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Abstract 

In the past five to ten years mounting evidence has arisen indicating that the large-scale 
spatial number density of galaxies may be governed by fractal or multifractal statistics. In this 
paper we extend this idea by searching for multifractal behaviour in other density fields. 
Namely, generalized luminosity density fields (which we define here) constructed from informa- 
tion on both the angular position and the apparent luminosity of galaxies. Using data from the 
Center for Astrophysics' CfA2 catalogue, we perform various multifractal analyses that reveal 
that over broad angular scales, the fields studied present two important signatures of multifrac- 
tal behavior: multiscaling and algebraic probability distributions associated with extreme 
fluctuations and first-order multifractal phase transitions. Since the presence of both of these 
phenomena is the defining feature of Self-Organized Criticality, we argue that the 
spatio-luminous distribution of galaxies in the observable universe may be described as 
a nonclassical self-organized critical phenomenon resulting from multifractal cascades. 

Keywords: Galaxies; Multifractals; Scaling; Critical phenomena 

I. Introduction 

1.1. Motivation 

Statistical studies on the large-scale distribution of luminous objects in the universe 

have often reduced the problem to that  of either a point  distribution in space, or 
a functional variat ion in the luminosity probabil i ty distribution, independent  of  the 
spatial location. However,  neither approach  by itself is sufficient to completely 
describe - in a statistical sense - the observed universe. Results from the two-point  
galaxy correlat ion function ~(r) (see for instance Peebles Eli, Einasto et al. [2], Luo  
et al. [3], and Mart inez [4]) have suggested that  the spatial distribution of galaxies 

forms a fractal set of  dimension ~ 1.23 up to scales of the order  of 10 h-1  Mpc. 
However,  more  recent analyses (Coleman and Pietronero [5], Calzetti et al. [63) have 
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shown that this upper limit of l0 h 1 Mpc may be spurious since spatial homogeneity 
is apparently not reached within the scales of the samples studied. In such a case 
a mean space density cannot be well-defined, and consequently the upper scaling limit 
for ¢(r) becomes sample dependent. A similar effect may be observed i f -  as we argue 
here - the distribution of luminosity in the universe turns out to be multifractal with 
an outer scale greater than the sample size. 

The main analytic tool in standard analyses of luminosity distributions has been the 
luminosity function q~(I), which indicates the probability that within a given region of 
space, one finds a galaxy with an apparent luminosity in the range l to l +  dl. 
Although various empirical fits have been proposed to the observed form of the 
luminosity function of several catalogues (see for instance Schechter [7], and Abell 
[8]) no convincing physical justification exists for the mathematical form of such fits. 
In addition, no connection has been made from such fits to the spatial distribution of 
galaxies. 

Clearly, a complete statistical description of the large-scale distribution of galaxies 
must go beyond the treatment of galaxies as mathematical point objects and take into 
account other properties such as their mass and luminosity. In this paper, we propose 
that multifractals naturally provide such a unified framework, and quantitatively 
show that the largest publicly available catalogue of galactic luminosity is compatible 
with this framework up to the largest available angular scales. 

In multifractal processes, the variability builds up step by step from the large to the 
small scales leading to high intermittence generally associated with algebraic 
probability tails and multifractal phase-transitions (as explained in section 31. Since 
the combination of scaling with algebraic probabilities can be regarded as the defining 
feature of Self-Organized Criticality (SOC), it has recently [20] been argued that such 
nonclassical SOC is a generic feature of multifractal processes. The corresponding 
multifractal phase transition route to SOC makes the specific prediction, which we 
verify in section 3 of this paper, that the normalized t/powers of the luminosity fields 
will have critical exponents which vary according to a specific law, depending on 
a critical dimension which we estimate. More details can be found in Garrido [9]. 

1.2. Definition of the generalized apparent luminosit.v fields l,t,~ 

In order to test the multifractal character of the universe at large scales, we define 
a family of generalized luminosity fields. These fields are constructed as follows: we 
first denote the standard information about a galaxy's angular position and apparent 
luminosity as l.l(g?). The capital Greek letter A is the scale ratio of the largest to 
smallest scale in the sample, i.e. the maximum available spatial/angular resolution of 
the catalogue corresponding to an individual galaxy. The parameter ~ represents the 
galaxy's angular position in spherical coordinates. 

