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1. Abstract

Remotely sensed geodata and Geographical Information Systems attempt to quantify highly variable

geofields over wide ranges of scale.  We argue that the natural models for such fields are the scaling

models; we show that these are all exploit the basic scaling function: the mathematical singularity;

specifically, existing stochastic scaling models can all be mathematically represented as convolutions

of singularities with noises of various types.  We point out that due to scaling anisotropy, the basic

singularity morphology can vary greatly allowing a wide variety of shapes.  Concentrating on the

example of the topography, we use numerical simulations to explore the often subtle interplay of

singularity shape and noise type.  We argue that such anistropic multifractal models provide a

flexible, only weakly constraining framework for modeling geofields.  In addition to topography, we

give the example of the lithospheric and mantle rock density fields showing how the stratification and

variability can be modeled.

2. Introduction

Geological and geophysical fields are extremely variable over wide ranges of space-time scales.

Important examples are the Earth's topography and mass density which vary strongly from one

location to another and from one scale to another, making it hard to tackle with classical (scale bound)

geostatistics.  A promising approach is to exploit scale invariant symmetries associated with power

law statistics.  The use of such scaling laws in topography goes back at least to Vening Meinesz

(1951), who showed that the power spectrum E(k) of topography (where k is a wavenumber) roughly

follows a power law k
-!

 with a spectral exponent !"2.  Balmino et al. (1973), Bell (1975) followed,

combining various data sets to produce a composite power spectrum that was scaling over

approximately 4 orders of magnitude in scale also with a spectral exponent !"2 (here and below we

use the exponent of the angle integrated (not averaged) spectrum, the latter having exponent !+1).

More recent spectral studies of bathymetry over scale ranges from 0.1 km to 1000 km can be found in

Berkson and Matthews (1983) (!"1.6-1.8), Fox and Hayes (1985) (!"2.5), Gibert and Courtillot

(1987) (!"2.1-2.3) and Balmino (1993) (!"2).  Similar power law type spectra have been found by

numerous authors for many other geofields including Leary (1997), Shiomi et al 1997 (borehole rock

densities), Cheng 1996, 2001 (ore distributions).

If the topography has a power law spectrum, then isolines (such as coastlines) are fractal sets, they
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have no tangent (Perrin (1913)) and are nonrectifiable (infinite in length; Steinhaus (1954)). In

particular, Richardson (1961) found that the length of various coasts varies in a power law way with

the length of the rulers used to measure it.  Mandelbrot (1967), in his famous article "How long is the

coast of Britain", interpreted these scaling exponents in terms of fractal dimensions.  Later, with the

advent of fractional Brownian motion (fBm) models of terrain (Mandelbrot (1975), Goodchild (1980)),

many fractal studies on topography were made as well as the corresponding (gaussian) simulations of

topography.

Since then, there have been many indirect estimates of (supposedly unique) fractal dimensions on

topographic transects and surfaces using various methods to see if topography respects "fractal"

statistics.  The indirect methods start by postulating a priori that a unique fractal dimension exists,

and then exploit very special monofractal relations to deduce the presumed unique fractal dimension

from structure functions (variograms), power spectra or other statistical exponents (see for example

Burrough (1981), Mark and Aronson (1984) for the variogram method, Gilbert (1989), Huang and

Turcotte (1989, 1990) for the power spectrum method and Dietler and Zhang (1992) for the

"roughening exponent" method).  See also Klinkenberg and Goodchild (1992), Xu et al. (1993) and

Gallant et al. (1994) for reviews and discussions of the results of such monofractal processes.

In contrast to indirect monofractal inference, direct estimates of the fractal dimension of topography

and bathymetry (using box-counting for example) are surprisingly rare (see for example Barenblatt et

al. (1984), Aviles et al. (1987), Okubo and Aki (1987), Turcotte (1989)).  For monofractal fields

(such as fBm), the box dimension is independent of the threshold used to define the set; Lovejoy and

Schertzer (1990) show that for topography this is quite unrealistic.  Analyzing the topography of

France at 1 km resolution, they showed that the box dimension systematically decreases from 2 (the

maximum possible) to 0 (the minimum) as the altitude is increased.  This clearly showed that

monofractals are at best an approximation of topography near the mean.

