl(
l) in this special case. The simplest way to obtain the
relationship is to �rst consider the algebraic tail; 
s ¿
¿
c. According to the Legendre
transform above, we �nd the following relation between singularities:


l = 2
− 
s; 
s ¿ 
l¿
lc (56a)

with


lc = 2
c − 
s (56b)

being the lower bound on the nonlinear part of the apparent luminosity dimension
function. For the regime in which the dimension D(
) = Dc=constant, we obtain a
linear Dl; Eq. (52) shows that D′

l = −Dc=2=constant in this regime. Overall, we
obtain

Dl(
l) =
qD
8
(
s + 
lc − 2
l)(
s − 
lc); 
l¡
lc ;

Dl(
l) =
qD
8
(
s − 
l)2; 
s ¿ 
l¿
lc : (57)

The width of the nonlinear regime, is thus 
s−
lc=2(
s−
c)=2Dc=qD ≈ 0:9 which is
fairly narrow. As we see in the next section, this combined with the large 
uctuations
at the tail end – probably explains why it has not been noticed up until now.

4.3. Empirical test of the multifractal Hubble 3=2 law

In order to empirically test the above and to use the absolute luminosities to predict
the apparent luminosity distribution – we note that due to the expected extreme variabil-
ity of the multifractal cascade, we anticipate strong statistical variations as mentioned
above. In order to obtain robust estimates, we therefore follow Ref. [21] by determining
the average apparent luminosity exponent over all the available galaxies by averaging
over all (galaxy centred) viewing locations using a kind of “double volume-limited
catalogue” to avoid bias. The result of this analysis is shown in Fig. 8. In this �gure
we show the averaged GNCs for both the Z40 and the CfA2 catalogues, as well as
the corresponding GNCs computed as seen from the Earth only. Two clear features
can be observed. First, it is clear that for galaxies brighter than m = 15:5, the GNCs
display roughly a power-law behaviour with an exponent 2=5q‘ ≈ 0:37 ± 0:02, hence
D′
‘ ≈ 2q‘ = 1:86 ± 0:08, i.e., nearly identical to Dc ≈ 1:85. Notice that this value is
also smaller than the slope predicted by the GNC seen from the Earth only. Since our
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Fig. 8. At the top is the reference line log10 P=0:37m−5:45 (corresponding to monofractal with Dc=1:85),
the curved lines are simulations with qD=4:15; 
s=−2:25; D(
)=Dc=1:85 for 
¡ 
D; D(
)=(
s− 
)qD
for 
¿ 
D. Points are corresponding data curves averaged in the “double” volume-limited way described in
the text (top is CfA2, bottom, Z40).

estimate of 1.86 arises from the ensemble average of the 1108 galaxies of the CfA2
catalogue and the 1876 galaxies of the Z40 catalogue, it is clear that it is more sta-
tistically signi�cant than the estimates done solely from the Earth. The relatively high
value of the estimate obtained from the Earth can be justi�ed as an ordinary statistical

uctuation from the spatial ensemble average (an estimate of ql can be made using
each galaxy as a centre, the resulting distribution of q‘ for all the di�erent galaxies has
a large standard deviation ≈ ±0:6 so that the Earth-based estimate is within a single
standard deviation of the ensemble estimate).
In order to account for both the nonextreme (D(
)=Dc=1:85=constant) and extreme

