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[1] We consider the space‐time scaling properties of the European Centre for Medium‐
Range Weather Forecasts (ECMWF) interim reanalysis products for the wind (u, v, w),
humidity (hs), temperature (T), and geopotentials (z) and their corresponding turbulent
fluxes using the daily 700 mbar products for the year 2006. Following previous studies
on T, hs, and u, we show that that the basic predictions of multiplicative cascade models
are well respected over space‐time scales below ∼5000 km, shorter than ∼5–10 days
providing precise scale by scale determination of the reanalysis statistical properties
(needed for example for stochastic parameterizations in ensemble forecasting systems).
We innovate by including the meridional and vertical wind components (v, w) and
geopotential (z), and by considering their horizontal anisotropies, their latitudinal
variations and, perhaps most importantly, by directly analyzing the fields (not just
fluxes). Whereas the fluxes have nearly isotropic exponents in space‐time with little
latitudinal variation (displaying only scale independent “trivial” anisotropy), the fields
have significant scaling horizontal anisotropies. These complicate the interpretation
of standard isotropic spectra and are likely to be artifacts. Many of the new
(nonconservation) exponents (H) are nonstandard and currently have no adequate
theoretical explanation although the key horizontal wind and temperature H exponents
may be consequences of horizontal Kolmogorov scaling, combined with sloping isobaric
surfaces. In time the scaling is broken at around 5–10 days, i.e., roughly the lifetime of
planetary structures; lower frequencies are spectrally flatter: the “spectral plateau,”
weather‐low‐frequency weather regime.

Citation: Lovejoy, S., and D. Schertzer (2011), Space‐time cascades and the scaling of ECMWF reanalyses: Fluxes and fields,
J. Geophys. Res., 116, D14117, doi:10.1029/2011JD015654.

1. Introduction: Analyses, Reanalyses, Fluxes,
and Fields

[2] The advent of high quality global scale data sets has
finally made it possible to systematically study the space‐
time statistical properties of the atmosphere as a function of
scale. Yet, all empirical analyses suffer from limitations. For
example, data from global scale networks are invariably
sparse [Lovejoy et al., 1986] and aircraft data are not only
limited to 1‐D transects, but have nontrivial problems of
interpretation due to trajectories which are both fractal and
sloping [Lovejoy et al., 2004, 2009c]. Although satellite data
are nearly ideal in terms of their coverage from global scales
down to kilometric (or less), they measure radiances rather

than variables of state and their scale by scale statistical
properties have received little attention.
[3] The alternative source of global scale data studied

in this paper is the reanalyses. These are hybrid products
obtained by using much of the available data from both in situ
networks and satellites but which are processed with the
help of complex data assimilation algorithms adapted for
specific meteorological models. These algorithms use covari-
ance matrices to interpolate the data onto uniform grids. The
4D VAR assimilation scheme relevant here implies that the
European Centre for Medium‐Range Weather Forecasts
(ECMWF) interim products are solutions to the primitive
equations but at the relatively low resolution of the grid: there
are implicit smoothness and regularity assumptions. Hydro-
staticity may also be an issue since the use of (gently sloping)
isobars rather than isoheights can potentially lead to scale
breaks and the spurious appearance of vertical exponents (see
the discussion of isobaric aircraft statistics below). Never-
theless, at least in some cases, such as the hard to measure
vertical winds, they provide the only global scale estimates; in
any case they complement the “pure” instrumental data sets.
[4] A series of papers involving lidar, drop sonde, aircraft,

and satellite data [see Lovejoy and Schertzer, 2010, 2011a,
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and references therein] presents a large body of empirical
evidence that the atmosphere is accurately scale invariant
from planetary scales continuing down through the meso-
scale, continuing possibly to the dissipation scale. As argued
by Schertzer and Lovejoy [1984, 1985a], such a wide scal-
ing range is only possible if one considers generalized
(anisotropic) notions of scaling; here it is sufficient to con-
sider different scalings in different (e.g., orthogonal) direc-
tions. This means that while fluctuations Df in a turbulent
quantity f (e.g., a component of the wind) are scaling in the
horizontal (lag Dx) with exponent Hh, i.e., Df ≈ 8hDxHh,
then fluctuations in the vertical (lags Dz) are scaling with
Df ≈ 8vDzHv; 8h and 8h are physically different turbulent
fluxes. Note that these are fluxes through spherical shells in
Fourier space, not fluxes in physical space; this is different
from the classical interpretation of the quantities in terms of
dissipation; the fluxes are only equal to the dissipation at the
small dissipation scales. Study of the fluxes averaged/
degraded in resolution show [Lovejoy et al., 2009a; Lovejoy
and Schertzer, 2010] that up until 5,000–10,000 km their
statistics are nearly exactly as predicted by multiplicative
cascade models (section 2, equation (1)) and that their
exponent functions are nearly the same in the zonal and
meridional directions. A model for the velocity field which
turns out to be close to the observations takes 8h = "1/3, �v =
�1/5, Hh = 1/3 and Hv = 3/5, where " is the energy and � is
the buoyancy variance flux which thus dominate the
dynamics, respectively, along the horizontal and vertical
directions [Schertzer and Lovejoy, 1985b] (these corre-
spond to the classical Kolmogorov [Kolmogorov, 1941] and
Bolgiano‐Obukhov [Bolgiano, 1959; Obukhov, 1959] ex-
ponents, but in a nonclassical anisotropic framework). As
a consequence, Hv > Hh for the velocity field and it seems to
be a rather general property that corresponds to the fact that
structures (defined as f isolines) become progressively flatter
and flatter at larger and larger scales, yet this stratification
occurs without any characteristic size being introduced.
[5] While this horizontal/vertical anisotropy is fundamental

in understanding the existence of the wide range horizontal
scaling, we do not consider this vertical stratification here.
Surprisingly however, it turns out that scaling anisotropy
seems to be essential in understanding the horizontal (or more
accurately, the isobaric) statistics of the reanalysis fields,
although apparently not of the fluxes: i.e., we find HEW/HNS =
Hy ≈ 0.80 for all fields (with a predicted inversion for the
meridional wind; “NS” and “EW” mean “north‐south” and
“east‐west,” respectively) whereas 8NS and 8EW not only have
very nearly the same statistics (horizontal isotropy), but also
these are very nearly those theoretically predicted for multi-
plicative cascade processes. While the latter result confirms
those made on other reanalyses and products [Stolle et al.,
2009], the former is new and helps shed light on the pro-
blems encountered by the classical approaches to statistically
characterizing reanalyses.
[6] To see this, recall that while the classical approaches

[Boer and Shepherd, 1983; Strauss and Ditlevsen, 1999]
suppose a priori the physical nature of the relevant fluxes (e.g.,
energy, enstrophy flux), our method has the advantage of
objectively defining the fluxes using the observed fluctuations.
(A disadvantage of such objectively defined fluxes is that the
physical meaning of the flux is not obvious: it is a subject of
future research.) However, as we review in the next section, it

turns out that up until now, understanding the statistical
properties of the fields f (such as their spectra) has not given
any clear result. We argue that that the reason is that the re-
analyses are anisotropic in the horizontal with different ex-
ponents, i.e., HEW ≠ HNS (the zonal and meridional directions,
respectively) and up until now only isotropic reanalysis spectra
(i.e., integrated over all angles) have been considered.
Whether, as we suspect, this scaling anisotropy is a spurious
artifact of the reanalyses; its discovery will help settle long-
standing debates about the statistical nature of the atmosphere
(i.e., the classical 2D versus 3D isotropic turbulence model
versus the scaling 23/9 D alternative [Schertzer and Lovejoy,
1985b]; see Lovejoy and Schertzer [2010] for a review).
[7] A final important issue we cover is the nature of the

temporal variability and the relation between the spatial
and temporal statistics. Since structures in the atmosphere
have “lifetimes”which depend on their spatial scales; the two
being connected (at least dimensionally) via a velocity, we
expect that the spatial scaling of the wind will impose a
regime of temporal scaling, at least up to scales corre-
sponding the to the size of the planet; i.e., roughly 5–10 days.
Indeed, virtually all meteorological fields have a drastic
change in behavior at about this scale; the transition itself
has been termed a “dimensional transition” [Lovejoy and
Schertzer, 2010] and the lower frequency regime where the
spectrum is significantly flatter has been called a “spectral
plateau” [Lovejoy and Schertzer, 1986]. While the fluctua-
tions for high frequencies are dominated by single structures
and corresponding lifetimes, the fluctuations for the lower
plateau frequencies are consequences of many lifetimes and
have much lower statistical interdependences (lower H’s,
lower spectral exponents) and these are accurately modeled by
assuming that the space‐time scaling weather cascade model
continues to much lower frequencies [Lovejoy and Schertzer,
2010]. Interestingly, Lovejoy and Schertzer [2011b, 2011c]
have given evidence for analogous behavior in the oceans,
although with a critical time scale of ∼1 year, so that due to
ocean‐atmosphere interactions, the behavior in the range of
scales ≈ 10 days–1 year is a bit more complex.
[8] This paper is organized as follows. In section 2 we

review the basic theory and data analysis techniques. In
section 3, we perform systematic cascade analyses on the
turbulent fluxes in the two horizontal directions and in time,
we examine the statistical relation between space and time
(“Stommel” diagrams), their latitudinal dependence, and the
“Levy collapse” which is a test of the underlying probability
distributions of the fluxes irrespective of the scaling. In
section 4 we consider the fields (the observables) taking care
to consider their anisotropies. We outline the necessary
elements of generalized scale invariance and estimate zonal,
meridional and isotropic spectral exponents; we then con-
sider the temporal spectra and the latitudinal dependence of
all the exponents. In section 5, we conclude. In Appendix A,
we discuss possible biases in our anisotropy analyses due to
the use of cylindrical map projections.

2. The Data, Fluxes, and Predictions
of Multiplicative Cascades

2.1. The Scaling Properties of Reanalyses

[9] Study of the scaling properties of atmospheric models
and reanalyses is still in its infancy. The early pioneering
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studies of Boer and Shepherd [1983] and Strauss and
Ditlevsen [1999] attempted to test the framework of two‐
dimensional geostrophic turbulence which at the time was
believed to provide a good model for the synoptic scale
dynamics. Rather than directly studying the scaling prop-
erties of the fields themselves, these authors started by
converting them by vertical integration into theoretically
preordained 2‐D products; even these were not studied
directly but rather via anomalies with respect to low‐
frequency means (“stationary” and “transient” parts),
followed by a further decomposition into rotational and
irrotational wind components. In contrast, the more recent
studies have directly focused on the scaling properties of
the turbulent fluxes that are expected to be the products
of multiplicative cascade processes and they attempted to
achieve a wide survey of reanalysis fields, intercomparing
many different models, studying the variations in the cascade
properties as functions of altitude, of latitude and forecast
horizon [Stolle et al., 2009, also The temporal cascade
structure and space‐time relations for reanalyses and global
circulation models, submitted to Quarterly Journal of the
Royal Meteorological Society, 2011]. The necessary
compromises restricted them to temperature (T), the zonal
wind (u), humidity (h) fields. It was found that whereas the
direct analyses inspired by the scale invariance of the
equations and boundary conditions generally displayed
excellent scaling (especially for the turbulent fluxes), in
comparison the more complex analyses inspired by quasi
geostrophic theory had relatively poor scaling and their
behavior was not clear (compare the results here with those
of Strauss and Ditlevsen [1999]).
[10] If atmospheric models and reanalyses are to be real-

istic, theymust, like the data, also have multiplicative cascade
structures. This was indeed demonstrated for T, h, u in
(hydrostatic) weather forecast models (NOAA’s GFS model
and the Canadian GEM model) and on ERA40 reanalyses
by Stolle et al. [2009] (space) and Stolle et al. (submitted
manuscript, 2011) (time). Isolated results on the ECMWF
interim reanalyses and the 20th century reanalysis [Compo et al.,
2011] have also been published [Lovejoy and Schertzer,
2010]; the latter in particular permit the study of long‐time
(>1 century) statistical behaviors. Finally, a detailed com-
parison [Gires et al., 2011] of the rain field simulated by the

