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A B S T R A C T

Topography is the expression of both internal and external processes of a planetary body. Thus hypsometry (the
study of topography) is a way to decipher the dynamics of a planet. For that purpose, the statistics of height and
slopes may be described by different tools, at local and global scale. We propose here to use the multi-
fractalapproach to describe fields of topography. This theory encompasses height and slopes and other statistical
moments of the field, taking into account the scale invariance. Contrary to the widely used fractalformalism,
multifractals are able to describe the intermittency of the topography field. As we commonly observe a juxta-
position of rough and smooth topographies at a given scale, the multifractal framework seems to be appropriate
for hypsometric studies. Here we analyze the data at global scale of the Earth, Mars, Mercury and the Moon and
find that the statistics are in good agreement with the multifractaltheory for scale larger than ∼ 10 km.
Surprisingly, the analysis shows that all bodies have the same fractal behavior for scale smaller than ∼ 10 km.
We hypothesize that dynamic topography of the mantle may be the explanation at large scale, whereas the
smaller scale behavior may be related to elastic thickness.

1. Introduction

The scaling of coastlines was empirically studied by
Richardson (1961) and Mandelbrot (1967) interpreted his results in
terms of fractals. Fractals are geometric sets of points that have a scale
symmetry. Geophysical examples of scaling include turbulent phe-
nomena including clouds, the wind, the ocean, river flows, as well as
various solid earth fields including rock faults and topography. Most
systems of geophysical interest are mathematical fields, not geometric
sets. When scaling, they will generally be multifractals. A general way
to quantify this is to determine the statistical moments of fluctuations of
the field, (generalized) structure functions. Denoting the fluctuation in
the topography over a distance xΔ by h xΔ (Δ ), the qth order structure
function is h xΔ (Δ )q . If the system is scaling, then this is a power law of
the lag xΔ : xΔ ζ q( ). The field is monofractal if =ζ q qH( ) where H is
named in honor of Hurst; in this linear case the field is quasi-Gaussian.
In the more general multifractal case, = −ζ q qH K q( ) ( ) where K(q) is a
convex function with =K (1) 0, it determines the multifractality, the
intermittency, the “spikiness” of the field. Numerous studies haves
shown that in several contexts, topography is scaling over a significant
range of scales (see the review of Dodds and Rothman, 2000).

For multifractal processes, local estimates of fractal dimensions will
be different from one location to another, they will be stochastic. It is

thus possible to interpret the topography of regions with quite different
slope distributions in a unified multifractal framework. This suggests
that even a global analysis of the topography of a planet might be
scaling and multifractal despite of its diversity and complexity.
Previous studies have established that the Earth’s topography is to a
good approximation multifractal over a very wide range of scales
(Lavallee et al., 1993; Gagnon et al., 2006). In the general case, ζ(q) is a
concave function; in order to characterize or model multifractals one
takes advantage of the existence of stable, attractive statistical beha-
vior: universality classes (Schertzer and Lovejoy, 1987).

In a previous analysis, we performed a global analysis on the to-
pographic MOLA data from Mars (Smith, 2001). We also found a good
agreement with universal multifractals but we found two scaling ranges
with different characteristics (Landais et al., 2015). The statistical
structure was found to be different at small scales (nearly monofractal)
and large scales (multifractal) with a transition occurring at around 10
km. This behavior has been confirmed recently with other analyses
(Deliege et al., 2016).

The goal of this article is to extend this pioneering Martian work to
all planetary bodies whose topography is well estimated: the Earth, the
Moon and Mercury. There is topography data for Venus and Titan but
unfortunately too much data is missing to allow for a similar analysis on
the global scale.
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2. Universal multifractal theory

We first define the fluctuations h xΔ (Δ ). The simplest definition is
the altitude differences, the slopes multiplied by xΔ , the most natural
indicator of roughness. But there are many other ways to define fluc-
tuations. Wavelets provide a general method. Indeed, their coefficients
define fluctuations (with appropriate normalization). The simple alti-
tude difference corresponds to the “poor man” wavelet and can be
advantageously replaced by the Haar wavelet that is more accurate and
is useful over a wider range of exponents (− < <H1 1 rather than
0<H<1 for differences), see Lovejoy (2014) and paragraph below for
a precise definition of Haar fluctuations.

Statistical moments. We can compute any statistical moment Mq of order
q defined by:

= < >M x h x(Δ ) Δ (Δ )q
q (1)

with < > , denoting the statistical average. If =q 2, it simply
correspond to the variance. In principle, every order (even non-
integer orders) must be computed to fully reveal the whole variability
of the data. If the field is scaling, all the statistical moments are
expected to follow a power-law with scale.