Next, consider a region of space A of size S. In order to define a field, this region is 
subdivided into i smaller regions B;,~ of size s < S (s is an intermediate scale which 
defines the scale-ratio 2 as 2 - Sis > 1). The values of all the events IA(O) located 
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within each B~.,i are raised to a power q and then summed up. We define the resulting 
sum as the "q-flux" H~")(B;~.~) of the ith region at resolution 2. The "Generalized 
(apparent) Luminosity Field" l,l.;~(B;.i ) at resolution 2, is then defined as the density of 
the q-flux over the total volume (or area) of the region A under consideration: 

~- ~ (1A(~))ndg2, I,,~(B~.,i) = H('I)(B~,i) 
Vol(B)~,~) (1) 

B)..i 

Vol(B)~.~) is a spatial/angular integral over the i regions B)~.~ within A (the subscript 
i runs between 1 and 2 °, D being the dimension of the sample). 

In our analysis, the fields /,7,~(B~.~) at resolution 2 have been normalized so that 
(1,,~.(B)~.,)) = 1 (where the brackets ( ) indicate ensemble average at resolution )L over 
the entire region A). Note that a corresponding definition of the generalized absolute 
luminosity field L,7,~ ~ is identical to Eq. (1), but with 1a(~'2 ) replaced 1 by L a ( r  , ~']). In this 
paper however, we concentrate solely on the analysis of I,,), As it will be mentioned 
below, the analysis of L,,~ requires additional considerations which will be properly 
discussed in a separate paper. 

The systematic study of normalized q powers of a multifractal field (as given by Eqs. 
(1)) was first proposed by Lavall6e [10]. However, with the partial exception of 
Coleman and Pietronero [11] (who studied q = 0, 1) our research represents the first 
application of such a study to an astronomical field. 

1.3. Some important members of  the family of  luminosity fields 

The exponent q in Eqs. (1), indexes the member of the luminosity family under 
study. It can be noticed that 10.;~ represents the number density field of galaxies at 
scale-ratio 2. This field has been studied by Atmanspacher et al. [-12] and 
Wiedenmann et al. [13] finding good evidence for multiscaling, often up to angular 
distances greater than 30 ~' (in agreement with the large-scale inhomogeneities 
observed below in Fig. 2). I~,;. represents the apparent luminosity field at scale 2; that is, 
the (normalized) total amount of light received from all galaxies located within an 
angular region B;~.i of extent s. 

As mentioned earlier, in this paper we shall not analyze generalized fields L,,;~ of 
absolute luminosity. However, in order to help the reader gain familiarity with the 
concept of generalized luminosity fields, it is convenient at this point to give a physical 
interpretation of at least some fields L,,;. The three-dimensional number-density field 
of galaxies is represented by Lo,;~. Martinez [4], Jones et al. [14] and 
Dominguez-Tenreiro et al. [15] have shown that multifractals provide a good 

1 In order to simplify the notation in the rest of the analysis, the generalized luminosity fields will be written 
as l.~. and L~, so that their spatial dependence will be implicit. 
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Fig. 1. Example of four fields Lt.;~ as a function of the resolution ,;~ for the sample CfA2proj (see discussion in 
text). The figures have been produced by averaging the luminosity over increasing angular scales. As the 
resolution decreases from the original raw-data (2 = A) down to a resolution of 27' (2 = 5), both variability 
and the intermittence of the field are observed to decrease severely. In order to facilitate the 
intercomparison among the figures, the luminosity fields were not normalized. 

description of this field, at least for scales smaller than about  10 h 1 Mpc  2. Members  
of L,~,~, indexed by 0.8 < q < 1.25 (the exact value depending on the semi-empirical  
m e t h o d  used to relate absolute  luminos i ty  to mass) may  be considered as est imates  of  
the corresponding  field of  mass  distribution. C o l e m a n  and Pietronero  [5, l 1], have 
recently analyzed the L~,;~ field finding g o o d  support  for multifractality up to distances 
comparable  with the size of  the cata logues  ( ~ 50 Mpc). An example  of  a L~,~ field is 
s h o w n  in Fig. 1. The data comes  from the sample  CfA2proj (discussed in the next 
section). It can be not iced that as the resolut ion decreases from )~ = A to 3 2 = 5 (i.e. as 

2 In fact, we shall see that indeed the t / -  0 case has the poorest scaling since it is most sensitive to the low 

luminosity cut-off. See section 2. 
3 Since the angular resolution R of this catalogue is on the order of seconds of arc, and its maximum angular 
extent is 135' it follows that A = (135~/R) ~ l0 s. See section on "'data considerations". 
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the luminosities are averaged over increasingly larger angles), the luminosity variation 
also decreases severely. Such behavior is typical of multifractal fields as will be 
explained below in Section 2. 

