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1. Introduction 

We have recently reviewed work on the emergent dynamical laws of multifractal 

cascade processes which are believed to hold in strongly turbulent fluids.  For atmospheric 

dynamics, these laws provide a “new synthesis” of nonlinear theory and state of the art 

atmospheric data models and reanalyses, they are generalizations of the classical laws of 

turbulence to strongly anisotropic, strongly intermittent systems (Lovejoy and Schertzer, 2010).  
Such multifractal cascades provide accurate stochastic models of atmospheric fields – including 

precipitation – up to planetary scales.  Since the lifetimes of planetary sized structures in the 

atmosphere are of the order of τw ≈ 10 days, (Lovejoy and Schertzer, 2011), the temporal 

scaling undergoes a drastic transition from a strongly variable high frequency “weather” 

regime where fluctuations in a field f varies as Δf ≈τH where τ is the time lag and H a scaling 

exponent. For τ<τw; the weather regime, we generally have H>0, for τ>τw, H<0 so that 

fluctuations no longer grow but diminish with scale.  In spectral terms (and ignoring the 

intermittency correction K(2), see below) we find E(ω) ≈ ω-β with β=1+2H so that at high 

frequencies ω>ωw = τw-1, β>1 whereas at low frequencies ω<ωw = τw-1, β<1 so that the spectra 

are much flatter: the resulting “low frequency weather” regimes have been called “spectral 

plateaus” (Lovejoy and Schertzer, 1986), see fig. 1 for an illustration with precipitation.  For 

the oceans, the turbulent dynamics are very similar but τo ≈ 1 yr. 

 

2 The fractionally Integrated Flux (FIF) model 
The basic model which reproduces the weather regime cascade process is the 

Fractionally Integrated Flux model which is an explicit space-time stochastic cascade model.  

We first recall its basic features for the turbulent flux ε.  First, since it is assumed to be a 

multiplicative process, it can be expressed in terms of the exponential of an additive 

generator Γ: 

! r,t( ) = e" r ,t( )  (1) 



where Γ is the (dimensionless) generator and we have nondimensionalized ε by its ensemble 

average.  If we assume that the basic statistics are translationally invariant in space-time 

(statistically homogeneous, statistically stationary), then Γ is given by a convolution between 

a basic noise γα(r,t) (independent, identically distributed random variables), and g(r,t) is a 

Green’s function “propagator” (a deterministic weighting function that correlates them over 

(potentially) large space-time distances):  

! r,t( ) = " # r,t( )$ g r,t( )  (2) 

“*” indicates a space-time convolution over a finite range of scales λ; see below for more 

details.  For the stable and attractive processes leading to universal multifractals, γα(r,t) is 

taken as a unit (and extremal) Levy noise, index α, i.e. whose second characteristic function 

is K! q( ) = log e
! " q = q

" / " #1( )  where “< >” means ensemble averaging.  Due to the 

additivity of the second characteristic functions this yields: 
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where sλ is the domain of integration of the convolution, over a range of scales factor λ; see 

below.  In addition, for universal multifractals, g must have a particular form:  
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with the singularity cutoff at the inner, dissipation scale and the dimension of space-time D = 

d+1 where d is the number of spatial dimensions, ND is a normalization constant, C1 the 

intermittency parameter of the mean intermittency, α is the Levy index of the Levy noise 

γα(r,t),  
r,t( )!
"

#
$  is the space-time scale function which is analogous to the vector norm and 

which characterizes the space-time scale.   See (Schertzer and Lovejoy, 1987) for the basic 

model, (Marsan et al., 1996) for the extension to causal space-time processes, (Lovejoy et al., 

2008)  for the extension to turbulence driven waves, and (Lovejoy and Schertzer, 2009) for a 

technical treatment of numerical issues. Causality has been taken into account with the use of 

a Heaviside function Θ(t) (=0 for t< 0, = 1 for t > 0), (Marsan et al., 1996).  Physically, the 

noise γα represents the innovations and g the interaction strength. If the convolution is taken 

over a scale range λ, (e.g.  
!

"1
< r,t( )!
"

#
$ < 1 ) then eqs. 2-4 together imply the logarithmic 

divergence of the integral in eq. 3, hence the multifractal scaling of the flux: 
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(the linear term results from normalizing: 
!
"
# !