Multifractality. Scaling allows us to introduce two distinct statistical
processes: monofractal and multifractal. For a detailed description of
the formalism we apply in this study, the reader can refer to
Lovejoy and Shertzer (2013) briefly summed up in
Landais et al. (2015). We now quickly recall the main notions.

• In the usual gaussian monofractal case the parameters H is sufficient
to describe the statistic of all the moments of order q (Eq. (2)). There
is no intermittency, meaning that the roughness of the field is spa-
tially homogenous despite its fractal variability regarding scales. For
example, the value =H 0.5 corresponds to the classic Brownian
motion. This kind of statistical object has proved to be relevant in
many local and regional analysis of natural surfaces (Orosei et al.,
2003; Rosenburg et al., 2011), at least over restricted ranges of
scales but fails to give full account to the intermittency commonly
observed on larger topographic datasets.

∼M xΔq
qH (2)

• In the multifractal case, H is not sufficient to fully describe the
statistics of the moments of order q. An additional convex function
K(q) depending on q is required (see Eq. (3)). The moment scaling
function K modifies the scaling law of each moment. The con-
sequence for the corresponding field appears clearly in simula-
tions (Gagnon et al., 2006): the field exhibits a juxtaposition of
rough and smooth places that are clearly more realistic in the case
of natural surfaces. Moreover, it is possible to restrain the gen-
erality of the function K(q), considering only universal multi-
fractals, a stable and attractive class proposed by Schertzer and
Lovejoy (1987) for which the multifractality is completely

determined by the mean intermittency =
=

( )C dK q
dq q

1
( )

1
(codimen-

sion of the mean) and the curvature α of the function K,
=α C

d K q
dq

1 ( )
1

2

2 (the degree of multifractality). In that case the ex-
pression of K is simply given by Eq. (5).

∼ −M xΔq
qH K q( ) (3)

= −ξ q qH K q( ) ( ) (4)

=
−

−K q C
α

q q( )
1

( )α1
(5)

We see that the monofractal case corresponds to ≠ =H C( 0, 0)1 or
(H≠ 0, C1≠ 0, α→ 0).

3. Dataset

The topography of a planet is defined as the difference between the
distance of the planetary surface and the geoid. For Mars (Smith, 2001),
Mercury (Cavanaugh, 2007) and the Moon (Smith, 2010), we are used
topographic data stored in PDS (Planetary Data System, http://pds-
geosciences.wustl.edu) whereas the Earth data (Amante and
Eakins, 2009) are gathered from numerous global and regional data
sets. Table 1 sums up the main characteristics of the datasets. Each has
already been previously analyzed.

The Earth has been studied for multifractal purpose by
Gagnon et al. (2006) using ETOPO5 dataset. They analyzed separately
continents and oceans and found that H is varying from 0.46 for
bathymetry and 0.66 for continent. The dataset considered in our study
(ETOPO1, Amante and Eakins, 2009) is an arc-minute global relief
model of the Earth.

On Mars, the main source of topographic data is the Laser altimeter
MOLA (Smith, 2001) that allows to perform extensive statistical ana-
lysis with different roughness indicators on sliding windows revealing
interesting correlation with geological units (Aharonson et al., 2001;
Kreslavsky and Head, 2000). The monofractal scaling of the topography
of Mars has also been studied by Orosei et al. (2003) through the local
computation of the scale independent Hurst parameters revealing a
high disparity of values across the Martian surfaces as expected for
multifractal topography.

On the Moon, the high-precision topographic data obtained by the
laser altimeter LOLA (Smith, 2010) has been extensively used.
Kreslavsky et al. (2013) computed maps of roughness at hectometer and
kilometer scales revealing poor correlations between these two scales.
Moreover, Rosenburg et al. (2011) measured H. They not only identi-
fied a transition that occurs around 1 km at most location but they also
found significantly different values of H in the Highlands ( =H 0.95)
and in the Maria ( =H 0.76).

On Mercury, by using the MLA data (Cavanaugh, 2007; Pommerol
et al., 2012) computed roughness indicators on extracted profiles from
geologically distinct regions. Due to the eccentricity of the orbit, only
the northern hemisphere could be mapped by laser altimetry with a
resolution of about 5 km. The use of pairs of stereoscopic images has
finally made it possible to develop an overall map of the topography of
Mercury (Solomon, 2001; Hawkins, 2007). We analyzed both MLA data

Table 1
Characteristics of the datasets.