Our research aims to develop Coleman and Pietronero's analysis further by 
exploring the multifractal properties of astronomical fields other than that given by 
q = 0 and q = 1. By varying r/it is possible to study the statistical features of the whole 
family of fields as a function of scale (or resolution). As q is increased, emphasis is 
placed on the extreme values of the field, whereas the opposite occurs as q is decreased. 
A theoretical reason for introducing the parameter r/is that it conveniently allows us 
to test specific theoretical predictions about the underlying multifractal process, as it 
will be discussed in Section 3. 

1.4. Data considerations 

To explore the statistics of the spatio/luminous distribution of visible mass in the 
universe, it would be ideal to analyze data of the three dimensional distribution of 
absolute luminosity fields. Actual galaxy catalogues however, do not contain such 
information. They often contain data only on the angular position and the apparent 
magnitude of galaxies. Information on apparent luminosity can be readily derived 
from the observed magnitudes. Radial distances are usually deduced using Hubble's 
law. However, this requires an extra measurement; namely, that of the redshift 
associated with each galaxy. Absolute luminosities are then derived using both the 
inferred radial distance, and the measured apparent luminosity. Unfortunately, 
estimates of the radial distances are often subject to considerably uncertainty due to 
a variety of factors, which range from practical considerations such as a galaxy's 
peculiar motion in space, to profound theoretical arguments that question the validity 
of Hubble's law. 

Moreover, three dimensional samples of absolute luminosity suffer from the 
Malmquist bias, that is, the existence of a distance dependent minimum threshold for 
the visual observation of faint galaxies. Standard techniques of by-passing the 
Malmquist bias consider either constructing volume-limited samples (i.e. sub-samples 
with a constant threshold of absolute luminsoity L k A  ) o r  invoking functions such as 
the luminosity function q0(L) to predict the luminosity of the unobserved galaxies. 
Unfortunately, neither solution is completely satisfactory since the former severely 
reduces the number of galaxies available for analysis (which is already small in 
a statistical sense), and the latter is based on theoretical assumptions about the form of 
the luminosity distribution and its validity everywhere in space, (neglecting any 
possible spatial correlations). 

On the other hand, data samples constructed from information only on angular 
position and apparent luminosity do possess a constant minimum luminosity 
threshold and are hence statistically homogeneous over all solid angles. Furthermore, 
if the apparent luminosities are indeed multifractal fields then the effect that the 
Malmquist bias has on them is identical to that caused by the existence of a minimum 
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Fig. 2. The CfA2 catalogue I16]: a "Slice of the Universe". The figure displays 1091 galaxies with apparent 
magnitude m ~< 15.5 located in the region 8 hr <~ ~ ~< 17 hr and 26 '5  ~< ~ ~< 32'.5. The sample's depth is 
150h I Mpc (h is in units of 100kms 1Mpc 1). The large voids observed show the existence of 
inhomogeneous structures at scales comparable with the catalogue's site. 

threshold (or singularity), rather than a complex distance dependent effect. Larnder 
[16] has shown that the problem of minimum thresholds in multifractal fields can be 
analyzed in a straightforward way. Finally, the fact that samples constructed from 
information on angular position and apparent luminosity consider just directly 
measurable quantities, maximizes the accuracy of the data. Due to these facts (which 
are sometimes overlooked) we have decided to limit our analysis to generalized 
luminosity fields l,,;. derived from apparent luminosity. Furthermore, as pointed 
out by Garrido [9], the line of sight integration that relates the fields L,~.~ and 
l,~.;~ assures - with suitable statistical assumptions to be discussed elsewhere- that the 
statistics of the fields of apparent luminosity can be related to the statistics of the three 
dimensional distribution of absolute luminosity. 

