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Rain gauges and weather radars do not measure rainfall at the same scale; roughly 20 cm for
the former and 1 km for the latter. This significant scale gap is not taken into account by
standard comparison tools (e.g. cumulative depth curves, normalized bias, RMSE) despite the
fact that rainfall is recognized to exhibit extreme variability at all scales. In this paper we
suggest to revisit the debate of the representativeness of point measurement by explicitly
modelling small scale rainfall variability with the help of Universal Multifractals. First the
downscaling process is validated with the help of a dense networks of 16 disdrometers (in
Lausanne, Switzerland), and one of 16 rain gauges (Bradford, United Kingdom) both located
within a 1 km2 area. Second this downscaling process is used to evaluate the impact of small
scale (i.e. sub-radar pixel) rainfall variability on the standard indicators. This is done with
rainfall data from the Seine-Saint-Denis County (France). Although not explaining all the
observed differences, it appears that this impact is significant which suggests changing some
usual practice.
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1. Introduction

The most commonly used rainfall measurement devices are
tipping bucket rain gauges, disdrometers, weather radars and
(passive or active) sensors onboard satellites. In this paper we
focus on the observation scale gap between the two first devices
which are considered here as point measurements and weather
radars. A rain gauge typically collects rainfall at ground level over
a circular area with a diameter of 20 cm and the sample area of
operational disdrometers is roughly 50 cm2 whereas a radar
scans the atmosphere over a volume whose projected area is
roughly 1 km2 (for standard C-band radar operated by most of
the western Europe meteorological national services). Hence
observation scales differ with a ratio of approximately 107

between the two devices. A basic consequence (e.g. Wilson and
es).

ll rights reserved.
Brandes, 1979), is that direct comparison of the outputs of the
two sensors is at least problematic.

Standard comparisons between rain gauge and radar
rainfall measurements are based on scatter plots, rain rate
curves, cumulative rainfall depth curves, and the computa-
tion of various scores such as normalized bias, correlation
coefficient, root mean square errors, Nash–Sutcliffe coeffi-
cient etc. (see e.g., Diss et al., 2009; Emmanuel et al., 2012;
Figueras i Ventura et al., 2012; Krajewski et al., 2010; Moreau
et al., 2009). Despite usually being mentioned the issue of the
representativeness of point measurement (i.e. disdrometer
or rain gauge) with regard to average measurements (i.e.
radar) is basically not taken into account and its influence on
the standard scores is not assessed. Furthermore the authors
who addressed it either to separate instrumental errors from
representativeness errors (Ciach and Krajewski, 1999; Ciach et
al., 2003; Zhang et al., 2007;Moreau et al., 2009), or to introduce
an additional score taking into account an estimation of the
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Fig. 1. Map of the 26 rain gauges of Seine-Saint-Denis used in this study,
with the radar pixels of the Météo-France mosaic.
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representativeness error (Emmanuel et al., 2012; Jaffrain and
Berne, 2012) all rely on a geostatistical framework which may
tend to underestimate rainfall variability and especially the
extremes. Indeed this framework assumes that the rainfall field
or a transform of it is Gaussian, which does not enable to fully
take into account the fact that the extremes of rainfalls exhibit a
power law behaviour as it has been shown by various authors
(Schertzer et al., 2010; Hubert, 2001; Ladoy et al., 1993; de Lima
and Grassman, 1999; Schertzer and Lovejoy, 1992).

In this paper we suggest to revisit how the representa-
tiveness issue is taken into account in standard comparison
tools between point measurement devices (disdrometers or
rain gauges) and radar rainfall measurements by explicitly
modelling the small scale rainfall variability with the help of
Universal Multifractals (Schertzer and Lovejoy, 1987). They
rely on the physically based notion of scale-invariance and on
the idea that rainfall is generated through a multiplicative
cascade process. They have been extensively used to analyse
and simulate geophysical fields extremely variable over wide
range of scales (see Schertzer and Lovejoy, 2011 for a recent
review). The issue of instrumental errors is not addressed in
this paper.

The standard comparison tools are first presented and
implemented on 4 rainfall events over the Seine-Saint-Denis
County for which radar and rain gauge measurements are
available (Section 2). A downscaling process is then suggested
and validated with two dense networks of point measurement
devices (disdrometers or rain gauges) (Section 3). Finally the
influence of small scale rainfall variability on the standard
scores is assessed and discussed (Section 5).

2. Standard comparison

2.1. Rainfall data in Seine-Saint-Denis (France)

The first data set used in this paper consists in the rainfall
measured by 26 tipping bucket rain gauges distributed over
the 236 km2 Seine-Saint-Denis County (North-East of Paris).
The rain gauges are operated by the Direction Eau et
Assainissement (the local authority in charge of urban
drainage). The temporal resolution is 5 min. For each rain
gauge the data is compared with the corresponding radar
pixel of the French radar mosaic of Météo-France whose
resolution is 1 km in space and 5 min in time (see Tabary,
2007, for more details about the radar processing). The
closest radar is the C-band radar of Trappes, which is located
South-West of Seine-Saint-Denis County. The distance be-
tween the radar and the rain gauges ranges from 28 km to
45 km. See Fig. 1 mapping of the location of the rain gauges
and the radar pixels. Four rainfall events whose main features
are presented in Table 1 are analysed in this study. They were
selected (especially the last three) being among the heaviest
observed events.