Source Radius (km) Resolution min scale max scale Lines Columns no. fluctuations

Earth ETOPO1 6371 60 px/deg 1 853m 20,015 km 10,800 21,600 0.2 billions
Mars MOLA 3390 128 px/deg 462m 10,650 km 22,528 46,080 1 billion
Moon LOLA 1737 512 px/deg 60 m 5457 km 92,160 184,320 13 billions
Mercury MLA 2240 64 px/deg 665m 7037 km 11,520 23,040 0.0002 billion
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only and the full map (from both laser and stereoscopy) and found no
significant difference, except for the fact that the larger scales are
available for the full map. We thus choose to present here only the full
map results. This result confirms that there is no significant bias (at
least regarding multifractal properties) between stereoscopic and laser
altimetric techniques.

The current study proposes to extend the scope of the multifractal
analysis already performed on Earth and Mars (Gagnon et al., 2006;
Landais et al., 2015) to all the bodies in the solar system for which data
is adequate. Thus the case of the Earth, Mars, Moon and Mercury will be
discussed and compared. The case of Venus is not considered here de-
spite of the existence of a dataset collected by Magellan because of the
relative lack of topographic data (Ford et al., 2014). The same is true for
Titan (Stiles, 2009).

4. Methodology

In our previous analysis (Landais et al., 2015), we considered the 1-
D topographic profiles directly extracted from the along-track mea-
surement of MOLA stored in PDS (http://pds-geosciences.wustl.edu,
Smith, 2001). As the data are irregularly sampled due to the presence of
clouds and instrument problems, we used multifractal simulations to
study the effect of a MOLA-like irregular signal on the Haar fluctua-
tions. It turned out that, most probably due to the small fraction of
missing data, the irregularity had no detectable impact on the analysis.
We also found that the use of the gridded data also produced the same
results as the direct use of the more reliable along-track measurement,
the conclusion being that for the purpose of a global analysis, the ex-
trapolated gridded map for each body is sufficient to recover the global
statistical parameters. The methodology used here is therefore much
simpler and only relies on the gridded data. We only considered 1D
North-South profiles and computed the Haar fluctuations at different
lags Δx. The simplification to 1-D is reasonable as we perform a global
statistical analysis. In addition, the North/South direction is more re-
levant than East–West because each profile has the same length. Fig. 1a
provides an example of 1-D profiles extracted from the gridded field for
each body. See Landais et al. (2015) for a review of the different biases
that could result from such an approach. We also addressed the issue of
finite-size effects that may have an impact on the small scales.

We implicitly consider that the global statistics are isotropic. This
assumption is reasonable for the purpose of a global analysis given the
fact that shape of various orientation can be found on a given body.
Although local anisotropy is commonly observed (Kreslavsky and Head,
2003; Bondarenko et al., 2006; Bills et al., 2014), we assume it is erased

by the spatial averaging. Isotropic multifractal processes readily pro-
duce strong local anisotropy so that the question of systematic scale
dependent statistical anisotropy is not easy to establish. Anisotropy
remains an important issue and will be more carefully considered in
future works.

Haar fluctuations and statistical moments. At a given location x and a
given scale xΔ corresponding to N successive elevation data on the grid,
we average separately the first N

2
points M x x( , Δ )1 and last N

2
points

M x x( , Δ )2 . The Haar fluctuation is simply defined as the difference
= −S x x M x x M x x( , Δ ) ( , Δ ) ( , Δ )2 1 . This definition is illustrated by

Fig. 1b. The Mean Haar Fluctuation (MHF, moment of order 1) is
simply obtained by averaging all the available Haar fluctuations in a
dataset. By extension, other statistical moments of any order q, MHFq
may be computed by averaging the fluctuations raised to the power of
q:

= < >MHF S x x( , Δ )

= < >MHF S x x( , Δ )q
q

5. Results for Earth, Mars, Mercury and the Moon

Mean Haar Fluctuations (MHF). Fig. 2 shows the Mean Haar
Fluctuations for each body on a log-log plot. One can observe its
scaling behavior as a function of the real distance (in meters). One can
observe that at small scale, MHF ranges from the larger to the smaller
for: the Moon, Mercury, Mars, the Earth. This simply means that
statistically, the roughness is from the larger to the smaller: for the
Moon, Mercury, Mars, the Earth. Thus an astronaut (coming from the
Earth) would experience differently the landscape of other planetary
bodies. He would feel smaller in front of a rougher landscape at his/her
scale. This feeling should be largest for the Moon. Another interesting
feature is the resemblance between i) the curves of Earth and Mars and
ii) the curves of the Moon and Mercury. For the two small bodies, the
MHF is clearly above the two others, except at the largest scales. By
interpreting it as a roughness indicator, this feature simply reflects the
well-known high level of roughness of small bodies, a consequence of