In our analysis, we used a modified version of the catalogue CfA2 (Huchra et al. 
[117]) from the Harvard-Smithsonian Center for Astrophysics (see Fig. 2). In its 
original form, the CfA2 sample contains 1091 galaxies with apparent magnitude less 
than or equal to 15.5 located within a 6' by 135 strip passing through the Coma 
cluster. The sample is 150 Mpc deep and is bounded by the angular positions 
8 hr ~< c~ ~< 17 hr and 26°.5 ~< ,5 ~< 32~.5 (where ~ denotes right ascension and 6 is the 
declination). This "slice of the universe" contains information on the luminosity and 
position of galaxies in radial and angular coordinates. 

The sample that we have used in our analysis (from now on called "CfA2proj") is 
a one-dimensional projection (along constant right ascension c~) of the CfA2 sample. It 
hence contains information only on the angular position and luminosity of the 
galaxies. An example of a luminosity field constructed with data from the CfA2proj 
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sample was already shown in Fig. 1. The reason for producing such a one-dimensional 
projected sample is that since there is only a finite (and statistically small) number of 
galaxies in the catalogue, it is expected that the luminosity fields will become 
ill-defined at scales corresponding to densities close to 1 galaxy per box (at such 
densities, most boxes will in fact be empty), hence inducing breaks in the scaling which 
will be spurious since they will depend on the catalogue's sensitivity. On the other 
hand, for a fixed resolution 2, a field projected along one of its spatial coordinates 
increases its average number of galaxies per box by a factor of 2, thus also increasing 
the range of scales within which scaling may be observed. This leads to much more 
robust statistics. In fact, analysis performed by Garrido [9] on the unprojected CfA2 
catalogue shows that although his results are compatible to ours, the sample CfA2 
presents scaling ranges significantly shorter than the corresponding ranges for the 
sample CfA2proj. 

As previously stated, in their original forms catalogues contain information on the 
apparent magnitude m of the galaxies. In our analysis, the values of the corresponding 
apparent luminosites 1 were obtained using 

1= 10 '~I"' mJ/251, (2) 

where m' is the limiting magnitude of the catalogue. 

2. Multiscaling and the multifractal formalism 

Highly intermittent multifractal fields are the generic outcome of multiplicative 
cascade processes dominated by scaling non-linear interactions. Such cascading 
processes appear to be fairly common in nature (over a dozen geophysical fields have 
been shown to be multifractal over various ranges, see Schertzer and Lovejoy [18] for 
a survey) and in the specific case of the large-scale structure of the universe, most 
theories on the formation of galaxies also suggest their existence (for instance, both the 
"Hot" and "Cold" dark matter models require the existence of a cascade of energy and 
matter ruled by complex non-linear gravitational and hydrodynamical interactions). 
When a multifractal cascade has proceeded over a scale ratio 2 -- Sis (S being the 
sample's size and s the smallest scale of observation) the statistical moments of the 
conserved luminosity field/,,), measured at scale 2, follow the singular behavior: 

((I.,~) q) = ~J~q'"~, (3)  

where the exponent q is the order of the statistical moment under study, and the 
quantity K(q, q) is the moment-scaling function 4 corresponding to the (base 2) second 

4 We use the cod imens ion  mul t i f rac ta l  fo rmal i sm since we cons ider  the observed universe  as a real izat ion of 
an infinite d imens iona l  s tochas t ic  mul t i f rac ta l  process. The exponen t  K(q,~/) is related to the s t range  
a t t r ac to r  d imens ion  formal i sm (Halsey et al. 1-19]) by r(q) = (q - 1)D - K(q, 1) where D is the d imens ion  of 
the observ ing  space. 
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Laplace characteristic function of the field log(I,.~.). The triangular brackets '{ }' in 
Eq. (3) denote a statistical ensemble average which is calculated over the number/~,  of 
non-empty boxes 5 at resolution 2 using the formula: 