(nonhydrostatic) mesoscale model MESO‐NH9 with the
corresponding radar rainfall radar showed that both have
similar space‐time scaling ranges, but with different expo-
nents. Analogous scaling analyses have not yet been carried
out for climate models (although see the review by Lucarini
and Ragone [2011]).
[11] Qualitatively, the horizontal and temporal cascade

structures of the data, models and reanalyses were found to
be very similar, at least for the fluxes from the most intensely
scrutinized T, u, h, fields. Indeed, the different fields and
models share many quantitative features; this includes the
outer cascade scales (in time and space) and the values (see
Table 1) of the universal multifractal parameters [Schertzer
and Lovejoy, 1987] (the mean sparseness or intermittency
C1, the index of multifractality a, the nonconservation
exponent H; these are defined below). However, there are
also important differences, especially in the vertical direc-
tion presumably associated with the hydrostatic approxi-
mation used in most of the cited models and reanalyses.
In addition, the scaling of the model/reanalysis fields (as
opposed to the underlying turbulent fluxes) was not sys-
tematically studied at all but clearly suffered from important
differences with the data, especially the horizontal velocity
field which Lovejoy et al. [2010] had already found dis-
played the vertical rather than horizontal scaling exponent.
This fact was attributed to the isobaric nature of the avail-
able reanalysis levels (the small but nonzero isobaric slopes
are expected to lead to the same spurious scaling as in the
aircraft data and for the same reasons [Lovejoy et al.,
2009c]).
[12] So far, statistical studies of reanalyses have provided

only a partial view of this vast “landscape” of models and
products; below we extend these in three important ways:
first, to study the statistics of the fields themselves (rather
than just their turbulent fluxes) in particular to estimate the
spectral exponents; second, to extend the analyses to other
fields—the meridional and vertical winds (v, w)—and to the
geopotential height (z); third, to address the issue of north‐
south versus east‐west anisotropy, which turns out to be
linked to the first. We do this using the state‐of‐the‐art
ECMWF interim reanalysis, chosen because of its high
resolution, its ready availability and the fact that its overall
quality is recognized as high by the meteorological com-

Table 1. Space‐Time Cascade Parameter Estimatesa

hs T u v w z

b 1.90 2.40 2.40 2.40 0.40 3.35
C1,uni 0.102 ± 0.009 0.077 ± 0.005 0.084 ± 0.006 0.087 ± 0.012 0.121 ± 0.007 0.088 ± 0.006
C1 0.101 ± 0.009 0.072 ± 0.005 0.082 ± 0.007 0.085 ± 0.013 0.115 ± 0.008 0.083 ± 0.005
a 1.77 ± 0.06 1.90 ± 0.006 1.85 ± 0.012 1.85 ± 0.011 1.92 ± 0.009 1.90 ± 0.012
H 0.54 0.77 0.77 0.78 −0.14 1.26
LeffEW (km) 13000 20000 13000 16000 16000 63000
LeffNS (km) 6300 16000 8000 10000 13000 40000
teff (days) 46 58 29 29 37 290
Veff (km/d) 280 340 450 550 430 220
d (%) 0.32 ± 0.04 0.35 ± 0.02 0.31 ± 0.09 0.28 ± 0.10 0.33 ± 0.10 0.52 ± 0.30

aFits for C1, a are for scales <5000 km, and the spreads in the parameters are over east‐west and north‐south directions and time. The temporal fits are
from 2 to 8 days. The b and hence H parameter of the v (meridional wind) field is only fit up to 1300 km. The spreads are standard deviations over the east‐
west, north‐south, and temporal estimates. The H estimates are for the spatial analyses only; they are from b and K(2): H = (b + 1 − K(2))/2 with K(2) from
the universal multifractal fits and using the b from the isotropic, zonal, and meridional horizontal spectral analysis in section 3; they are for the east‐west
H values (the only exception is the meridional wind where it is the north‐south value); the value in the orthogonal direction can be obtained by dividing
by Hy ≈ 0.80. See Table 4 for temporal H estimates.
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munity. We specifically focused on the 700 mbar level as
being representative of the “free” atmosphere (without too
many issues caused by the topography) and we studied the
daily (0000 UT products) for the entire year 2006 primarily
focusing on a band between ±45° latitude, but with some
systematic surveys of latitudinal variation. Studies of the
other pressure levels ≥200 mbar showed that the differences
were not great (in accord with Stolle et al. [2009]).

2.2. The Data

[13] At the time of writing, the ECMWF interim reanal-
ysis products were available from 1989 through 2009. The
full reanalysis is on a T255 spherical harmonic grid corre-
sponding to a resolution of about 0.7° (∼79 km), and at
60 model levels. These levels are defined in a hybrid vertical
coordinate system which are nearly sigma (terrain following)
in the lower troposphere, becoming gradually more pressure‐
like in the higher levels. The publicly available products used
here are on 1.5° latitude/longitude grids (corresponding to
166 km at the equator) and at 37 interpolated pressure levels
(every 25 mbar in the lower troposphere). Although this is
slightly lower than the full raw resolution it has the advan-
tage of being less contaminated by the artificial hyperviscous
dissipation used at the smallest scales (although there are still
some dissipative effects as can be seen from the spectra). The
reanalyses use a 4D var scheme to assimilate data with the

help of the ECMWF numerical forecast model, details are
provided by Berrisford et al. [2009].
[14] Of the 14 parameters available at the 700 mbar

level (another 88 are available at the surface), we chose
the temperature, specific humidity, zonal wind, meridional
wind, vertical wind, and geopotential height (respectively:
T, hs, u, v, w, z) as being the most thermodynamically and
dynamically important. Figure 1 shows the correspond-
ing 0000 UT, 1 January 2006 fields. At (absolute) latitudes
greater than 45°, the pixel size becomes markedly reduced.
In addition, the data near the poles are much sparser for
both the in situ and satellite data, so that we primarily
focus on the region between ±45° latitude using a cylindrical
projection. This has the advantage that to a reasonable
approximation we can ignore the variation in pixel size and
treat the data as coming from a Cartesian grid, analyzing
and comparing exponents in the east‐west and north‐south
directions using numerically convenient Fourier techniques
(otherwise we should use spherical harmonics). In actual
fact, the anisotropies in the statistics introduced by this
limited map projection are of the order of a few percent
only; see Appendix A for numerical and other details.

2.3. The Predictions of Multiplicative Cascade Models

[15] Cascades are generic processes that arise in nonlinear
systems with large numbers of degrees of freedom. If there
is a scale by scale conserved quantity (such as the energy

Figure 1. Grey shade renderings of the ECMWF interim reanalyses for 0000 UT, 1 January 2006, on the
700 mbar pressure surface (top left) Specific humidity, (top right) temperature, (middle left) zonal wind,
(middle right) meridional wind, (bottom left) vertical wind (in pressure coordinates), and (bottom right)
the geopotential field.
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flux in hydrodynamic turbulence) and if the dynamical
mechanism is scale invariant and if the main interactions
are between neighboring scales, then one may expect the
statistics to generally follow a (multi) scaling law of the
type:

8q
�

� � ¼ �K qð Þ; � ¼ L=l ð1Þ

where “h.i” indicates ensemble (statistical) averaging, 8 is the
turbulent flux (e.g., the energy flux ") normalized such that
h8li = 1, K(q) is a convex function describing the scaling
behavior of the qth moment, and l = L/l is the ratio of the
(large) external scale L (loosely speaking where the cascade
starts), down to the scale of observation l. The flux is in
Fourier space so that, for example, in the classical “direct”
(i.e., large to small scale) and isotropic cascade, there is a
quasi steady flux through spherical shells in Fourier space
from low to high wave number. At small (dissipation) scales,
the flux is equal to the dissipation and no longer propagates
to smaller scales. More realistic cascades differ from this
classical picture in several ways: (1) they are intermittent so
that we expect at least occasional “backscatters,” i.e., small
to large scale fluxes, (2) as mentioned, the cascade is
anisotropic due to gravity, the Coriolis force and boundary
conditions, (3) the energy flux sources and sinks (chiefly
short and long wave radiances) are themselves scaling so
there is no classical source and sink free (pure) “inertial”
range, and (4) in the horizontal, evidence is emerging that
the cascade direction is not constant in time and place (e.g.,
aircraft data [Lindborg, 1999; Lindborg and Cho, 2001],
scatterometer data (R. M. Kerr and G. P. King, Evidence
for a midlatitude meso‐scale downscale energy cascade
from the marine boundary layer, http://www.docstoc.com/
docs/70470043/Evidence‐for‐a‐mid‐latitude_‐mesoscale‐
downscale‐energy‐cascade‐), and ECMWF interim data
[Lovejoy and Schertzer, 2011a]).
[16] Statistics following equation (1) are the generic out-

comes of multiplicative cascade models in which large scale
“parent” structures multiplicatively modulate the flux passed
on to smaller “daughter” structures. One may already note
that in the framework of generalized scale invariance (GSI),
the scales l, L are no longer required to be the usual (isotropic,
Euclidean) scales [Schertzer and Lovejoy, 1985a]; therefore
equation (1) is quite general potentially applying to highly
stratified but scaling systems such as the atmosphere. For
comparison, in the classical quasi‐Gaussian (nonintermittent)
turbulencemodel we have the trivial exponentK(q) = 0. In the
analyses below, the ensemble is finite, not infinite and in the
1‐D analyses we average over the remaining coordinates.
[17] Since the cascade is multiplicative, its logarithm is

additive. It is therefore not surprising, although for a time it
was debated [Schertzer and Lovejoy, 1997], that due to the
additive central limit theorem for the sums of identical
independently distributed random variables, there are spe-
cific (stable, attractive) “universal” forms for the exponent
K(q) [Schertzer and Lovejoy, 1987]:

K qð Þ ¼ C1

�� 1ð Þ q� � qð Þ ð2Þ

where C1 is the “codimension of the mean,” which char-
acterizes the sparseness of the set that gives the dominant

contribution to the first order statistical moment (the
mean), and respects 0 ≤ C1 ≤ d, where d is the dimension
of the embedding space. The multifractal index 0 ≤ a ≤ 2
characterizes the degree of multifractality, i.e., the shape
of the K(q) function. It is also the Levy stability index of
the cascade generator Gl = log8l. If the cascade is uni-
fractal/monofractal, then a = 0, whereas a = 2 corresponds
to the ”lognormal” multifractal (more precisely, its generator
is Gaussian). A universal multifractal is termed “universal”
because it is the basin of attraction for a wide variety of dif-
ferent multiplicative processes. In our analyses, we will see
that the universal form (equation (2)) fits the empirical K(q)
quite well so that irrespective of whether the numerical models
are indeed universal multifractals, the parameters C1, a give
very convenient parameterizations of their forms (although
due to the interesting phenomenon of “multifractal phase
transitions” [Schertzer and Lovejoy, 1992], this breaks down
at large enough q; often not much higher than q ≈ 2 − 3). In
addition, irrespective of whether the cascades are exactly
universal, C1 and a still characterize, respectively, the sparse-
ness near the mean and the curvature (and hence degree of
multifractality) near the mean. In this paper we therefore often
use C1, a to reduce the characterization of the scaling (via the
exponents K(q)) to manageable proportions (to two para-
meters). In any event, we show that the data fairly convincingly
demonstrate a “Levy collapse” when the moments are nor-
malized by the theoretical universal K(q), and this even for
scales at least somewhat outside the scaling range (see
Stolle et al. [2009, submitted manuscript, 2011], Lovejoy and
Schertzer [2010] and section 3.4 below). In other words, the
universality relation equation (2) may be respected evenwhen
the scaling relation equation (1) holds with a nontrivial gen-
eralized scale, rather than with the usual (Euclidean) scale.