(linear D(
)) behaviour, it is enough to consider the simple model for the absolute
luminosities discussed above with the parameters Dc = 1:85, qD = 4, 
s = −2:25, and

c =−2:7. Fig. 8 shows the comparison with the apparent luminosity data obtained by
using the corresponding D(
) function in Eq. (48). As can be seen, the agreement for
both catalogues is very good, especially given the relatively small number of galaxies
involved and the simple model for D(
). The nonlinearity associated with 
 ¿ 
c is
slight; analysis shows that the corresponding 
l values are in the interval 
lc ¡ 
l¡
s
with 
lc = −
s + 2
c ≈ −3:15. Hence with � ≈ 10 this corresponds to the range of
magnitudes of 0:9× 2:5 ≈ 2:2 at the extreme (left) side of Fig. 8). However, as Fig. 8
shows, for the actual (relatively small) �′s used here, the actual apparent luminosity
probabilities (proportional to N ) are only slightly nonlinear; a clear discontinuity at 
c
will only be visible for large �.
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Fig. 9. Schematic with hypothetical mass density codimension function (subscript “�”; solid line, using the
universal multifractal model parameters C1 = 0:033; � = 2; the bare c� is curved, the dressed c� is linear
for 
¿ 
�D) with multifractal phase transition at 
�D = 0:23 for divergence of moments of order qD = 4
(shown as an asymptote). The luminosity density codimension cL(
L) is indicated by heavy dashed lines
with threshold at 
Lc=0:4; and the corresponding dimension Dc=1:85. The dark mass exponent � is shown
graphically (here ≈ 0:75). 
Ls ≈ 0:85 is the maximum observed order of singularity.

5. Implications for dark matter and Hubble law

5.1. Dark matter

Turning our attention to the unbiased model for L, we have argued that in order
to account for both the nonextreme (DL(
L) = Dc = 1:85=constant) and extreme
(linear DL(
L)) behaviour, it is enough to consider a simple thresholded model for the
absolute luminosities with the parameters given in Table 1. Physically, it is quite easy
to see how such a thresholded DL(
L) could arise. Consider the (convex) codimension
function cL(
L) = d− DL(
L) which is the exponent for the probability distribution
(see Fig. 9). First, consider the “bare” codimension function for the mass density; this
is the direct result of a cascade process hierarchically concentrating mass down to
subgalactic (nonobserved) scales. The observed “dressed” codimension function will
be the overall result integrated over the larger galactic scale. As mentioned earlier,
this generically produces (via a �rst-order multifractal phase transition at 
L = 
LD
[8,9]), the power-law tail (corresponding to self-organized critical behaviour) indicated
by the straight-line asymptote in Fig. 9. Similarly, constant, nonextreme behaviour
for 
L¡
Lc generically arises via a simple thresholding e�ect at the smallest scale
followed by an integration (dressing) to the observed scale � [10]. Such a “monofractal
�lter” would correspond to the existence of a minimum threshold for luminous mass
concentrations. Above the threshold, mass and luminosity could be roughly linearly
related (Eq. (6)), below the threshold the mass would be “missing” in the sense that
it would be in nonluminous concentrations. We now show that it is also compatible
with estimates of the mass of dark matter.
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5.1.1. Direct estimate of dark matter
Let us suppose that the total scale ratio of the mass cascade is �′; we have seen

that if the outer scale is 1000 h−1 Mpc [2], then this may be of the order of 102; our
150h−1 Mpc deep catalogues already spanned the range � ≈ 10; this is already nearly
the maximum compatible with the standard model; see Fig. 1. Consider the implications
of this simple model for luminosity-based estimates of the mass of the universe. As-
suming that the mean density is scale independent (conserved by the cascade; 〈��〉=1),
we �nd 〈L�〉= �−� where � is given by

�=min


(c(
)− 
) = Cc − 
c = (d− Dc)− 
c (58)

(Eq. (4) for q= 1; see Fig. 9); this yields the estimate � ≈ 0:75 (Table 1).
This extra mass is “missing” from the standard (homogeneous, � = 0) estimates;

� is a “dark mass exponent”. For example, taking the estimates �′ = 100, 10, we
obtain the factors (100)0:75 ≈ 30; (10)0:75 ≈ 6; the visible mass is thus respectively
≈ 3%, 15% of the total. According to a survey by Peebles [7], current estimates place
the density of luminous matter in “rich clusters” of galaxies at 
 = 0:01, this would
imply that the total density (baryonic and nonbaryonic) is, respectively, 
 ≈ 0:3; 0:06,
the former of which is in line with the latest estimates from redshift–distance relations
from supernovae [30].

