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Introduction:

The classical scheme of atmospheric motions (e.g. Monin (1972), consid-
ers the large scale as two-dimensional, and the small scale as three-dimen-
sicmal. Between these scalesd "dimensional transition" is expected to occug
possibly in conjunction with a "neso-scale gap" (Van der Hoven (1957 . This
transibon, if it were to occur would be likely to have fairly drastic conseq-
sences because of the significant qualitative differences between turbulence
in two and three dimensions (e.g. Kraichnan (1967 : the. all important stret-
ching and folding of vortex tubes cannot occur in two dimensions.

Recently , Schertzer and Lovejoy {1983) have examined the considerable
body of theoretical and empirical evidence supporting the view that no fundam-
ental length scales occur between an inner dissipation scale of the order of
centimeters and an outer "external ' scale near planetary sizes. They argue
that in this '"scaling" regime tHat twe basic aspects of atmospheric behaviour
are characterised by the exponents #,6{. The scdling exponent H is defined by:

sxoen ' & Maxcaw Mot
which relates fluctuationsAX in field X at large scales (MY and at small scaies
(Ax). ng means equality of probability distributions. (For a finite variance
AX, H=2P +1 where =P is the exponent of the power spectrum . The hyperbolic

exp_onent of characterised the frequency of occurence of extreme fluctuations

(the intermittency , defined by 2

Pr(AX'>AY & (BX/ BX) =

for the probability of a random fluctuation AX' exceeding a fixed AX and A}(*
characterises the amplitude of the fluctuations. A phencmenological turbulence
model proposed by Mandelbrot (1974) predicts hyperbolic distributions for E,
the average energy flux. .

Lovejoy (1981) and Schertzer and Lovejoy (1983) found empirically O(RA-SJ"S.
°(ef"5,-"3, OLV~5, Oimeﬁ-'!ofl nﬁﬂl (for rainrate R, horizontal velocity v,
log potential temperature ln€ and the flux of buovancy force variance, P’) g
In the following, we examine these two aspects in greater detail:d) the scaling
which is quite diifzrent in the horizontal and the vertical leads to the intro-
duction of an elliptical dimension De].= 23/9a2.56 to .haracterise the unbroken
anisotropic scaling,b) the hyperbolic intermittency, which we show may be
a universal feature of turbulence- recent wind tunnel experiments also suggest

Qv""so

Vertical Structure: and anisotropic $¢aling

Perhaps the most serious objection to the hypothesis of scaling behaviour
in the atmosphere arises from the special role of the vertical axis. Indeed
there has been a deluge of papers based on aon-scaling techniques which reject
implicitely a priori any possibility of vertical scaling (e.g. "one point clos-

ures™ . In what follows it will be apparent that this rejection has had un-
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unfortunate consequences.

The vertical structure plays a key role for the following reasons

9 The gravity field defines a direction at every point.

ii) The atmosphere is globally stratified.

iid It has a well-defined thickness (exponaetial decrease of the mean pressurd .
iv ‘The fundamental sources of disturbances are the vertical shear and the
buoyancy force (e.g; the Kelvin-Helmholz instability .

In recent years, experiments using thousands of Jimspheres (Endlich et Al
(1969) , Adelfang (1971), Van Zandt (1982 ) and radiosondes (Schertzer and
Lovejoy (1983, have found evidence for a contimous unbroken vertical scaling
of the horizontal wind field up to distances of at least 16km. Schertzer
and Lovejoy (1983 showed that these results can be accounted for if, after
Bogliano (1959, and Obukhov (1959), f is taken as the fundamental parameter
governing the vetical structure. In this casg dimensional analysis yields:

ovian S B Pa: Y, s
1f we compare this with the Kolmogorov scaling known to hold in the horizomtal
(4v(4» o € (4% ”351(1% 5 H.h=1f'3), then the small scale structure
differs from the large not only in size (a similarity transformation , but
also by a stretching transformation. This may be written:
av gan ' ¢ N Av(ap  with
S X 0 ‘o

o\o . e
5 )Hl .Hz—«l'lhfﬂv 5/9

This transformatibn, which applies to the statistical properties of the atmosphere,
increases the average volume of an eddy by the facton )')°)Pz = )DEl,
De1=2+H, =23/9=2.56. Atmospheric motions are therefore never flat (De1=2)'
nor the same in all directions (D91=3 ; but always display aspects of both
according to a well defined fractal (scaling) geometry. An immediate physical
consequence is that the number of eddies N(f) of horizontal size ?is
N(D ~ g‘nel

This anisotropic scaling has lead to the introduction of several new hat iong
e.g. the "spﬁzro-suile" ( the scale at which average eddies are isotropid , and
"stochastic stratification” which expresses the fact that this anisoptropy
implies that atmospheric fields are on average more and more statified at larger

and larger scales (see Schertzer and Lovejoy (1983 for a further discussiom .

