
8
CHAPTER 

Why the Warming Can’t be Natural: 
The Nonlinear Geophysics of 
Climate Closure

Shaun Lovejoy

Physics Department,  McGill University, 3600 University St., Montreal, 
Que. H3A 2T8, Canada
lovejoy@physics.mcgill.ca

1.	 Introduction

The atmosphere is a turbulent fluid whose temperature, humidity and 
wind vary from submillimetric eddies visible in cigarette smoke to huge 
planetary sized weather systems. It has been changing ever since the 
earth was formed several billion years ago and it changes at millisecond 
scales. Sixty five million years ago, the temperature was five or even ten 
degrees warmer than today and dinosaurs roamed an ice-free south pole. 
As little as fourteen thousand years ago, the earth was still in the throes 
of an ice age with global temperatures 2-4 degrees cooler than today. 
Historical viniculture records show that in the middle ages, England was 
significantly warmer than today, yet only centuries later in the “little ice 
age”, Europe had cooled enough so that sixteenth century Dutch skaters 
were immortalized in Breugel’s famous paintings.

These facts are supported by several converging lines of evidence 
and while the quantitative amounts of the warming and cooling are 
debated, the basic events are undisputed. Indeed, as shown in Fig. 1a-e, 
proxy and instrumental records show that there is strong variability at 
all observed time scales and Fig. 2a quantitatively confirms this with a 
modern spectrum showing that contrary to conventional wisdom, the 
“background” spectrum varies by a factor of more than 1015 over the 
range from hours to hundreds of millions of years. In space – and indeed 
in space-time – Fig. 2b shows that the scaling of satellite infrared radiance 
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Figure 1a: d18O from assemblies of cores from ocean sediments of benthic 
organisms. Large values correspond to small temperatures and vice versa. The 
top series is an update of a global assemblage by Veizer et al. (1999), covering 
the Phanerozoic; the current geological eon during which abundant animal life 
has existed and goes back to the time when diverse hard-shelled animals first 
appeared: this figure goes as far back as this technique will allow.  Although 2980 
values were used, they are far from uniformly distributed; the figure shows a 
linear interpolation.  The corresponding temperature range is indicated based on 
the “canonical” calibration of –4.5 K/d18O, and may be as much as a factor 3 too 
large. Note the negative sign in the calibration: large d18O corresponds to small 
temperatures and visa versa. The middle series is from a northern high latitude 
assemblage by Zachos et al. (2001) based on global deep-sea isotope records from 
data compiled from more than 40 Deep Sea Drilling Project and Ocean Drilling 
Project sites; it has 14828 values covering the period back 67 million years ago, again 
non uniformly distributed in time and considered to be globally representative.  
The bottom series is from Huybers (2007), it uses 2560 data points 12 benthic and 
5 planktic d18O records over the Quaternary (the recent period during which there 
were glacials and interglacials; the rough oscillations that are visible, the series is 
mostly from high northern latitudes).  For both of these series a roughly 50% larger 
calibration constant –6.5 K/d18O was used in order to take into account the larger 
high latitude variations. The ellipses, arrows and numbers indicate the parts of the 
time axis and zoom factor needed to go from one series to the next. This figure is 

continued in Fig. 1b. Reproduced from Lovejoy (2015b).

extends to planetary scales and up to about 10 days in time. It shows more: 
that over this range the (horizontal – not vertical) spatial and temporal 
statistics are related by an isotropic space-time scale invariance symmetry.
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Without human intervention, over sufficiently long periods, the 
temperature of the earth can clearly change by several degrees. But what 
about this: since the end of the 19th century instrumental records show 
that the earth has warmed by about one degree centigrade. The evidence 

Figure 1b: The top series is the temperature anomaly from the Epica Antarctic 
core using a Deuterium based paleotemperature. The temperature anomalies 
are in degrees K (see (Lovejoy 2015b) for information on the data). We may note 
the loss in resolution (the apparent increase in smoothness) of the curve as we 
move into the past (to the right); it is an artefact of the compression of the ice 
column. Clearly, the neat classification of the series into 8 glacial and interglacial 
(parentheses) epochs is a somewhat subjective simplification of the true variability. 
Up to at least periods ≈ 105 years, we see that the temperature seems to “wander” 
i.e. as we consider the change in temperature for increasingly long time periods, 
the temperature changes more and more. The series in the second row is over the 
time period indicated by the circle in top row, it is from a high resolution GRIP 
core (Summit Greenland). The current interglacial – the Holocene – is at the far 
left and an ellipse indicates the most recent 1000 year period. This last millennium 
is indicated in the bottom series which – conversely to the preceding – shows 
the present is on the right, the past on the left. This is a multiproxy temperature 
estimate from (Moberg et al. 2005), the ellipse (right) shows the industrial epoch of 
global warming; not all of this variability is natural in origin. The ellipses, arrows 
and numbers indicate the parts of the time axis and zoom factor needed to go from 
one series to the next. Reproduced from Lovejoy (2015b). This figure is continued 

in Fig. 1c.
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Figure 1c: The top series shows the longest available instrumentally based global 
temperature estimates (monthly, land only, 3129 values, 1753-2013 (Rohde et al. 
2013), the grey line in the top plot is the annual averaged temperature. The data 
go back to 1753 but due to the very large uncertainties at the early dates (due to 
limited availability), the thickness of the zigzagging at the far left is large. This 
covers the epoch of the industrial revolution; the anthropocene, the geological 
period strongly influenced by humans. Starting in 1871, reanalysis data at 2°×2°, 
6 hour resolution is available from the 20th C reanalysis (Compo et al. 2011); data 
at 700 mb are shown. There were over 200,000 values, we averaged so as to only 
display 720 points (the resolution displayed here is thus about 3 months).  The 
middle series shows the raw data that includes the dominant annual cycle; the 
bottom series is the same but with this removed. We also show for reference an 
estimate the amplitude of the anthropogenic change (from Lovejoy (2014c) close 
to the IPCC AR4 estimate; for the global change since 1880, it is ≈0.85 K.  For the 
land only (top series (Rohde et al. 2013)), the estimate is 1.5 K. Reproduced from 

Lovejoy (2015b).

is all around us: from the melting of polar sea ice – including the summer 
opening of the Northwest passage – to rising sea levels to deadly heat 
waves. But what is the cause? Is it simply another natural fluctuation, or is 
it something different, something artificial, something that only we could 
have done? More precisely, is a one degree warming of the whole planet 
in only a single century an ordinary – even common – event in the history 
of the earth, or is it so rare as to be demand a non natural explanation?
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The modern answer to this question emerged well before the warming 
itself was felt or even before human emissions had significantly changed 
the atmospheric composition. In 1896, in an attempt to understand the 
causes of the ice ages, Svante Arrhenius estimated that if the concentration 
of carbon dioxide (CO2) in the atmosphere was doubled, that global 

Figure 1d: The upper left is the same as the lower series in Fig. 1c. We successively 
take the left sixteenth of the series and blow it up by a factor of 16, retaining 720 
points at each step until we get to the 6 hour resolution series (third from top), 
the total length of each series is indicated in each plot. The bottom series is also 
from Montreal, but from a millimetre sized thermistor on the roof of the McGill 
physics building at 0.067 s resolution. The temperature scale is the same for all 
the series except the bottom one. Higher resolution data would show that the 
variability continues for at least another 2 orders of magnitude to kHz scales.  
Starting at the lower left we see that – as for the Epica series (Fig. 1a, top row) – 
that the temperature appears to wander like a drunkard’s walk with temperature 
differences ∆T = T(t+∆t) – T(t) tending to grow with time intervals ∆t. This 
character is still apparent at the next (6 hour resolution, lower left) – at least for 
intervals as long as 10-20% of the series length (i.e. up to 10-20 days long). As we 
move upwards to longer and longer resolutions to the series indicated 8.5 years 
(which is at 4 day resolution), notice that the overall variation of the series doesn’t 
change much (i.e. the rough range between the maximum and minimum is nearly 

independent of the resolution). Reproduced from Lovejoy (2015b). 
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Figure 1e: Representative series from each of the five scaling regimes taken 
from Figs 1a-d with the addition of an hourly surface temperatures from Lander 
Wyoming, (bottom, detrended daily and annually). The Berkeley series was taken 
from a fairly well estimated period before significant anthropogenic effects and 
was annually detrended. The Veizer series was taken over a particularly data rich 
epoch, but there are still traces of the interpolation needed to produce a series 
at a uniform resolution. In order to fairly contrast their appearances, each series 
had the same number of points (180) and was normalized by its overall range 
(the maximum minus the minimum), and each series was offset by 1K in the 
vertical for clarity. The resolutions were adjusted so that as much as possible, the 
smallest scale was at the inner scale of the regime indicated. The series resolutions 
were 1 hour, 1 month, 400 years, 14 kyrs, 370 kyrs and 1.23 Myrs bottom to top 
respectively. In the macroclimate regime, the inner scale was a bit too small and 
the series length a bit too long. The resulting megaclimate regime influence on the 
low frequencies was therefore removed using a linear trend of 0.25 d18O/Myr. The 
resolutions and time periods are indicated next to the curves. The black curves 
have H > 0, the grey, H < 0. From top to bottom the ranges used for normalizing 
are: 10.1, 4.59, 1.61 (Veizer, Zachos, Huybers respectively, all d18O), 6.87 K, 2.50 K, 