((/,,,/.)u5 (1/]~a) Y', 1 u = ( ,~,,)i • (41 
i - 1  

Eq. (3) is the mathematical definition of multiscaling. In Fig. 3 we show plots of 
logto((l,~.~) u) versus logl0(2) for r /=  0, 1, 2 and 3. According to Eq. (3), for 
a multifractal field these plots should give straight lines. In general this seems to be the 
case, although only for a limited range of scales. The most restricted scaling range is 
observed for q = 0 corresponding to the most frequently analyzed field (the number 
density of galaxies6). In this case, the scaling region extends from 2 ~ 4 to ,~ ~ 128, 
implying angular scaling between 1 ~ and about 35' (recall that the maximum extent of 
this sample is 135'). For higher r/'s, the scaling region extends from 3Y down to about 
0.13' (2 ~ 1024 ~ total number of galaxies) which is about the largest possible for 

a data set of this size. 
For all values of the exponent r/in Fig. 3, deviations from linearity are also observed 

within the scaling regions. This result is not surprising due to the statistically low 
number of events used in this analysis (recall that the total number of galaxies in this 
catalogue is 1091). Also, since multifractals display large sample to sample variability 
(they are generally nonergodic v) and since here we consider only a single realization of 
the multifractal luminosity process, the statistical fluctuations in Fig. 3 are generally 
expected. Consequently, although multiscaling seems to be observed in all fields 
studied, the poor statistics derived from the available catalogues are expected to 
introduce significant uncertainties on the estimates of the function K(q, q). 

For a monofractal, K(q,q) is simply linear in q, whereas for multifractal fields, 
K(q,q) is nonlinear. In general, K(Oa7) = - C where C is the codimension of the 
nonzero regions ( = 0 here, the latter are space-filling) and for a conservative field Eq. 
(3) predicts that K(1,r/) = 0. Moreover, since K(q, q) mathematically corresponds to 
the second characteristic function of a field it follows that it must be convex. 
Furthermore, for high r/values the largest singularities of the field are amplified and so 
are the corresponding estimates of the ensemble average in Eq. (3). Consequently 
K(q, ~) is expected to become steeper for increasing s ~7- 

5 The difference between/q~ and Nz (the total number  of boxes at resolution )j is )o c where C is the fractal 
codimension of the non-empty boxes. The non-empty boxes used here highlight the nonlinear part of 
K(q, r/). 
6This may not be too surprising since the measured density will depend sensitively on the limiting 
magnitude cut-off of the catalogue; and since the lowest signularities are most  important  for low values of~7, 
it is expected that such a cut-off will break the scaling. 

Multifractal cascades generally produce occasional rare events which may not be present in a single 
sample, hut  which are almost surely present in the process. The effect is especially important  when there are 
first order phase transitions with low values of the critical exponent -exactly as found here (Section 3). 
8 In general, it obeys the following simple relation: K(q ,q)  = K(q~, 1) - qK(~,  1), see e.g. Ref. [18]. 
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Fig. 3. Multiscaling of four 1,~.;, fields as predicted by Eq. (3). The values o fq  are 0, 1, 2 and 3. The analysis 
shown corresponds to the 1091 galaxies from the CfA2proj sample. Angular  scaling regions are clearly 
observed in all of the fields. In each figure, each curve corresponds to a specific value of q. We have used 
0 ~< q ~< 2.25, in intervals of 0.25. 

For  a given pair of q and q, we have estimated K (q, q) from the value of the slopes in 
Fig. 3. These slopes have been estimated using a linear regression over the linear 
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Fig. 4. K(q,q) for the multiscaling curves of figure 3. In this figure we have also shown the results 
corresponding to q = 0.5 and q = 1.5. The number-densi ty  field (q = 0t, the apparent  luminosity field 
(q - 1) and all of the other  q-fields show strong convexity, in agreement  with the predictions from 

multifractality. 

scaling region of the curves. The estimated values of K(q, q) are shown in Fig. 4 for 
~1 = 0; 0.5; 1; 1.5; 2 and 3. Error bars were estimated from the standard deviation of the 
slope fits, and in order to preserve the clarity of the figure, they are just shown for 
q -- 1.5 and 3.0. The curves are far from linear showing strong convexity (a good 
signature of multifractality) for all fields l,~,;. 

The results presented above are a generalization of the results found by previous 
studies (Refs. [4, 12-15]) on the multifractal features of the number-density field (the 
r /=  0 case) and comparable studies (Refs. [5, 11]) done on the distribution of absolute 
luminosity (LI,~). Furthermore, these results suggest that the physical processes 
responsible for the spatial distribution of luminous objects in the universe are 
multifractal. It is natural to ask whether multifractal processes have stable, attractive 
generators; after a long debate, (see e.g. the discussion in [20]) it is increasingly clear 
that the answer is affirmative. Elsewhere 9 evidence is given that suggests that the 
luminosities correspond to universal multifractals. 