5.1.2. Indirect estimate of dark matter
Even over the narrower range of scales spanned by the catalogues considered here

(� ≈ 10), there will be a factor 100:75 ≈ 6 ratio of dark to luminous matter. This is
roughly compatible with ratios determined by large-scale dynamics (obtained by consid-
ering their peculiar velocities within clusters and which includes estimates of dark mat-
ter directly associated with galaxies), which Peebles places in the range 0:05¡
¡ 0:1.
Note that according to our model, we expect the results of such studies to yield pro-
gressively larger density estimates until the true outer scale ratio �′ is reached.

5.2. The de Vaucouleurs–Hubble “paradox”

The primary criticism of scaling models of the large-scale structure of the universe
is that they involve unacceptably large 
uctuations in mean density. For example, the
COBE temperature 
uctuations are believed to be proportional to 
uctuations in the
gravitational potential (and hence indirectly proportional to the density) at the epoch
of radiation=matter decoupling; it is argued that they are small enough to preclude
a large outer scale for the scaling (see Fig. 1). Similarly, in the standard big bang
expansion model, the Hubble law follows if the density is uniform, hence the fact that
it is accurately followed even for distances of only several Mpc (see Ref. [2]) implies
that the 
uctuations in mean density are small.
Let us therefore consider the 
uctuations in the mean in the multifractal model. First,

the Legendre relation (Eq. (4)) establishes a one-to-one correspondence between sta-
tistical moments and singularities. In particular, the mean (q=1 order moment) whose
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corresponding singularity value is denoted as 
1=K ′(1) has corresponding codimension
c(
1) denoted as C1. Therefore, if C1 is small enough (the corresponding D1 = d−C1
is close enough to d= 3), the density 
uctuations giving the dominant contribution to
the mean will be nearly uniform (c=0) – even though those associated with luminous
matter are very sparse (Cc/C1≈ 0). Although we have no direct information on the
form of c�(
�) for 
� ¡
Lc (and hence on the value C1), our parameter estimates
severely limit the possible range. To see this, consider the equations satis�ed by the
multifractal phase transition

(d− c�(
�D)) = qD(
s − 
�D); 
�D = K ′
�(qD) : (59)

The �rst equation simply states that for 
� ¿
�D (where the �rst-order multifractal
phase transition occurs) c� becomes linear passing through the point c�(
s) = d. The
second is simply the Legendre relation between the critical singularity (
�D) and the
corresponding moment (qD). As long as Eq. (59) is satis�ed with 
�D ¡
Lc, the model
will be consistent with the observations. Substituting the Legendre relation K�(qD) =
qD
�D − c�(
�D) into Eq. (59), we obtain

K�(qD) = qD
s − d : (60)

Before substituting the empirical values on the right-hand side, we may already note
that since qD ¿ 1, we have K�(qD)¿ 0 which implies the constraint 
s ¿d=qD ≈ 3=4.
Substituting in the parameters estimated earlier, we �nd the constraint K�(4) = 4 ×
0:85− 3 = 0:4. To show that this value is readily compatible with small values of C1,
consider the hypothesis that the cascade dynamics leads to universal multifractal mass
densities:

K�(q) =
C1
�− 1(q

� − q); q¡qD ; (61)

where 06�62 is the Levy index which parametrizes the degree of multifractality,
empirically, qD ≈ 4 (Table 1). The extreme case �=2, corresponds to the “log-normal”
multifractal and � = 0 to the monofractal (“beta model”) limit. Over the entire range
of possible � values, the constraint K�(4) = 0:4 limits C1 to the range 0:03 (� = 2)
to 0:13 (� = 0) with corresponding 
�D in the range 0.23–0.13, i.e., ¡
Lc for all
values of � (cf. the empirical value 
Lc ≈ 0:4, Table 1). In particular, for � = 2, the
corresponding dimension D1 ≈ 3 − 0:03 ≈ 2:97 is su�ciently close to 3 so that for
example even if �′=100, then the variations in the density levels relevant to the mean
are small. To make a quantitative estimate, we can follow Sylos Labini et al. [2] and
use the linear perturbation theory to relate the relative peculiar velocity �V=VH (VH is
the Hubble velocity) to the relative density 
uctuations ��=� obtaining