As argued in Lovejoy and Schertzer (1990) and Lavallée et al. (1993), Weissel et al. (1994), Lovejoy

et al. (1995), Pecknold et al. (1997), Tchiguirinskaia et al. (2000) and Gagnon et al. (2003), it is more

appropriate to treat topography as a scale invariant field, generally requiring multifractal measures and

exponent functions (rather than a unique scaling exponent, such as the fractal dimension).  An

infinity of fractal dimensions (one for each threshold or equivalently one for each statistical moment)

are then needed to completely characterize the scaling.  Especially following the multifractal

analyses on the large global topography data set (Gagnon et al. (2003)) - who found that the isotropic

multiscaling was respected to within ±45% from planetary scales down to at least 40m - it has become

more  urgent  to  understand  the  significance  of  the  result  (how  is  it  compatible  with  the  diversity  of

geomorphology?), and the implications for modelling (what restrictions does it place on the types of

geodynamic models we should use?).  In this paper, we argue that the key is recognizing that the

basic scaling function – the mathematical singularity – can itself have a bewildering variety of

morphologies so that complex realistic morphologies can – at least in principle – be generated by such

anistropic singulairities (on condition that they have « wild » enough statistical variability.  We

attempt to demonstrate this with the help of numerical simulations.
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3. Singularities and Morphology

If over a range of scales, the topography has no characteristic scale, then it is natural to model it using

combinations of scale invariant basis functions i.e. mathematical singularities.  Perhaps the most

famous such singular model is the Turcotte- Oxburg 1967 model for the variation of altitude as a

function of distance from mid-ocean ridges, mathematically the form is indicated in table 1.

Mandelbrot 1975 proposed a model based on the idea of making singular faults the basic shapes by

summing large numbers of faults with random centers and orientations with Gaussian amplitudes; he

produced a Gaussian process with long range (power law) correlations.  Due to the central limit

theorem (the gaussian special case), a process with the same statistical properties can be produced by

using singularities of a quite different shape; table 1 (second row) indicates a model with point rather

than line singularities; in this form the mathematics is more convenient for comparison with the other

singular topography models summarized in table 1.  In this case, in the limit of many faults, because

all of the singularities have nearly the same amplitude (Gaussian variables are rarely more than a few

standard deviations from the mean), the basic singularity shape is not important, we end up a rough

texture but without any more interesting morphologies.

Notice in table 1 that all the stochastic models are obtained by convolutions with singularities, such

convolutions are “fractional integrations” of order H’ (if H’<0, there are differentiations; the

difference between H, H’ for fBm, fLm are necessary to take into account the scaling of the noises

#2, #$).  The lesson from fBm is that if we are to explain real topography by such a singular model,

then the statistics of the singularities must be more extreme than gaussian so that the basic singularity

shape may remain important in the limit of a large number of large singularities (i.e. after integration

over the noise).  One way to make some of the singularities always stand out is to use the fractional

Levy motion model obtain by replacing the Gaussian noise by a Levy noise index $.   The  Levy

random variables can be regarded as a generalization of the Gaussian variables to the case where the

variance (second moment) is infinite; they have long probability tails such the statistical moments q

order q!$ and higher diverge.  Due to the (generalized) central limit theorem, sums of independent

(possibly weighted) Levy variables are still Levy variables.  Fig. 1a shows a comparison with the

corresponding fBm; several strong mountain peaks stand out; in fact, the strong peaks are too strong –

although far from Gaussian - real topography empirically seems to have finite variance so this cannot

be a good model.

Before moving on to the statistically and visually more realistic multifractal model, let’s consider the

singularity shape in more detail.  The shape of line (fault-like) and point singularities depends on

powers of distances from either a line or a point; in order to generalize this it turns out to be sufficient

to replace the standard Euclidean distances by scale functions.  Let us therefore digress a moment to

discuss scale functions.

In order to change the shape of the singularities while conserving the basic statistical properties of the

process, it turns out to be sufficient to make the replacement everywhere in table 1:
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Table 1  An intercomparison between various models of the topography showing the essential similarities

and differences in their mathematical structure, statistical properties.  The deterministic Turcotte-Oxburgh

model applies altitude increases to %h from the mid-ocean ridge; their dimensional analysis gives H=1/2 (D=2

is the dimension of space). The monofractal fractional Brownian motion (fBm) model involves a fractional

integration of order H’ with a flux #2(x) which is simply a (“& correlated”) gaussian white noise with variance