2.4. Estimating the Turbulent Fluxes From the
Fluctuations

[18] In order to test equation (1), we must use an approach
that does not require a priori assumptions about the physical
nature of the relevant fluxes nor of their scale symmetries
(isotropic or otherwise); the latter will in fact turn to out to
be anisotropic and hence nonclassical. If atmospheric
dynamics are controlled by scale invariant turbulent cas-
cades of various (scale by scale) conserved fluxes 8 then in
a scaling regime, the fluctuations Df (Dx) in an observable
f (x) (e.g., wind, temperature or radiance, x is a coordinate
(here, east west, north south or time) over a length Dx
are related to the turbulent fluxes by a relation of the form
Df (Dx) = 8DxH. This is a generalization from the classical
turbulence laws: for example, the Kolmogorov law is the case
when Df = Dv (velocity fluctuations), and for temporal
fluctuations in a Lagrangian frame, H = 1/2, and 8 = "h,
h = 1/2, while for spatial fluctuations, we have H = 1/3 and
8 = "h, h = 1/3. Similarly, the Corrsin‐Obukhov law for
fluctuations in a passive scalar (Df = Dr) is recovered with
8 = c1/2"−1/6, H = 1/3 where c is the passive scalar variance
flux. Without knowing h or H, nor even the physical nature
of the flux, we can use this to estimate the normalized
(nondimensional) flux 8′: a random field at the smallest
resolution of our data:

8′ ¼ 8= 8h i ¼ Df =Dfh i ð3Þ

LOVEJOY AND SCHERTZER: SPACE‐TIME CASCADES AND ECMWF REANALYSES D14117D14117

5 of 26



Note that if the fluxes are realizations of pure multiplicative
cascades then the normalized h powers, "h/h"hi, are also
pure multiplicative cascades, so that 8′ = "h/h"hi is a nor-
malized cascade quantity.
[19] The fluctuation Df(Dx) can be estimated in various

ways; for example with the help of the absolute first order
finite difference: Df(Dx) = j f(x + Dx) − f(x)j or of a second
order difference: Df(Dx) = j f(x) − ( f(x +Dx) + f (x −Dx))/2j
(we average over x so that the statistics of Df are indepen-
dent of x). These “poor man’s wavelets” are adequate when,
as is typically the case, 0 ≤ H ≤ 1 (for first order differences)
or 0 ≤ H ≤ 2 (second order differences). If desired, other
definitions of fluctuations (other wavelets) could be used. In
order to analyze the fluxes over the widest range of scales
possible, we take Dx at the smallest resolution (1 pixel =
1.5° ≈ 170 km) and then obtain the intermediate resolution
estimates of the flux by averaging (in space, in time). In the
analyses below, we used second order differences in space
using the (isotropic) spatial second finite difference i.e., the
finite difference Laplacian obtained by taking the absolute
difference between the value at a pixel and the mean of the
four neighboring pixels (north, south, east, west). The re-
sulting high resolution normalized flux estimates 8L′ = DfL/
hDfLi can then be degraded (by averaging) to a lower res-

olution L > Li with scale ratio l = Lref /L < L where Lref is a
convenient reference scale (see below); Li is the smallest
(“inner”) pixel scale corresponding to largest scale ratio L =
Lref/Li. For the reanalyses, this is a (hyper) viscous dissi-
pation scale estimate since although it is not at the finest
reanalysis resolution (0.7°, rather than the publicly available
1.5° resolution we use), the spectra show that they are still
significantly influenced by the (hyper) viscous smoothing.
Stolle et al. (submitted manuscript, 2011) compared the
fluxes estimated from the spatial and the temporal second
differences which are at intervals significantly different from
the model integration time scales; they are in the model
scaling regime (however, the use of different fluxes gave
generally close results).
[20] Since empirically, the outer scale is not known a

priori (it is an interesting parameter in its own right), we
define scales with respect to a convenient reference scale;
in space, we take Lref = 20000 km, and in time the
external scale of the data set was used; tref = 1 year. We then
have:

Mq ¼ �

�eff

� �K qð Þ
; �eff ¼ Lref =Leff ð4Þ

Figure 2a. The analysis of the 700 mbar fields at 0000 UT for 2006 between latitudes ±45°. The fluxes
were estimated using finite difference Laplacians. The curves are the moments q = 0, 0.1, 0.2,…, 1.9, and
2; l = 1 corresponds to the size of the Earth, 20,000 km. The dots are the actual empirical values, and the
straight lines are log‐log regressions of equation (4) (i.e., with slopes K(q)) forced to go through a
common point (the external scale ratio leff).
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where Leff is the effective outer scale of the cascade,
leff the corresponding ratio and Mq = h8′lqi = h8lqi/h8liq is
the qth moment of the dimensionless normalized flux.

3. Cascade Analyses

3.1. The Basic Cascade Structures

[21] The basic cascade analyses are presented in Figure 2a
(zonal), Figure 2b (meridional), and Figure 2c (time). In
each case we start with the finite difference absolute
Laplacian flux estimate which was then degraded by aver-
aging in the corresponding direction and then averaged over
the other directions. One can clearly see the basic cascade
structure of lines converging to the external scales; note in
particular that for the spatial analyses (Figures 2a and 2b)
that the external cascade scales are systematically compa-
rable to the largest great circle distance (20000 km), and that
the scaling (i.e., the log‐log linearity of the empirical points)
is well respected at all but the largest scales (i.e., for
log10l > ∼0.6 i.e., for scales <∼5000 km). The moments
are only shown up to order q = 2 since for large enough q
they become dominated by the largest value present in the
data sample so that the results spuriously depend on the
sample size (K(q) becomes spuriously linear; this is a
“multifractal phase transition”). It was found that in this
data, the transition always occurred for q somewhat greater
than 2, so that the moments shown here are well estimated
from the data.
[22] In order to quantify the cascade statistics, we per-

formed fits to the universal multifractal form (equation (2)).

Since the results were found to vary little from zonal to
meridional to time, rather than give separate tables of
parameters for each, Table 1 gives the mean parameters with
the direction to direction variations indicated by the “±”;
these variations are apparently less than the systematic and
statistical uncertainties. Two estimates of the C1 parameter
are given, one from the universal multifractal fit (i.e., with
K(q) constrained to the form equation (2)) and the other
simply from the numerical derivative: C1 = K′(1); in both
cases, the lines were constrained to pass through a single
external scale since this is the prediction of the more funda-
mental equation (1). It can be seen that the C1 estimates are
very close, although the difference is generally larger than
the direction to direction spread; we take this as evidence
that the direction to direction differences (corresponding to
possible space‐time scaling anisotropy in the fluxes) are not
statistically significant.
[23] In order to quantify the accuracy of the fits, we esti-

mated the residuals as:

D ¼ log10 Mq

� �� K qð Þ log10 �=�eff

� ��� �� ð5Þ

where the overbar represents averaging over all the moments
q ≤ 2 and over the scale ratios larger than a critical value. In
space, this was taken as the scale ratio corresponding to
5000 km, in time, it was the ratio corresponding to 8 days.
The percentage deviation d over the range is given in Table 1
and is estimated as d = 100(10D − 1). From Table 1 we see
that the typical accuracy is better than ±0.5% (the worst fit

Figure 2b. Same as Figure 2a but for the meridional analysis. The data span 90° in latitude, i.e.,
10000 km, but the reference scale was kept at 20,000 km as in Figure 2a.

LOVEJOY AND SCHERTZER: SPACE‐TIME CASCADES AND ECMWF REANALYSES D14117D14117

7 of 26



was for the geopotential height in the meridional direction
where it was ±0.9%). We may also note that all the dif-
ferent fields have very similar intermittency parameters: for
the universal multifractal estimates, the C1 vary only from
0.077 (T) to 0.121 (w) and a only from the lowest 1.77 (hs)
to the highest 1.92 (w). The most significant differences are
for the external scales. Whereas the scaling exponent C1

quantifies the mean variability (intermittency), for fixed q,
changing the external scale changes Mq at all scales by the
same factor. Since the zonal and meridional K(q) are very
close, there is little scale by scale (differential, not absolute)
horizontal anisotropy; however, the ratio of the zonal to
meridional external scales is 1.6 ± 0.3 (the spread is from
one of the six analyzed fields to the other) which indicates a
strong “trivial,” i.e., nonscaling, anisotropy so that typical
isolines of flux are (roughly) elongated ellipsoids a scale‐
independent factor 1.6 longer in the zonal direction than in
the meridional direction corresponding to the fact that the
gradients of the fluxes (at each scale) are typically about
1.6 times stronger in the north‐south direction. We return
to this important anisotropy issue in section 3.2.
[24] Finally, it is of interest to compare the ECMWF

interim to other model and reanalysis parameters published
by Stolle et al. [2009] (spatial) and Stolle et al. (submitted
manuscript, 2011) (temporal analyses). The latter restricted
their attention to the zonal wind (u), temperature (T) and
humidity fields (h). Considering the spatial (EW direction)
analyses (Table 2a) we see that the parameters are very close
to those of the other products although the C1 parameter is

systematically a little smaller while the outer scales are
systematically a little larger. At any scale these two effects
will tend to cancel since a smaller C1 indicates that starting
at the external scale, the variability builds up more slowly
for the ECMWF interim; however there is an overall increase
in the outer scale so that this lower scale by scale variability
builds up over a wider range. In Table 2a we also show
estimates from in situ aircraft measurements which include
various efforts to minimize the biases introduced by the
aircraft trajectories (intermittent fractality as well as from the
effects of nonzero slopes).
[25] The temporal cascade parameters are indicated in

Table 2b. Once again we see that, although the param-
eters from the different products are not very different, the
C1 values are systematically lower for the ECMWF interim
reanalyzes whereas the external scales (teff) are systemati-
cally larger. In this case, however, the teff values are often
several times larger indicating that the actual variability of the
ECMWF interim is much larger. If instead of the effective
outer scale (where the lines converge), we consider the scale
at which the lines start to significantly deviate (ttrans) (“trans”
for “transition”) from the empirical moments, then the dif-
ference is not so large: about 8 days in all cases (see Stolle
et al. (submitted manuscript, 2011) for more systematic dis-
cussion of this). In the latter paper, it was argued that ttrans
marks the beginning of the transition from weather to cli-
mate, that teff marks the end of the transition range and that
the scales >teff are in a “pure” climate regime: see Table 2b
and Figure 2c.

Figure 2c. Same as Figures 2a and 2b but for the temporal analyses; l = 1 corresponds to 1 year.
The effective outer temporal cascade scales (teff) are indicated with arrows.
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3.2. Space‐Space and 1Space‐Time Diagrams

[26] Lovejoy and Schertzer [2010] pointed out that the
planetary scale scaling of the horizontal wind allows the
Kolmogorov law to operate up to these scales so that
the energy flux plays a fundamental role. This was esti-
mated from first principles starting with the solar flux at
the top of the atmosphere and assuming (1) a mean ≈20%
albedo, (2) a 2% efficiency of conversion to kinetic energy,
and (3) that the flux is distributed more or less uniformly
throughout the troposphere. The result, " ≈ 5 × 10−4 m2/s3

was close to the direct estimates form ECMWF interim
reanalyses (" ≈ 10−3 m2/s3), and predicts that structures of
size l have lifetimes (“eddy turnover times”) t ≈ "−1/3l2/3

of structures. The critical weather‐low‐frequency weather
transition time scale (tw) is therefore tw = teff = "−1/3Leff

2/3 ≈
10 days and Veff ≈ "1/3Leff

1/3 20 m/s (using the planet scale
20000 km to estimate Leff ; see below for latitudinal dependent
refinements). For scales t > tw, the spatial degrees of freedom
become rapidly quenched so that the long time variability
is increasingly dependent only on temporal interactions
rather than space‐time interactions; the statistics undergo a
“dimensional transition” [Lovejoy and Schertzer, 2010].
[27] To directly study the space‐time cascade relations,

we can use the cascades to construct space‐space and space‐
time diagrams, therefore to infer the relevant generalized
space‐time scale. This is possible because, for example,
comparing spatial and temporal statistics, we can define
space‐time relations using the following implicit relation
between length scales L and time scales t:

�q
Lref =L

D E
¼ �q

�ref =�

D E
ð6Þ

[28] Actually, equation (6) gives a different relation between
L and t for each q value. However, in the simplest GSI case

where the C1 and a for the spatial and temporal analyses are
the same (as is roughly the case here, see Table 1), any q will
give the same relationship although larger values of q will
give more statistically accurate results (as long as the
moments are not so large as to be spuriously dependent on a
few extreme values and the value q = 1 does not work since
the corresponding moments are independent of scale). Here
we chose q = 2 which has the advantage that the corre-
sponding K(2) is precisely the intermittency correction
necessary for the spectrum (which is a second order statistic);
this is needed below. Figure 3 shows the results for q = 2 for
the three pairs of directions: NS/EW, EW/time, NS/time.
The space‐time diagrams show that a linear (constant velocity)
relation between space and time works reasonably well up to
2000–2500 km in space and up to time scales of ∼7–10 days
in time. After 7–10 days there is a drastic change in the
relationship; this is the transition to the low‐frequency
weather regime. While the space‐space diagram shows that
structures are typically elongated in the EW direction by
factors up to about 1.6 comparable to the value of the
(average) Leff,EW/Leff,NS ratio discussed above, the space‐time
diagrams indicate effective space‐time transformation speeds
Veff = Leff /teff in the range ∼200–400 km/d (∼2.5 to 5 m/s).