25 K (Epica, Berkeley, Lander). Reproduced from Lovejoy (2015b).

temperatures would rise by 5-6 °C, quite close to the modern value of 1.5-4.5 
°C, (International Panel on Climate Change, fifth assessment report: IPCC 
AR5). From a scientific point of view, the basic result is straightforward: 
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Figure 2a: A comparison of Mitchell’s relative scale, “educated guess” of the 
spectrum (bottom, Mitchell 1976) with modern evidence from spectra of a selection 
of the series displayed in Fig. 1 (the plot is log-log). There are three sets of red lines; 
on the far right, the spectra from the 1871-2008 20CR (at daily resolution) quantifies 
the difference between the globally averaged temperature (bottom) and local 
averages (2° × 2°, top). Mitchell's figure has been faithfully reproduced many times. 
The upper left red curve is from the calibrated Epica Antarctic core (interpolated 
to 276 yrs resolution).  All the spectra were averaged over logarithmically spaced 
frequency intervals (10 per order of magnitude), thus “smearing out” the daily 
and annual spectral “spikes”. These spikes have been re-introduced without 
this averaging, and are indicated by green spikes above the red daily resolution 
curves.  Using the daily resolution data, the annual cycle is a factor ≈ 1000 above 
the continuum, whereas using hourly resolution data (from the Lander series, Fig. 
4a), the daily spike is a factor ≈3000 above the background. Also shown is the 
other striking narrow spectral spike at (41 kyrs)-1 (obliquity; ≈ a factor 10 above 
the continuum), this is shown in dashed green since it is only apparent in the 
Huyber series over the period 0.8-2.56 Myr BP. At the upper left, the one brown 
curve and two black curves are d18O spectra from the benthic (i.e. ocean sediment) 
assemblages, the rightmost black is the Huybers series (at 10 kyr resolution), the 
middle (brown), is the Zachos series (interpolated to 18 kyrs), the leftmost (black) 
is Veizer series (interpolated to 185 kyrs). See (Lovejoy 2014b) for more details. 
The blue lines have slopes indicating the scaling behaviours (E(w) ≈ w-b) deduced 
from the real space Haar analyses (Fig. 7). The scaling exponents x are related 
to the slopes in Fig. 7 (x(2)/2) by b = 1+x(2). The thin dashed green lines show 
the transition frequencies deduced from the spectra; these are at (20 days)-1, (50  
yrs)-1, (80 kyrs)-1, and (500 kyrs)-1 close to those deduced in real space in Fig. 7. This 

adaptation is from Lovejoy (2015b).      
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CO2 is a “Greenhouse Gas”: it lets visible light from the sun through to the 
surface while absorbing part of the earth’s outgoing heat radiation.

Arrhenius’s theory signalled the beginning of modern attempts to 
prove the anthropogenic provenance of a warming that only became 
strongly apparent in the 1980’s. From a purely scientific point of view, 
the main difficulty is that there are complicated feedbacks between CO2, 
water vapour and clouds: these are the main effects responsible for the 
uncertainty. Arrhenius spent the best part of a year with pencil and paper 
grappling with these complications; today scientists use the world’s most 
powerful supercomputers. 

Is the warming mostly human-made, through the emission of CO2 
and other Greenhouse gases, or is it is mostly natural? Today, the theory 
of anthropogenic warming is entering a mature phase in which continued 
efforts to prove it more convincingly are starting to suffer from diminishing 
returns. Take for example the IPCC’s Fifth Assessment Report (AR5 2013): 

Figure 2b: 1D spectra of MTSAT thermal IR radiances; 1440 consecutive hourly 
images at 30 km were used and covered a region over 13,000 km across centered 
over the tropical Pacific. In black (curved, top): the theoretical spectrum using 
parameters estimated in (Pinel et al. 2014) and taking into account the finite space 
– time sampling volume. The spectra are Ex(kx) ≈ kx

–bx, Ey(ky) ≈ ky
–by, Et(w) ≈  

w–bt with bx ≈ by ≈ bt ≈ 1.4 ± 0.1; s ≈ 3.4 ± 0.1. The straight line is a reference 
line with slope −1.5 (top). Curved “EW” is the zonal spectrum; Curved “NS” is 
the meridional spectrum; the “time” curve (with the diurnal spike and harmonic 
prominent) is the temporal spectrum. Reproduced from (Pinel et al. 2014). The full 
(horizontal space - time spectrum thus has the scaling symmetry P(lkx, lky, lw) = l–s 

P(kx, ky, w) where P is the space-time spectral density.
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not withstanding massive improvements in computers and algorithms, 
it cited exactly the same range of temperature increase for a doubling 
of CO2 as did the US National Academy of Science report in 1979: 1.5 to 
4.5 °C. Whereas the fourth report (AR4, 2007) stated that it is “likely that 
human influence has been the dominant cause of the observed warming 
since the mid-20th century”, six years later, the AR5 only upgraded this to 
“extremely likely”. 

In spite of the strong evidence in favour of the anthropogenic theory, 
it still faces a chorus of denial with entire organizations – such as Canada’s 
“Friends of Science” – dedicated to the proposition that the “The sun is the 
main driver of climate change. Not CO2. Not you” a slogan that adorned 
billboards across Canada in November 2014 and – at least in Quebec – 
prompted counter-billboards financed by the Association of Science 
Communicators. Solar, volcanic and internal climate system variability 
are all invoked by various proponents as plausible – or even proven – 
alternatives to the anthropogenic theory. So who is right?

In order to break through the impasse, to “close” the debate (Lovejoy 
2015a) it is helpful to recall that science progresses not only from attempting 
to prove certain theories to be true, but also by rejecting theories that are 
false. In this, it benefits from a fundamental methodological asymmetry: 
while no theory can ever be proven true “beyond all doubt”, even a single 
decisive experiment can disprove one that is otherwise highly seductive. 
For example in medical testing ineffective treatments are often rejected 
with high levels of confidence: the enormous complexity of the human 
body is irrelevant. Indeed, in their day-to-day work, scientists constantly 
reject ideas and theories that are incompatible with observations or with 
more powerful theories that are known to be true. 

In this chapter, we review such a statistical disproof. Rather than 
exploiting large scale deterministic numerical models, we use past data 
combined with the new theoretical understanding of the natural variability 
that has been made possible by advances in nonlinear geophysics, in 
particular in scaling and multifractals. In section 2 we review elements 
of turbulence theory; the high level turbulent laws and explain how they 
can be generalized to take into account both strong nonclassical variability 
(intermittency, extremes), as well as strong scale dependent anisotropy 
(especially vertical stratification). In section 3 we discuss fluctuations 
and use them to give an objective definition of the climate. In section 4 
we show how these elements can be combined first to make statistical 
tests of the giant natural fluctuation hypothesis, and second, by using 
concrete stochastic models, to accurately hindcast the recent “hiatus” or 
pause in the warming that is often invoked by skeptics as evidence that 
the warming is over. In section 5 we conclude.
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2.	 Turbulence, Scaling, Multifractals, Emergent Laws

2.1	Fluctuations

The undisputed father of GCM’s is Lewis F. Richardson. He was the first 
to write down the modern complete (closed) set of nonlinear, partial 
differential equations for the evolution of the atmosphere, publishing – at 
his own expense – the seminal “Weather prediction by numerical process” 
(Richardson 1922). In addition, he spent six weeks with pencil and paper 
numerically integrating the equations to estimate the pressure change at 
a single grid point (due to numerical “initialization” issues that were not 
resolved until the 1970’s, he was off by a factor of 100, see the interesting 
history by Lynch (2006)). Realizing its importance, Richardson proposed 
the creation of a “forecasting factory” for numerical weather prediction 
involving tens of thousands of human computers. 

Richardson was more than 30 years ahead of his time – the first 
numerical weather model was in 1956 – and is rightly revered by 
meteorologists as a pioneer of numerical weather prediction. However, he 
is also revered by the (quite different) turbulence community for proposing 
the first law of turbulence: the “Richardson 4/3 law” of turbulent 
diffusion (Richardson 1926) which is the precursor of Kolmolgorov’s 
famous law (Kolmogorov 1941). More recently, he has been recognized 
as the grandfather of cascade models of turbulence. Indeed, hidden in the 
middle of his book, Richardson slyly inserted the now iconic poem “Big 
whorls have little whirls that feed on their velocity and little whorls have 
smaller whorls and so on to viscosity (in the molecular sense)”.