"
/ !

"  ).  Figure 2 shows data analyses of 



gauge, satellite radar and reanalysis data indicating that eq. 5 holds accurately for large scale 

rain fluxes.  The observable R (e.g. the rain rate) whose fluctuation (ΔR) statistics obey 
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q
" !r,!t( )!
"

#
$
# q( )

 where ξ(q) = qH-K(q) can be obtained from the flux by taking: 
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Eqs. 1-4 are the causal space-time extension of the “Fractionally Integrated Flux” (FIF) model 

for the turbulent flux, and eq. 6 for the field R, (Schertzer and Lovejoy, 1987).  

 In order to understand the basic model features we can restrict our attention to the 

horizontal D=2+1, (x, y, t) section of the full (x, y, z, t) model and ignore the complications 

associated with ocean augmented intermittency.  If we rewrite the equation for the cascade 

generator nondimensionalizing x, y with Le (= 20,000 km; the subscript “e” for “earth”) and t 

with τw, we obtain explicitly for the generator ! r,t( ) = log" r,t( ) : 
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 is the total range of meteorological scales (Li, τi are the inner, 

dissipation space and time scales) and 
!

c
= "

c
/ "

w  is the ratio of the overall outer time scale 

τc of the low frequency weather process marking the beginning of a new (very) low 

frequency “climate” regime and sw is the spatial domain of integration in these nondimensional 

coordinates, from Λw-1 to 1).  Eq. 7 is a convolution between the subgenerator noise γ which 

represents the “innovations” and the power law kernel g represents the interaction strength 

between scales physically and temporally separated by the space-time interval (r’,t’).   For 

Λc= τc/τw >>1 we therefore have approximately: 
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where ! t " #t( )  is a spatially integrated Lévy noise.  The region of integration in the weather 

integral sw can be approximated by the quarter unit circle in r = (x,y) space with the quarter 

circle around the origin of radius Λw-1 removed.  The approximation in eq. 8 consists in 

assuming for t>> 
r
 that 

g(x, y,t) ! g(0,0,t)
 so that for long enough time lags the spatial 

lags are unimportant.  Γw(r,t) is a 3 D integral corresponding to the contribution to the 

variability from the weather regime (t < 1, 
r
 < 1), and the second Γlw(t) is a 1 D (purely) 



temporal contribution due to the low frequency weather regime.  This drastic change of 

behaviour due to the change of space –time dimension over which the basic noise driving the 

system acts is a kind of “dimensional transition” between the usual (high frequency) 

“weather” and “low frequency weather” processes.  At small scales, the interactions occur 

over all spatial and temporal intervals (the interaction region is a space-time volume), 

whereas for long times, the interaction region is pencil-like, it is essentially 1-D.  Physically 

this is a transition from the high frequency regime where both spatial and temporal 

interactions are important, to a lower frequency regime where the dynamics are dominated by 

temporal interactions.  In the former case, this means between neighbouring structures of all 

sizes and at their various stages of development whereas in the latter case, only between 

very large structures at various stages in their development. 

In this model it is this separation into independent additive weather and low frequency 

weather terms with correlated noises integrated over spaces of different effective dimensions 

which is responsible for the statistical difference between weather and low frequency weather 

plateau.  At the level of the fluxes it means that the low frequency weather process 

multiplicatively modulates the weather process at the larger time scales:  

!
"w ,"c

x,t( ) # e$w x,t( )+$lw x,t( )
= !

"w

x,t( )!
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t( )  (9)  

with !"
w

r,t( ) ,  having the high frequency variability, !
"
c

t( )   the low frequency.  The generic 

result is a “dimensional transition” in the form of a fairly realistic spectral plateau (see fig. 1).   