3.3. Latitudinal Dependence

[29] Up until now, we have taken statistics from ±45°
latitude in order to concentrate on the basic variation with
direction (zonal, meridional, temporal). However, a basic
aspect of atmospheric dynamics is its latitudinal depen-
dence, notably due to the Coriolis force and strong north‐
south temperature gradients. Paradoxically, the fairly limited
analysis of latitudinal dependence by Stolle et al. [2009]
found that latitudinal variations were small; this is presum-
ably because the cascade structure is mostly dependent on the
nonlinear interactions whereas the most important north‐
south effects involve linear terms and boundary conditions.
Let us now investigate this more systematically here.
[30] In order to study the latitudinal dependence, we broke

up the Earth into 15° bands: Figure 4a shows the moments for
the � = 0–15°N band, and Figure 4b shows the 45–60°N band.
The main differences visible are small but systematic

Table 2a. The East‐West Analysis of the Fluxes Obtained as the
Laplaciansa

ECMWF Interim ERA40 20th Century GEM GFS Aircraft

u
a 1.86 1.93 1.87 1.68 1.80 1.94
C1 0.081 0.096 0.089 0.104 0.082 0.088
Leff 12700 12000 16000 11000 9000 25000

T
a 1.89 2.11 1.85 1.94 2.00 1.78
C1 0.074 0.094 0.088 0.077 0.080 0.107
Leff 20000 14500 16000 8300 8600 5000

hs
a 1.70 1.75 1.73 1.60 1.74 1.81
C1 0.095 0.094 0.077 0.100 0.091 0.083
Leff 12700 11000 50000 11800 9000 10000

aFluxes: the ECMWF interim data from Figure 2a, the Twentieth Cen-
tury reanalysis (1871–2008, every 6 h, 2° resolution, 44–46° N only)
[Lovejoy and Schertzer, 2011a], and the others from Stolle et al. [2009].
Data are from ±45° latitude, 700 mbar. The aircraft data are from Lovejoy
et al. [2010] and have been corrected by the factor (3/2)a ≈ 2.07 which is a
theoretical estimate of the difference between the dissipation scale flux
estimates and the scaling range flux estimates. Also, they are for roughly
200 mbar flight levels rather than 700 mbar levels (but the model param-
eters did not change too much as functions of altitude). Note that the Leff
for the wind is probably too big due to turbulent intermittency effects of the
aircraft trajectory; see Lovejoy et al. [2010] for discussion.

Table 2b. The Temporal Analysis of the Fluxesa

ECMWF Interim ERA40 20th Century GEM GFS

u
a 1.83 1.7 1.81 1.8 1.8
C1 0.091 0.10 0.083 0.12 0.11
teff (days) 29 7 16 13 5

T
a 1.90 1.9 1.82 2.0 1.8
C1 0.082 0.10 0.090 0.12 0.13
teff (days) 58 9 13 28 82

hs
a 1.83 1.7 1.74 1.6 1.7
C1 0.098 0.12 0.083 0.14 0.12
teff (days) 46 9 40 12 13

aECMWF interim, 20th century, 24 h time resolution (from Figure 2c,
obtained from Laplacians), and for the others (6 to 12 h resolutions) from
the second time derivative, these are reproduced from Stolle et al. (sub-
mitted manuscript, 2011). All the data are from ±45° latitude, 700 mbar
(except 20th century which is only 44°N–46°N).
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changes in the outer scales. The same data in the time
domain is shown in Figures 4c and 4d. The variation is
pretty small and is confirmed in the other bands (not shown).
Also, for the exponents, there is generally a good degree of
north‐south symmetry. In order to quantify this, we turn to
Figures 5a and 5b which show the evolution of the expo-
nents C1, a (Figure 5a), and the external spatial and tem-
poral scales (Figure 5b). First for a given field, we can
compare the space and time exponents; we find the differ-
ences are generally less than 0.02 for C1 and less than 0.1 for
a, which is probably less than the statistically significant
level, especially since the sample size of each 15° band is
1/6 of the previously analyzed (90°) band, and the range of
scaling in the time domain was quite limited (2–8 days; the
1 day value was not used since, as can be see from the
plots, it suffers from “finite size effects”). In addition, we
see that for some of the fields (essentially the geopotential
and specific humidity near the equator), the a values are a
bit larger than the theoretical maximum (= 2) so that the
curvature (a) estimates (which were made here using a =
K″(1)/K′(1)) are not too accurate; their deviations from a =
2 are probably not statistically significant. We notice a slight
tendency for the intermittency to increase away from the
equator, especially in the southern hemisphere; it is suffi-
ciently systematic that it is probably a real change in C1.
[31] Even though the exponents show remarkably little

latitudinal variation, that does not imply that the cascade
structure is nearly independent of latitude. Figure 5b shows
the variation of the external space and time scales as well as
their ratios, the effective speed Veff needed for space‐time
transformations. The main noteworthy features are: (1) The

latitudinal variations in external scales are relatively small
(except perhaps for the geopotential height); in space they
are almost all between 10,000 and 20,000 km, in time
between 20 and 40 days, and in speed, between 400 and
1000 km/d. (2) The external scales have significant north‐
south asymmetry, especially the time scales of the northern
hemisphere which have significantly larger teff ; however
this is somewhat mirrored in larger Leff values so that their
ratio (Veff) drops in the northern hemisphere. The reason for
the asymmetry is not clear and it may be partly due to factors
such as differences in data density and land cover between the
two hemispheres. Using the observed Leff (�) and the observed
latitudinally varying "(�) from the same reanalyses [see
Lovejoy and Schertzer, 2010], we can theoretically estimate
teff (�) = "(�)−1/3Leff (�)2/3 and Veff (�) = "(�)1/3Leff (�)1/3. For
the published range of "(�) (−45° < � < 45°), these theoreti-
cally predicted curves are superposed against the empirical
curves (Figure 5b). We see that the pattern of latitudinal
variations of teff and Veff are very close to those predicted on
the basis of the mean latitudinal energy flux "(�) but there is
an offset of factor ∼1.6.

3.4. Levy Collapse: Generalized Scale Invariance in the
Low‐Frequency Weather Regime

[32] We found that the universal multifractal form
(equation (2)) leads to good fits over all the moments (up to
q = 2) and scales up to 5000 km and 7–10 days in time,
after which the scaling breaks down. However, as discussed
above, a space‐time cascade model of the atmosphere pre-
dicts a break (“dimensional transition”) at the weather scale
tw ≈ 10 days. By extending the stochastic cascade model

Figure 3. Space‐time and space‐space plots using the q = 2 moments and using l = tref /Dt and l =
Lref /Dx for time and space, respectively; (top left) east‐west and time, (top right) north‐south and time,
and (bottom left) north‐south and east‐west. Yellow is hs, green is T, cyan is u, blue is v, purple is w, and
red is z. In all cases, the black reference lines have slopes 1; in the space‐time diagrams, it corresponds to
a speed of ≈225 km/d; the spread in the lines indicates a variation over a factor of about 1.6 in speed. In
the space‐space diagram the bottom reference line corresponds to isotropy; the top corresponds to an
aspect ratio of ≈1.6 difference as discussed in the text.
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that generates the “weather” to scales t � tw, Lovejoy
and Schertzer [2010] showed that the energy flux " can
be written as a product of high‐frequency space‐time
weather regime flux "w(r, t) multiplied by a low‐frequency

weather‐low‐frequency weather process "lw(t) which is only
a function of the total range of time scales longer than tw.
Theory shows that "lw(t) has a asymptotically singular auto-
correlation function h"lw(t)"lw(t − t)i ≈ t−1 which implies a

Figure 4a. The cascade analyses of the (absolute) spatial finite difference Laplacian from the band 0°–
15°N, zonal analysis; external reference scale = 20,000 km (corresponding to l = 1). The moments used
are q = 0.1, 0.2, …, 1.9, 2.0. The different fields are indicated in the plot (u, zonal wind; v, meridional
wind; w, vertical wind; hs, specific humidity; T, temperature; z, geopotential height). The straight lines are
log‐log regressions of equation (4) (i.e., with slopes K(q)) forced to go through a common point (the
external scale ratio leff).

Figure 4b. Same as Figure 4a but for the band 45°N–60°N (zonal analysis).
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large t divergence in the spectrum. In practice this means
that the spectrum E(w) for frequencies lower than tw

−1 will
have spectral exponent b which depends only the outer
scale (and weakly on a) with realistic values in the range b ≈
0.2–0.4 (with E(w) ≈ w−b; this reproduces the observed
spectral plateau [see Lovejoy and Schertzer, 2011a]).
[33] Further consequences of the dimensional transition at

tw are that although the “bare” "lw(t) process (i.e., con-
structed down to a given scale and stopped) has roughly
(“long tailed”) log‐Levy distributions, when, as in our data

analysis, the process is continued down to much smaller
scales and then averaged, the resulting “dressed” statistics
will eventually be (“short tailed”) quasi Gaussian. Therefore
the Levy collapse is not expected to continue to time scales
much longer than tw. However, as discussed by Lovejoy and
Schertzer [2011a] and mentioned in section 1, this pure
atmosphere model does not take into account interactions
with the oceans which apparently have similar turbulence
and transitions, only with "o ≈ 10−8 m2/s3 and hence critical
time scale to ≈ "o

−1/3Le
2/3 ≈ 1 year. The interaction between

Figure 4c. Same as Figure 4a (the band 0°–15°N) but for the temporal analysis. The outer scale is 1 year
(corresponding to l = 1).

Figure 4d. Same as Figure 4b (the band 45°N–60°N) but for the temporal analysis.
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the ocean and the atmosphere may therefore provide the
extra correlations needed to allow the log‐Levy distributions
to continue to longer time scales of the order of one year.
[34] One way to check the log‐Levy form of the proba-

bility distribution (both in the scaling range and beyond) is
to consider the reduced moments:

Mq′ ¼ M ��1ð Þ= q��qð Þ
q ð7Þ

If an a index can be found such that these are independent
of q then the probabilities are log‐Levy with corresponding
a index. Figures 6a, 6b, and 6c show the results when a =
1.9 was used throughout (roughly the mean a value found
from the regressions; see Table 1). In the scaling regime, all
the moments “collapse” onto a single straight line:Mq′ = lC1;
however, we see that even in the regime where Mq′ is no
longer a power law with respect to time and/or space for
large separations (l), the curves continue to collapse indi-
cating that they remain of the multifractal universality form.
This collapse shows that Mq′ could be used to define a
“generalized scale” l′ = Mq′

1/C1 in the framework of extreme
nonlinear GSI [Schertzer et al., 1997] (any positive power of
l′ is acceptable). The degree of collapse can be simply
judged by inspecting the bunching of the lines for different
q on top of each other: this can also be quantified scale by
scale. For example, even at low l (i.e., at t = 1 year), for the
temporal cascades for hs and T the collapse is only to within
±30% whereas also at one year, it is much better (±3%) for u
and v, ±6% for w and still reasonable (±12%) for z. Simi-
larly, in the east‐west direction the spreads of the lines for
different q values at 20000 km are: ±10%, ±1.5%, ±6%,
±6%, ±10%, and ±10% for hs, T, u, v, w, and z, respectively.

Note that the spreads are large for the extreme small scale
(one pixel in space, one day in time); this is presumably a
finite size effect: the problem of convergence to an accurate
flux estimate. These collapses thus give evidence that, pre-
sumably due to the effects of “ocean weather” on the atmo-
sphere, the multiplicative structure of the fluxes continues
even well into the climate regime.