Fig. 1. (a) Topographic dataset: 4 typical profiles, 1 for each body in the scope of this study. The length corresponds to 1 complete circumference of the planets except
in the case of Mercury (only half a circumference) (b) Definition of the Haar fluctuation used to perform the statistical analysis. M1 (respectively M2) is the average of
the first half (respectively second half) of the topographic profile.
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intense cratering shaping their surfaces.
As expected, the global MHF increases with scale in all cases, simply

reflecting the fact that larger scales yield larger differences in elevation.
Nevertheless for the Earth and Mercury, at large scales, the MHF begins
to decrease before reaching its maximum scale. More specifically, as our
goal is to study the global scaling behavior of topography, we expect
this global increase of theMHF to be linear on a log-log plot. It is clearly
not the case over the entire available range of scales. Still noticeable
scaling appears but over restricted ranges of scale: a transition seems to
occur, separating two distinct scaling regimes. Such a transition is ob-
served for all the bodies and interestingly, it occurs at around 10–20 km
in each case including the Moon. The nature of this transition, discussed
in our previous analysis focused on Mars and already pointed out by
other authors in the case of Mars (Malamud and Turcotte, 2001), re-
mains unknown.

In Fig. 3, the MHF are normalized by their respective values around
10 km in order to emphasize the transition at that scale. As one can see,
the slope at small scales (< 10 km) are rather similar (H∼ 0.8)
whereas significantly different slopes are observed at large scales
(H∼ 0.2–0.5). The scaling is excellent at large scales in the case of Mars
and good in the case of Earth and Mercury. In the case of the Moon,
data points are more dispersed, and H might be less well defined. Note
also at small scales, the available range for Earth and Mercury is limited
and might result in an unconvincing fit. The values obtained for H for
each body by computing a linear regression on the distinct ranges of
scale is reported on Table 2.

Statistical moments MHFq. In the case of universal multifractals, all the
statistical moments will scale according to Eq. (3), the MHF being the
particular case for which =q 1. Thus we can estimate the other
multifractal exponents by computing statistical moments MHFq. On
Fig. 4, the MHFq are plotted for different values of q and for the
different bodies. The next step is to compute linear regressions on every
curve and on the distinct identified scaling regime. The log-log slopes
ζ(q) may then be plotted as a function of q for each body and for each

range of scales (see Fig. 5) in order to visualize the function ξ defined by
Eq. (4). A linear ξ(q) is the signature of monofractality whereas a
curved ξ(q) indicates a multifractal behavior according to Eqs. (2) and
(3). Interestingly, Fig. 5 clearly shows that on the distinct scaling
regimes (low scale and large scales) the behavior is significantly
different. Over the range of small scales (< 10 km, plot on the left),
the curves are rather similar for all the four bodies and are very close to
straight lines indicating that the statistics are found to be roughly
monofractal (small C1) over the range. Over the range of large scales
(> 10 km, plot on the right), we obtained curved structure functions in
most cases revealing the multifractal nature of the statistics of
topography over the range. The multifractal parameters are computed
according to Eq. (3) and reported on Table 2. Whereas the case of Mars,
Mercury and Earth have similar of values of C1 around 0.1, the case of
the moon seems to be an exception with weak multifractal properties
over the whole range of scales (C1 close to 0).

6. Discussion and conclusion

By averaging the fluctuations at different scales, we have revealed
global statistical pattern of planetary bodies. We tested and validated
the multifractal approach on the four bodies with empirically well es-
timated topography: the Earth, Mars, Mercury and the Moon. We found
that a transition occurs at about 10 km and that it is a general property
of all planetary topographies. Below 10 km, differences in altitudes
decrease more rapidly when the scale decreases.