Like the other classical turbulence theorists – Kolmogorov, Obhukhov, 
Monin, Corrsin, Bolgiano to name a few – Richardson believed that at 
high enough levels of nonlinearity (quantified by the Reynold’s number, 
the ratio of the typical nonlinear to linear terms in the equations) that 
new laws would emerge. Although the laws of continuum mechanics are 
deterministic, the emergent higher level turbulence laws are statistical and 
govern the behaviour of huge numbers of eddies (“whorls”, structures). 
The situation is analogous to the higher level laws of thermodynamics 
which “emerge” from the lower level (more basic) laws of statistical 
mechanics in the thermodynamic limit i.e. for large numbers of degrees 
of freedom. Note that from a mathematical point of view, if one starts 
with the simplest system of fluid equations - the incompressible Navier-
Stokes equations – then the behaviour in the high Reynold’s number limit 
– “fully developed turbulence” is an open mathematical problem so that 
– even seventy years after Kolomogorov’s law was proposed – there is 
no mathematically rigorous derivation of any of the proposed laws of 
turbulence (there are however many, many physical arguments).
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The classical turbulence laws can be expressed in the form:

	 ΔI (Δr) =	f |Δr|H	 (1)

where DI (Dr) is the fluctuation in the quantity I over a vector displacement 
Dr, (for the moment, take the fluctuation DI to be the difference of I over 
Dr), f is a driving, turbulent flux, the vertical lines represent the norm of 
the vector and H is the fluctuation exponent. The most famous example 
of Eq. (1) is the Kolmogorov law which is recovered by taking I = v = a 
velocity component, H = 1/3 and f = e1/3 where e is the flux of energy 
(per mass) from large to small scales (strictly speaking it is a Fourier space 
flux). Notice that the form of Eq. (1) and the exponent H are scale invariant: 
they don’t change under isotropic scale changes (“zooms”) i.e. when Dr 
 lDr where l is a scale ratio. DI changes in a power law way and is said 
to be “scaling”.

Two key aspects of the classical laws make them poor approximations 
to the atmosphere. The first is that the flux f that was originally considered 
to be fairly homogeneous (uniform), at most having statistics that were 
no more variable than Gaussian. This is unrealistic since even a cursory 
consideration of the weather indicates that most of the atmospheric fluxes 
occur in only small fractions of the available space, especially in storms, 
even in their centres: the turbulence is highly intermittent. When applying 
Eq. (1) to the atmosphere, the second limitation is implicit in the use of 
the vector norm in Eq. (1) to quantify the scale of Dr. Since the norm is 
independent of orientation, it implies that the laws are isotropic, whereas 
the atmosphere is anisotropic, in particular it is highly stratified: gravity 
strongly imposes a preferred direction.

2.2  Intermittency

Starting in the 1960’s, intermittency was explicitly modelled with the help 
of Richardson – inspired cascade processes. One first assumes that at large 
scales, the fluid is stirred in a quasi-steady manner (in the atmosphere by 
the solar gradient between equator and poles). Since the corresponding 
energy flux (energy per mass, per time from larges scales to small) is exactly 
conserved by the nonlinear terms, the latter act to break large eddies up 
into “daughter eddies”, transferring their energy fluxes to smaller and 
smaller scales until eventually (in the atmosphere at scales of less than a 
millimetre), viscosity dissipates the energy as heat. Cascade models are 
phenomenological models of this process; the original versions were “toy” 
models (believed to capture the basic physics while being relatively simple 
to analyse) in which the parent eddies are large cubes and the daughters are 
subcubes, with half the parent diameter (see Fig. 3a for a schematic, Fig. 3b 
for an anisotropic extension and Figs 3c, d for corresponding multifractal 
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Figure 3a: A schematic diagram showing the first few steps in a (discrete in scale) 
cascade process. At each step, the parent eddy is broken up into “daughter” 
eddies, each reduced by a factor of 2 in scale, indicated as squares. The left shows 
a homogeneous cascade (corresponding to Kolmogorov’s 1941 homogeneous 
turbulence) in which the energy flux is simply redistributed from large to small 
structures, while keeping its density constant. The right-hand side shows an 
improvement: “on/off” intermittency is modelled by an “alive/dead” alternative 
at each step (here only the bottom right sub-eddy becomes dead); the mean 
conservation of energy flux can be taken into account by boosting the density of 
the flux in the “active” eddies. For pedagogical reasons, the alternative displayed 
is purely deterministic, but could be easily randomized (see text). Adapted from 

Schertzer and Lovejoy (1987).

simulations). For each daughter, one flips a coin to decide how the parent 
energy flux will be multiplicatively modulated over the daughter. In the 
simplest (fractal) “beta model” (Novikov and Stewart 1964, Mandelbrot 
1974, Frisch et al. 1978) the daughters occasionally (with well defined 
probability) receive zero flux, they are “dead”, the others have their fluxes 
multiplicatively boosted just enough to (on average) conserve the flux. 
If the process is slightly altered such that rather than receiving a boost 
or a decrease to zero flux, the alternative is instead a boost or a decrease 
to a finite positive flux (the “alpha model”, Schertzer and Lovejoy 1985) 
then rather than just black or white (active/inactive, dead or alive), there 
will be intermediate levels of activity, each one concentrated on a different 
fractal set with a different fractal dimension: the result is a self-similar 
multifractal (see Figs 3c, d which are continuous in scale cascades). 
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Figure 3b: Schematic of an anisotropic cascade; compare with its isotropic 
counterpart (Fig. 3a). The exponent governing the decrease in area (equivalently the 
increase in number) of the sub-eddies with each iteration is Del = log8/log4 = 3/2. 
On the right-hand side we illustrate the inhomogeneous (intermittent) anisotropic 
cascade in which 6 of the 8 sub-eddies on average survive so the corresponding 
elliptical (anisotropic) dimension of the active grand daughters is D = log6/log4 = 

1.29. Adapted from Schertzer and Lovejoy (1987).

Figure 3c: A self-similar (isotropic) multifractal cloud simulation adapted from 
Lovejoy and Schertzer (2013). Each image is an enlargement by factor of 1.7 (the 
areas enlarged are shown in yellow and red rectangles for first few enlargements, 

top rows).
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A technical point that is often missed is that there are two variants of 
the cascade conservation: canonical and microcanonical. The former was 
described above: at each step in the cascade, the only constraint is that the 
probabilities of boosts and decreases are such that on average they equal 1 
so that on average the fluxes neither increase nor decrease as the cascade 
proceeds from large to small scales. The alternative, “microcanonical” 
conservation is much more strict, it requires that at each step of the cascade 
(i.e. everywhere in space, at every resolution, scale), the multipliers sum 
exactly to a constant (not only over a statistical average). Interestingly, 
the two state version of this was first discovered by de Wijs (1951) as a 
model for the distribution of ores in the earth’s crust. It was rediscovered 
by Meneveau and Sreenivasan (1987) who baptised it the “p-model”. 
Microcanonical models are still popular because they simplify the cascade 
mathematics: by construction, if spatially averaged over a microcanonical 
cascade step, then the small scales are completely averaged out, one is 
simply left with a low resolution cascade, one constructed with fewer 
steps. However, this is not true in the case of canonical conservation, 

Figure 3d: A sequence “zooming” into vertical cross section of an anisotropic 
multifractal cloud with H

z
 = 5/9. Starting at the upper left corner, moving from 

left to right, from top to bottom, we progressively zoom in by factors of 1.21 
(total factor ≈ 1000). Notice that while at large scales, the clouds are strongly 
horizontally stratified, when viewed close up they show structures in the opposite 
direction (lower right). The sphero-scale is equal to the vertical scale in the left 
most simulation on the bottom row. The film version of this (and other anisotropic 
space-time multifractal simulations can be found at: http://www.physics.mcgill.

ca/~gang/multifrac/index.htm). Adapted from Lovejoy and Schertzer (2013).
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indeed, it turns out that if we spatially average a canonical cascade taken 
to its small scale limit (i.e. after an infinite number of cascade steps), 
that the small scale activity is not only still present, but for moments 
exceeding a critical value qD, that they dominate the statistics and lead 
to the phenomenon of divergence of statistical moments (Mandelbrot 
1974, Schertzer and Lovejoy 1987). This means that the extreme tails of 
the probability distributions are power laws, a fact we exploit below for 
statistical testing of the natural warming hypothesis. 

To make this more precise, consider a multifractal cascade developed 
over a range of scales from L to l (ratio l), the statistics may be characterized 
by considering the various (qth order) statistical moments:

		  f l ll
q K q L l= =( ) ; / 	 (2)

where “< >” indicates statistical (ensemble) averaging and K(q) is a convex 
function of the order of moment q. Low order moments (small q) will be 
dominated by the numerous small fluctuations, high order moments 
(large q) will be dominated by rare large fluctuations; K(q) generally gives 
a complete statistical characterization of the cascade at all scales and all 
intensities. Physically, L is the largest (outer) scale of the cascade, l is the 
smallest (inner, dissipation) scale. Since the mean flux (q = 1) is conserved 
from scale to scale, K(1) = 0 and in addition, for a nonzero cascade, K(0) 
= 0 also. Figure 4 gives an example of the temperature statistics relevant 
to both weather and climate showing that in space their fluxes obey Eq. 
(2). For the general canonical cascades discussed above, the high order 
statistical moments of the spatially integrated fluxes diverge: K(q)  ∞ 
for q > qD where qD is a critical order, typically about 5-7 for turbulence 
(see the review by Lovejoy and Schertzer (2013), Ch. 5). A divergence of 
moments of order q  qD is mathematically equivalent to a power law tail 
on the probability distribution, hence:

	 Pr(DI > s) 	 s–qD; s > >1	 (3)

where “Pr” indicates “probability” and s is a threshold. If a random 
variable ΔI follows Eq. (3), then extreme values occur much more often 
than for classical (exponentially bounded) distributions such as the 
Gaussian. 