2.2. Scores

The radar and rain gauge measurements of the four
studied rainfall events over the Seine-Saint-Denis County are
compared with the help of scores commonly used for such
tasks (Diss et al., 2009; Emmanuel et al., 2012; Figueras i
Ventura et al., 2012; Krajewski et al., 2010; Moreau et al.,
2009):

− The normalized bias (NB) whose optimal value is 0:

NB ¼ Rh i
Gh i−1: ð1Þ

− The correlation coefficient (corr) which varies between−
1 and 1 and whose optimal value is 1:

corr ¼

X
∀i

Gi− Gh ið Þ Ri− Rh ið Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
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− The Nash–Sutcliffe model efficiency coefficient (Nash),
which varies between−∞ and 1 and whose optimal value
is 1:

Nash ¼ 1−

X
∀i

Ri−Gið Þ2

X
∀i

Gi− Gh ið Þ2
: ð3Þ

− The root mean square error (RMSE), which varies between 0
and +∞ and whose optimal value is 0:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
∀i

Ri−Gið Þ2

N

vuuut
: ð4Þ

− The Slope and Offset of the orthogonal linear regression. It
minimizes the orthogonal distance from the data points to



Table 1
General features of the studied rainfall events in Seine-Saint-Denis. For the cumulative depth the three figures correspond to the average, the maximum, and the
minimum over the rain gauges or the corresponding radar pixels.

9 Feb. 2009 14 Jul. 2010 15 Aug. 2010 15 Dec. 2011

Approx. event duration (h) 9 6 30 30
Available gauges 24 24 24 26
Gauge cumul. depth (mm) 11.4 (10–12.8) 37.9 (47.8–23.4) 50.1 (62.8–27.4) 22.4 (28.2–18.2)
Radar cumul. depth (mm) 8.5 (9.3–7.5) 28.7 (35.8–21.2) 50.6 (59.2–36.0) 22.4 (28.2–19.8)
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the fitted line, contrary to the ordinary linear regression
which minimizes the vertical distance and hence con-
siders one of the data types as reference which is not the
case for the orthogonal regression. The optimal values are
respectively 1 and 0.

− The percentage (%1.5) of radar time steps (Ri) contained in
the interval [Gi/1.5; 1.5Gi] (it should be mentioned that
this score is less commonly used than the others, 1.2 and 2
instead of 1.5 were also tested and yield similar results
which are not presented here).

where R and G correspond respectively to radar and rain
gauge data. bN denotes the average. Time steps (index i in the
previous formulas) of either a single event or all of them
are used in the sum for each indicator. The time step usually
considered by meteorologist is 1 h. As in Emmanuel et al.
(2012) and Diss et al. (2009), in addition we will consider
time steps of 5 and 15 min which are particularly important
for various practical applications in urban hydrology (Berne
et al., 2004; Gires et al., 2013a). In this paper in order to limit
the influence of time steps with low rain rate and especially
the zeros rainfall time steps on the indicators, we only take
into account the time steps for which the average rain rate
measured by either the radar or the rain gauges is greater
than 1 mm/h (Figueras i Ventura et al., 2012). The results are
presented for an identical threshold for the various time
steps. However, conclusions on the relation between the
scores for different thresholds remain similar but with
slightly different score values. The scatter plot for all the
Fig. 2. Scatter plot for all the events with a 15 min time steps: (a) radar vs. rain ga
pixels).
events is visible in Fig. 2. The values of the scores are
displayed in Fig. 3 for the 4 events, while the summary for all
the events is given in Table 2. Whatever the case, all the rain
gauges are considered at once, implying that the influence of
the distance between the rain gauges and the radar is not
analysed here. This choice was made because this distance
ranges from 28 km 45 km according to the rain gauge which
is not significant enough to enable a proper analysis of this
issue (see Emmanuel et al., 2012 for a more precise study of
this effect).

Overall it appears that there are great disparities between
the events with much better scores for the 15 Aug. 2010 and
15 Dec. 2011 events than for the other two events. As it was
observed in previous studies (Emmanuel et al., 2012; Diss et
al., 2009) the scores tend to improve with increasing time
steps. We find that for a given score, the ranking between the
events remains the same for all the time steps which
highlights the interests of performing analysis through scales
rather than multiplying analysis at a given scale which is
commonly done. More precisely it appears that the ranking
between the events varies according to the selected score. For
instance the 9 Feb. 2009 event is the worst event for Nash,
corr and NB, whereas this is the case for %1.5, slope, offset and
RMSE on 14 Jul. 2010. Furthermore for some scores, the
estimated value is significantly different for an event with
regard to the other ones. This is the case for RMSE for the 14 Jul.
2012 event (which strongly affects the value of this score when
all the events are considered) or for Nash for the 9 Feb. 2009
event (here the score for all the events is not too affected). These
uge measurements, (b) radar vs. a set of virtual rain gauges (one per radar
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Table 2
Standard scores for the comparison between radar and rain gauge data for
the 4 studied events. Only the time steps with one of data type exhibiting a
rain rate greater than 1 mm/h are considered.

Score 5 min 15 min 60 min

Nb. of points 11412. 3884. 991.
NB −0.15 −0.13 −0.12
Corr 0.70 0.78 0.82
RMSE 5.19 3.71 3.09
Nash 0.46 0.54 0.59
Slope 0.43 0.46 0.48
Offset 1.33 1.24 1.17
%1.5 38.7 55.9 72.1
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differences make it harder to interpret precisely the consistency
between rain gauges and radar measurements according to the
event.