Let us assume that except for the causal restriction, that the propagator g is isotropic 

in (x,y,t) space so that for r = (x,y), d =2 spatial dimension and time, nondimensionalizing x 

with Lw, and t with τw we have: 
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Figure 1 (left):  A comparison of the temporal spectra of the CPC, continental US, hourly 
data grid on a ≈ 200x200 km grid (red) and the ECMWF interim reanalysis 1.5o, 3 hourly data 

set (green).  The blue curve is the CPC spectrum averaged over logarithmically spaced 



frequency bins (10 per order of magnitude).  The transition scale from the high frequency 

weather regime and low frequency weather-climate regime is indicated by the dashed line at 

periods of 5 days.  The axis is in units such that ω = 1 is (29 yrs)-1; i.e. the full length of 

the CPC series.  There are three reference lines with absolute slopes indicated.  The low 

frequency weather has βlw ≈0.05, the high frequency weather regime, ≈ 0.8. 

Figure 2 (right):  East-west analyses of the gridded precipitation products discussed in the 

text.  The normalized moments 
M = !

"

q
/ !

"

q

follow the regression lines (eq. 5), the slopes 

are K(q) and they “point” to the effective outer scale (where the cascade effectively starts: λ 

= Le/L, Le =20000 km, L is the resolution).  Upper left: The TRMM (radar satellite) 100x100 

km, 4 day averaged product. Upper right:  The ECMWF interim reanalysis stratiform rain 

product (all latitudes were used).  Note that the data were degraded in constant angle bins 

so that the outer scale is 180
o
.  To compare with the other analyses, a mean map factor of 

0.69 has been applied (the mean east-west outer scale was ≈14,000 km). Lower left: The 

CPC hourly gridded rainfall product (US only).  Reproduced from (Lovejoy et al., 2010).  The 

fluxes were estimated by the absolute second differences in time.  Empirically, from K(q), we 

find C1≈ 0.4, α≈ 1.5. 

 

In d spatial dimensions, from eq. 8, we see that the weather-climate generator is: 

 

!lw t( ) = e"lw t( )
; " lw =
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 (11)  
(Nd+1 is a normalization constant) and this falls off more rapidly than for a d = 0 (pure 

temporal multifractal) cascade process (which requires t-1/α), leading to low intermittency.  

 

3. The basic bare, dressed statistical behaviour in the spectral plateau 
We now discuss the surprising statistics in the plateau regime: that although the 

statistical properties are indeed asymptotical scaling (power laws), that the actual “effective” 

exponent can depend on the cascade scale range – and yet be fairly accurately scaling over 

two to three orders of magnitude, i.e. physically, from τw ≈ 10 days to τc ≈10 years or more.  

We have already seen in eq. 7 that the generator for the flux separates into the sum 

of a weather and climate contribution corresponding to the multiplicative modulation of the 

weather flux by a climate flux.  If we nondimensionalize time by the weather scale τw we find 

that for scales t = λ>>1, we can ignore the spatial degrees of freedom and the second 

characteristic function of the bare flux low frequency weather ελ is given by: 
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q
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where we have used the propagator eq. 11.  This gives 
g 0,t( )

!

= " t( )t #2
 (d =1 spatial 



dimension), 
g 0,0,t( )

!

= " t( )t #3
 (d =2 spatial dimensions), Nd+1 is the causal normalization 

constant in d+1 dimensions: =2π/2 in d =1, 4π/2 in d =2 the factor 2 is due to the Heaviside 

function) note that the logarithms are taken to the base e rather than the base λ as in the 

usual cascade regime (which is recovered if we take d =0 in the above and replace the power 

laws by logarithms on the right).   The above bare non-normalized function can be 

normalized by taking 
!
"
# !

"
/ !

"  K(q)->K(q)-qK(q), i.e. we replace qα by qα-q in eq. 12.  

Since C1<d+1, the exponent Klw(q) is typically quite small so that the exponentiation needed 

to obtain 
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We thus see that the moments depend only weakly on C1, q, λ.    In any case, as usual, it is 

the dressed properties that are most important, and due to the weak correlations (studied 

explicitly below) we in fact fairly quickly obtain convergence to the (usual) Gaussian central 

limit theorem.  

 

Figure 3 (left):  The log of the compensated, normalized autocorrelation function in two 
spatial dimensions for C1 = 0.4, the thick blue lines are when Rn is estimated using 

R
n
!t( ) = R !t( ) / R "( )

, the thin red lines are for 
R
n
!t( ) = R !t( ) / R "

c( )
 (important for the 

power spectrum over a finite range) and the dashed black lines are flat reference lines 

corresponding to the asymptotic Δt-1 behaviour. Λc = 216, showing the extreme sensitivity of 

the large scales to the length of the series (Λc).  Each curve is for a different a value, 

increasing from 2 (bottom) to 1.1 (top) at intervals of 0.1. 