In Taleb (2010), the author popularized the expression “Black Swans”, 
originally to designate events that are not only unexpected because they 
are rare, but to events that are epistemologically unexpected in the sense that 
they are totally outside the ken of the reigning view, ideology or theory. 
Inspired by Mandelbrot’s use of Levy distributions (which have power 
law tails but with Levy index a = qD restricted to values below 2 – the 
result of additive, not multiplicative processes), Taleb goes on to refer 
to the corresponding extreme Levy events as “Grey Swans”. He justifies 
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this since extreme Levy events can be anticipated but only on the basis of 
unconventional (non Gaussian) theory. The cascade extension from Levy 
to more general power law tails (i.e. with qD > 2) should therefore rightly 
also be referred to as “Grey Swans”, but this term never stuck, hence we 
use the term “Black swans” more generally for any power law extremes 
(Eq. (3)).

Figure 4: The verification of Eq. 2 on temperature data from the twentieth century 
reanalysis (20CR, Compo et al. (2011)) from zonal (east-west) transects at 45°N 
using data at 6 hour temporal and 2° spatial resolution, from 1871-2008.

 
M q= fl  

(Eq. (2)) with moments q = 2, 1.8, 1.6,…, 0.2 corresponding to the points and 
regression lines; positive slopes for q > 1, negative slopes for q < 1. Each graph 
shows the spatial statistics of the fluxes φl estimated at various temporal averaging 
scales ranging from 6 hours to 89 years by taking the absolute finite difference 
of the temperature temporally averaged over the indicated duration. Equation 
2 predicts that on such log-log plots, that the lines for different moments q will 
converge to the “effective” outer scale of the process, i.e. the scale at which the 
process must start if it is to explain the observed variability at the smaller scales 
(to the right). In this analysis, the largest scale (l = 1) corresponds to the largest 
distance along the 45°N latitude line i.e. 14100 km. It is approximately, but not 
exactly the outer scale. We can see that for all the different time scales, the spatial 
statistics well obey the predictions of multiplicative cascade theories. The large 
spatial intermittency – characterized near the mean by the codimension of the 
mean C1 = K′ (1) slowly increases from 0.095 (6 hours, the weather regime) to 0.13 
(89 years, the climate regime) implied by these plots is the statistical expression of 
the existence of various climate zones. This figure is reproduced from Lovejoy and 

Schertzer (2013).
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We now illustrate such black swan extremes with an example from 
the climate that will be relevant later. First consider the probability 
distribution of daily temperature changes from a single station (Fig. 5a). 
The figure shows the cumulative distributions of the temperature changes 
accumulating from the largest, not smallest value (it is one minus the 
usual cumulative distribution function). We see that for both positive and 
negative temperature changes that the distribution has far more extreme 
events than would be expected from the classical Gaussian distribution, 
indeed, the extremes are 7 standard deviation events corresponding to 
probabilities of less than 10-20. On the other hand, the data closely follow 
a power law with exponent qD ≈ 5. Moving to longer times (Fig. 5b), we 
see the same type of behaviour, even in paleotemperatures. For the latter, 
modern data (far right) allow the tails to be examined more closely, yielding 
a more convincing result, again with qD ≈ 5. Note that taking differences 
over longer time scales shifts the tails by a constant factor corresponding 
to fluctuation exponent H = 0.4 (see below; the left two plots in Fig. 5b). 

Finally, to evaluate the statistics of natural temperature changes – and 
to avoid biases due to anthropogenic effects – consider global scale pre-
industrial (1500-1900) temperatures. In the pre-industrial period, global 
scale temperatures can be estimated using “multiproxy” reconstructions. 
As the name suggests, these statistically combine data from diverse 
sources (“proxies”) typically including tree rings, ice cores, lake sediments 
in order to estimate the temperature in the absence of instruments, Fig. 5c 
shows the corresponding distributions for differences of 1, 2, 4, … 64 years. 
Figure 5c shows that Eq. (3) is a reasonable approximation to the tails of 

Figure 5a: The probability distribution of daily temperature differences in daily 
mean temperatures from Macon France for the period 1949-1979 (10,957 days). 
Positive and negative differences are shown as separate curves. A best fit Gaussian 
is shown for reference indicating that the extreme fluctuations correspond to more 
than 7 standard deviations, for a Gaussian this has a probability of 10-20. The 
straight reference line (added) has a slope of –qD with qD = 5. Adapted from Ladoy 

et al. (1991).
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Figure 5b: Probability distributions of paleotemperature changes for Vostok (left), 
(Antarctica, paleo temperatures from 18O proxies reproduced from Lovejoy and 
Schertzer (1986)) and a modern comparison of GRIP (Greenland) and Vostok right, 
reproduced from Lovejoy and Schertzer (2013). The graphs differ not only due 
to the much improved sampling density of the more modern data, but also, the 
rightmost graph is at constant depth intervals (0.55 m for GRIP and 1 m for Vostok); 
this avoids issues of uncertain chronologies. In all cases, the straight reference 
lines indicate extreme s-q

D behaviour with qD = 5 where s is a temperature change. 
The reference lines in the left graph are spaced Hlog104 apart with scaling exponent 

H = 0.4.

Figure 5c: The total probability of random absolute pre 1900 temperature differences 
exceeding a threshold s (in K), using three multiproxies to increase the sample size 
(the distribution are very similar in form for each of the multiproxies). To avoid 
excessive overlapping, the latter were compensated by multiplying by the lag Dt 
(in years, shifting the curves to the right successively by log102 ≈ 0.3), the data 
are the pooled annual resolution multiproxies from 1500-1900. The blue double 
headed arrow shows the displacement expected if the difference amplitudes were 
constant for 4 octaves in time scale (corresponding to H = 0 for differences, the 
standard deviations each octave is indicated by a vertical tick mark on the arrow). 
The (dashed) reference curves are Gaussians with the corresponding standard 
deviations and with (thin, straight) tails (Pr ≈ <3%) corresponding to bounding 

s-4 and s-6 behaviours. Reproduced from Lovejoy (2014b).
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the (pre-industrial) distributions of temperature changes. This result will 
be used below for estimating the probability that industrial warming is no 
more than a giant natural fluctuation.

3.  The Climate

3.1  GCM’s: The Climate as a Boundary Value Problem

At first, General Circulation Models (GCM’s; large numerical models of 
the atmosphere) were weather models designed to model the atmosphere 
over periods of days: the slowly varying ocean was taken as a fixed lower 
boundary condition. In order to extend GCM’s for modelling the longer 
time scales associated with the climate, at the very least they had to be 
coupled to ocean models; modern GCM’s are also coupled to cryosphere 
and carbon cycle models. Changing land use and atmospheric composition 
(CO2, methane, aerosol concentrations), are taken into account as changes 
in boundary condition as are the external “forcings” consisting variable 
solar output, volcanic eruptions and changing land use. 

So how do GCM’s work? Due to their sensitive dependence on 
initial conditions (the “butterfly effect”, deterministic chaos), errors 
grow quickly (due to the scaling, only algebraically, not exponentially 
fast (Schertzer and Lovejoy 2004)), so that for planetary sized structures 
there are deterministic predictability limits of the order of ten days. This 
means that even with all the correct couplings, that the exact state of the 
atmosphere cannot be well predicted beyond 10 days or so. Indeed, for 
climate modelling – and even though all the details are known to be wrong 
– GCM’s are routinely integrated at 10 minute time steps for decades or 
hundreds of simulated years. However, it is hoped that the resulting 
fields will have the correct type of statistical variability and that any low 
frequency trends imposed by slowly varying boundary conditions (such 
as changing CO2 concentrations) will change the averages (e.g. of the 
temperature) in a more or less realistic manner. Mathematically, whereas 
below ten days, GCM’s consider atmospheric forecasting as an initial value 
problem, beyond this, it is considered to be a boundary value problem. 
Notice the irony: that in this “climate” prediction mode, the world’s largest 
supercomputers (some with ≈ 106 coprocessors) are essentially used as 
random number generators: generating no more than random “weather” 
so that the climate can be deduced by averaging almost all of it out. We 
return to this below.

3.2	Fluctuations and the Fluctuation Exponent

Surely, if scale invariance is a basic symmetry respected by the atmosphere 
and its models, then shouldn’t it be used to categorize the different 
regimes of atmospheric dynamics? Indeed, since the horizontal velocity 
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field is scaling out to planetary scales (see Fig. 2b for the horizontal scaling 
of satellite radiances, for the wind, see Lovejoy et al. (2009), Pinel et al. 
(2012), or for a review, Ch. 2 of Lovejoy and Schertzer (2013)), this can 
be used (at least dimensionally) to convert from space to time so that we 
find that the temporal fluctuations of the wind, temperature and other 
fields are scaling in time out to scales corresponding to the lifetime of 
planetary structures: about 10 days (this can be determined from first 
principles using the energy input from the sun, the size of the planet and 
the Kolmogorov’s law, Lovejoy and Schertzer (2010), Lovejoy et al. (2014)). 
Beyond this timescale, one is dealing with the statistics of structures over 
many lifetimes, new and quite different scaling regimes are established 
(see below).