3. Bridging the scale gap

3.1. Methodology

In this paper we suggest to bridge the scale gap between
radar and point (disdrometer or rain gauge)measurementswith
the help of a downscaling process based on the framework of
Universal Multifractals (UM) (Schertzer and Lovejoy, 1987;
Schertzer and Lovejoy, 2011 for a recent review). The UM
framework is indeed convenient to achieve this, because its basic
assumption is that rainfall is generated through a space–time
cascade processmeaning that the downscaling simply consists in
extending stochastically the underlying multiplicative cascade
process over smaller scales (Biaou et al., 2005). The underlying
multiplicative cascade process fully characterizes the spatio-
temporal structure, especially the long range correlation and the
variability through scales of the field. In the UM framework the
conservative process (e.g., rainfall) is characterizedwith the help
of only twoparameters; C1 being themean intermittency (which
measures the clustering of the average intensity at smaller and
smaller scaleswith C1 = 0 for a homogeneous field) andα being
the multifractality index (which measures the clustering
variability with regard to intensity level, 0 ≤ α ≤ 2). The UM
parameters used here are α = 1.8 and C1 = 0.1 which are in
the range of those found by various authors who focused their
analysis on the rainy portion of the rainfall field (de Montera et
al, 2009; Mandapaka et al., 2009; Verrier et al., 2010; Gires et al.,
2013b). In this framework the statistical properties (such as the
moment of order q) of the rainfall intensity field (Rλ) at a
resolution λ (λ = L/l the ratio between the outer scale L and the
observation scale l) are power law related to λ:

Rq
λ

� �
≈λK qð Þ ð5Þ

with

K qð Þ ¼ C1

α−1
qα−q
� � ð6Þ
Fig. 3. Histograms of the scores computed for the 1000 samples of possible combina
and the event of 9 Feb. 2009 (long dash), 14 Jul. 2010 (dash), 15 Aug. 2010 (dash do
associated with each distribution are the 5, 50 and 95% quantile.
being the scaling moment function which fully characterizes the
rainfall structure and variability not only at a single scale but
through scales.In this paper discrete cascades are implemented,
meaning that the rainfall over a large scale structure is
distributed in space and time step by step. At each step the
“parent structure” is divided into several “child structures” and
the intensity affected to a child structure is equal to its parent's
one multiplied by a random increment. In order to ensure the
validity of Eqs. (5) and (6) the randommultiplicative increment

must be chosen as exp C1 ln λ0ð Þ
α−1j j

� �1=α
L αð Þ

	 

=λ0

C1
α−1, where λ0 is the

scale ratio between two consecutive time steps. L(α) is an
extremal Lévy-stable random variable of Lévy stability index α
(i.e. 〈exp(qL(α))〉 = exp(qα)), which corresponds to a mathe-
matical definition of the multifractality index. The algorithm
presented in Chambers et al. (1976) was used to generate it. To
be consistentwith the scaling of life-time vs. the structure size in
the framework of the Kolmogorov (1962) picture of turbulence
the scale of the structure is divided by 3 in space and 2 in time at
each step of the cascade process (Marsan et al., 1996; Biaou et al.,
2005; Gires et al., 2011), which leads to 18 child structures. A
new seed is chosen at the beginning of each new realisations of a
downscaled rainfall field. Finally it should be mentioned that in
this paper we are focusing the analysis on selected rainfall
episodes, which means that the zeros of the rainfall (on–off
intermittency) do not play a significant role. Hence we did not
include any process to generate additional zero values other than
the small values spontaneously obtained with the help of the
multiplicative cascade process itself (see Gires et al., 2013b for
some suggestions onhow toproceed to include additional zeroes
for longer series). Howeverwe usedUMparameters obtained on
focusing on the rainfall episodes of the rainfall fields since
analysis on large areas or long period which include many zeros
lead to significantly biased estimates (de Montera et al., 2009;
Gires et al., 2012).
3.2. Rainfall data from dense networks of point measurements

3.2.1. EPFL network of disdrometers in Lausane (Switzerland)
A network of 16 autonomous optical disdrometers (first-

generation Parsivel, OTT) was deployed over EPFL campus
from March 2009 to July 2010 (see Jaffrain and Berne, 2011,
for more detailed information). The minimum distance
between 2 disdrometers was about 8 m, the maximum one
about 800 m. The measured spectra of raindrop size distri-
bution (DSD) have been used to derive the rain rate at a
1-min temporal resolution. The processing of the DSD data is
described in Jaffrain and Berne (2011). We selected a set of
36 rainfall events for which the bias between a disdrometer
and a collocated rain gauge was below 10% over the total
rainfall amount (see Jaffrain and Berne, 2012 for details). Out
of these 36 events, we selected six having the largest rainfall
amounts for the present study.

The main features of the six studied rainfall events are
displayed in Table 3.
tions of virtual rain gauges. The values of the scores for all the events (solid)
t) and 15 Dec. 2011 (dash bi-dot) are also displayed in red. The three figures



Table 3
Same as in Table 1 for the studied rainfall event in Lausane (EPFL data set).