Figure 4 (right): This compares Monte Carlo results for 40 realizations α = 1.8, C1=0.1, 
2
14
x2

6
 (time, space) with the corresponding theory (solid line) for one spatial dimension.  For 

ω >214/26=28, (i.e. the transition is expected at log10ω ≈ 2.4) there is some disagreement since 

the spatial degrees of freedom (neglected for the solid line) begin to be important.  The 

solid black reference line has a slope -0.4 which holds well for a factor of 100 or so in scale. 



 

4. Autocorrelations: asymptotic Δt-1 scaling 
In order to better understand the scale dependence of the plateau cascades, let us 

determine the autocorrelation function, from which the spectrum can be found by Fourier 

transformation (the Wiener-Khintchin theorem). In particular, considering just the low 

frequency weather regime, in nondimensional coordinates, after integrating out the small scale 

spatial degrees of freedom we obtain: 

log !
"
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= log e
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&
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the entire expression is the full Second Characteristic Function of the log of the 

autocorrelation, the key function S(Δt) is its temporal part: 

S !t( ) " g t( ) + g t # !t( )( )
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(this takes into account causality and is only the low frequency weather contribution, it 

ignores the weather scales 0<t<1).  Recall the normalized autocorrelation function Rn(Δt): 

R
n
!t( ) = R !t( ) / R "
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Considering just the d =1 case for the moment, this yields: 
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This yields: 
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where we have used the transformation of variables: 
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Since there is no singularity at r =1, we can take Λc large, to high accuracy, we can take the 

upper bound as r = 1.  We thus rewrite the integral as: 
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For α<2, the first term in the brackets is a simple α dependent constant: 
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dr

r
2
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(e.g. A =16.379 for α =1.8), the third term is simply Δt-1 while the second term can be 

evaluated by using the binomial expansion yielding: 

S !t( ) " 2 + A # 2( )!t #1 #
$

2 /$ #1
!t

#2 /$
#O !t

#4 /$( )
 (22) 

Just the first three terms yield an excellent approximation. Although the derivation is more 

involved, the more realistic case d = 2, also yields a Δt-1 asymptotic behavior.  Since 

S !t( ) " S #( )( )<<1, we may use the approximation:  
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we may thus numerically determine the range of Δt-1 behaviour by using the autocorrelation 

function normalized by the limiting value as !t"# . This relation (compensated by 

multiplying it by Δt) is confirmed in fig. 3 (thick lines) using direct numerical integration of 

the corresponding equation for d =2.  Convergence to the theoretical asymptotic behaviour is 

very slow, especially for the larger α values.  However, the situation is actually worse than 

this slow convergence indicates since for finite Λc, it is not the autocorrelation function 

normalized by 
R !( )  that is important, but rather (as in eq. 16) by R !

c( ) , the largest in the 

cascade regime, and due to the extremely slow fall-off implied by the Δt-1 behaviour, this 

significantly modifies the large Δt behaviour as shown by the thin lines in Fig. 3.  Due to 

this additional large Δt effect, the pure Δt-1 scaling only occurs at very large Δt (recall that 

even being generous, that empirically Λc ≈<212 (≈100 years/10 days). 

 

Figure 5 (left): The theoretical plateau power spectrum for α =1.8, two spatial dimensions (d 
= 2) for outer scales of 2

8
, 2

10
, 2

12
, 2

14
, 2

16
 (top to bottom).  The lines have root mean 

square slopes fit up for ω ≤ 512, with values -0.45, -0.38, -0.32, -0.27 (the 28 line is not 

given since the corresponding simulation isn’t long enough; see the next graph for a 

quantification).  
Figure 6 (right): This shows the regression estimates of the spectral exponent β (the 



absolute logarithmic slope) with fits from ω = 4 to ω = ωmax, the latter increasing from left to 

right in two spatial dimensions (d = 2).   The lines from top to bottom are for outer scales 

Λc increasing from 210, 212, 214, 216.  The solid lines are for α = 1.8, the dashed lines for α = 

1.5, all for two spatial dimensions.  Over all the regression ranges, the standard deviations of 

the residuals are between ±0.008 and ±0.014 (α = 1.8) and ±0.011 to ±0.019 (α = 1.5). 