To understand the different regimes, let us simplify Eq. (1) by 
considering only the mean fluctuations DI over time intervals Δt:
	 DI = 	f DtH	 (4)
Since f ≈ constant (K(1) = 0 in Eq. (2)), the mean behaviour of the 
fluctuations is determined by the exponent H. For example, when H > 
0, fluctuations tend to grow with the time interval, I will fluctuate like a 
drunkard’s walk – indeed, the usual Brownian motion is the case H = 1/2 
and f is a Gaussian (with K(q) = 0). When H < 0, on the contrary, fluctuations 
will tend to cancel each other out so that averaging over longer and longer 
intervals tends to converge. For this to be possible, the notion of fluctuation 
needs to be appropriately defined with the help of wavelets. When 1 > 
H > 0 using differences ΔI = I(t+Δt) – I(t) is sufficient (the “poor man’s 
wavelets”). However any process whose correlations decay with time Δt 
have average differences that increase with Δt so that when H < 0 they 
cannot be used to estimate fluctuations (see Eq. (4)). In this case, one could 
use “anomaly fluctuations” that are equal to the average over time Δt of 
the series after its overall mean has been removed. Anomaly fluctuations 
on the contrary, can only decrease with time scale and therefore cannot 
be used when H > 0. A simple definition that combines the advantages 
of both – and is valid over the range –1 < H < 1 – is simply to use the 
difference between the average over the first and second halves of the 
interval: “Haar fluctuations” (the coefficients of Haar wavelets). 

Since Haar fluctuations are equal to the difference fluctuation of the 
anomalies (or equivalently the anomaly fluctuation of the differences), 
they are easy to apply, and – most importantly – easy to interpret. In 
contrast, the popular Detrended Fluctuation Analysis (Peng et al. 1994) 
defines fluctuations as the root mean square residual of a polynomial 
regression against the running sum of the process. Not only is this 
mathematically difficult to analyse (DFA fluctuations aren’t wavelets) but 
– more importantly – the interpretation of the fluctuations is so opaque 
that in DFA papers the authors don’t even both to indicate the units of 
the fluctuations on their scaling plots; they only use them to estimate 
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scaling exponents! A final comment on the exponent H: it is denoted “H” 
in honour of Edwin Hurst but in general – unless the process is Gaussian 
– it is not the same as the Hurst (i.e. “R/S”) exponent (e.g. for a standard 
random walk – Brownian motion – they both yield H = ½). 

In order to understand the H exponent, consider the simple (essentially 
pedagogical) fractal construction shown in Figs 6a, b, that – for want of a 
better name – we call the “H model” (when 1 > H > 0 it is close to the “pulse 
in pulse” model, and has divergence of statistical moments of order >1/H, 
i.e. DTq   for q > 1/H, see Lovejoy and Mandelbrot (1985)). To simulate 
a series with fluctuation exponent H over the unit interval, start with the 
basic fluctuation, the step function labelled “motif” in Fig. 6a (top); the 
dashed line indicates the horizontal axis so that the left half is negative, 
the right half is (symmetrically) positive. To obtain the 2nd generation of 
the construction, compress the motif by a factor two in the horizontal and 
2-H in the vertical and place the result in the left half of the interval, then 
multiply it by a random sign. Finally, repeat with another random sign 
and place the result in the right half interval. The figure shows the result 
for signs +, –; this defines the fluctuations at the corresponding reduced 
scale. Fig. 6b shows the result when this is iterated 8 times; the left column 
with H > 0, the right column, H < 0. The final fractal process is obtained 
by summing all the contributions. Notice that in the H > 0 process, the 
fluctuations decrease with scale so that the process is dominated by the 
larger scales, conversely for the H < 0 process. When H < 1 the process has 
mean fluctuations DT(Dt)  DtH. 

3.3	What is the Climate?

When the wind, temperature, humidity, pressure and other atmospheric 
variables are considered – whether empirically or from GCM’s – or 
from appropriately generalized turbulent cascade processes – it is found 
that the transition at 5-10 days is universally observed to be from high 
frequency, growing (H > 0) to low frequency, decreasing (H < 0) behaviour 
with successive fluctuations tending to cancel each other out. At first 
sight, this would appear to validate the dictum “the climate is what you 
expect, the weather is what you get”, (Heinlein 1973) i.e. that the climate 
is a kind of average weather, which is obtained by averaging the weather 
over longer and longer time intervals. However, analysis of instrumental 
and paleo (i.e. proxy) data over decades, century and millennial scales 
shows that the H < 0 convergence of averages ends at about 30 years (in 
the industrial epoch) and after about 100 years (pre-industrial), and that at 
longer scales, the averages begin to change again (i.e. with H > 0). Figure 7 
is a composite showing the variability over nearly 13 orders of magnitude 
based on instrumental and paleo data (Fig. 2a is the spectral equivalent 
using largely the same data). For example, the climate “normal” (defined 
as a thirty year average) itself tends to fluctuate becoming more and more 
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The? fractal? H? model?

Figure 6a: The first two steps in the construction of the fractal H model. To obtain 
the second row, the motif (i.e. a basic “fluctuation”, top row) is reduced by a factor 
2 in the horizontal and by 2-H in the vertical and then multiplied by a random sign, 
this is placed in the left hand half of the figure; the right hand half has the same 

shape but with another random sign. Reproduced from Lovejoy (2015b).

Figure 6b: The first eight steps in the construction of the fractal H model with the 
sum, bottom series. In the left hand column we show the result for H > 0, the right, 
H < 0. In the H > 0 case we see that the amplitude of the fluctuations decreases as 
we go to smaller scales whereas in the H < 0 case, they increase. Reproduced from 

Lovejoy (2015b).
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variable right up to tens of thousands of years, the ice ages. Empirically 
– up to dozens of millennia at least – there are therefore three different 
regimes, not two, the intermediate regime – which is really a kind of 
“slow” weather and is called “macroweather” with the term “climate” 
being reserved for the longer period (unstable) variations up to ice-age 
scales of ≈ 100 kyrs (Lovejoy 2013). If one uses paleo data to extend such 
analyses to very long scales (up the limit of reliable proxies, 540 Myrs 
corresponding to the Phanerozoic eon), then in addition one finds a narrow 
“macroclimate” regime from ≈100 kyrs to ≈1 Myr (with H ≈ –0.8) and 
then a “megaclimate” regime (with H ≈ 0.4) from ≈1 Myr to (at least) 540 
Myrs. Interestingly, this latter H > 0 regime is associated with “unstable” 
drunkard’s walk like behaviour, it is incompatible with Lovelock’s Gaia 
(“living earth”) hypothesis (Lovelock 1995) that posits homeostasis (i.e. 
negative feedbacks that are strong enough to keep the temperature from 
wandering too far from optimal values for life; Lovejoy (2015b)).

The weather – macroweather – climate trichotomy is helpful for 
understanding anthropogenic warming: whereas in pre-industrial times, 
slowly acting natural processes eventually – at scales of a century or 
more – begin to dominate the (cancelling, diminishing) macroweather 
processes. In the industrial era, the anthropogenic effects are stronger than 

Figure 7: This is a wide scale range composite series showing atmospheric 
variability over the range from 1 hour to 553 million years. The 5 regimes: weather, 
macroweather, climate, macroclimate and megaclimate are also indicated. The 
curves to left are instrumental, the Epica curve is from Antarctica (ice core isotope 
proxy), the Huybers, Zachos and Veizer curves are from ocean core isotope 

proxies. Adapted from (Lovejoy 2015b).
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the natural climate processes and they begin to dominate macroweather 
after only about 30 years. This is important because it means that the 
(roughly century long) variation since 1880 is mostly due to anthropogenic 
not natural variability: it allows us to fairly accurately separate out the 
anthropogenic from the natural variations.

3.4	Scaling and Anthropogenic Warming 

The weather, macroweather and then climate picture is based on the 
corresponding scaling regimes, it characterizes the natural variability. For 
the industrial period which for our purposes started roughly 125 years 
ago, the corresponding duration is still within (although perhaps not far 
from the limits) of the preindustrial macroweather regime. This means 
that the probability of these natural fluctuations can be safely extrapolated 
somewhat beyond the limits of the empirical probabilities in Fig. 5c. These 
probabilities can thus be used to estimate how long we may expect to 
wait for various temperature changes – an estimate of “return times”, 
taking into account the scaling of the probabilities of temperature changes 
combined with the expected behaviour of the extremes (Fig. 5c, Eq. (3)) 
to estimate the probability of extreme temperature fluctuations. If it is 
found that the probability of the observed change since 1880 (≈ 0.9° C, 
see below) is low enough – alternatively that the return times are long 
enough – then we can reject the hypothesis that the fluctuation was caused 
by natural variability. 