�V=VH =− 1
3


0:6��=� : (62)

If we now take �� as the standard deviation, for our multifractal model we obtain

��=�= (�K�(2) − 1)1=2 : (63)

Taking K�(2) = 0:066 (C1 = 0:033; � = 2), and � = 100, 10 we obtain ��=� ≈ 60%,
40%, respectively, for the relative density 
uctuation at the inner cascade scale
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(≈ 10–15 h−1 Mpc). Finally, taking 
 ≈ 0:3, we obtain �V=VH ≈ 5–10%, 3–7% (�=
100, 10, respectively) which is compatible with the observed 
uctuations in the Hubble
law (which are probably of the order of 10% at 60 h−1 Mpc).

5.3. Mass and luminosity spectra

The basic element of our model is the assumption that the luminous matter is only
the extreme end of a hierarchy of density singularities. We have seen that this is
probably su�cient to reconcile the scaling with the 
uctuations in the Hubble law. It
also predicts that the spectra for luminous matter and density are quite di�erent. As a
�nal aid in comparing our model with the standard big bang models, we now estimate
the exponents of the standard power spectral density (P(k)):

P(k) ≈ k−s : (64)

Since the spectrum is the Fourier transform of the autocorrelation (a second-order
statistic), for a multifractal embedded in an isotropic d-dimensional space, we obtain
the standard result (e.g. Ref. [27])

s= d− K(2)− 2K(1) ; (65)

where K(2) is the value of the scaling moment exponent for q = 2. Applying this to
our lognormal model of density and the thresholded model of luminosity, we obtain,
respectively

s� = d− 2C1; sL = d− Cc : (66)

Using the values d= 3; C1 = 0:033; Cc = 1:15, we obtain s� = 2:93; sL = 1:85. These
lines – adjusted so that the outer scale is at 150 h−1 Mpc – the outer scale of this
study – are indicated in Fig. 1. We see that as expected, the line corresponding to the
luminosity spectrum goes quite accurately through the galaxy data points, but that the
spectral density at scales of 10 h−1 Mpc is already overestimated by a factor of ≈ 10
due to the assumption that matter is tracked by luminosity.

6. Conclusions

We gave argued that the generic result of scaling nonlinear cascade dynamics is
multifractal galaxy number counts with nonfractal and monofractal models as special
cases. The main problem in verifying this simple prediction is the existence of large
range-dependent biases; both in the dimensions (the “D bias”) and (to a much lesser
degree) in the singularities (the “
 bias”). The D bias can be removed by systemat-
ically applying an extension of a basic multifractal (“PDMS”) analysis technique to
volume-limited subcatalogues, while the 
 bias is simply a shift in singularities and
can be removed by a kind of bootstrap procedure in which the un-D-biased number
distributions can be used to estimate the 
 bias. Removing these biases, we demon-
strated the multifractality for the Z40 and CfA2 catalogues (including the extremes).
The multifractality was shown to be compatible with a simple “thresholded” model in
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which the dimension is constant up until a critical singularity (a multifractal phase tran-
sition) after which the dimension function becomes linear corresponding to algebraic
probabilities, “self-organized critical behaviour”. A qualitative change in behaviour at
nearly the same galaxy magnitudes was also noted in the literature but was on the
contrary attributed to exponential (nonscaling) behaviour of the extremes.
The parameters of the thresholded model were estimated by using angular projections,