The Universality of the divergence of moments

Schertzer and Lovejoy (1983) showed by direct determihdtion of thé probab-
ility distributions that dG~5 in the atmosphere. In order to see if this is a
general property of turbulence, below we analyse wind tunnel data from Anselmet
et A1(1983 , which shows clear evidence that the moments diverge at order
approximately 3, as required if Qvf-S.

Anselmer et Al (1983 'use high Reynolds number wind tunnel experiments
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to staﬁistically estimate ﬁ(r}defined by:
<AV(ANP > = < (v(x+a0 ~v(R)'P >u= ax‘&{-g)
S‘e(?) was stat:.st:.c’ally estimated by the statlstlc g‘s(p) defined by: |
(/o é avP(an = oxSs P
where the ﬂv are the n expermenl:al Av's. By assuming ) unbroken scaling
parameter l-)-1l3 and id hyperboh.c intermittency, & ~5, we obl:am excellent
theoretical agreement with thur experimental results (see fig. 1) . The
theoretical calculation of §5(p)  proceeds as follows
4:«g s'P? =A *P ‘,g ? )/'I
where? = (Av ;‘Av*) P isa random varzable, unit amplitude such that

Pr( ¥’ >9)/‘V_'f“"p .. Scaling implies 4v ~ﬂx thus

axSs P pde (8 9P )/n
For p<«, 11m'§1 fnlf,'y -‘759 (= u;f.:;rF constant , and thus 3,‘ p) =pH for p<K
However, the s1.tuatmn is quite different for p3 o, because the mean ?15
infiniteand the standard theory of stable processes (e.g. Feller (1971))
yields %%(1,&355‘ > oP/* "_. Thus:

j,(r) GXHP Pl -1
In order to evaluate ﬁs f_'{;) we must use the fact that n is the number of

independent experkrnental points and typical set-ups yield n~1/Ax. Thus
Ax,s A p(H—‘]fd) +1

g ‘5‘(?) = (H-li'o() +1  for p3 of .
Fig. 1 shows a very clear break from the line pH for g)f; and indicates
5¢ e <6. The valued~5 may thus be a universal feature of turbulence. This
shows that the breakdown of -the relationship szp)= pH at p~5 noted by Frisch
(1989 is not due to a breakdown of the scal ing (a "broken symmetry'), but
is due to an unbroken scaling coupled with the divergence of high moments.
Fig.1: Graph ofjs(p] ; [
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The dimension(9 'of the support(d 'of turbulence:
Schertzer and Lovejoy (1983 discussed the extension of Mandelbrot's (1974

phenomenological turbulence model to the anisotropic case by using elliptical
dimensions instead of ordinary fractal dimensions. The basic ingredient of
this model is the random function W(A) 'which is a "curdling operator''- ‘it
distributes the flux of non-linear energy into sub-eddies by a cascade of
steps)stépECifying all the moments of W is sufficient to uniquely determine
the intermittency properties of the model. The dimension DS(1) describes the
dimension of the active regions of the field (for any arbitrary level of
activity) . Similary, Ds(h] can be defined to characterise the active regions

of the field ell. Its value is given by

<I-Jh> b A(h— 0 (Del—Ds(h) )
The“p-model'f(Frisch et Al (1978 corresponds to the trivial case of DS(bJ=DS(ﬂ
for all h- this model . can therefore not be used to study the divergence of
moments. In the "x-model" described in Schertzer and Lovejoy (1983), Dsﬁh) is
a decreasing function of h which tends to the limit D . Averages of €
taken over sets dimension D, < Del-Ds(h) diverge.

Hyperbolic Renormalisation:

The introduction of W in the preceeding model may be understood as a
phenomenological '"renormalisation of the vertex" (or of the non-linear inter-
actions , by taking the non-direct interactions of the Smg}ler wave-numbers
into account during the decimation process (as described in Forster et A1(1978))
but from large to small wavenumber9 . (Symbollically: 1=al, v«a)ﬂw the
wertex p.;‘f'wm . Work is in progress is assess the validity of this kind
of "hyperbolic renormalisation".
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