6 June 2009 17 July 2009 8 October 2009 26 March 2010 3 April 2010 5 August 2010

Approx. event duration (h) 6 7.6 7.9 5.8 7.3 4.5
Nb of selected disdrometers 15 16 15 16 16 15
Disdrometer cumul. depth (mm) 9.7 (11.1–7.6) 22.9 (26.5–18.0) 12.2 (13.4–10.8) 11.8 (13.8–10.2) 14.0 (16.2–12.1) 5.5 (6.6–4.6)
Maximum % difference between
all selected disdrometers

46 47 24 35 34 43
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3.2.2. Bradford U. network of rain gauges in Bradford (United
Kingdom)

The second data set used in this paper consists in the
rainfall measured by16 tippingbucket rain gauges installed over
the campus of Bradford University (United Kingdom). Eight
measuring locations with 2 co-located rain gauges are installed
on the roofs of the campus, this has been done to help find
random rain gauge errors as described in Ciach and Krajewski
(2006). The rain gauges installed at Bradford University are type
ARG100, commonly used in the UK and described in Vuerich
et al. (2009), the ‘WMOfield intercomparison of rainfall intensity
gauges’ report. The ARG100 rain gauges are supplied with
a calibration factor between 0.197 and 0.203 mm per tip.
If the calibration would be accurate, a pair of co-located
rain gauges should give near identical readings when no
random errors such as blockages have occurred. A dynamic
re-calibration of all rain gauges, similar to the description in the
manufacturers' documentation has therefore been carried out in
the laboratory. A peristaltic pumpwas set up to drip 1 l of water
in the rain gauge for over 60 min, simulating 20 mm/h intensity
rainfall. During this re-calibration it was found that two of the
purchased rain gauges lay outside the accepted range of 0.197
and 0.203 mm per tip, these rain gauges were sent back to the
manufacturer to be recalibrated. For the other rain gauges it
proved difficult to confirm exactly the same calibration factor in
the laboratory. Repeated calibration of a single gauge could
deliver a calibration factor between for example 0.199 and 0.201,
whereas the factory calibration provided could be outside this
interval, for example 0.198. The rain gauge data were therefore
derived using the average value of calibration factor from the
re-calibration carried out in Bradford. Given this information, it
was deemed that themaximumdifference between 2 co-located
rain gauges due to potential errors in the calibration factorwould
be (0.204/0.196)/0.196 ∗ 100% = 4.1%, n.b. as worst case
scenario a slightly wider range of 0.196 to 0.204 mm per tip
was used. This 4.1% was used as cut-off point, i.e. if a pair of
co-located rain gauges shows an absolute difference, |(RG1 −
RG2)/RG2 ∗ 100%| or |(RG2 −RG1)/RG1 ∗ 100%|, that is larger
than 4.1%, the pair was removed from the dataset as it is likely
that one of the rain gauges suffered from random errors, such as
temporary blockages etc. The rain gauges were visited approxi-
mately every 5 weeks, when the gauge funnel and tipping bucket
were cleaned of any debris, and notes made of any blockages.

The maximum distance between two rain gauges is 404 m
and the time resolution 1 min. Three rainfall events were
analysed (see Table 4).

3.3. Validation, results and discussion

The measurement devices of both Bradford U. and EPFL
data sets are located within a 1 km2 area. Hence it is possible
to use them to test the suggested spatio-temporal downscal-
ing process. This is achieved by implementing the following
methodology.

First the average rain rate over the surrounding 1 km2

area with a 5 min resolution is estimated by simply taking
the arithmetic mean of the rain rates computed by the
available devices over 5 min.

Then the obtained field is downscaled with the help of the
process described in Section 3.1. More precisely, seven steps
of discrete cascade process are implemented leading to a
spatial resolution of 46 cm and a temporal one of 2.3 s. The
field is then re-aggregated in time to obtain a final temporal
resolution of 1 min equal to the one of the two measuring
devices. The output of the process consists in a realistic (if the
downscaling process is correct!) rainfall estimate for 2187 ×
2187 virtual disdrometers (or rain gauges) located within the
1 km2 area. Fig. 4 displays the 5 consecutive time steps of the
simulated rain rate at a resolution of 1 min in time and 46 cm
in space starting with a uniform rain rate equal to 1 mm/h at
the initial resolution of 5 min in time and 1 km in space. It
should be mentioned that the straight lines which remind the
pixelisation associated with radar data are due to the use of
discrete cascades. The use of the more complex continuous
cascades (see Lovejoy and Schertzer, 2010 for more details on
how to simulate them) would avoid this unrealistic feature in
the spatio-temporal structure of the field but would not
change the retrieved statistics.

Third observed and simulated data are compared with the
help of the temporal evolution of rain rates simulated for the
various virtual disdrometer and quantile plots. More precisely
the temporal evolution of the rain rate and the cumulative
rainfall depth are computed for each of the virtual disdrometer
(or rain gauge). Then, instead of plotting the 2187 × 2187 curves
which leads to unclear graph, for each time step the 5, 25, 75 and
95% quantiles among the virtual disdrometers are evaluated. The
corresponding envelop curves (R5(t), R25(t), R75(t), R95(t) for rain
rate, and C5(t), C25(t), C75(t), C95(t) for cumulative depth) are
then plotted with the recorded measurements on the same
graph. The corresponding curves for the EPFL data set and
the Bradford U. one are displayed respectively in Fig. 5a and
b. For some events the graph of the rain rates is zoomed on
portion of the event to enable the reader to see the details of
the curves which is not always possible if the whole event is
shown on a single graph. With regard to the quantile plots,
for each location all the measured data (i.e. all the stations
and all the available time steps, corresponding to respec-
tively 36495 and 29000 values for the EPFL and Bradford
data set) is considered at once and compared with a random
selection of the same number of virtual point measure-
ments. Note that for the Bradford data set the random
selection of virtual point measurements mimics the fact that



Table 4
As in Table 1 for the studied rainfall events and selected rain gauge data in Bradford (Bradford University data set).