It could be argued that the K(q,q) shown in Fig. 4 may be sensitive to the angular 
projection (line of sight integration) performed when constructing the sample 
CfA2proj. To show that this is not so, we "projected" the CfA2 catalogue along 
constant radii (rather than angles) obtaining scaling ranges similar to those observed 
in Fig. 3 and similar K(q,q). Fig. 5 describes the two kinds of projections. Figs. 6a, 
b show the results of this analysis (for reasons of space and clarity, we just show the 

9 See Garr ido  [9]. 
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f(gA(r,O))Odr 
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0 
('CfA2.proj" sample) 

Fig. 5. Schematic showing the construction of projected samples. Using the CfA2 catalogue as the data 
source, the sample CfA2proj is obtained by the angular integration of the luminosities along the radial 
direction. Analysis of a field constructed by integrating instead along the angular coordinate 0, revealed 
scaling properties very similar to those displayed by the CfA2proj sample. This indicates that the scaling 
observed in the latter sample is not an artifact of the angular integration. 

results corresponding to the q = 1 case. Analyses performed on fields with q :~ 1 are 
compatible with what is shown here). Fig. 6a shows the multiscaling of the field l~.;~ as 
obtained from a sample obtained by projecting the CfA2 catalogue along constant 
radii. Broad scaling regions (very similar to those observed in Fig. 3b for the same 
field) can be clearly observed. Fig. 6b shows the K(q, 1) curves corresponding to both 
projected fields. The agreement of the statistical functions for both projections is 
clear ~°. This agreement suggests that angular and cartesian projections possess 
similar scaling properties. It also implies that, in particular, the broad scaling regions 
observed in Fig. 3 are not due to the angular projection of the CfA2proj sample. 

J°Small differences occur for q >~ qo. 1 ~ 1.33, but this is expected since the corresponding moments 
diverge, as shown in the next section. 
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Fig. 6. (a) Multiscaling of the field IL, as obtained from a projection of the sample CfA2 along constant 
radii (not along constant angles as for the sample CfA2proj). Each curve corresponds to a specific value of q. 
(b) K (q, 1 ) curves estimated from the two projected subsamples of the sample CfA2. The similarity between 
the statistics of both projections implies that the broad scaling regions observed in Figs. 3 and 5a are not 
sensitive to the nature of the projection of the luminosity fields. The curves in Fig. 5b were obtained from 
linear regressions on the slopes of the scaling region of the curves shown in Figs. 3b and 5a. 
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3. Multifractai phase transitions and self-organized criticality 

The notion of Self-Organized Criticality (SOC) was first introduced by Bak et al. 
[-22] as an explanation to the 1If noise detected in various dynamical systems. 
Although different authors have emphasized different aspects, scaling coupled with 
algebraic probability distributions can be considered as the defining features of 
Self-Organized Criticality. Schertzer and Lovejoy [18, 19] have pointed-out that these 
properties are generically obtained on multifractal processes via a "first-order 
multifractal phase transition" (as explained below) 1 ~. Since in the previous section we 
already showed that the generalized luminosity fields l,,; display multiscaling over 
broad ranges of scales, in this section we concentrate on the presence of power-law 
behavior in the extreme tails of the probability distributions of the fields 1,,;. 

As previously stated, multifractal fields are the generic result of multiplicative 
cascading processes of conserved energy fluxes. As a cascading process develops down 
to very small scales, the variability and intermittence of the field increases producing 
regions of highly localized extreme intensity (recall for instance the extreme variability 
observed in Fig. 1). Generally, such cascading processes are truncated at some small 
scale limit at which external scale-breaking mechanisms (such as viscosity in turbulent 
fluids) dissipate the energy of the cascade. Since such a physical small scale limit is 
usually smaller than the scale of observation (at which actual measurements of the 
field are performed), the process of observation effectively integrates or averages the 
field up to the scale of observation. For the non-extreme events, this integrated or 
"dressed" field has the same scaling as the actual "bare" field [23]. However, in the 
case of the more violent and extreme singularities of the field, the integration fails to 
smooth out the process inducing peculiar behaviour on the large q end of the function 
K(q, ~). In fact, for orders of moment greater than some critical value denoted as qo,, 
(the subscript D standing for dressing), the ensemble average in Eq. (3) is expected to 
diverge to infinity (for an infinitely large sample) implying that K(q,q) ~ vc for 
q > qo.,- In practice, for a finite sample size and observing dimension, the dressing 
mechanism induces a linear behaviour in K(q, q) for q larger than qo,, (as observed for 
large q in the plots of Fig. 4) with a slope dependent on the sample size. This linear 
form implies a change on the first derivative of K (q, q) at q = qo. ,- Due to the formal 
analogy between thermodynamics and multifractals (see for instance Feigenbaum 
[-24]), this type of jump on the derivative of K(q,q) has been named a first order 
multifractal phase transition. Note that this definition of phase transition is physically 
different from the multifractal phase transitions usually discussed in the physics 
literature since the latter typically correspond to scale-breaking mechanisms. In 
contrast, the concept of phase transition presented here is fundamentally a scaling 
mechanism dependent on the sample size and the dimension of the observing space. 