'2
.  Note that the symbol

d

a= b  indicates equality in probability distributions, i.e. a = b
d

( Pr a > s( ) = Pr b > s( )

for all s, “Pr” indicates “probability”.  It results in altitude fluctuations with gaussian statistics, linear

structure function exponent )(q) and altitude independent surface codimension c (or dimension DF). The

value H=1/2 is compatible with the commonly cited value DF= 1.5 for the level sets or D=1+1.5=2.5 for the

dimension of points on the surface.  The fLm is the generalization obtained by replacing Gaussian variables

by stable Levy variables with index $ (fBm is obtained in the case $=2).  These have diverging moments q

for   q!$.  Finally, the multifractal Fractionally Integrated Flux model has the same structure, except that

the white noises are replaced by multifractal noises #* where * is the resolution. The multifractal noise #* is

the result of a continuous in scale multiplicative cascade, mathematically it is given by
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depends on C1,  ,* is an fLm process called the “generator”.  It is multiplicative because of the

exponentiation of the additive process ,: #=e
,
.  We again find H"1/2, although now there are an infinite

number of codimensions c(+) (or dimensions DF(+)) that depends on the threshold given by *+
. (+ is an order of

singularity; not to be confused with the subgenerator +$).  In all cases, H can in principle be determined by

dimensional  analysis  so  that  the  Turcotte-  Oxburgh  exponent  H=1/2  may  be  valid  for  all  the  models,  c.f.

[Lovejoy, 1995].  To generalize fBm, fLm and FIF to anisotropic topographies, we must replace the distances

in the fractional integration denominators by anisotropic scale functions as discussed in the text.
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i.e. to replace the usual distance (“ ”) by a “scale function” (“ ”) and usual dimension of space by

an “elliptical dimension” Del which satisfies the following basic equation scaling:

1
; ;

G
elT x x T D TraceG* ** *. .

= = =
r r

                             (2)

where T * is a scale changing operator which reduces the scale of a vector by a factor *.  In order for

the scale function to be scaling (i.e. have no characteristic scale), it must satisfy group properties,

hence it must admit a generator G as indicated.  Once all the unit vectors 1x
ur

 are specified the scale

eq. 2 uniquely specifies the scale of all vectors; all the nonunit vectors ( ; 1x* * *= 8
r

) are then

generated by the action of T *: 1x T x* *=
r r

 (see [Schertzer and Lovejoy, 1985] for technical details on

this Generalized Scale Invariance, GSI).  The set of all vectors x *2
r

 is called a “ball”, denoted B*;

for physical scale functions B* must be strictly decreasing (i.e. B -* 9 B*; -* < * ).  We can see that

if the replacements ; elx x x x D D- -. 7 . 7
r ur r ur

 are made in the denominators of the models in table

1, with scale functions satisfying the scale eq. 2 (in fact they then define the notion scale) then the

convolutions will have power law dependencies under “zooming”, i.e. the models will be scaling as

long as the noises are also scaling (hence the special choices of Gaussian or Levy noise, or in the

multifractal case, multifractal noise).

When scale functions are used as the basic singularities, the shapes can be extremely varied, hence

demonstrating the possibility of modeling geomorphologies in this way.  First consider G = the

identity: the resulting models will be “self-similar” in the sense that their statistics will vary in power

law ways under isotropic “zooming” (blow-ups).  When the unit ball is a circle (or more generally a
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D  dimensional  sphere),  then  we  obtain x x=
r r

.   However  when  the  unit  ball  is  not  circular

(spherical), then there will still be preferred directions.  These preferred directions will be the same at

all scales, the anisotropy is “trivial” (see fig. 6a for examples).  Things become more interesting as

soon as  G is  no  longer  the  identity.   If  G is  a  diagonal  matrix,  then  the  singularities  order +: x
+.r

are quite different in different directions, the resulting fractals/multifractals are “self-affine”.  The

case where G is nondiagonal and the eigenvalues are real is a generalization in which the main

stretching/shrinking occurs along nonorthogonal eigendirections;  Fig. 1a,b shows the resulting

differential  stratification.   When  the  eigenvalues  are  complex,  then  the   eigenvectors  rotate

continuously as functions of scale (fig. 3).  Finally, we can consider  noncircular/nonspherical unit

balls, fig. 1a,b shows how the basic singularity shapes are clearly visible in the fLm.  In the

multifractal case, the effect of the singularity morphology is still important for the result; but things

are more subtle.  Fig. 2a, b shows the effect of changing the scale function while maintaining the G,

and fig. 3 shows that even spiral shaped singularities can be used.  Finally - outside our present scope

but presumably important for realistic topography modelling – we can consider G as a nonlinear

operator (rather than a matrix).  In this case, the anisotropy depends not only on scale but also on the

location.  This allows for spatially varying morphologies.  In this case, the linear GSI discussed

above in simply a locally valid approximation.