4. The Scaling of the Fields and Spectra

4.1. Horizontal Anisotropy

4.1.1. Generalized Scale Invariance
[35] Up until now, we have simply used the fields to

define fluctuations at the smallest scales and hence to esti-
mate the normalized turbulent fluxes. Since the fields are
related to the fluxes by relations of the form Dv = 8DxH, we
see that a full characterization of the statistics of the field v
requires the additional exponent H. For example, in the
classical Kolmogorov scaling, v is a velocity component 8 =
"1/3 where " is the energy flux to smaller scales and H = 1/3.
Taking the qth power and then the ensemble average of this
relationship, we obtain:

Dv Dxð Þð Þqh i ¼ ’q
Dx

� �
DxqH ¼ Dx� qð Þ; � qð Þ ¼ qH � K qð Þ;

Dx / ��1 ð8Þ

where x(q) is the structure function exponent. From the
Wiener‐Khinchtin theorem, the power spectrum is the
Fourier transform of the autocorrelation function. Since
the second order structure function is to within a constant the
same as the autocorrelation function, we obtain E(k) ≈ k−b

Figure 5a. The cascade exponents C1 and a (top) from the spatial (zonal) analysis and (bottom) from the
temporal analysis. From bottom to top in the top left plot, we have the zonal wind (u, cyan), the merid-
ional wind (v, blue), the temperature (T, green), the geopotential height (z, red), the vertical velocity (w,
purple), and the specific humidity (hs, orange). The extreme latitude bands (±75°–90°) were not used
since the mean map factor is very large and the results were considered unreliable.
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with b = x(2) + 1 = 1 + 2H − K(2). One can thus estimate H
from K(2) and the Fourier domain scaling exponent b. How-
ever, in this case, the usual method, using isotropic spectra
to estimate b, needs to be examined carefully. In addition,
in the usual structure function the fluctuation Dv is defined
using the “poor man’s” wavelet, i.e., simply a difference, in
which case equation (8) is only valid for 0 < H < 1 (the
range of H values can be extended using other wavelets to
define Dv).
[36] Consider a field f(r) where r is a position vector

(extensions to space‐time are straightforward). Define its
Fourier transform (indicated by the tilda):

gf kð Þ ¼
Z

eik�rf rð Þdr ð9Þ

where k is the wave vector dual to x. We can now define the
power spectral density P:

P kð Þ ¼ gf kð Þ
��� ���2	 


ð10Þ

As before, the angle brackets mean “statistical averaging”
and the vertical bars indicate the modulus of the complex ef .
Here, the continuous transform is estimated using discrete
fast Fourier techniques (with Hann windows), and the

ensemble average is estimated by averaging over all the
available data as discussed in section 2.1.
[37] If the system is statistically isotropic, then P only

depends on the vector norm of k: P(k) = P(∣k∣). Now con-
sider an isotropic “zoom” (i.e., a standard “blow up”) by
factor l > 1 in Fourier space: k → lk, equivalent to the
physical space inverse “blow down”: r → l−1r. If the sys-
tem is “self‐similar,” i.e., if it is both isotropic and also
scaling, then the condition that the smaller scale is related to
the larger scale without reference to characteristic size (i.e.,
that it is “scaling”) implies the following power law relation
between large scales l−1∣k∣ and smaller scales ∣k∣:

P ��1 kj j� � � �sP kj jð Þ ð11Þ

The solution to the functional equation (11) is the following
scaling law for P:

P kð Þ � kj j�s ð12Þ

We have deliberately proceeded step by step since we will
shortly generalize this to non‐self‐similar, anisotropic scaling
systems where the norm of k is replaced by a scale function
which respects anisotropic scaling symmetries rather than
the isotropic ones respected by the vector norm and the

Figure 5b. The external scales as functions of latitude: (top left) the outer space scale (in units of kilo-
meters) from the zonal cascade analyses and (top right) from the time analysis (in units of days), and (bot-
tom left) their ratio, the effective speed of space‐time transformations (in units of km/d). The dashed lines
are convenient reference lines; note that 500 km/d = 5.8 m/s. The thick dashed blue and cyan lines are
zonal and meridional wind components, respectively; in the teff, Veff plots we also show a short (between
±45° only) thick dashed dark blue line representing the theoretical predictions based on the latitude depen-
dence of the tropospheric averaged " estimates from the ECMWF interim reanalyses estimated by Lovejoy
and Schertzer [2010] using the zonal gradient estimates appropriate to these zonal analyses. As can
be seen, the latitudinal variation is nearly exactly reproduced but the values are shifted by a factor
≈100.2 ∼ 1.6.
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isotropic reduction l−1 is replaced by a more general aniso-
tropic scale changing operator.
[38] It is now usual to introduce the “isotropic spectrum”

E(k) (with k = ∣k∣) obtained by integrating over all direc-
tions: in 1‐D, E(k) = 2P(k), in 2‐D, E(k) = 2pkP(k) and in
3‐D, E(k) = 4pk2P(k). In terms of data analysis, where
one has a finite rather than infinite sample size, one can

profit from the angle integration to improve the estimate
of E(k) (to reduce the noise), by using:

E kð Þ ¼
Z
�Sk

P k′ð Þdk′ ð13Þ

Figure 6a. The zonal analysis of the Levy collapse. The vertical scale is log10Mq′ (equation (7)).
The value of a used in all the collapses was a = 1.9.

Figure 6b. Same as Figure 6a but for the meridional direction. The value of a used in all the collapses
was a = 1.9.
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where Sk is the d‐dimensional sphere and dSk is its boundary:
in d = 1 it is the end points of the interval from −k to k, in d = 2,
it is the circle radius k, and in d = 3, the spherical shell
radius k (in 1‐D this just reduces to E(k) = 2hj gf kð Þj2i).
Using equation (13), we therefore take the power law
dependence of the spectrum:

E kð Þ � k�	; 	 ¼ s� d þ 1 ð14Þ

as evidence for scaling of the field f.
4.1.2. Testing GSI on Horizontal Reanalyses
[39] To estimate the spectrum on the reanalyses recall

that in data analysis, the isotropy of P is almost always
simply assumed without question and E(k) estimated by
equation (13). However, a real problem arises because
before interpreting the result, we ought first to check that
P(k) is indeed (nearly) isotropic, and this is rarely done.
While, ideally, spherical harmonics should be used for
spherical data, unfortunately there is no simple or obvious
way to use them to study zonal versus meridional anisot-
ropy. We thus resorted to using cylindrical maps and
standard (Cartesian coordinate) Fourier techniques. We
proceeded as follows: first, since the largest east‐west dis-
tance is 180°, each latitudinal band from −45° to + 45° was
broken into two longitudinal sections, one from 0 to 180°
and the other from 180 to 0° longitude i.e., each 180° × 90° or
20000 × 10000 km or 120 × 60 reanalysis pixels (as usual, all
spectra used Hann windows to reduce spectral leakage).
Although it might at first sight appear that the use of this
cylindrical map projection might in itself lead to a significant
statistical anisotropy, the actual bias in the spectral density
turns out to be very small. For example, in Appendix A we
use numerical simulations to study the effect of the mapping
in detail; a brief summary follows.While the effect of the map
projection increases with H, we find that over the relevant

empirical range 0.33 < H < 1.25, that the spectral density P
(which varies by more than 4–5 orders of magnitude) is only
affected by a few percent. Even with the largest value H =
1.25 (for the geopotential height), the zonal and meridional
spectral exponents are only biased by, respectively, Db ≈
0.01, Db ≈ 0.05, which is much smaller than the empirically
estimated differenceDb ≈ 0.5 between the meridional and the
zonal geopotential value bEW ≈ 3.35; the biases are lower for
the other (lower) b, H values. In the following, we there-
fore ignore this small effect.
[40] Figure 7 shows the P contours obtained by taking

averages over the squared moduli of the 2 × 365 transforms
(0°–180°, 180°–0°; i.e., 2 per day for 2006): the spectra are
shown with 2:1 aspect ratios such that circular large k
contours indicate isotropy. We note that this is more or less
the case for the largest wave numbers corresponding to
∼2 pixels (the Nyquist wave number) in real space. One
sees that at larger and larger scales (smaller and smaller
wave numbers, near the center), the contours become
increasingly elliptical with the ellipses oriented in the ky
direction corresponding to real‐space structures extended
in the east‐west direction; overall the small Fourier space
ellipses have aspect ratios ≈2. The only, but significant,
exception is for the meridional wind which is also increas-
ingly elliptical (by about the same amount) but elongated in
the east‐west rather than north‐south direction. In compar-
ison, for the fluxes there was also an EW elongation of
structures but with the key difference that, due to the
apparent isotropy of the flux exponents, their anisotropies
were the same at all scales; i.e., there was “trivial anisot-
ropy” of about the same factor (1.6 ± 0.3, section 3.1). In
contrast, here the effect changes markedly with scale from
near isotropy at single pixel scales to fairly strong stratification
elongation at the largest scales. This scale by scale change of
the aspect ratio combined with the scaling exhibited by the

Figure 6c. Same as Figures 6a and 6b but for the temporal analysis of the collapse. The value of a used
in all the collapses was a = 1.9.
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fluxes suggests that the spectral density respects an aniso-
tropic scaling symmetry:

P kð Þ / kkk�s ð15Þ

where kkk is the (nondimensional) “scale function” which
replaces the vector norm in scaling but anisotropic systems.
kkk satisfies the functional scaling equation:

k��Gkk ¼ ��1 kkk ð16Þ

where l is a scale ratio and G is the generator of the
anisotropy; in the case where the anisotropy changes only
with scale but not position, G is a matrix (“linear generalized
scale invariance,” GSI). It is important to note that here we
consider the scale by scale anisotropy of a scalar quantity;
this is quite different from the more usual approach to
anisotropy in the meteorological literature [e.g., Hoskins
et al., 1983] which considers the anisotropy of a vector
quantity (e.g., the wind) at a unique (e.g., model resolution)
scale.

Figure 7. Contour plots of log P, left to right within plot is kx, vertical direction is ky. (top left) The
specific humidity, (top right) temperature, (middle left) zonal and (middle right) meridional winds, (bot-
tom left) vertical wind, and (bottom right) geopotential. Contours of the logarithm of the theoretical
canonical scale functions (blue) all have Hy = 0.8 (except for v which has Hy = 1/0.8) and the spherowave
numbers are ks = 60, 30, 60, 30, 60, and 30 for hs, T, u, v, w, and z, respectively. Due to the Nyquist
frequency, the largest ky is 30 cycles/90° corresponding to 2 pixels. Due to the 2:1 aspect ratio (which
compensates for the 2:1 change in range of kx with respect to ky), a circle the diameter of the square
in the image corresponds to isotropy at a 2 pixel scale.
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[41] Here, in the horizontal (x, y) planar approximation to
the Earth’s surface, we take:

G ¼ 1 0
0 Hy

� �
ð17Þ

and the simplest, “canonical” solution of the scale
equation (16) with G given by (17) is:

kkk ¼ kx=ksð Þ2þ ky=ks
� �2=Hy

� �1=2
ð18Þ

where Hy is the ratio of the east‐west and north‐south scaling
exponents and ks is the “spherowave number,” the size of the
roughly isotropic (circular) contours (equation (18) is a
dimensionless scale function; a dimensional one can be ob-
tained by multiplying by ks). Note that the scale function
equation (18) is only the simplest “canonical” scale function
satisfying equations (16) and (17); for the more general case
involving essentially an arbitrary “unit ball,” see, e.g.,
Lovejoy et al. [2008]. What we are attempting here is to test
equations (15), (16), and (17); this is a difficult problem in
statistical parameter estimation; see, e.g., Lewis et al. [1999]
for the “scale invariant generator technique” useful whenG is
an arbitrary 2 × 2 matrix. Here we can use a more straight-
forward approach since G is diagonal: to estimate the ex-
ponents we shall use both the zonal and meridional 1‐D
spectra, the 2‐D isotropic spectrum and the 2D spectral
density P.
[42] Before continuing, let us note that the real space

counterpart to equations (15)–(18) is that the fluctuations in
the field Df follow:

Df Drð Þ ¼ 8lHs kDrkH ; Dr ¼ Dx;Dyð Þ;

kDrk ¼ Dx=lsð Þ2þ Dy=lsð Þ2=Hy

� �1=2 ð19Þ

where the real space “spheroscale” ls ≈ 1/ks and again, the
canonical scale function in equation (19) is only the sim-
plest; it need only satisfy the real space equation corre-
sponding to equation (16). From equation (19) we see that
the east‐west (Dx) and north‐south (Dy) exponents are
different:

Df Dx; 0ð Þ / DxHEW ; Df 0;Dyð Þ / DyHNS ;

HEW ¼ H ; HNS ¼ HEW=Hy

ð20Þ

[43] One way to test equations (15) and (18) is to use the
1‐D east‐west and north‐south spectra EEW(kx) and ENS(ky)
obtained by integrating the P defined by equations (15)–(18):