1 Such a "non-classical" SOC has the advantage of being both model independent and not requiring 
a vanishing flux [18]. 
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Although the above described result is quite general for multifractal processes, it is 

possible to consider as it is often done - special multifractal processes restricted in 
various ways so that the most extreme multifractal variability is inhibited and the 
divergence of moments  avoided. One way is to use the microcanonical restriction, as 
for example in the "p model" and the "two-scale Cantor  set model". Another is the use 
of "geometric multifractals", as proposed by Parisi and Frisch [25]. These artificial 

restrictions have been discussed in detail by Schertzer and Lovejoy [26]. 
The behaviour of the various statistical moments  of a field is statistically equivalent 

to the behaviour of its probability distribution. In general, the divergence of moments 
for q ~> qD.,1 implies that the tail of the probability distribution obeys the following 

form 

Pr(/,1,, ~> s) ~ s q .... (5) 

where s is some reference value and s >> 1. Indeed, a linear tail on a log log plot of 
a probability histogram is probably the most sensitive way to distinguish first order 
from other types of phase transitions (namely, second order phase transitions 

discussed in Ref. [21]). 
Fig. 7 shows a plot 12 ofloglo(Pr(1,~ >1 s)) versus logl0(s) for r/ = 1, 2 and 3. In each 

case, qD., is obtained from the value of the slope of the histogram's tail. In particular, 
we estimate that qD. 1 = 1.33 +_ 0.05, qo, 2 = 0.64 _+ 0.06 and qo, 3 = 0.36 + 0.04. In 
this case all histograms were taken at a resolution 2 = 128 which is well within the 

scaling range of this sample (see Fig. 3). 
By inspecting Eq. (5), we note that the right hand side shows no explicit dependence 

on the resolution 2 of the field. This is because the exponent qD.,1 should be 

resolution-independent as shown in Fig. 8. It can be noticed from this figure that the 
value of qD. 1 ~ 1.35 remains roughly constant even for very large values of 2. 

The generic cascade mechanism leading to first order transitions is the dressing 

integration mechanism discussed earlier. In terms of multifractal theory, such 
a mechanism makes the specific prediction (Schertzer and Lovejoy [18]) that the 
quantity qD,, corresponds to the solution of the following equation: 

K ( q D . , r q )  = D ( q D . ,  --  1), (6) 

where D is a proportionality constant interpreted as the effective dimension of the 
space over which the "dressing" takes place. Eq. (6) is a specific prediction of the 
multifractal phase transition route to Self-Organized Criticality and generalizes the 
corresponding equation for r /=  1 in Ref. [23]. It is also a test on the 
dressing-mechanism hypothesis for the presence of first order multifractal phase 
transitions in the distribution of generalized luminosity fields. 

12 The probabilities have been estimated from the number  of boxes in the field at resolution ). which have 
generalized luminosities greater than a reference value s. 
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Fig. 8. Independence of qD,, on the resolution 2: for four different values of 2, the probability histograms 
(plotted against normalized probabilities) show a consistent estimate of qD. ~ ~ 1.35. 