 

5. Spectra, pseudo-scaling  
We have seen that the asymptotic autocorrelation function has rather slow convergence 

to a Δt-1 form; for the spectrum (the Fourier transform), this is particularly problematic since 

the spectrum of a pure Δt-1 function diverges at both low wavenumbers (also in fact at high 

wavenumbers, but this is not relevant here).  We may therefore anticipate that the actual 

spectrum will be quite sensitive to the outer scale limit Λc.  To investigate this, we studied 

both MonteCarlo simulations (40 realizations of a multifractal in one spatial dimension and 

time), and the corresponding ensemble spectrum E(ω) obtained numerically for a simulation 

length Λc = 212, see fig. 4.  From the figure, there are three key points to note.  First, that 

the simulation and theoretical ensemble average spectrum calculated numerically from eq. 18 

agree extremely well.  Second, that over a remarkably wide range - a factor ≈ 100- 1000 - 

that the spectrum is nearly linear on a log-log plot, i.e. it is “nearly” a power law, it is easy 

to see that this behaviour could easily be mistaken for a real scaling regime. Third, that this 

d =1 exponent is low (here, β ≈ 0.4) and close to the values found empirically (β ≈ 0.2 - 0.4, 

see (Lovejoy and Schertzer, 2011)), although precipitation is a little lower, see e.g. Fig. 1. 

Returning to two spatial dimensions and calculating the ensemble averaged spectra   

directly numerically for various Λc, we obtain fig. 5.  We can see that for the example given 

with α =1.8, that the apparently scaling low frequency regime is again of length a factor 100 

– 1000 depending on how stringent we are about the linearity of the log-log spectrum (since 

S is small, virtually identical spectra are found for other values of C1).  Since the scaling 

regime is only approximate, it could be called “pseudo-scaling”.  

In the figure we also see that the pseudo scaling of the first factor 100 – 1000 

depends to some extent on Λc as well as the maximum frequency (ωmax) used for the 

regression.  In order to quantify this, we show in fig. 6 the regression β estimates as 

functions of ωmax for various Λc, and for α =1.5, 1.8 (the main empirical range).  It can be 

seen that for ωmax between 4 and 512, the slopes are typically constant to ±0.05 and the 

standard deviations of the residuals of the fits are all <0.019.  At the same time, β is a weak 

function of Λc; β changes by roughly 0.1 for every factor of 16 in Λc.  We also note that 

taking Λc ≈100 – 300 years/10 days ≈ 212 - 214 β is in the commonly range 0.2 - 0.4. 

The final piece in the puzzle is to consider the plateau for the observables, the 

fractionally integrated fields (eq. 6).  It turns out that the low frequency weather contribution 

to the fractional integration (i.e. the contribution for t >1) is totally unimportant (see fig. 7).  

The reason is that fractional integration order H for the observable Rlw: 
R
lw
t( ) = ! t( )"

lw
t( )* t # d+1#H( )

 



has essentially no effect on the spectrum since when d – H > 0, the one dimensional Fourier 

transform of t
! d+1!H( )

 does not converge at small t so that t
! d+1!H( )

 truncated at t = 1 is 

completely dominated by the truncation scale details.  

In summary, we obtain spectra which are very nearly scaling over two to three orders 

of magnitude in scale whose exponents are independent of C1, H, only weakly dependent on 

α and weakly dependent on the overall range of scales of the regime (Λc). 

 

Figure 7: Using the same Monte Carlo realizations as in fig.4, we show the ratio of 
the spectra of the fractionally integrated precipitation field (ET) (which was obtained by 

fractionally integrating, order H =1/2) the spectrum Eε of the corresponding flux ε over 40 

realizations (eq. 6).   Since the (single) spatial dimension was 2
6
 (compared to 2

14
 for time), 

the transition scale is ωw = 28 (note, log1028 = 2.4).   We see that for the low frequencies, 

the fractional integration is totally ineffective; the ratio is constant. 
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