EEW kxð Þ ¼
Z

P kx; ky
� �

dky ¼ Ax
kx
ks

� ��	EW

; 	EW ¼ s� Hy;

s > Hy

ENS ky
� � ¼ Z

P kx; ky
� �

dkx ¼ Ay
ky
ks

� ��	NS

; 	NS ¼ s� 1

Hy
;

s > 1 ð21Þ

where Ax, Ay are dimensionless constants of order unity
(which will change somewhat depending on the exact scale

function solution to equation (16); recall that the canonical
scale function (equation (18)) is only a special case. A useful
consequence of equation (21) is that it implies the following
simple relation between exponents:

Hy ¼ 	EW � 1

	NS � 1
ð22Þ

To determine space‐space relations (between kx, ky) we can
use the fact that the contribution to the total variance from
all the structures smaller than a given wave number k is
given by the integral of E(k′) from k to infinity. We can
therefore exploit this fact to obtain a 1:1 relation (an implicit
equation) between kx and ky:

Z∞
kx

Ex kx′ð Þdkx′ ¼
Z∞
ky

Ey ky′
� �

dky′ ð23Þ

If bx > 1, by > 1, then equation (23) (with the help of
equations (21) and (22)) reduces to:

ky ¼ ks′
kx
ks′

� �Hy

ð24Þ

where ks′ ≈ ks. (since Ax ≈ Ay ≈ Hy ≈ 1). In other words, a
simple way to check if the anisotropy is scaling is to directly
determine the kx, ky relation (equation (23)) from the 1‐D
spectra and then see if it is roughly a power law (equation (24)).
For the key zonal and meridional winds, the corresponding
space‐space relations are shown in Figure 8. In Figure 8 we
have used lines with slopes 1.25 (which closely fit the u
data) and slope 1/1.25 = 0.80 which closely fits the v data
(in both cases, the slopes = 1/Hy). It is noteworthy that the
scaling of the space‐space relations in Figure 8 is superior to
that of the individual zonal and meridional spectra (Figures 9b
and 9c); this is possible because the latter have some residual
deviations to scaling caused by the hyperviscosity. Our
result is pleasingly symmetric since if we reflect the system
about a northeast/southwest line, then u and v components as
well as x and y axes are swapped and Hy is replaced by 1/Hy

so that this anisotropy respects this basic symmetry. Also
shown in Figure 8 is the bisectrix; the point at which this line
intersects the space‐space ky(kx) curve has kx = ky = ks′, where
ks′ is the “spherowave number” (equation (24)). We see that
ks′ is indeed close to the largest wave number available (due
to the Nyquist wave number, for ky this is 60/2 = 30 with
ky = 1 corresponding to (10000 km)−1). Similarly, the max-
imum anisotropy is given by the extreme low ky aspect ratios,
it corresponds to a factor ≈100.3 ≈ 2.
[44] To test the idea further, we refer the reader to Figure 7

which shows the spectral densities Pwith theoretical contours
superposed corresponding to Hy = 0.8 (or for v, Hy = 1/0.8 =
1.25) and with ks fit to the nearest factor 2. It was found to
be always either 30 or 60 cycles/10000 km corresponding to
either twice the pixel scale of the public data (1.5°) or twice
the pixel scale of the raw reanalysis data (0.7°).
4.1.3. The Implications of the Results
[45] In order to understand this anisotropic spectral

behavior, let us note three key aspects of the results which
appear to be robust: (1) the fields appear to have system-
atic scale by scale anisotropies whereas the corresponding
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turbulent fluxes do not, (2) the anisotropic exponent Hy

seems to be nearly the same for all fields (the only exception
being v for which it is the reciprocal as would be expected by
symmetry), and (3) all the fields display an apparent isotropy
at wave numbers corresponding to ∼1.5° resolutions, i.e.,
very nearly the resolution of the reanalyses. Since, physi-
cally, there is nothing special at ∼1.5° resolution that would
make north‐south and east‐west fluctuations typically equal
in magnitude (and this for all the fields), it would appear
that the overall effect is an artifact of the numerics which
have strong isotropic constraints at the (hyper) dissipation
scale while at the same time having large scale anisotropies
imposed by the boundary conditions. These large scale
constraints correspond physically to the strong north‐south
gradients which are typically much larger than the east‐west
ones. This suggests that the models/reanalyses could be sig-
nificantly improved by doubling their north south resolu-
tions with respect to their east‐west resolutions.
[46] We are making the perhaps surprising suggestion that

boundary conditions could change scaling exponents. How-
ever, it is difficult to see how this could be otherwise since
for the anisotropic scaling to have more profound causes,
one would expect the fields to be dominated by physically
different turbulent fluxes in the north‐south and east‐west
directions, yet we have just shown (section 3) that the fluxes
(which are responsible for the nonlinear contribution to the
exponents K(q), x(q)) seem only to display trivial anisotropy
(i.e., KEW(q)/KNS(q) = 1 for the 8). It seems that the scaling
anisotropy is restricted to the linear part (DxH corresponds
to a fractional integration of order H of the turbulent flux 8,
i.e., a linear operation), while the more fundamental non-
linear exponent K(q) appears to be isotropic. The ability of
the boundary conditions to introduce scaling anisotropy has
in fact already been noted in radiative transfer on isotropic
multifractal clouds when the boundary conditions are cyclic
in the horizontal with radiative flux impinging from the
cloud top only. The consequence is that the internal cloud
radiative fluxes can have scaling anisotropies even when the
cloud liquid water does not [Lovejoy et al., 2009d].

[47] It is worth mentioning one last implication of the Hy

≈ 0.8 differential horizontal scaling. If we consider the
average area of horizontal structures as functions of their
zonal extent, then we find A ≈ DxDxHy ≈ DxDel where the
effective “elliptical dimension” Del = 1 + Hy = 1.80. This
yields yet another argument against the relevance of two‐
dimensional isotropic turbulence to the atmosphere: even
horizontal cross sections are not isotropic, they are not even
two dimensional! If the atmospheric models (not just re-
analyses) share this feature of having horizontal sections
with Del = 1.80, then it would seem that attempts such as
those by Takayashi et al. [2006] to demonstrate the possible
coexistence of 2D and 3D isotropic turbulent regimes are
doomed to failure, if only because even the horizontal fails
to display 2D isotropy.

4.2. The Isotropic Spectrum

[48] No matter what the correct explanation for the
reanalysis horizontal anisotropy, it has consequences for es-
timates of the (supposedly) isotropic spectral exponents, and
even for the extents of the scaling regimes. To see this, let us
estimate the isotropic (angle integrated) spectrum (equation
(13)) assuming that the spectral density P has scaling
anisotropy (i.e., that it has the form given by equations (15)–
(18)); one then obtains:

E kð Þ � k�	l ; 	l ¼ min 	EW ; 	NSð Þ; k � ks

E kð Þ � k�	h ; 	h ¼ max 	EW ; 	NSð Þ; k � ks

ð25Þ

with bl the low, and bh the high wave number spectral
exponents. We thus see that there is a break in the spectrum
at ks. Note that this break is spurious in the sense that it is a
consequence of the isotropic integration; the full 2‐D spectral
density P is perfectly scaling. However, bEW and bNS are
related by equation (21) so that for Hy < 1:

	l ¼ min 	EW ; 	NSð Þ ¼
	EW ; 	EW > 1

	NS ; 	EW < 1
ð26Þ

Figure 8. The empirical space‐space relations for the zonal
wind (u, green), and meridional wind (v, cyan) calculated
using the implicit relation equation (23). The reference
lines have slopes = 1/Hy = 0.8, 1, 1/0.8. The spherowave
numbers are where the bisectrix (dark blue line) intersects
the space‐space lines.

Figure 9a. The isotropic spectra estimated as discussed in
the text by integrating P over circular annuli. The reference
lines have absolute slopes (b): 1.90, 2.40, 2.40, 2.40, 0.40,
and 3.35 (for hs, T, u, v, w, and z, respectively). The largest k
corresponds to an east‐west distance of 20,000 km.
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with a corresponding equation for bh using the maximum
rather than the minimum (and the converse inequalities for
Hy > 1).
[49] Although the spectrum is not isotropic, if we are

careful, we can still use the isotropic E(k) which has the
advantage of improving the estimates since the integration
reduces the statistical fluctuations. Since we found that ks is
very nearly the wave number corresponding to one pixel, we
always have k < ks so that we do not expect a break; the
isotropic exponent will always be bl (equations (25) and
(26)). The approximation (equation (25)) improves at small
k so that good estimates can easily be obtained by estimating
P using numerical Fourier transforms over the available
120 × 60 point grids and then integrating the latter over
circular annuli, keeping only the k < 30 part. Since there is a
2:1 aspect ratio, this is equivalent to integrating over ellipses
with corresponding 2:1 aspect ratios; the same result
(equation (25)) holds but the convergence to the power
law k−bl is faster.
[50] Figure 9a shows the results for the 6 fields; to make

the scaling even more evident, we have averaged the spec-
trum over 10 logarithmically spaced intervals per order of
magnitude (except for the lowest decade where all the wave
numbers are indicated). Due to the 2:1 aspect ratio, the
spatial scale corresponding to a wave number k = 1 corre-
sponds to 20000 km in the east‐west and 10000 km in the
north‐south direction. From Figure 9a, we see that the scaling
is generally excellent. The only exception is for the meridi-
onal wind which exhibits a sharp break at wave numbers
corresponding to 1250–2500 km; for the low wave numbers
it follows another scaling regime with b ≈ −0.2 whose origin
is obscure: it is far from any theoretically proposed value.
Table 1 shows the values of the isotropic exponentsbl estimated
to the nearest 0.05.
[51] We can now use the relatively accurate isotropic

exponent estimates to understand the 1‐D spectra in the
zonal and meridional directions (Figures 9b and 9c). Since
the scaling is not as good as for the isotropic spectrum, we
have added reference lines with the theoretical exponents

(calculated from bl using formulae (25) and (26) above). We
see that the agreement between the 1‐D spectra and the lines
theoretically predicted from the isotropic spectra is excellent.
[52] In order to understand the significance of the various

H exponents deduced from the spectra, recall that H is the
classical nonconservation parameter. In the fractionally
integrated flux model [Schertzer and Lovejoy, 1987], it is
also the order of fractional integration needed to obtain the
field from a pure cascade (H < 0 corresponds to differenti-
ation). Contrary to a, C1 which characterize the intermittent
cascade processes and which can apparently only be eval-
uated numerically or empirically, H is a value that tradi-
tionally has been estimated by dimensional analysis (e.g.,
the H = 1/3 in the Kolmogorov law). However, scanning the
values in Table 1, several are problematic. Let us first con-
sider the geopotential height z. Direct empirical estimates
from the low wave number part of the (roughly) isobaric
aircraft altitude spectrum from Lovejoy et al. [2009c] give
b ≈ 4 (but over a narrow range), i.e., a little larger than the
ECMWF interim value (b ≈ 3.35) in Table 1. This large
value indicates that it varies very smoothly; the fact that it is
greater than unity means that horizontal pressure derivatives
are smooth: ∂p/∂x ≈Dp/Dx ≈DxH−1 which for H > 1 is well
behaved at small Dx. Turning our attention to w, although
the H was too difficult to reliably measure from aircraft,
it was indirectly estimated from lidar backscatter from
Radkevitch et al. [2008] as being in the range −0.1 to −0.2;
this analysis is thus in agreement with small negative value
(when H < 0, it implies that the fluctuations tend to cancel,
that they diminish with scale; H is then the exponent that
determines the rate that the mean fluctuations are reduced
by averaging).
[53] In order to understand the H values for the wind,

humidity and temperature, we have constructed Table 3.
This compares the ECMWF reanalyses, aircraft [Lovejoy et al.,
2010] and dropsonde estimates [Lovejoy et al., 2009b] (note,
the meridional wind was not considered in the earlier stud-
ies). Starting with the wind, and concentrating on the zonal

Figure 9b. The zonal spectra obtained by integrating P in
the y (north‐south) direction. The slopes of the reference
lines are those predicted from the (more accurately esti-
mated) isospectral slopes using equation (26). The refer-
ence lines have absolute slopes (b): 1.90, 2.40, 2.40, 2.75,
0.52, and 3.35 (for hs, T, u, v, w, and z, respectively). The
smallest wave number (k = 1) corresponds to 20000 km.