We have used the data  from the sample CfA2proj to calculate the quantities 

qD, 7 and K(qD, 7, q) for values of  q ranging between zero and three. Fig. 9 shows the 
plot of K(qD, 7, q) versus qo. 7 -- 1. This figure shows a nearly linear curve that  passes 

through the origin and with a slope D = 0.45 _+ 0.06. This linear behaviour  is in 
agreement  with Eq. (6) and it is therefore interpreted as further evidence for the 
presence of  Self-Organized Criticality, whose origin lies in the cascade dressing 
process, in the generalized fields of galactic luminosity. The physical significance of the 
dressing dimension D is that  it indicates the existence of some physical mechanism 
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[0, 3]. The linear behavior observed in this figure is in agreement with Eq. (8) and provides further evidence 
for the presence of Self-Organized Criticality in the luminosity fields /,~.~. 

which "integrates" or "smoothes out" the dynamical process responsible for the 
luminosity field on a space with a dimension ~ 0.45. Similar analyses applied to 
seismic fields (Hooge et al. [27]) have also indicated the presence of this type of 
non-classical phase transition route to SOC. 

4. Conclusions 

It has long been known that the large-scale structure of the universe is scale 
invariant over a substantial range. In this paper we extended this idea by generalizing 
the work of Coleman and Pietronero [5] and introducing the concept of generalized 
luminosity fields 1,,;. We then showed that the galaxy catalogue CfA2 (involving over 
1000 galaxies) produces luminosity fields which indeed display multiscaling over the 
entire observed angular range. In the q = 0 case however, a more restricted scaling 
range was observed. This is not too surprising since number-density fields are 
expected to be most sensitive to the existence of a lower threshold cut-off. This fact 
however, reflects a convenient feature of the use of generalized luminosity fields as 
analytic tools; namely the fact that rather than studying single fields (which would 
have led us to wrong conclusions had we only considered the q = 0 field) the use of 
generalized fields exploits the statistical information conveyed by all members of the 
family of fields 1,~.;. 

A generic feature of multifractal processes is that they lead to first order multifractal 
phase transitions originating in the sub-observation scale dynamics. These 
multifractal phase transitions involve occasional large fluctuations and are associated 
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with algebraic decays of the corresponding probability distributions. In the case of the 
generalized luminosity fields, the existence of large fluctuations corresponds to the 
existence of rare but extremely bright or massive galaxies which tend to dominate the 
statistics and cause power-law probability distributions. Since the combination of 
algebraic probability tails (divergence of high order statistical moments) with scaling 
can be considered as the defining feature of Self-Organized Criticality, this suggests 
that the observed spatio-luminous distribution of galaxies is statistically compatible 
with multifractal fields formed via models of multiplicative cascades of energy and 
mass, whose statistics can be described in terms of a set of self-organized critical 
exponents. In particular, our results suggest that nonlinear galactic dynamics is an 
example of such a (nonclassical) multifractal phase transition route to SOC. Further 
support for this view can be obtained because the multifractal phase transition route 
to SOC makes a specific prediction about the critical exponents qD. ~ associated with 
the (normalized) r/powers of the luminosity (cf. Eq. (6)). This prediction is indeed well 
verified by the data and allows us to estimate the effective dimension of the "dressing" 
or "smoothing" of the underlying dynamic process. 

In the context of the Big-Bang theory, two of the most popular scenarios which 
have been postulated as candidates for leading up to the formation of the large-scale 
structure of the universe are the "Hot"  and "Cold" dark matter scenarios. Both 
scenarios imply the existence of cascading processes of non-linear gravitational and 
hydrodynamical clustering of energy and matter. The former scenario predicts that 
the cascade has developed from very large structures down to smaller ones, whereas 
the latter scenario postulates the opposite cascading direction. Since the direction of 
the cascading process is indeterminate from our analysis, the hypothesis of 
a multifractal cascade as a route to the large-scale luminosity clustering is compatible 
with either the Hot  or the Cold models. 

In summary, we have found evidence supporting the idea that the large-scale 
distribution of luminous objects in the universe may be the result of a multifractal 
cascade process. This process seems to have been "dressed" or "smoothed" in 
a subspace of dimension ~ 0.45 which causes the statistics of the resulting fields (of 
galactic density, luminosity, mass, etc.) to be ruled by critical exponents (c.f. Eqs. (5) 
and (6)). Such a description implies in particular that large-scale inhomogeneous and 
clustered structures (such as the so-called "filaments", "bubbles", "pancakes" and 
"walls" found in recently published catalogues [17, 28, 29]) should be common 
features of the universe, rather than exceptions. A future task then, is to incorporate 
our knowledge on both multifractals and critical phenomena (with all its implications 
on the scale-invariance of the underlying dynamics) into the metric which describes 
the observable universe. 
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