Before discussing the statistical test, let us estimate the magnitude 
of the warming that has occurred. One way to do this is to attempt to 
separate the anthropogenic and natural variability (if the magnitude of 
the change is given in some other way, this step can be skipped, it is not 
essential to the conclusions). From fluid mechanical, turbulent and GCM 
viewpoints, the main anthropogenic forcings (Green House Gases (GHG), 
aerosols and land use changes) affect the boundary conditions, not the 
type of variability (see above). These arguments support the separation:

		  T t T t T tglobe anthro nat( ) ( ) ( )= + 	 (5)

where Tglobe is the global temperature anomaly and Tanthro and Tnat are 
the contributions of anthropogenic (climate) and natural (macroweather) 
processes. The justification for this is that the anthropogenic forcings since 
1880 are of the order of 2 W/m2 which is less than 1% of the mean solar 
forcing of ≈240 W/m2. The next step is to note that anthropogenic effects 
are tightly correlated with global economic activity, this justifies using 
the (relatively well measured) industrial epoch CO2 forcing, as a linear 
surrogate for all the anthropogenic forcings (see Lovejoy (2014b)):

	                            T t tanthro xCO eff CO CO pre
( ) log ( )/. .
= ( )l r r2 22 2 2

	 (6) 
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where λ2xCO2.eff  is the “effective” sensitivity of the climate to a CO2 doubling, 
ρCO2

 is the global mean CO2 concentration and ρCO2,pre is the pre-industrial 
value (277 ppm; the logarithmic form goes back to Arrhenius (1896)), it is a 
consequence of the saturation of the CO2 absorption bands. Alternatively, 
we may use the “equivalent CO2” concentration which results from the 
conversion of all the GHG and aerosols in CO2 radiative equivalents. 
However, CO2 and CO2eq are very highly correlated (correlation >0.99) 
so that the residuals – the estimate of the natural variability is nearly the 
same in both cases. We could note that economic activity is more related 
to the emission rate rather than the CO2 concentration (which depends 
on the cumulative emissions). However, since economic growth has 
been roughly exponential – and the integral of an exponential is again an 
exponential – the two are roughly proportional which is all that we require.  
More generally, one may assume that the anthropogenic contribution to 
the temperature is related to the forcing by a non instantaneous but still 
linear, transfer function. Due to the scaling, this is expected to be a power 
law – at least above some inner scale, but again, we find that the residuals 
have nearly the same variability, (work in progress, as macroweather).

Unlike approaches that attempt to separate internal variability from 
the responses to external natural and anthropogenic forcings, Tnat includes 
any temperature variations that are not anthropogenic in origin, i.e. it 
includes both “internal” variability and (implicitly) the responses to solar 
and volcanic forcings which are external but still natural. Similarly, Tanthro 
includes the warming due to the other GHG’s as well as the (difficult to 
estimate) aerosol cooling: λ2xCO2.eff is thus the “effective climate sensitivity”. 
It is the sensitivity to the actual (historical) doubling of CO2, it is thus 
conceptually distinct from the theoretical/model notions of “equilibrium” 
and “transient” sensitivity that have been empirically estimated elsewhere 
(although presumably it is closer to the latter than to the former). It is only 
the effective climate sensitivity that permits one to estimate the natural 
variability during the industrial epoch (as a residual, as macroweather). 

Figure 8 shows the results when Eqs. (8), (9) are applied using global, 
annual ρCO2 from 1880–2013 using the NASA GISS global temperature 
series (Hansen et al. 2010). Without sophisticated statistics, the linear 
trend is fairly convincing (correlation coefficient = 0.94), and the effective 
sensitivity (the slope) λ2xCO2.eff = 2.33 ± 0.36 °C/CO2 doubling which is close 
to the IPCC AR5 equilibrium sensitivity 1.5–4.5 °C/CO2 (conceptually, it 
is closer to the somewhat smaller transient climate sensitivity). The total 
anthropogenic warming (the vertical range of the line in Fig. 8a) is 0.87 ± 
0.1 °C which is close to the IPCC AR5 estimate 0.85 ± 0.20 °C (uncertainties 
are 90% confidence limits).

While Fig. 8a’s linearity is impressive, are the residuals (Fig. 8b) really 
reasonable estimates of Tnat? One answer is to note that the amplitude of 
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Figure 8a: Global temperature anomalies (NASA, 1880-2013) as functions of 
radiative forcing using the CO2 forcing as a linear surrogate. The line has a slope of 
2.33 °C per CO2 doubling. Some of the dates and corresponding annually, globally 
averaged CO2 concentrations are indicated for reference; the dashed vertical lines 
indicate the beginning and end of the events discussed in the text (1944, 1976, 1992, 

1998). Adapted from Lovejoy (2014a).

Figure 8b: The residuals from the straight line in Fig. 8a, these are the estimates of 
the macroweather (natural) variability. The vertical dashed lines are the same as 
in the previous. The arrows indicate the events discussed in the paper. Adapted 

from Fig. 1c (Lovejoy 2014a).
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the residues is quite small: ±0.109 °C. Remarkably, it is virtually the same 
as the errors in GCM hindcasts of global temperatures at one year forecast 
horizons. For example, over the period 1983-2004, using different GCM’s, 
and bias correction techniques, Smith et al. (2007) and Laepple et al. (2008), 
obtained RMS hindcast errors of ±0.105 °C and ±0.106 °C. (A hindcast is the 
use of models to make forecasts for historical time periods.) For example, 
we can use the data available at time t to make forecasts for time t + Δt. 
In a hindcast, t + Δt is in the past, it is forecast using the data up to time t 
and verified with data from t to t + Δt). In other words, if all we knew was 
the global annual CO2 concentration and the value of λ2xCO2.eff, then (on 
average) we could already predict the next year’s global temperature to 
±0.109 °C i.e. just as well as the GCM’s! Clearly, this Tnat must be close to 
the true natural variability. Unsurprisingly, this unconditional prediction 
(i.e. using no information about the actual global temperature series) can 
be improved even further by exploiting the stochastic climate “memory” 
to make conditional predictions.

4.  The Pause, Hiatus, Slowdown

4.1  Return Periods 

We have used (Fig. 5c) the multiproxies to estimate the probabilities of 
natural macroweather temperature changes over various time intervals. 
For the theoretical reasons discussed above, over the empirically reliable 
range of time intervals (up to 64 years, Fig. 5c), these distributions turn 
out to be nearly scale invariant (their form is nearly independent of the 
interval), and we can extend the estimates to intervals of 125 years. As 
discussed earlier, the scaling is associated with power law probabilities. 
These were used to bound the extreme 3% of the distributions (Eq. (3)): 
this takes into account the fact that the extreme changes occur much 
more frequently than the Gaussian distribution would allow (the “black 
swans”). Finally, we can estimate the expected time interval between 
temperature changes of various magnitudes – their return periods (we 
ignore possible clustering of the extremes and estimate the return period 
as the inverse probabilities taken from Fig. 5c). The return periods are 
shown in Fig. 9 where we can see that the warming since 1880 is expected 
to occur naturally every 1000 to 20,000 years (if we use the traditional 
Gaussian – the red line – we find periods > 1 Myrs, the warming is nearly 
a five standard deviation event!). The possibility that 1880 just happened 
to near the beginning of such a natural warming can thus be dismissed 
at the 0.1% level. Similarly, the post war cooling – the largest event in 
the record since 1880 – should occur every 100-150 years. As expected, 
such an event does occurs in the record (it happens to start in 1944). We 
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can also consider the natural cooling of about 0.3 °C since 1998 – needed 
to offset the anthropogenic warming over the period and account for the 
post 1998 flattening in Fig. 8a. This “pause” or “hiatus” is much touted by 
climate skeptics as proof that the warming has stopped and is therefore 
not anthropogenic. Although from Fig. 9 we see that such a cooling is 
expected to occur every 20-50 years, it is not so unusual. Yet it becomes 
quite probable when it is noticed that it immediately follows an equally 
strong warming “prepause” event from 1992-1992 (Figs 8a, b) so that the 
natural cooling since 1998 is no more than a return to the mean behaviour. 
Indeed, from Fig. 7 we see that it was only in 2012 that the temperature 
finally went below its long term (anthropogenic) trend. Recently Karl et 

Figure 9: The typical amount of time one must wait to observe a global scale 
temperature fluctuation of the amplitude indicated on the horizontal axis, the 
curves are the scale invariant regressions to the empirical return times using the 
classical (Gaussian, red), and bounding hyperbolically tailed distributions (black, 
exponents qD for the extreme tails 4, 6 as indicated). The pairs of vertical lines 
(one standard deviation bands about the mean) correspond to various events; the 
pairs of horizontal lines indicate the corresponding return periods from the more 
extreme (qD = 4, bottom) or less extreme (qD = 6, top) probabilities, respectively 
(see Eq. (3)). The events, from right to left are: global warming since 1880 (green 
range 0.76-0.98 °C), the largest event expected in the 134 years since 1880 (blue, 
0.47 °C), the postwar cooling (green, 0.42-0.47 °C), the pre-pause 0.30-0.33 °C 
(1992-1998) and “pause” 0.28-0.37 °C (1998-2012). The horizontal lines indicate 
the corresponding return periods. Note that these curves should not be used for 
estimating the return times of temperature changes over periods much longer 
than a century (the rough duration of the macroweather regime). This figure is 

from Lovejoy (2014a).
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al. (2015) produced a temperature series with new ocean and other bias 
corrections. In this warmer series, the amplitude of the corresponding 
natural cooling is 0.09 °C less than that shown in Fig. 8b (i.e. about 0.2 
instead of 0.3 °C). Since the return period for this smaller natural cooling 
is only about 10 years (Fig. 9), decadal trends cannot (and did not) detect 
any statistically significant pause at all and the authors pronounced the 
pause nonexistent.