Figure 9c. The meridional spectra obtained by integrating
P in the x (east‐west) direction. The slopes of the reference
lines are those predicted from the (more accurately esti-
mated) isospectral slopes using equation (26). The refer-
ence lines have absolute slopes (b): 2.12, 2.75, 2.75, 2.40,
0.40, and 3.94 (for hs, T, u, v, w, and z, respectively). The
smallest wave number (k = 1) corresponds to 20000 km.
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component we note that there is excellent agreement
between the dropsonde (vertical) value and the ECMWF
isobaric value. As argued by Lovejoy et al. [2009b], this is
because the isobars are gently sloping so that at large enough
scales, one obtains the vertical rather than horizontal values.
As a consequence, the aircraft value given in Table 3 is the
theoretical value 1/3 which was argued to be compatible
with the small scale aircraft statistics when corrected for
intermittent turbulent motions of the aircraft. The H value
for the humidity (0.54) is at least close to the measurements
(0.51) although to our knowledge it is not predicted by any
existing theory. Similarly the temperature H is far from the
aircraft H although it is close to the isobaric wind H, sug-
gesting that at least in the reanalysis, it is nearly hydrostatic:
T = gR−1∂z/∂lnp (it would then be an isobaric estimate
rather than an isoheight estimate similar to the H for the
horizontal wind).

4.3. The Temporal Spectra

[54] To complete this overview of meteorological scale
statistical exponents, we now turn to the time domain. From
a theoretical point of view, the time domain is more com-
plicated than the spatial domain, since even in classical
isotropic turbulence, there exist two scaling exponents: one
valid in Lagrangian frames (i.e., comoving with the flow)
and one in the usual (fixed, Eulerian) frame. For the wind,
the former yields H = 1/2 while the latter H = 1/3 (ignoring
the small intermittency corrections, the corresponding spec-
tral exponents are b = 2, 5/3, K(2)). These issues were dis-
cussed at length theoretically [Lovejoy et al., 2008] and, for
passive scalars, empirically by Radkevitch et al. [2008]. The
upshot was that up to the scales of the weather/climate
transition (∼10 days) the Eulerian exponent would be
expected to be dominant over the exponents arising from
horizontal advection so that the classical H = 1/2 (b ≈ 2)
exponent would not be visible. However, if the vertical wind
exponent has a slightly negative spatial H (the values ≈−0.1
to −0.2 were quantitatively deduced, essentially the same
as those found here; Table 1), then this, coupled with the

nonclassical (anisotropic) scaling vertical stratification leads
to a new complication: the possibility that the advection by
the vertical velocity would yield an effective temporal
exponent H ≈ 1/2 (b ≈ 2). This was indeed occasionally
observed in the high‐frequency passive scalar analyses and
it has been occasionally reported in the literature for the
wind (although the much more usual value is ∼5/3 [see
Radkevitch et al., 2008]. However, the theory and analysis
by Radkevitch et al. [2008] showed that this effect will only
be visible for large vertical winds, small horizontal winds
and at small space‐time scales; hence for the ECMWF anal-
yses we expect horizontal/temporal isotropy (i.e., the same
exponents in space and time as found for the cascades).
[55] Figure 10a shows the temporal spectra over the entire

observed frequency range (1 year)−1 to the Nyquist fre-
quency, (2 days)−1. The overall shape of the spectrum is the
same as that given by Lovejoy and Schertzer [1986]; i.e.,
starting at the high frequencies one has the scaling weather
regime, then at lower frequencies one has the transition to the
low‐frequency weather regime (which starts to be visible at
w ≈ (5 days)−1 (i.e., at log10(365/5) ≈ 1.86 in the graph),
followed at still lower frequencies by a relatively flat “spectral
plateau” climate regime (older spectra were presented in log
linear plots of wE(w) versus log w [e.g., Kolesnikov and
Monin, 1965] so that the transition appears as a maxi-
mum). This overall shape is the same as those reported by
Koscielny‐Bunde et al. [1998], Pelletier and Turcotte [1999]
and Talkner and Weber [2000], Huybers and Curry [2006],
and Lennartz and Bunde [2009] and is as predicted as
a weather/low‐frequency weather “dimensional transition”
discussed above.
[56] Focusing on the high‐frequency weather regime we

see that it is narrow; Figure 10b shows a blow up of the

Table 3. An Intercomparison of the ECMWF Interim Multifractal
Parameters (Isobaric) With Those Estimated for Aircraft (Horizontal)
and Drop Sondes (Vertical)a

Source h T v

ah

ECMWF 1.77 ± 0.06 1.90 ± 0.006 1.85 ± 0.012
Aircraft 1.81 1.78 1.94
Drop sonde 1.85 1.70 1.90

C1

ECMWF 0.102 ± 0.009 0.077 ± 0.005 0.084 ± 0.006
Aircraft 0.083 0.108 0083
Drop sonde 0.072 0.091 0.088

H
ECMWF 0.54 0.77 0.77
Aircraft 0.51 ± 0.01 0.50 ± 0.01 1/3b

Drop sonde 0.78 ± 0.07 1.07 ± 0.18 0.75 ± 0.05

aThe aircraft C1’s have been multiplied by the factor (3/2)1.8 = 2.07 in an
attempt to take into account the fact that the aircraft measure scaling regime
estimates of fluxes whereas the ECMWF estimates are more dissipation
scale fluxes.

bDue to the issues of the vertical aircraft movement, this (Kolmogorov)
value was inferred, not directly estimated [see Lovejoy et al., 2010].

Figure 10a. The frequency spectrum with ensemble and
spectral averaging (into 10 bins per order of magnitude for
all w > 36.5 cycles/yr), units of w: cycles/yr. The dashed
lines have slopes −5/3, and the solid lines have slopes
−3.35, −0.4, −2.4, and −1.1 (top to bottom); they are drawn
for w > (11 days)−1; for a blow‐up of the high‐frequency
(weather) regime, see Figure 10b. These correspond to the
spatial z exponent, the spatial w exponent (which accurately
fits hs), the spatial u, v, and T exponent, and the regression
w slope, respectively. The curves from top to bottom (at left
of plot) are z, hs (multiplied by 10 from the spatial analysis,
i.e., the spectra are multiplied by 100), v, T, u, and w.
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high‐frequency decade. From this we see that regression
estimates of the spectral exponent b will depend somewhat
on the regime used for the fit; it was therefore decided to use
theoretically motivated reference lines rather than regres-
sions, the only exception being the vertical velocity where a
regression over w > (5 days)−1 was used. The basic moti-
vating theory was for the values 5/3 for u, v and T (as dis-
cussed for u, v and as predicted if T is a passive scalar), and
the value 3.35 for z, which is obtained by using the isobaric
value as an estimate of the horizontal exponent followed by
space‐time isotropy. The 5/3 values work very well for u, v, T
(the isobaric exponent 2.40 shown in Figure 10b is clearly
very poor) but the isobaric value works well for z. In contrast,
the exponents b ≈ 0.4 (hs) and b ≈ 1.10 (w) have no clear

theoretical explanation; although the value 0.4 for hs is very
close to the isobaric w value and could thus be a consequence
of the fact that in the reanalysis, humidity fluctuations mostly
arise from horizontal convergence which is highly correlated
with the vertical wind which would then advect it in the
vertical.
[57] In order to judge the realism of the temporal reanal-

ysis exponents, we can compare them with in situ (surface)
measurements (Table 4). In order to get the most accurate
empirical estimates, where possible, literature values have
been used (from high‐frequency turbulence measurements);
although for z, hs we were forced to use data from low
resolution (daily) series originally analyzed for a climato-
logical study (in this case, the surface pressure was used as a
proxy for the geopotential height). As can be seen from
Table 4, the C1 and a values are reasonably close (although
with some differences), and the b and H values are close
enough to be considered “compatible” for the u, v, T, and z
fields (if we accept the surface pressure as a z surrogate). For
the vertical wind, there are no reliable in situ data of which
we are aware (w is extremely difficult to measure without
statistical “contamination” from horizontal components).
However, the isobaric and temporal exponents for hs are
very different; but as mentioned above, the temporal H
exponent for hs is very close to the isobaric w exponent. This
suggests that the reanalyses do not adequately handle
humidity. (Note that the statistics of relative and specific
humidities were found to be extremely close so that the dis-
crepancy cannot be attributed to this.)

4.4. Latitudinal Dependence of H and b
[58] We have already noted (section 3.3) that there was

surprisingly little latitudinal variation in the cascade struc-
ture; we argued that this was likely to be a consequence of
the fact that the cascade reflected the nonlinear interactions
and that most of the latitudinal variations were due to the

Figure 10b. Same as Figure 10a but a blow‐up of the high‐
frequency decade ((20 days)−1 to (2 days)−1) using
ensemble but not spectral averaging, units of w: cycles/yr. As
in Figure 10a, the dashed lines have slopes −5/3, the solid
lines have slopes −3.35, −0.4, −2.4, and −1.1 (top to bottom).

Table 4. Temporal Scaling Exponents From the ECMWF Interim Reanalysis and From Various in Situ Estimatesa

Exponent Source hs T u v w z

b ECMWF 0.40 5/3 5/3 5/3 1.10 3.35
In situ 2.20b 1.67 ± 0.04c 1.68 ± 0.05d,e 1.68 ± 0.05d,e __ 3.00f

C1 ECMWF 0.10 0.075 0.083 0.086 0.115 0.085
In situ 0.09b 0.087 ± 0.015c 0.053 ± 0.010d,e 0.053 ± 0.010d,e __ 0.085f

a ECMWF 1.77 1.90 1.85 1.85 1.92 1.90
In situ 1.8b 1.61c 1.5d,e 1.5d,e 1.7f

H (time) ECMWF −0.21 1/3 1/3 1/3 0.17 1.26
In situ 0.68b 0.41 ± 0.03c 0.33 ± 0.03d,e 0.33 ± 0.03d,e __ 1.07f

H (space) ECMWF (space) 0.54 0.77 0.77 0.78 −0.14 1.26
aircraft 0.51 0.50 1/3e 1/3e __ __

aThe latter were taken from the literature and, when no other source was available, from daily station data that had been selected for a climate study; see
the following footnotes for details. H time and space rows show the isobaric H values estimated as discussed in the text; they are the zonal values (the only
exception being the meridional wind where the meridional value is given). The C1 and a estimates are from the flux analyses presented earlier, and the H
are estimated from the spectra (Figure 10). Due to the narrow range of frequencies (the Nyquist frequency (2 days)−1 to about (5 days)−1 before the spectra
begins to flatten due to the transition to the low‐frequency weather regime), direct estimates are not accurate and depend on the exact frequency range used.
Instead, the spectral exponents were taken from the reference lines in Figure 10: for T, u, and v they are seen to be compatible with the Kolmogorov value
5/3 (ignoring the intermittency corrections of K(2)/2 ≈ 0.08), and for hs the value b = 0.4 is close to the data and is the same as the spatial w value. Finally,
the b value for z was close the spatial value (see Figure 10) and was used.

bSame study as in footnote f, but only 7 stations were near complete and longer than 60 years.
cThe mean and standard deviations were calculated from the three published studies: Finn et al. [2001], Schmitt et al. [1996], andWang [1995]; these are

of high‐frequency measurements near the surface.
dThese numbers were calculated from Schmitt et al. [1994, 1996] and are from high‐frequency (hot wire) data near the surface.
eNo distinction was made between the zonal and meridional wind components; the same values were used for u and v.
fThese are estimates of surface pressure (not geopotential) statistics from 23 daily in situ series over (near complete) 60 years long in the continental United

States (stations were taken every 2 degrees from 30° to 50° north and south, −105° to −71° east and west; only the longest, near complete series were used); the
statistics are over the narrow range 2 days (Nyquist frequency) to 5 days (to avoid spectral flattening due to the weather/low‐frequency weather transition).
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Coriolis force (a linear term) or to boundary conditions
strongly varying in the north‐south direction. It is therefore
of interest to see how much the H parameter (deduced from
spectra or structure functions) varies with latitude. The main
difficulties in spectral analyses are (1) that we have seen that
the scaling range is not large due to hyperviscosity at small
scales and to large scale spectral “roll‐off” (flattening), and
(2) the additional problem of strong north‐south/east west
anisotropy analyzed above. We therefore refer the reader to
Figure 11 which gives the b exponents (from zonal spectra
over the admittedly narrow range k = 6 to 15) and the H
inferred from b, C1, and a. We see that the variation is quite
symmetric between the two hemispheres, with the fields all
being systematically rougher (lower H, b) near the equator.
The reason for this is not clear, although the very large b
and H values at the extremes away from the equator may be
artifacts of the lower data density. The results are clearly less
reliable than those discussed above and are probably not
more accurate than ±0.1–±0.2 in H; this was the typical
difference found when H was estimated in real space using
structure functions over the roughly the same scale range
600–2500 km). We do not give the corresponding temporal
exponents since the scaling ranges are much too narrow (see
the discussion above).