Fig. 1a. This shows scale functions (top row and fBm bottom row with parameter H=0.7 (corresponding to

continental statistics; see below).  From left to right, we change the anisotropy.  Left is self-similar

(isotropic), right two are symmetric with respect to
0.8 0.05

0.05 1.2
G

.: ;
= < =
> ?

.  In the middle, the unit ball is

circular  at  1  pixel,  at  right,   It  has  the  form  r(@)=1+0.65 Cos(3@).   In the fBm, one mainly perceives

textures, there are no very extreme mountains or other morphologies evident.
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Fig.  1b.  Same  scale  functions  as  1a  except  top  row  is  fLm  with $=1.8, H=0.7 and bottom row is a

multifractal simulations with (roughly) the observed parameters  (see below; $=1.8, C1=0.12, H=0.7),

One can see that the fLm is too extreme, the shape of the singularity (particularly visible in the far right)

is quite visible in the highest mountain shapes (a technical point: in the fLm we used maximally skewed

Levy variables, hence the absence of pointed “holes” i.e. all the extreme singularities are positive). The

multifractal simulation is more realistic in that there is a more  subtle hierarchy of mountains.

Fig. 2a. This figure shows the effect of changing the shape of the scale functions for

1.2 0.1

0.1 0.8
G

.: ;
= < =
> ?

. The unit vectors are defined by the polar coordinate formula: r = 1 + a cos 3 @ .@0( )( ).

The rows top to bottom have a=0.1, 0.5, 0.85, the columns, left to right have @0=0, A/4, A/2.

In spite of the systematic finding of scaling or near scaling statistics, many geophysicists instinctively

reject all wide range scaling; for example Herzfeld et al. (1995) and Herzfeld and Overbeck (1999).

They argue that the ocean floor (and topography in general) cannot be scaling over a wide range of

scales, because of their conviction that geomorphologic processes are scale dependent (i.e. necessarily

have characteristic lengths): they consider a priori that the scaling is broken.
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Fig. 2b. These are the multifractal simulations (same seeds so that the structures can be compared)

with multifractal parameters $=1.8, C1=0.12, H=0.7 and the scale functions from fig. 2a.

Fig. 3. This simulation (with
0.5 1.5

1.5 1.5
G

.: ;
= < =
> ?

, i.e. complex eigenvalues; eigenvectors rotate

with scale) shows how the use of spiral singularities (scale function upper left) does not affect the

fBM (upper right), leads to too strong singularities for the fLm (lower left), but subtle variations

of mountains and plains for the multifractal (lower right; the three simulations have the same

statistical parameters as in the previous).
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They have attempted to demonstrate this by estimating power spectra and variograms on a few

bathymetry transects which they showed to have poor scaling.  Rather than giving a purely

theoretical explanation as to why their results are not so surprising and how they might be compatible

with the scaling hypothesis, let us consider a simulation of their transect, fig. 4 (about the same length;

1024 points).

Fig. 4. A simulated bathymetry transect.  The parameters are
G =

0.7 .0.02

0.02 1.3

:
><

;
?= , $=1.9, C1=0.12, H=0.7. The

energy spectra of the transect passing through “Mt. multi” (the highest peak in the simulation), and

through another (randomly chosen) transect are shown as well as the ensemble over all the transects.

The figure compares the energy spectra of two individual transects as well as the ensemble over all the

transects.  One of the transects passes through “Mt. Multi”, the highest peak in the range, another

through a randomly chose transect not far away.  One can see that the Mt. Multi scaling is pretty poor;

a naïve analysis would indicate two ranges with a break at about 10 pixels with high frequency

exponent !=2.5, low frequency !=1.5 (this is a large change in spectral slope).  Clearly this break

has nothing to do with the scaling of the process (which is perfect  except due - to finite element

effects - for the highest factor of two or so in resolution).