22 June 2012 6 July 2012 15 August 2012

Approx. event duration (h) 24 10 3
Nb of selected gauges 14 14 16
Maximum % difference within pairs of selected co-located rain gauges 4.1% 2.0% 3.7%
Gauge cumul. depth (mm) 43.2 (49.4–39.4) 36.7 (38.0–34.5) 16.8 (17.4–15.2)
Maximum % difference between all selected rain gauges 25% 10% 14%
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the network is made of pairs of collocated rain gauges by
selecting always two adjacent virtual rain gauges. Fig. 6a
and b provide an example of obtained quantile plots for
respectively the EPFL and the Bradford data set. Similar
plots are obtained for other realisations of the random
selection of virtual point measurements within the square
km.

Concerning the 6 June 2009 event of the EPFL data set, it
appears that the disparities among the temporal evolution
of the rain rate of the various disdrometers are within the
uncertainty interval predicted by the theoretical model.
Indeed the empirical curves are all between R5(t) and R95(t)
and some are greater than R75(t) or lower than R25(t)
for some time steps. It should be noted that for a given
disdrometer the position of the measured rain rate varies
within the uncertainty interval according to the time step
(i.e. not always greater than R75(t) for instance), which is
expected if the theoretical framework is correct. Concerning
the temporal evolution of the cumulative rainfall depth, the
Fig. 4. Illustration of the spatio-temporal downscaling process. Three realisations of
starting with a uniform rain rate of 1 mm/h at the initial resolution of 5 min in tim
measured curves are all within the [C5(t);C95(t)] uncertainty
interval except for two disdrometers. There is furthermore a
significant proportion (8 out of 15) of disdrometers within
the [C25(t);C75(t)] interval which is expected. Hence for
this specific event the downscaling model can be validated
overall. Similar comments can be made for the other rainfall
events with may be a tendency to slightly overestimate of the
uncertainty interval for the rain rate. The quantile plot for a
random selection of virtual disdrometer (Fig. 6a) confirms
the overall validity of the downscaling model for rain rates
lower than 60–70 mm/h since it follows rather well the first
bisector. For the extreme values (rain rates greater than 60–
70 mm/h which corresponds to probability of occurrence
roughly lower than 10−3) some discrepancies are visible and
the simulated quantiles tend to be significantly greater than
the observed ones. Given the validity of the UM model for
rest of the curve, an interpretation of this feature could be
that the measurement devices have troubles in the estima-
tion of extreme time steps and tend to underestimate them.
the simulated rain rate with a resolution of 1 min in time and 46 cm in space
e and 1 km in space.

image of Fig.�4
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Fig. 6. Quantile plot (including all the stations and all the available time steps) of the measured data versus a realisation of downscaled rainfall fields for the EPFL
(a) and Bradford (b) data set.

Table 5
Sensitivity test to the values of the UM parameters for the 6 June 2009 of the
EPFL data set.

α C1 γs CV95′ (%)

1.8 0.1 0.50 14
1.8 0.05 0.36 9.2
1.8 0.2 0.67 26
1.4 0.1 0.42 12
0.6 0.1 0.22 11
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More extreme events should be analysed to properly confirm
this. This nevertheless hints at a possible practical application
of this downscaling process; generating realistic rainfall
quantiles at “point” scale. Indeed they do not seem accessible
to direct observation because of both limitations in the
accurate measurement of extreme rainfall and sparseness of
point measurement network.

Before going on with the Bradford U. data set, let us test the
sensitivity of the obtained results to the choice of UMparameters
which have been set to α = 1.8 and C1 = 0.1 for all the events
which correspond to values commonly estimated on the rainy
portions of the rainfall fields. The various parameter sets tested
are shown in Table 5, along with γs, which is a scale invariant
parameter consisting of a combination of both α and C1 and
characterizing themaximumprobable value that one can expect
to observe a single realisation of a phenomenon. It has been
commonly used to assess the extremes in the multifractal
framework (Hubert et al., 1993; Douglas and Barros, 2003;
Royer et al., 2008; Gires et al., 2011). The simulated quantiles
(not shown here) are roughly similar to the ones found for α =
1.8 and C1 = 0.1 for all the other UM parameter sets (with a
tendency to generate slightly lower ones in the range 20–
50 mm/h) except for the α = 1.8 and C1 = 0.2which generates
significantly greater quantileswhich are not compatiblewith the
Fig. 5. Temporal evolution of the rain rate and cumulative rainfall depth for point me
For each event the uncertainty range of the average measurement at the disdromet
R75(t) and C5(t) − C95(t) or C5(t) − C95(t) are the limit of the dark and the light ar
measured ones. For the 6th June events the spread in the
simulated cumulative curves was also quantified for the various
UM parameter set with the help of CV95′ defined as:

CV ′
95 ¼ C95 tendð Þ−C5 tendð Þ

2 � Cmean tendð Þ

where tend is the last time step of the event and Cmean(t) the
average temporal evolution of the cumulative rainfall depth over
the 16 disdrometers of the network. The values are reported in
Table 5, and should be compared with the ratio between the
maximum observed depth minus the minimum one divided by
twice the average one which is equal to 18% for this event (since
we have 16 disdrometers values slightly lower than this one are
expected). When α is fixed it appears that CV95′ increases with
C1, which was expected since it corresponds to stronger
extremes (γs also increases). The same is observed when C1 is
fixed and α increases although it appears that the influence of
variations of α has a much less significant impact on the
computed CV95′. It should be noted that the observed CV95′
cannot be interpreted only with the help of γs (indeed for α =
1.6 and C1 = 0.1 we have γs = 0.22 and CV′95 = 11% whereas
for α = 1.8 and C1 = 0.05 we have greater γs and lower CV′95)
which means that both parameters are needed. Similar results
are found for the other rainfall events. Although likely to be
oversimplifying the choice of constant UM parameters set to
α = 1.8 and C1 = 0.1 for all the events appears to be acceptable.

The results for the Bradford data set (Fig. 5b) have a less
straightforward interpretation. Indeed the discrete nature of
the measurement with tipping bucket rain gauges makes is
hard to analyse the results for the rain rates at a 1 min
resolution. For example during the 22 June event the rain rate
seldom exceeds the one corresponding to one tip in a min
(i.e. 12 mm/h) suggesting that the 1 min resolution is not
asurements for the EPFL data set (a) and the Bradford University data set (b).
ers or rain gauge observation scale is displayed (R25(t) − R75(t) or R25(t) −
ea, respectively). Average measurement with 5 min resolution in blue.
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adequate for this study which is why the temporal evolution
of the rain rate was also plotted with a 5 min resolution. The
other two event exhibit greater rain rates and the effects of
the discretisation are dampened, suggesting that there is no
need to analyse the rain rates with a 5 min resolution. Overall
it seems that the downscaling model reproduces rather
well the observed disparities between the rain gauges. With
regard to the cumulative rainfall depth the disparities
between the rain gauges are consistent with the theoretical
expectations for the 22 June event (except for two rain
gauges), and smaller for the other two events. This behaviour
is quite different from the one observed with the EPFL data
set. It is not clear whether this difference is due to the fact
that two measurement devices are used (suggesting either
that the rain gauges artificially dampens the actual disparities
or that the disdrometers artificially strengthen it because of
instrumental errors) or because the downscaling model is
less adapted for two of the Bradford events (6 July and 22 of
August). The quantile plot (Fig. 6b) is harder to interpret
because of the discrete nature of the measurements. The
seven horizontal segments correspond to measurements of 1
to 7 tips in a minute (there are several point on each segment
because not all the rain gauges have the same calibration
factor). One can only note that it seems that the simulated
quantiles start to tend to be greater than the measured ones
for rain rates smaller (20–30 mm/h) than with the disdro-
meters. Following the interpretation given for the EPFL data
set, it would mean that the rain gauges start to underesti-
mates rain rates for lower values.

Finally let us remind that the tested downscaling is a very
simple and parsimonious one consisting in stochastically
continuing an under-lying multifractal process defined with
the help of only two parameters which are furthermore
considered identical for all the events and locations. The fact
that the observed disparities between point measurement for
very dense networks of either disdrometers or rain gauges
are in overall agreement with the theoretical expectations is
a great achievement. It might be possible to refine the model
by using different UM parameters according to the event, but
the underlying rainfall theoretical representation should be
improved first. As a conclusion it appears that although not
perfect this very simple and parsimonious model is robust
and it is relevant to use it for the purpose of this paperwhich is to
revisit the representativeness issue on standard comparison
scores between point and areal measurements.
4. Impact of small scale rainfall variability on the
standard indicators

4.1. Methodology

The aim of this section is to estimate the expected
values of the scores if neither radar nor rain gauges were
affected by instrumental error, and the deviations from the
optimum values were only due to the small scale rainfall
variability. We will also investigate the related issue of the
variations of the scores depending on where the rain
gauges are located within their respective radar pixel. We
remind that the studied data set is made of the rainfall
output of 26 rain gauges and their corresponding radar
pixels for four events. In order to achieve this we implement the
following methodology:

(i) Downscaling the radar data for each radar pixels to a
resolution of 46 cm in space and 5 min in time which
is similar to the rain gauge resolution. This is done by
implementing 7 steps of the spatio-temporal down-
scaling process validated in the previous section and
re-aggregating it in time. This yields the outputs of
2187 × 2187 “virtual rain gauges” for each of the 26
radar pixels.

(ii) Randomly selecting a “virtual rain gauge” for each radar
pixel and computing the corresponding scores. In order to
generate a distribution of possible values for each score,
1000 sets of 26 virtual rain gauge locations (one per radar
pixel) are tested.

4.2. Results and discussion

The distributions of the scores obtained for the 1000
samples of virtual rain gauge sets are displayed in Fig. 3 for
time steps of 5, 15 and 60 min, with the numerical value of
the 5, 50 and 95% quantile. An example of scatter plot with a
set of “virtual” rain gauges is visible in Fig. 2.