5. Conclusions

[59] Understanding the scale by scale statistical properties
of reanalyses is important for several reasons. For one, they
are frequently our only source of global scale information
(e.g., the vertical wind field); in addition, their systematic
scale by scale intercomparisons with the data are essential
for developing more realistic reanalyses; finally, they are
needed in ensemble forecasting systems since they specify
the precise scale by scale statistical properties of the model.
Previous studies have shown that the statistics follow nearly
exactly the predictions of nonlinear theory: they have cas-
cade structures to within about ±0.5% from 5000 km down
to their inner (hyper) viscous scale in space, from about 5–
10 days on down to 6 hourly or less in time. However, so far
they have only provided a broad survey: they concentrated
on the turbulent fluxes associated with the temperature,
humidity, and zonal wind and considered the variation of
statistical exponents (and outer scales) with altitude, latitude
and forecast horizon, on intercomparisons between different
products with atmospheric data.

[60] In this paper, we have focused on a single type of
reanalysis—the ECMWF interim—and on a single pressure
level (700 mbar), using the daily data for the year 2006 and
we consider the observable fields themselves and their cor-
responding turbulent fluxes. Contrary to the fluxes, previous
scaling analyses of the fields have generally not given clear
results, and we here argue that the reason is the unexpected
presence of scaling anisotropy in the horizontal fields (but
not fluxes). In order to demonstrate this, we broke the data
into Cartesian grids 180° × 90° (longitude × latitude, using a
cylindrical projection from ±45° latitude) selecting a broader
mix of fields for analysis: adding the meridional and vertical
winds and the geopotential height to the previously studied
zonal wind, temperature and humidity fields.
[61] The cascade flux analyses (in the zonal, meridional

and temporal directions) gave nearly the same statistical
exponents in each direction (“trivial anisotropy”) and (for T,
u, and h) and the ECMFW interim products were close
to those of the previously studied products (with similar
exponents and similar external cascade scales: planetary in
space and ∼5 days in time). However, the spectra presented
new and interesting problems connected with their hori-
zontal anisotropies. Whereas the fluxes had aspect ratios of
structures that were about 1.6:1 (zonal: meridional) but
independent of scale, the fields showed distinct scaling
anisotropies with aspect ratios increasing from 1 at single
pixel scales to about 2:1 at the largest scales (again elon-
gated in the zonal direction except for a predicted inversion
for the meridional wind). While isotropy at a single pixel
scale is likely to be an artifact of the reanalysis (hyper)
viscosity, on the contrary the large scale anisotropy is phys-
ically based (a consequence of imposed strong north‐south
gradients). We therefore argued that this scaling anisotropy is
likely to be a spurious consequence of the model being forced
to join up a (spurious) isotropic small scale with a real
(anisotropic) large scale and suggested that doubling the
north‐south resolution with respect to the east‐west resolu-
tion might make an important improvement in the reanalyses.
However, no matter what the cause of the anisotropy, if not
carefully accounted for, it may lead to spurious breaks in the
spectral scaling. The incautious use of isotropic data anal-
ysis techniques may therefore at least be partially respon-
sible for the difficulty in establishing a consensus about the
reanalysis spectra [see Strauss and Ditlevsen [1999].
[62] We also investigated the latitudinal dependence of the

cascades and found that there was surprisingly little varia-

Figure 11. The (left) H and (right) b exponents estimated from zonal spectra from the 15° wide latitude
bands discussed in section 3.3.
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tion in the exponents, a consequence of the fact that the
cascade structure reflects the nonlinear interactions whereas
the main north‐south variations are primarily due to Coriolis
forces and boundary conditions. However, there were sig-
nificant latitudinal variations of the prefactors, i.e., of the
external space and time scales, and ratios (which are
velocities relating space and time).
[63] Following careful treatment of the anisotropy, we

found that the key new exponent H (which can be inter-
preted as the degree of power law smoothing—fractional
integration—needed to obtain the fields from their corre-
sponding fluxes) has some interesting features. First, the H
exponents for u, v, and T were systematically close to each
other both in time, where they were close to the Kolmo-
gorov value 1/3, and along isobars where they were close
to the vertical exponent of the horizontal wind ∼0.75.
The similarity of the exponents makes it likely that in
the reanalyses, the temperature is roughly hydrostatic; the
nonstandard value 0.75 is probably an artifact of the gently
sloping nature of the isobars which gives them a spurious
vertical value [cf. Lovejoy et al., 2009c]; the aircraft inferred
isoheight values being the significantly lower ∼0.50 (T) and
∼1/3 (u, v). Turning our attention to the humidity, whereas
along isobars it is close to the isoheight estimates from
aircraft (∼0.54 and 0.51, respectively), in time there is very
large difference (∼−0.21 and ∼0.68 ECMWF isobars, in situ,
respectively). Since the reanalysis humidity value (−0.21) is
close to the reanalysis vertical wind value (−0.14), it may be
a consequence the relation of both to the horizontal con-
vergence. The vertical velocity also gave interesting results,
with the ECMWF value (∼−0.14) being roughly as predicted
on the basis of lidar experiments, and the temporal value
(∼0.17) being quantitatively and qualitatively different (the
sign). Unfortunately, we were unable to compare these to
empirical estimates, although we should recall that the
corresponding turbulent fluxes all gave results compatible
with (horizontal) space‐time scaling isotropy, and theoreti-
cal arguments also support that conclusion so that one

should be somewhat suspicious of different horizontal spa-
tial and temporal exponents. Similarly, the ECMWF geo-
potential height had nearly identical spatial and temporal
values of H (∼1.26), but there was no good way to com-
pare it with data; the closest was the surface pressure sur-
rogate which gave a reasonably close value (∼1.07), both
indicating smooth isobaric surfaces (since H > 1).
[64] While this paper has extended the study of the scaling

properties of reanalyses in several ways, there is still much
to be done. A priority must surely be to better understand the
vertical structure of the reanalyses: is the reanalysis capable
of ingesting realistic scaling vertical/horizontal anisotropies;
is the hydrostatic approximation a significant obstacle?
Another outstanding question is the physical nature of the
cascade quantities and the direction of the spectral transfers.
Finally, we have indicated that the basic multiplicative
model may still be valid at least some of the way into the
low‐frequency weather regime; indeed, work in progress
shows that the low‐frequency “spectral plateau” is indeed
well modeled by simply extending the multifractal “frac-
tionally integrated flux” model “calibrated” over meteoro-
logical space and time scales to much longer time scales
(apparently up to decades [Lovejoy and Schertzer, 2011b,
2011c]). Durations of over 130 years are now possible with
the 20th century reanalysis so that much lower frequency
variability can be studied; such an understanding is necessary
in order to formulate statistical tests which could distinguish
natural from anthropogenic variability.
[65] Thanks to the ready availability of large quantities of

global scale atmospheric data and the increasing maturity of
nonlinear analyses and modeling techniques, Richardson’s
dream is in the process of being fully realized. This goes
beyond the widely celebrated dream of numerical weather
prediction to include his often forgotten contribution to the
development of new emergent scaling turbulent laws. This
new synthesis of nonlinear theory and state‐of‐the‐art data
sets and models relies on the exploitation of a nonclassical
symmetry principle: scale invariance. For a long time, this
symmetry was believed to be highly restrictive, applicable
only to scale invariant systems which were also isotropic,
hence the excessive focus of theorists with the paradigms of
isotropic three dimensional and isotropic two dimensional
turbulence. Unfortunately, these isotropic frameworks have
largely prevented systematic, straightforward scaling statis-
tical analyses of the atmosphere, and have contributed to
today’s unfortunate situation where there is still no consensus
about the basic statistical properties of atmospheric fields as
functions of space and time scales. Although the efforts to
date are still only modest beginnings, they have convincingly
shown that global scale satellite radiances, data from in situ
aircraft, drop sondes, sparse surface networks, radars and
lidars, and now reanalyses and other model products, are
scaling over large ranges of space‐time scales.

Appendix A: The Effect of the Map Projection
on the Spectra

[66] In statistically treating the ECMWF reanalysis and
other spherical data sets gridded on equally spaced latitude
and longitude grids, we remapped the ±45° latitude band
using a cylindrical projection and performed standard
analyses on these Cartesian grids. When performing 1‐D

Figure A1a. The superposed contour plots of logP (black)
and logPp (red) for the simulations described in the text.
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analyses in either the zonal or meridional directions, it is
sufficient to use a map factor which is only a function of
latitude; this rescales the zonal results by the corresponding
factor. However, since the map projection is itself aniso-
tropic, the effects on the (Fourier, windowed) power spectral
densities (P(kx, ky)) are less obvious and could potentially
seriously contaminate our anisotropy analyses (section 4.1).
[67] In order to analyze this, we numerically simulated

365 isotropic multifractal fields with parameters a = 1.8,C1 =
0.1, H = 0.333 on 64 × 64 point grids (close to the year of
zonal wind fields analyzed in section 4.1; this allows us to
model the effects of the finite sample size as well). The
resulting contour plots of logP (original) and logPp (pro-
jection) are shown in Figure A1a. It can be seen that they are
so close so that it is very hard to distinguish them; there is
virtually no sign of any anisotropy. Figure A1b quantifies
this; it shows contours of the relative difference between the
two spectral densities:

Er ¼ 2
P � Pp

�� ��
P þ Pp

ðA1Þ

[68] On a pixel by pixel basis, we find Er = 3.6 ± 1.6%
(the maximum value was 8.9%), i.e., a very small bias with
an even smaller deviation around the mean; the central (low
wave number) region of Figure A1b has deviations <2%,
and the higher deviations are at the larger wave numbers.
This should be compared with the actual variation of the
density P which varies over 4 orders of magnitude. Notice
that this numerical result also takes into account the effect of
the north‐south discontinuity introduced by the map pro-
jection (which is handled with a standard Hann window),
whereas the original field was periodic by construction and
had no such edge effects.

[69] The effect of the map anisotropy increases with H; we
therefore also considered its effect on the geopotential which
had the largest H (= 1.26; see Table 4). We now find that the
mean deviation (Er, equation (A1)) is ±5% for a 2‐D
spectral density which for b = 3.3 varies over more than
5 orders of magnitude (this is for the full range of wave
numbers with the exception of the largest factor of 2
which for the reanalyses are artificially smooth due to their
hyperviscosities). However, the main point is to find out
whether the spectrum has systematically different exponents
in the meridional and zonal directions and if so whether or
not this might be a mapping artifact. We therefore compared
the exponents of the 1‐D spectra in east‐west and north‐
south directions. Still for the H = 1.25 case, for the original
(unmapped) spectra the exponents differ by 0.005 whereas
for the mapped, they differ by 0.01 and 0.05 (zonal and
meridional, respectively), so that there is indeed a small but
detectable mapping anisotropy. However, this should be
compared to the actual ECMWF exponents of 3.35 (zonal)
and 3.94 (meridional) so that the actual difference in the
exponents is ∼0.5; i.e., it is ten times larger than any bias
introduced by the mapping. Again the anisotropy introduced
by the mapping is a very small effect.
[70] The reason that the map projection gives such a small

effect is that (1) it only strongly effects a relatively small
number of pixels while (2) it simultaneously affects all
scales (at a given latitude) by a constant factor (ranging
between 1 (equator) and 21/2 = 0.707 (at ±45°)) and (3) the
spectrum thus throws away the phase effectively averaging
over all the pixels. The much stronger effect shown in
Figure 7 is a scale by scale statistical anisotropy effect.
[71] In any case, we should recall that the ECMWF

exponents were not estimated simply from nonlinear regres-
sions since for each field we needed two exponents s and Hz

which were constrained by the full 2‐D density P (Figure 7),
the three spectra Figures 9a, 9b, and 9c (isotropic, zonal and
meridional), as well as the physical constraint that there be a
single Hz value for all the six fields.
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