As suggested by Araki (2009) and Nimmo et al. (2011), for the
transition in the topographic power spectral density, we propose the
interpretation that the elastic thickness of the lithosphere is responsible
for this transition by acting against the deformations caused by the
different surface processes in two regimes. At scales smaller than the
elastic thickness Te, a modification of the surface (for example, fol-
lowing an impact) does not make it possible to generate isostatic
compensation. The new relief can therefore remain. The slopes of
neighboring facets tend to be correlated with each other and give rise to

Fig. 2. Mean Haar fluctuations MHQ (order 1) as a function of scales for the 4 planetary bodies.
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fluctuations in topography rapidly increasing with the scale (structured
aspect, high H). The relief profile tends to be persistent since the slopes
are highly correlated. At scales higher than Te, a change in relief trig-
gers an isostatic compensation which tends to oppose the large varia-
tions of the relief. The slopes of neighboring facets tend to be anti-
correlated and the topographic profile is rougher. The topography os-
cillates around a mean value since the slopes are more anti-correlated.
In this configuration, the altitude fluctuations increase only slightly
regarding to scale (low H). The common transition could be explained
by the averaged value of the elastic thickness quite similar for the 5
bodies (Grott and Breuer, 2008; Barnett et al., 2000; Nimmo and
Watters, 2004).

At scales larger than 10 km, all planetary bodies are different.
Interestingly, the scaling law is characterized for the Moon by =H 0.2,
Mercury by =H 0.3, Mars and Earth by =H 0.5. The smaller the body,
the less intense its internal activity due to intense thermal cooling. The
value of H may be related to its geological activity. One can speculate
that a more intensively convecting mantle yields a higher value of H.
This explanation links the large scale with dynamic topography
(Hager et al., 1985). The fact that only large the scale topography is
strongly multifractal is coherent with this explanation because multi-
fractal behavior is related to fluid mechanics. The geological origin of
this transition will be investigated in future works.

From our result, this pattern seems coherent other large ranges of

scale throughout the different bodies. Although suggesting that only a
few processes might operate simultaneously at different scales, this
result is not incompatible with the existence of processes operating at a
specific altitude or locations. For example the “glacial buzz” saw effect
seems limit the presence of high altitude on the Earth only
(Lorenz et al., 2011). Our results simply suggest that the contribution of
such process to global statistics can be neglected because if a strong
altitude dependent process occurs, it should have broken the scaling
behavior. It will be necessary to perform local analyses using the same
methodology to fully understand the effect of altitude dependent and
local processes on local statistic and how they correlate with multi-
fractal parameters.

As a future work, we plan to perform local analysis on area defined
by geological boundaries or altitude level to better understand the link
between the scaling behavior of topography and natural processes op-
erating at different location and altitude.
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Appendix A. Annex: Bayesian regression

In order to estimate the best set of parameters (H, C1, α) modeling the data, the parameters can be estimated in a classical way by performing
regressions on the function ζ near the mean =q( 1) to quantify its curvature related to α and C1 (Lovejoy and Shertzer, 2013) by the theoretical
formulas:

Fig. 4. Plot of different statistical moments for the four bodies. Although 21 moments have been computed for the purpose of this analysis (from 0.1 to 2 by steps of
0.1), only a few non-integers moments are plotted here for order 0.1 to order 2 by step of 0.2.

Fig. 5. Structure function for different ranges of scales.
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dK q

dq
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d K q
dq

dK q
dq
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( ) ( )

/
( )

q q q
1

1

2

2
1 1 (6)

As a reminder, the scaling exponents ζ(q) are themselves the products of linear regression, so the fits from Eq. (6) are only indirectly related the
data. We wish to avoid this method which will not make possible to judge the quality of the estimates, especially as the multifractal component is
rather weak when the function ζ(q) is only weakly curved.

We propose a new approach based on principle of Bayesian inversion (Tarantola and Valette, 1982) which allows to construct a posterior
probability distribution of the parameters (mean, most probable value, standard deviation) from observations. In practice, these distributions can be
estimated iteratively by applying the Metropolis rule to construct a Monte Carlo Markov chain (Mosegaard and Tarantola, 1995) containing the
different sets of parameters. We summarize the main lines of this technique, already used on photometry problems (Schmidt and Fernando, 2015;
Fernando et al., 2013). As a first step, it is necessary to evaluate the quality of the individual linear regressions of each moment. In this step, we
attribute to each point an empirical uncertainty with a centered gaussian distribution. The latter will be the higher as the linear correlation through
the scale is accurate. Then, we tested the direct model, computed by applying the laws of Eqs. (4) and (5), for different random set of parameters
(H, C1, α). Synthetic realizations are then compared to observations. The Monte Carlo Markov chain is created according the metropolis rules, using
the likelihood of empirical uncertainties. This method allow us to estimated realistic uncertainty bars on parameter (H, C1, α), from the observational
data (see Table 2).

Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.icarus.2018.07.005.
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