In comparison, the randomly chosen transect has better scaling, but with !"2.  In comparison, the

isotropic (i.e. angle averaged) spectrum averaged over an infinite ensemble of realizations has !=2.17.

Even  the  average  over  the  transects  shows  signs  of  a  spurious  break  at  around  16  pixels  (the  scale

where the north-south and east west fluctuations are roughly equal in magnitude, the “sphero-scale”);

this explains why the theory line does not pass perfectly through the curve corresponding to the

average of the transects.  Clearly, since a priori, the physically relevant notion of scale in not known,

the first task should be to determine it (with the matrix G).  However, this is still a difficult unsolved

problem (see however Lewis et al 1999).  Obviously, even for fixed parameters, had we chosen a

different random seed, the results for the individual transects would have been somewhat different

(even the average over the transects would have been a bit different), see the example in the next

section.
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Conclusions about broken scaling in fig. 4 are therefore erroneous.  Perhaps the most important reason

for this misinterpretation is that scale invariance is a statistical symmetry which is almost surely broken

on  every  single  realization,  hence  it  is  important  to  have  a  large  data  base  (i.e.  large  range  of  scales,

many realizations) to average fluctuations and approximate the theoretically predicted ensemble scaling.

In fact, due to the singularities of all orders (see previous section) the variability of multifractals is much

greater than that of classical stochastic processes; for example, rare (extreme) singularities are produced

by the process yet they are almost surely absent on any given realization. This means that they do not

have the property of "ergodicity".  What may be nothing more than normal multifractal statistical

variability can thus easily be interpreted as breaks in the scaling.  A second reason for the error is the

assumption that the scaling is isotropic so that breaks in statistics on 1-D subspaces (transects) do not

imply that the full process is not scaling.  A third reason discussed a bit more below is that there can be

systematic biases due to the use of conditional statistics (such studying the transect that happens to pass

through a special feature such as Mt. Multi, rather than a randomly chosen transect).

The strong singularities in multifractals leads to apparent nonstationarities: e.g. quite different

morphologies often in close proximity.  This is often interpreted in terms of nonstationarities –

different processes at work in different regions or at the very least, variations in the parameters of a

single basic model.  However, with multifractals such interpretations would be unwarranted: the basic

multifractal processes are statistically stationary/homogeneous in the strict sense that over the region

over which they are defined (which is necessarily finite), the ensemble multifractal statistical properties

are independent of the (space/time) location (and this, for any spectral slope !).  Rather thandiscussing

this at an abstract level, let us see what happens when we analyse a self-similar 1024X1024 multifractal

simulation (fig. 5a).  Fig. 5b shows the compensated (i.e. k 2.17E k( )), isotropic spectrum obtained by

integrating the fourier modulus squared over circles radius k in fourier space.

The low frequencies are quite flat indicating that the simulation has roughly the ensemble spectrum as

expected.  At high frequencies, there is a drop off which is an artifact of the numerical simulation

techniques.  We can now consider the “regional” variability in the spectral exponent ! by dividing

the simulation into 8X8 squares, each with 128X128 pixels.  Fig. 5c (left) shows the histogram of the

64 regression estimates of the compensated spectra: the mean is close to zero as expected, but we see

a large scatter implying that there are some individual regions having ! as low as 1.2, some as high as

2.7; the standard deviation is ±0.3.  As we shall see later, this would imply a random variation in

local estimates of H of ±0.3/2=±0.15 (which is of the order of the difference observed between

continents and oceans, although this spread in !, H will decrease as the size of the data set increases).

In fig. 5c, we can also see the large variations in the log prefactors (log10E1; E k( ) = E1k
.! ).  If this

is interpreted in terms of roughness, the roughest of the 64 regions has about 10
3
 times the variance as

the smoothest.  While it would obviously be tempting to give different interpretations to the

parameters in each region, this would be a mistake.  On the other hand, this does not imply that the

roughest and the smoothest would be associated with identical erosional, orographic or other

processes, the point is that in a full coupled model, that these processes would be also be scaling and
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would have correlated variations.  Fig. 5 also demonstrates the fact that if data from special locations

(such as near mountains) are analysed that we may expect systematic biases in our statistics and

parameter estimates.  This is discussed quantitatively in Lovejoy et al 2001.  This underlines the

need for coupled multifractal processes, possible through the use a state vector and vector mulitfractal

processes (“based on “Lie cascades”, see [Schertzer and Lovejoy, 1995], Lovejoy et al 2001).