4.2	Stochastic Forecasting: The Stochastic Seasonal and 
Interannual Prediction System (StocSIPS) and the ScaLIg 
Macroweather Model (SLIMM)

In the previous subsection, we used the unconditional statistics – the 
return periods – to argue that the natural cooling that roughly offset 
the anthropogenic warming since 1998 was not so unusual, noting in 
particular that it happened to follow an even stronger pre-pause warming. 
While this argument is already fairly convincing, it would be better still 
to use the conditional statistics i.e. to quantitatively take into account the 
temperature variations that preceded the pause. In order to do this, we 
need a stochastic model of the series. In this subsection, we discuss a fairly 
accurate model, the ScaLIng Macroweather Model (SLIMM). This model 
is the core of the Stochastic Seasonal and Interannual Prediction System 
(StocSIPS: http://www.physics.mcgill.ca/StocSIPS/).

To understand the physics behind stochastic macroweather models, 
recall that when GCM’s are used for macroweather forecasting, they 
are pushed far beyond their deterministic predictability limits: the 
weather they generate is just a “noise” forcing the lower frequencies. 
In this macroweather regime, control runs – with fixed climate forcings 
(boundary conditions) – converge “ultra slowly” (in a power law manner 
with small negative exponent) to the GCM climates (Lovejoy et al. 2013a). 
However, due to model “biases” (in both the means and in the annual 
cycle), neither the statistics of the driving noise (the weather), nor the 
model climates are fully realistic. 

Following Hasselmann (1976), alternative stochastic models have 
been developed, the most sophisticated of which are the Linear Inverse 
Models (LIM), (Penland 1996, Penland and Sardeshmuhk 1995), (Newman 
et al. 2003), (Sardeshmukh et al. 2000), (Sardeshmukh and Sura 2009). In 
principle stochastic models have the advantage that their statistics can be 
made realistic and by exploiting empirical data (the system “memory”) 
they can effectively be forced to converge to the real climate, so that for 
example a 20 component implementation of the LIM model (with >100 
parameters) can already do somewhat better than GCM’s for global 
annual temperature forecasts (Newman 2013). 
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The key question for stochastic macroweather models is thus how big is 
the system memory and how best to exploit it? The LIM approach is based 
on systems of coupled ordinary (integer ordered) differential equations 
whose solutions are essentially white noises and their integrals (Ornstein-
Uhlenbeck processes). Their low frequency limits are (unpredictable) 
white noises so that for horizons beyond about 2 years, the errors rapidly 
increase (Newman 2013). However, we have seen that over the last 
decades, a scaling paradigm for atmospheric variability has evolved that 
implies the existence long-range – potentially huge – memories and these 
can be exploited for forecasting (Lovejoy and Schertzer 1986), (Pelletier 
1998), (Koscielny-Bunde et al. 1998), (Franzke 2010, 2012), (Rypdal et al. 
2013), (Rypdal and Rypdal 2014, Yuan et al. 2014), (Lovejoy 2015b), see 
the reviews: (Lovejoy and Schertzer 2010), (Lovejoy and Schertzer 2012), 
(Lovejoy and Schertzer 2013). 

In a recent paper, we showed how to use the simplest relevant scaling 
model – fractional Gaussian noise – to exploit the system memory: the 
ScaLIng Macroweather Model (SLIMM) (Lovejoy et al. 2015). SLIMM was 
shown to make skillful hindcasts of natural variability from monthly to 
decadal scales. The key to overcoming the limitations of an earlier attempt 
to exploit the scaling (Baillie and Chung 2002) was to use the empirical 
effective climate sensitivity (λ2xCO2

) to remove the anthropogenic effects 
(Lovejoy 2014b). For annually, globally averaged temperatures, the 
resulting two parameter SLIMM model (λ2xCO2

 and the scaling exponent 
H, see below) was already generally better than both initialized GCM’s 
and LIM, although LIM (with hundreds of parameters) was marginally 
better for horizons up to about 2 years (LDH). The present results can 
be viewed as the conditional probability extensions of the unconditional 
(return period) results of the previous section. 

In the weather regime, atmospheric dynamics are intermittent; 
however in the macroweather regime, the intermittency is much weaker 
so that as a first approximation, nonintermittent (quasi-Gaussian) models 
may be used (although not for the extreme 3%). The usual starting point 
(e.g. for LIM) is the ordinary differential equation:

		
d
dt

T tw+Ê
ËÁ

ˆ
¯̃ =-t sg1 ( ) 	 (7)

where tw is the weather/macroweather transition scale”, s is the amplitude 
of the forcing and g(t) is a Gaussian white noise forcing with mean 

<g(t)> = 0. To understand this, operate on both sides by d
dt w+Ê

ËÁ
ˆ
¯̃

-
-

t 1
1

; this 

exponentially smooths the noise at scale tw (denoted by a subscript). At 
low frequencies, Eq. (7) is simply:

	 T(t)	= sgtw
(t)	 (8)

so that at low frequencies T(t) is a white noise. 
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The key to realistic modelling of frequencies lower than t
w 
–1 (SLIMM) 

is therefore to use a (low frequency) fractional order generalization:

		
d T

dt
t

H

H w

1 2

1 2

+

+ =sgt ( ) 	 (9)

whose solution is obtained by (Riemann-Liouville) fractional integration 
of both sides of the equation by order H+1/2:

	 T(t)	= sGH,tw
(t)	 (10)

where GH,tw 
(t) is a fractional Gaussian noise (fGn) process:

	                           G t K t t t dtH H
H

t

( ) ( ) ( )( )= - ¢ ¢ ¢- -

-•
Ú 1 2 g 	 (11)

smoothed at scale tw (KH is an appropriate normalization constant). From 
Eq. (11) we see that fGn has long range memory due to the slow fall-off in 
the weighting (the power law convolution kernel). When H<0, the above 
process is stationary; here it is in the range –1/2<H<0.  

Equivalently, we obtain the same result by simply starting with:

		
d
dt

T G tw H+Ê
ËÁ

ˆ
¯̃ =-t s1 ( ) 	 (12)

i.e. by replacing the LIM white noise forcing by the SLIMM scaling 
noise forcing with long range statistical dependency (and hence long 
range memory). Since G–1/2(t) is a white noise, LIM is recovered with 
H = –1/2. The difference between LIM and SLIMM is (equivalently) either 
the order of the differential equation (c.f. Eqs. (8), (9)) or the scaling (long 
range dependency, memory) of the forcing (c.f. Eqs. (7), (12)). Note that 
– unless we are interested in the extremes – this macroweather model is 
nonintermittent, K(q) = 0, an approximation that turns out to be reasonable 
in the macroweather regime (to see this, in Eqs. (1), (2) take ·D Ò = D =t r L/l  

to yield D D µ D -I t tq qH K q( ) ( )  and since fGn has D D µ DG t tH
q qH( ) we see 

that for fGn K(q)=0).
At small scales GH(t) has singular behaviour so that the temporal 

resolution t of T(t) is fundamentally important (as with a white noise, 
Eq. (11) should be understood in the sense of generalized functions, i.e. 
fGn defined this way is only strictly meaningful when integrated over 
a finite set). Although physically, the weather scales are responsible for 
the smoothing at tw, in practice, we typically have macroweather data 
averaged at even lower resolutions: for example monthly or annually. 
The simplest procedure is to introduce the resolution as an averaging 
procedure yielding Tt(t) so that the variance T tT

H
t s t2 2 2= diverges in 

the small resolution limit (recall H < 0), it follows that the spectrum of 
T is E(w) ≈ w–b, ω is the frequency and b = 1+2 H the integral of T(t) 
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is fractional Brownian motion process introduced by Kolmogorov (1940) 
and Mandelbrot and Van Ness (1968). In Lovejoy and de Lima (2015) it 
was shown how to extend this scalar SLIMM to spatially intermittent 
space-time SLIMM (accounting for different climatic regions).

To appreciate the huge difference between LIM with exponential 
correlations, (a continuous version of the discrete autoregressive 
processes) and SLIMM with power law correlations, we can calculate the 
fraction of the memory that resides in past event (“innovations, the white 
noise, g(t) in Eqs. (9) or (11)). Figure 10 compares the sizes of the LIM 
and SLIMM memories when forecasts are made for one (nondimensional) 
time step into the future. For example for LIM, the data more than 3 
time steps in the past contains only ≈ 1% of the memory so that 99% 
of the basic “innovations” needed for the forecast is in the past one to 
three time steps. In comparison, the SLIMM memory contained in 4 and 
more past time steps for H = –0.4, –0.3, –0.2 and –0.1 respectively is ≈ 
20%, 30%, 50% and 70% of the total memory. When H = –0.1 – a typical 
ocean value – thousands of time steps in the past are still being “felt” in 
the sense that they collectively contribute over 20% of the memory. As a 

Figure 10: The large (power law) memory of SLIMM models (based on fractional 
Gaussian noise, the four rightmost curves) versus the short (exponential) memory 
of LIM processes (far left). F is the fraction of the memory that influences forecasts 
one time step into the future. The dashed line is roughly the limit of the LIM 
processes: if one neglects innovations from more than about 3 time steps in the 
past, only a few per cent of the information is lost. The comparable numbers 
for SLIMM are ≈70%, 50%, 30%, 20% for H = –0.1, –0.2, –0.3, –0.4 respectively 
(corresponding roughly to the oceans, the globe, land (temperatures) and (typical) 

precipitation respectively).
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technical point, this does not mean that we need thousands of past time 
steps in order to make a good forecast. This is because the temperature 
values even 10 time steps in the past are also strongly influenced by the 
distant past innovations. Thanks to the solution of the (mathematical) fGn 
forecasting problem by Gripenberg and Norros (1996), Yaglom (1955), 
and the practical (finite difference) version by Hirchoren and Arantes 
(1998) we know that in practice 10-20 past time step temperature data give 
reasonable forecasts. Whereas in LIM processes, the weights of the past 
data decrease rapidly from present to past so that the most recent data 
are the most “influential”, in fGn forecasts, the weight of the data furthest 
in the past is also singularly (strongly) weighted since they are the best 
available “witnesses” of the distance past.