as well as by using apparent luminosities. In order to infer the model parameters
from the latter, we showed how to extend the Hubble 3=2 law (relating absolute and
apparent luminosities) to multifractal absolute luminosity distributions showing that,
in general, the logarithmic derivative of the apparent luminosity distribution (when
suitably averaged using double volume-limited catalogues), is half the fractal dimension
of the corresponding absolute luminosity.
We then suggested a simple model which would explain the observed D(
) func-

tion. In our model, a cascading hierarchy of mass density 
ux starts at large scales
(perhaps as much as 1000 h−1 Mpc or larger) and proceeds via a scale-invariant series
of instabilities down to the mean intergalactic distance (or smaller). This generically
produces a multifractal mass density distribution, including (via �rst-order multifractal
phase transitions), algebraic tails on probability distributions (we �nd a critical ex-
ponent qD ≈ 4 corresponding to the divergence of moments of order 4 and higher)
associated with extreme mass concentrations – self-organized critical structures. How-
ever, in the model the luminosity density only “tracks” the mass density for singularities
greater than a critical value corresponding to a minimum threshold for galaxy forma-
tion. Lower-order mass density singularities (below 
 ≈ 0:4) are nonluminous. Since
the mass clusters=singularities giving the dominant contribution to the mean mass are
below the threshold, we conclude that most of the mass in the universe is in dark
clusters. Extrapolating from locally calibrated luminosity – mass relationships to scales
much larger than the calibration catalogue, we require a “missing mass” exponent
which we estimate to be � ≈ 0:75. This value is su�ciently high so that for example
if the cascade starts at 1000 h−1 Mpc (about 7 times the scale of our catalogues), then
97% of the mass is dark; with this large outer scale, we predict 
 ≈ 0:3 which is the
currently favoured value.
In addition to a simple accounting for missing mass – whether baryonic or nonbary-

onic – our model also resolves the apparent contradiction between the excellent (but
nontrivial (multi)fractal) scaling of the luminous mass (suggested by de Vaucouleurs,
quanti�ed by the minimum codimension Cc ≈ 1:15), and the equally impressive lin-
earity of the Hubble law (even at small scales). Since it is hard to renconcile a highly
heterogeneous distribution of mass with a linear Hubble law, Sylos Labini et al. [2]
call this the “de Vaucouleurs–Hubble” paradox. However, in our model – at least as
concerns the low-order statistics including the mean and variance – the heterogeneity
of the mass is much less than that of the luminosity: (e.g. for the lognormal model,
D1 = 2:97 compared to max(D) = 1:85 for the luminosity density), using the linear
perturbation theory, we estimate that velocity 
uctuations around the Hubble law at
10–15 h−1 Mpc will be in the range 3–10%.
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Our knowledge of the large-scale density 
uctuations of the universe comes essen-
tially from measurements of the microwave background interpreted with the help of
various cosmological models, and from measurements of the luminosity interpreted with
the help of assumptions relating luminosity to mass. In the last 10 years as measure-
ments of all kinds have improved, we have witnessed an apparent contradiction between
the largest scale of heterogeneity of galaxy catalogues which has been progressively
pushed further out, while simultaneously, the smallest scale of density homogeneity
scale as inferred from the microwave background, has been more con�dentaly pushed
inwards. The model presented here shows how – if the cross-over scale occurs some-
where near 150 h−1 Mpc – the two can be reconciled. This model could be viewed
as a kind of compromise between the two empirical �ndings since it allows the com-
ponent of the mass density �eld giving the dominant contribution to the mean to be
relatively spatially homogeneous while allowing the much denser luminous component
to be highly heterogeneous=sparse with the two tied together with the simple hypoth-
esis that only su�ciently dense regions are luminous. Future work to test this model
could bene�t, on the one hand, from the use of much larger galaxy catalogues, and
on the other hand, from the results of N -body calculations which may already have a
su�cient range of scales to estimate the parameters.
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