Fig. 5. (Upper left): This is a 1024X1024 self-similar simulation with some trivial anisotropy, $=1.9, C1=0.12,

H=0.7, hence !=1+2H-K(2)=2.17.  (Upper right): Compensated spectrum, !=2.17 (the extreme factor 2 in

wavenumber fall-off too rapidly.  This is an artifact due to the difficulty of discretising singularities on

numerical grids).  (Lower left): After dividing fig. 5a into 64 128X128 squares, we calculated the isotropic

spectrum  in  each,  and  fit  the  slope  to  the  lowest  factor  16  in  scale  (we  remove  the  highest  factor  4  due  to

numerical artifacts at the highest wavenumbers).  The resulting %! is given in the left; it is twice the %H,

showing that H can vary by 0.5 over a single region.  (Lower right): A histogram of the log10E1 (E1 is  the

spectral prefactor: E(k)=E1k
-!

) showing variation of 1000 from the smoothest to roughest subregion.

5. The effect of the multifractal parameters H, C1, $:

From table 1 we see that for a (universal) multifractal at a given (generally anisotropic) resolution *
(defined by the appropriate anisotropic scale function); we have:

( ) ( )
( ) ( ) 1; ; ( ) ( )

1

q q C
h r r q qH K q K q q q

) $)
$

% % = % = . = .
.

uur
         (3)

(Although for a general multifractal K(q) need only be convex, Schertzer and Lovejoy (1987, 1997)

have shown that there exists a class of stable and attractive multifractal processes called “universal

multifractals”  whose  two  parameter  form  is  given  on  the  right). $ and  C1 are the two basic

parameters characterizing the scaling properties of the multifractal noise #*.  The parameter C1 is the

fractal codimension of the set giving the dominant contribution to the mean (q=1).  For a 2-D process

such as topography, it varies from 0 to 2.  The value C1=0 implies that the set giving the dominant
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contribution to the mean is space filling (i.e. its fractal dimension is equal to the one of the embedding

space), so it can be interpreted as quantifying the sparseness of the mean field. The parameter $ is the

degree of multifractality and varies from 0 to 2, where 0 is the monofractal special case.  It describes

how rapidly the fractal codimension (sparseness) of sets at different thresholds decrease as we move

to more and more extreme values (singularities); the larger $, the more rapid the change.  As it is not

very intuitive; the accompanying simulations may be the best way to visualize the effect of varying $
(see Fig.6).Many more simulations can be found at the multifractal explorer web sit

ehttp://www.physics.mcgill.ca/~gang/multifrac/index.htm.

Fig. 6a. This shows the effect varying $, H on self-similar multifractals with C1=0.1 (there is some trivial anisotropy,

the random seed is the same in all cases).  From left to right, H=0.2, 0.5, 0.8, from top to bottom, alpha varies from

1.1, 1.5, 1.9.  As H increases, the fields become smoother, as $ decreases, one notices more and more prominent

“holes” i.e. low smooth regions.  The realistic values correspond to the two lower right hand simulations.

Fig. 6b. Self-similar simulations (no trivial anisotropy) with $=1.8 with C1 varying from 0.05 to

0.15, 0.25 (top to bottom), H varying from 0.2 to 0.5 to 0.8 (left to right).  Increasing H smoothes

the fields, increasing C1 makes the sets exceeding a high thresholds more sparse.
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Fig. 6c. This shows self-affine simulations with $=1.8, C1 increasing top to bottom (0.05, 0.15, 0.25),

H=0.2, 0.5, 0.8 left to right,
0

0

x

z

H
G

H

: ;
= < =
> ?

,  Hx=1.2, Hz=0.8 (sphero-scale= 1 pixel,  same seed in all  the

simulations). The middle row two far right correspond the closest to the data.  If only 1-D transects were

available in the up down (z) or left-right (x) directions, different exponents would be found.  For example

the spectral exponents would be related as: !x .1( )/ Hx = !z .1( )/ H z .  The structure function exponents ()(q))

and trace moment exponents (K(q)) would also be in the ratio of the H’s: )x q( )/)z q( ) = Kx q( ) / Kz q( ) = Hx / Hz .

6. Multifractal Simulations of The Mantle and Lithospheric Rock Densities

Up until now, we have concentrated our discussion on the topography field, partly because of its long

history of scaling analyses and modeling but also because of its importance and the relative ease with

which simulations can be visualized using standard ray tracing techniques.  If the topography is

scaling over wide ranges, then it is quite plausible that other geodynamic processes are also scaling.