The 50% quantile for each score provides an estimation of
the expected value if neither radar nor rain gauges are
affected by instrumental errors. The differences with regard
to the optimal values of scores are simply due to the fact that
rainfall exhibits variability at small scales (i.e. below the
observation scale of C-band radar in this paper) and that
radar and rain gauge do not capture this field at the same
scale. Practically it means that when a score is computed with
real data (i.e. affected by instrumental errors), its value
should not be compared with the theoretical optimal values
but to the ones displayed in Fig. 3, which is never done. The
extent of the distributions, which can be characterized with
the help of the difference between the 5 and 95%, reflects the
uncertainty on the scores associated with the position of the
rain gauges in their corresponding radar pixel. Practically it
means that when comparisons of scores are carried out with
real data, as it is commonly done to compare the accuracy of the
outputs of various radar quantitative precipitation estimation
algorithm for example, the observed differences in the scores
should be comparedwith this uncertainty to checkwhether they
are significant or not. This is never done and could lead to
qualifying the conclusions of some comparisons.

The values that should be used as reference (i.e. 50%
quantile found considering only consequences of small scale
rainfall variability) are displayed in Fig. 3. Some of them are
significantly different from the optimal values and as expected
the difference is greater for small time steps which are more
sensitive to small scale rainfall variability. For instance for
15 min the 50% quantile is equal 0.91, 0.81 and 79 for
respectively the corr, Nash and %1.5 scores. The values for the
slope are also smaller than one (0.82, 0.90 and 0.96 for
respectively 5, 15 and 60 min time steps), which was not
necessarily expected.

With regard to the scores computed for the 4 studied
events over the Seine-Saint-Denis County, it appears that
independently of the event and time step the scores found for
Nash, %1.5 and corr are not consistent with the idea that they



Fig. 7.Cumulative probability functions for theNBwith a 15 min time steps of the
6 samples generated to test the sensitivity of the results to the downscaling
process and the selection process of the virtual rain gauges.
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are only due to small scale rainfall variability, meaning that
instrumental errors affected the measurement. For RMSE the
scores found are explained by small scale rainfall variability
for 15 Aug. 2010 and 15 Dec. 2011 and almost for 14 Jul.
2010. For the event of 9 Feb. 2009 the observed RMSE is even
lower than the values of the distribution of the “virtual
gauges”. This is quite surprising since this distribution is a
lower limit (for instance instrumental errors are not taken
into account), which suggest some error compensation for
this specific case. For NB and slopewe find that the computed
scores reflect instrumental errors for 9 Feb. 2009 and 14 Jul.
2010. It is also the case for the other two events with a time
step of 5 min, but not with a 1 h time step.

In the methodology developed previously two steps are
random and it is therefore important to check the sensitivity
of the results to them. The first one is the downscaling of the
radar pixels where the rain gauges are located. The sensitivity
is tested by simulating a second set of downscaled rainfall
fields. The second one is the selection of the virtual rain
gauges that are used to compute the distributions displayed
in Fig. 3. Indeed in the downscaling process 2187 × 2187
virtual rain gauges are generated for each of the studied 26
radar pixels, leading to (2187 × 2187)26 (≈4.7 × 10173)
possible combinations. A set of 1000 combinations is used
to generate the studied distributions. To test the sensitivity,
the distributions are assessed for two more sets for each of
the two downscaled rainfall fields. Hence a total of 6 samples
for each score are tested to analyse this sensitivity issue.
Fig. 7 displays the cumulative probability function for the NB
with a 15 min time steps which is representative of other
time steps and scores. Visually it seems that the obtained
distributions are very similar. It is possible to confirm this
assertion more quantitatively with the help of a two samples
Kolmogorov–Smirnov test (Massey, 1951) which is com-
monly used to check whether two samples are generated
with the help of the same distribution. The null hypothesis
that the samples are from the same underlying distribution is
tested for the 6 samples two by two. It is rejected with a 95%
confidence interval only 27 times out of 378 tests (378 = 14
tests for the 6 samples two by two × 9 scores × 3 time
steps). This confirms the first impression that the 6 samples
reflect similar distributions, and that the results previously
discussed are robust and not sensitive to the random steps of
the downscaling process and the selection process of the
virtual rain gauges.