4.3	Hindcasting the Pause with SLIMM

To illustrate the method, we used the NASA GISS annually globally 
averaged series from 1880 through 2013 (Fig. 8a). The first step was 
to estimate the natural variability as discussed in section 3.4. Unlike 
initialized GCM hindcasts that “optimistically” assume that future solar 
and volcanic forcings are known, our hindcasts (statistically) take these 
into account. 

In Fig. 11 we compare the annual temperature residues (T) and 
its running sum S t T t

t t

( ) ( )
'

= ¢
£
Â with their SLIMM hindcasts (red) and

theoretical one standard deviation error bars (dashed). As expected, the 
actual temperatures are seen to lie almost entirely within the limits. The 
bottom row (right) shows a blow-up of the temperature hindcast and 
the actual temperature residues, and Fig. 11 shows the difference (error); 
we see that over the entire period 1998-2013, the maximum forecast 
error is ≈ ±0.11 °C. However, the error for the hindcast “anomalies” is 
considerably smaller (i.e. the residues averaged over the hindcast horizon 
t: (Ŝ (t) – S(0))/t): Fig. 11 lower left and Fig. 12 (blue). Beyond two years, 
the anomalies are within the theoretical one standard deviation limits, 
from 2002-2013, the anomaly errors are  ±0.02 °C i.e. below the estimated 
temperatures measurement errors (±0.03 °C, Lovejoy et al. 2013b). (The 
term “anomaly” is a short hand for the anomaly fluctuation discussed 
earlier, for the residues this is simply the series at a specific resolution. For 
example, the RMS accuracy of annual GCM hindcasts are often quoted 
after averaging them over 4 or 5 years, this is the RMS of the 4 or 5 year 
anomaly). We could mention that other “mean reverting” processes such 
as LIM will also show qualitatively the same behaviour: the superiority 
of SLIMM was quantitatively established using over 100 hindcasts from 
1900 to 2003.

shaun2008
Cross-Out

shaun2008
Inserted Text
al

shaun2008
Cross-Out

shaun2008
Replacement Text
al

shaun2008
Inserted Text
 (one standard deviation)



Why the Warming Can’t be Natural: The Nonlinear Geophysics...  223

Figure 11: Upper left: The summed (natural) global, annual temperature S(t) 
(blue) with the hindcast (red) from 1998 shown in red (here and elsewhere, the 
dashed red lines are one standard deviation error limits).
Upper right: The natural temperature (blue) with the hindcast from 1998 (red).
Lower left: The anomaly defined as the average natural temperature (i.e. residue) 
over the hindcast horizon (blue), red is the hindcast. 
Lower right: The temperature since 1998 (blue) with hindcast (red), a blow-up of 
the hindcast part of the upper right plot. 
A little more effort (using stochastic forecasting) shows that if the anthropogenic 
warming continues at its present rate, that there is reasonable chance (5%) that 
the pause will continue until 2019–2020. Alternatively, climate skeptics will 
have to wait another 5–6 years before using any continuing pause to reject the 
anthropogenic warming hypothesis at 95% levels. Reproduced from Lovejoy 

(2015c).

Since it can be so accurately hindcast, these results support the 
(unconditional) statistical analysis of the previous section that the pause 
must be due to natural variability. This is consistent with Steinman et al. 
(2015) who singled out particular high amplitude – but narrow scale range 
– low frequency natural processes including the Atlantic Multidecadal 
Oscillation (AMO) and argued that they explain the pause. However, due 
to the scaling (in space and in time) there is in fact a hierarchy of processes 
analogous to the AMO (Held et al. 2010): our hindcasts statistically account 
for the whole relevant scale range and show that they are all important.
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Figure 12: The hindcast errors: anomalies (blue) and temperatures (red), obtained 
from Fig. 11 lower left and right, respectively. The one standard deviation error 
limits are shown as dashed. The largest absolute errors are ±0.11 K. The estimate 
of the accuracy of the observations (dashed green), about ±0.03K, is also shown. 

Reproduced from Lovejoy (2015c).

5.	 Conclusions

Due to strong dynamical nonlinearities, the atmosphere is highly variable 
from planetary down to millimetric dissipation scales, in time from the 
age of the earth to milliseconds (10, 20 orders of magnitude respectively). 
The typical ratio of nonlinear to linear terms is about 1012 and it is believed 
that at such high degrees of nonlinearity that new statistical turbulent laws 
emerge from the deterministic laws of continuum mechanics. These laws 
are based on scale invariance symmetries, but to be realistic, the scaling 
must be anisotropic: different in the horizontal and vertical directions. 
In addition, the intermittency (variability) is so high that they obey 
nonclassical, multifractal statistics with extreme power law tails. Global 
atmospheric data and models (GCM’s) are now of high enough quality – 
they span wide enough ranges of scale – that these ideas can be tested, the 
scaling is indeed accurately obeyed by both models and data and is of the 
theoretically predicted type including extremes (Eq. (3)). It was argued 
that these statistical laws are the high level (emergent) consequences of 
the (lower level) deterministic laws of continuum mechanics in the limit 
of high nonlinearity.
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This new understanding of natural variability is based on the 
intermittent anisotropic generalisations of classical turbulence theory 
described above, and can be used to statistically test the hypothesis that the 
industrial epoch warming is simply a giant natural fluctuation. By using 
temperature proxy data over the pre-industrial period 1500-1900 and the 
theoretically predicted form of the probabilities, we can estimate how 
long we must wait for fluctuations of various amplitudes over time scales 
up to ≈ 125 years. The only additional step is to estimate the magnitude of 
the industrial epoch warming (about 0.9 °C for the global average). When 
this was done, it was found that the probability was so low (≈ 0.1%) that 
it could be dismissed. 

Following 1998, the warming apparently slowed down – and due to 
the lack of a convincing model based explanation – the IPCC AR5 resorted 
to the vague: “Due to natural variability, trends based on short records are 
very sensitive to the beginning and end dates and do not in general reflect 
long-term climate trends” (see Hawkins et al. 2014). Our understanding 
of the natural variability allows us to quantitatively explain the slowdown 
as a cooling fluctuation that masked an ongoing anthropogenic warming 
trend. A first explanation was based on the unconditional statistics the 
natural cooling (of about 0.3 °C) had a fairly short return period (20-50 
years), it is not so unusual. However, we noted that the natural cooling 
since 1998 immediately followed an even larger pre-pause warming 
(1992-1998) so that it was plausible that the cooling was simply a return to 
the long term trend. 

In order to confirm this – i.e. to work out the conditional statistics, we 
exploited the scaling to make stochastic forecasts based on the fluctuation 
exponent H and the global temperatures that preceded the “pause”. The 
model we used for the hindcast was fractional Gaussian noise which was a 
reasonable model for the time series since the latter had low intermittency 
(C1 ≈0.01 to 0.02). The resulting conditional hindcast was accurate to 
within 0.1 °C for the entire period following the 1998 peak and the 3-4 
year anomalies were hindcast to with 0.03 °C. This was compared to the 
multimodel mean of CMIP 3 hindcasts that were about 0.2 °C too high. The 
problem was with the models, not the theory of anthropogenic warming 
itself which accurately predicted the pause as a necessary consequence of 
the pre-pause warming: without the “slowdown”, the warming would 
have been too strong. 

Using fGn as a model for the temporal development of macroweather 
fields (which have low intermittency) was convenient since the 
mathematical problem of forecasting fGn has recently been solved. 
Regional (spatial) extensions of this – with realistic strongly intermittent 
spatial variability – ScaLIng Macroweather Models (SLIMM) are currently 
under development since they lead to accurate monthly, seasonal, annual 
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and decadal (i.e. macroweather) forecasts that are currently competitive 
with conventional methods since they avoid the model “drift” and poor 
seasonality that plague GCM’s while skillfully forecasting the natural 
variability. 

Although scientific opinion has for many years been virtually 
consensual about the theory of anthropogenic warming, the implications 
for humanity are so large that professional “skeptics” have continued to 
denigrate the models and tout the theory that the warming is no more 
than a giant natural fluctuation (see Lovejoy et al. 2016). It is therefore 
important to close the debate by eliminating this last source of rational 
criticism. Now that this has been done, any remaining skeptics are no more 
than deniers. Scientists can move on to understanding (and predicting) 
space-time climate variability (including regional forecasts) and the rest 
of the world can move on to dealing with the warming and its potentially 
catastrophic consequences.
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