Following this idea, Lovejoy et al 2001 and Pecknold et al 2001 have shown that the magnetic

susceptibility is scaling over wide ranges in the horizontal and in the vertical (boreholes) down to the

Curie depth; they used this to explain the surface magnetic field fluctuations out to thousands of

kilometers in scale in the horizontal.  In order to do so, they showed that the susceptibility (M) must

be quite stratified in the vertical, specifically, they estimated that for the horizontal-vertical (x,z) plane,

that
G =

1 0

0 1.7

:
><

;
?=
 implying that at very large scales structures in the susceptibility field were vertically

aligned, while at smaller scales, they were horizontally stratified, with the transition occurring at the

sphero-scale estimated to be around 2000km (note that this is the opposite of the atmospheric

stratification which becomes flatter at larger scales with
1 0

0 5 /9
G

: ;
= < =
> ?

,  c.f.  Lilley  et  al  2004).  The
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multifractal parameters for M were H=0.2, C1=0.1, $=1.9.  A similar analysis Lovejoy et al 2001b

(EGS) of the lithospheric density field as estimated by both horizontal and vertical boreholes gives

G =
1 0

0 3.

:
><

;
?=
 with a sphero-scale of about 220km; from published spectra we

Finally, the parameter H is the degree of “nonconservation” of the observed field ( )
H

h r r% % = %
uur uur

(the jargon comes from multifractal cascade models; H can be interpreted as a degree of smoothness it

is unconstrained, the higher H the smoother the field; see Fig. 6).  See table 2 for various empirical

analyses of the topography.

Table 2  Universal multifractal parameters for various topographic data sets.  The ETOPO5 is a global data

set; the parameters $=1.8, C1=0.12 fit well everywhere; the H parameter seems to vary from about 0.45 to

0.75 from continents to oceans, see Gagnon et al 2003.

Data sets Horizontal resolution Regions analyzed (in pixels) ! $ C1 H References

ETOPO5 "10 km 2160x4000 2.12 1.81 0.13 0.69 Gagnon et al (2003)

GTOPO30 "1 km 1225x4096 2.04 1.77 0.08 0.60 Gagnon et al (2003)

U.S. 90 m 2500x65536 2.08 1.51 0.09 0.61 Gagnon et al (2003)

Lower Saxony 50 cm 3000x6000 1.86 2.00 0.17 0.60 Gagnon et al (2003)

Deadman's Butte 50 m 512x512 1.93 1.9 0.045 0.51 Lavallée et al.(1993)

French topography 1 km 512x512 --- 1.7 0.075 --- Lavallée et al.(1993)

U.S. 90 m 20 x 512x512 1.91 1.70 0.07 0.52 Pecknold et al.(1997)

estimate HB=0.2.  The density is therefore a little more differentially stratified but has the same

qualitiative behaviour as the susceptibility; using the same C1, $ as for susceptibility, we obtain the

crust density simulation shown in fig. 7a.  Simulations such as these can be used to simulate the

surface gravity field if the lithospheric/mantle boundary, topography are also modelled.

Fig. 7. (Left) This simulation of the lithospheric rock density has a 2:1 aspect ratio and sphero-scale

ls=256km, with 1 pixel -1km.  The parameters are $=1.8, C1=0.1
1 0

0 3.
G

: ;
= < =
> ?

.  (Right):  The  above  is  a

mantle simulation with sphero scale = 1 pixel parameters are $=1.8, C1=0.1,H= -1,
1 0

0 3.
G

: ;
= < =
> ?

.  Each pixel

is 50 km, so that a sphero-scale of 25km.  Hot (low density) plumes shown as white/red (this is a model for

either density or temperature fluctuations (the two being proportional; we assume constant expansion

coefficient). These are for fluctuations with respect to the mean vertical profile.
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In order to get an idea of the mantle density variability due to highly nonlinear mantle convection, we

appealed to dimensional analysis of the fluid equations (high Prandtl number).  There are three key

fluid equations: the velocity equation, the temperature equation and the heat equation.  Each equation

depends respectively on the dimensional combinations g$/C, Q/cpB0,  where  Q is  the  heat  flux, C the

viscosity, B0 the average density, g the acceleration of gravity cp the heat capacity, D the thermal

conductivity.  From these we obtain unique length scales, time scales and temperature scales:

ls "
B0cpCD

2

g$Q

:

><
;

?=

1/ 4

E s "
cpB0C
Qg$

:

><
;

?=

1/2

Ts "
Q3C

g$B0

3cp
3D 2

:

>
<

;

?
=

1/4

              (4)

Using estimated mantle values, we find ls=20km, Es=10
7
 yrs,  Ts=375K.  Also from dimensional

analysis, we can derive typical density fluctuations: Bs=30Kg/m
3
, vs=2mm/yr.  In order to understand

the significance of these values, we need to know how fluctuations varying with scale in both

horizontal and vertical directions.  Using an analysis of the equations and empirical laboratory results

on thermal plumes (C. Jaupard, private communication), we can deduce:

%B %x( ) = Bs

%x

ls

:

><
;

?=

.1

; %B %z( ) = Bs

%z

ls

:

><
;

?=

.1/3

                           (5)

(with  analogous  results  for  the  vertical  component  of  the  velocity  and  also  for  the  temperature).

From eq. 5, we can see that the two equations can be combined:

( )

H

s
s

x
x

l
B B

: ;%
< =% % =
< =
> ?

uur
uur

                                             (6)

where the scale function is symmetric with respect to the matrix
G =

1 0

0 3.

:
><

;
?=

 and H = -1.  The

negative value of H implies that fluctuations decrease with scale rather than increase (which is much

more usual), but this is in accord with the idea that the convection homogenizes the mantle at very

large scales.  From this we see that the interpretation is that the smallest scale of the heterogeneity is

around ls (20km), Bs, Ts are the typical fluctuations at that scale (these are fluctuations with respect to

mean vertically varying temperature and density profiles).  Extrapolating eq. 5 to horizontal scales of

3000km, we find that the typical variations are very reasonable.  Using the same $, C1 as before, we

therefore obtain the simulation in fig. 7b.  We see that qualitative features such as hot columnar

structures (“plumes”) are evident.  Elsewhere, we explore this in more detail and –with the help of

such multifractal models -examine the consequences for the surface gravity field.

7. Conclusion

Geological and geophysical systems are typically nonlinearly variable over huge ranges of space-time

scales.  Traditional scale-bound models and geostatistics are only useful for characterizing and/or

modelling the variability over one or perhaps two orders of magnitude in scale. In order to extend this

to  the  much  larger  geodynamically  relevant  ranges  of  scales  -  which  in  the  (typical)  case  of  the

topography and rock densities – spans the range from planetary down to millimetric (or smaller)

scales, spectral analysis and other fractal and multifractal analyses and models are necessary. For
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example, starting with Venig-Meinsz 1951, such methods have now shown that over the range of

planetary down to at least 40m the basic isotropic scaling of the topography is respected to within

±45% (Gagnon et al 2003).

The corresponding models (including the deterministic ocean ridge Oxburgh-Turcotte model) all built

using the basic scaling function – mathematical singularities.  Singularities have strengths which

fall-off much more slowly than the exponentials of the scale bound models, and are associated with

large (but possibly random) structures, morphologies.  In addition, we show that the stochastic

scaling models (fractional Brownian motion, fractional Levy motion, the multifractal fractionally

integrated flux model), are all convolutions of noises with singularities (called “fractional

integrations”) so that the resulting morphologies depend on both the statistical properties of the

underlying noise, as well as the shape of the singularities.  After a long period of debate, it has now

become clear – for the topography at least – that the underlying noise is a multifractal.  In this paper,

we showed (with the help of Generalized Scale Invariance) how the resulting morphology depended

not only on the basic multifractal parameters, but equally importantly – on the shape of the (generally)

anisotropic singularities. We presented a series of simulations so as to visually demonstrate that wildly

different geomorphologies can be compatible with scaling statistics.  These strong singualirites have

several nonclassical statistical features which often makes conventional intuition a poor guide; we

demonstrated how spurious breaks and nonstationarities can arise.

Rather than being a straightjacket restricting the types of geodynamical model we argue that on the

contrary scaling provides a broad framework a priori consistent with the observed morphologies and

required by and increasing number of isotropic statistical analyses.  Although we focused on the

important case of the earth’s topography, we also indicated how realistic simulations of lithospheric

and mantle rock densities can be made.
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