The sensitivity of the results to the choice of the UM
parameter α = 1.8 and C1 = 0.1 was also tested as in
Section 3.3. Fig. 9 displays the cumulative probability distribu-
tion of for the Nash and %1.5 scores for the same sets of UM
parameters as in Section 2.3 (see Table 5). The same comments
remain valid, i.e. with a fixed parameter, the greater is the other
one the worst is the indicator, C1 has a stronger influence than
α on the computed uncertainty. Therefore, both parameters are
needed and results cannot be interpreted only with the help of
γs. It can be added that the worst is the indicator the widest is
the probability distribution. Similar results are found for the
other scores. It appears that the values of the UM parameters
used for the simulations have a strong influence on resulting
cumulative distributions, suggesting that for practical applica-
tions the parameters should be carefully estimated with a
particular emphasis on C1.
Besides redefining the optimum of standard scores and
setting values to which score variations should be compared,
this work also suggests changing common practice when
temporal evolution of rain rate or cumulative rainfall depth
observed by rain gauge or disdrometer and the correspond-
ing radar pixel are plotted on the same graph. This is the last
standard way of comparing the output of the two measure-
ment devices to be addressed in this paper. The observation
scale gap between the two devices should be visible directly
on the plot. A way of achieving this is to explicitly display the
range of “realistic” values at the rain gauge scale for a given
radar pixel measurement, in order to give an immediate
insight into this issue to the reader and suggest whether to
look for other explanations than small scale rainfall variabil-
ity. This is currently not done in usual comparison. We
propose to proceed as in Section 3 and to plot the 5, 25, 50
and 95% quantiles for both rain rate and cumulative depth
along with the radar curves. This is done in Fig. 8 for the 9
Feb. 2009 and 14 Jul. 2010 rainfall event for one rain gauge.
For the 9 Feb. 2009, the cumulative depth (Fig. 8b) is clearly
outside the uncertainty range of the radar measurement at
rain gauge scale meaning the instrumental error are likely to
have affected at least one of the devices. Concerning the 14
Jul. 2010, the rain gauge cumulative depth is in agreement
with the radar measurement (Fig. 8d). With regard to the
rain rate (Fig. 8c), the rain gauge measurements are in the
lower portion of the realistic values for the first peak, outside
of it for the second peak (suggesting the effect of instrumen-
tal errors), and in the upper one for the third peak. More
generally these results suggest that to compare the measure-
ments of two devices that observe the same physical
phenomenon at two different scales, it should become a
common practice to first simulate an ensemble of realistic
outputs at the smallest available scale of observations among
two devices, and to compare the latter's output to the
generated ensemble. The example of radar and rain gauge
was discussed in this paper, but similar techniques could also
be implemented on the comparison between satellite and

image of Fig.�7


Fig. 8. Rain gauge (dash), radar (solid), and uncertainty range of the radar measurement at the rain gauge scale (same as in Fig. 6) for 9 Feb. 2009 (top) and 14 Jul.
2010 (bottom) with the Seine-Saint-Denis data set.

Fig. 9. Cumulative probability functions for the Nash (a) and %1.5 (b) scores with a 15 min time steps for 5 different sets of UM parameters inputted to the
downscaling process.
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radar data that also do not correspond to the same scale,
while with a smaller scale gap compare to the case discussed
in this paper.

These results also hint at some ways of revisiting standard
interpolation andmerging techniques that, in spite being beyond
the main scope of this paper, can take advantage from obtained
herein results. Indeed the validity of aUMmodel of rainfall down
to very small scale suggests that developing a multifractal
interpolation algorithm would be feasible. Some basic ideas on
how to proceed can be found in Tchiguirinskaia et al. (2004), but
there is still some work to be done in order to have an opera-
tional algorithm. Of course the output of such process would not
be a single field but an ensemble of realistic fields, conditionedby
the observed rainfall data. With regard to the merging between
radar and rain gauge data the work here also suggest some new
ideas. Indeed in this paper the rainfall at the rain gauge scale was
simulated from the radar, but since we have validated a mathe-
matical representation of rainfall between the two observation
scales it is possible to do the inverse.Moreprecisely, itwould also
be possible to compute an ensemble of possible radar values that
could result in the observed data at the rain gauge scale. Such
information could be used to modify in new ways the radar
measurements according to the rain gauge data, which is a
common step of merging techniques.

5. Conclusion

In this paper the issue of representativeness of point
measurement with regard to larger scale measurements is
revisited in the context of comparison between rain gauge
and radar rainfall measurement. More precisely the influence
the small scale rainfall variability occurring below the radar
observation scale (1 km in space and 5 min in time here) on
the standard comparison scores is investigated. It appears
that this influence is twofold. First the target values of the
scores are not the optimum ones because rainfall variability
“naturally”worsens them. This worsening, which is neglected in
numerous published comparisons, is significant. Second, because
of the randomposition of the pointmeasurementswithin a radar
pixel there is an expected uncertainty on a computed score. The
two effects are quantified in details on a case study with radar
and rain gauge data from the 237 km2 Seine-Saint-Denis County
(France) and appears to be significant. This result is assessed
with the help of a robust methodology relying on an explicit
theoretical representation of the small scale rainfall variability
not grasped by the radar (C-band one here). Indeed the
parsimonious Universal Multifractals, which rely on only two
parameters furthermore not event based in this study, are used
to perform a realistic downscaling of the radar data to the
point-measurement scale. This downscaling process is validated
with the help of two very dense (i.e. 16 within an area of 1 km2)
networks of disdrometers in Lausane (Switzerland) and rain
gauges in Bradford (United Kingdom). The disparities observed
between the point measurements are in agreement with the
theoretical expectations.

The two effects of small scale rainfall variability indentified on
standard comparison tools are unfortunately usually not taken
into account bymeteorologists and hydrologistswhen they carry
out standard comparison to either evaluate new radar quantita-
tive estimation precipitation algorithms or compare two. Doing
it could lead to qualifying some otherwise straightforward
conclusion. The results obtained on this case study show
that the assessed values for standard scores are not fully
explained by small scale rainfall variability. This means that
a methodology to properly distinguish the instrumental
error from the representativeness issue should be devel-
oped within that framework of multifractal modelling of
rainfall. The validation of a downscaling process is also a
first step in improving existing merging techniques be-
tween the two rainfall measurements devices which can
help in providing the accurate fine scale rainfall needed for
urban hydrology applications. Further investigation would
be needed to achieve these two aims.
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