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Horizontal cascade structure of atmospheric fields determined
from aircraft data
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[1] Aircraft measurements of the power spectra of the horizontal wind field typically find a
transition from ≈ k−5/3 to ≈ k−2.4 at scales somewhere around 40 km (k is a wave number). In
the usual interpretation this represents a transition between an isotropic three‐dimensional
(3‐D) (k−5/3) and an isotropic 2‐D (k−3) turbulence; we have recently argued that the turbulence
is so highly anisotropic that it has different exponents in the horizontal and vertical.
When coupled with gently sloping isobaric aircraft trajectories this predicts the break as a
transition from a roughly horizontal spectrum at small scales to the spurious appearance of
the vertical spectrum at large scales. If the atmosphere indeed has wide‐range horizontal
scaling, then it is important to test out the multiplicative cascade models that predict its
statistical behavior. In this paper, we do this by analyzing wind, temperature, pressure, and
humidity data from the Winter Storm 2004 experiment using 24 aircraft legs, each 1120 km
long and at 280 m resolution. We analyze both the turbulent fluxes and the fluctuations
showing that in spite of the nonflat trajectories, there is good evidence of roughly planetary‐
scale multiplicative cascades. By carefully determining the scale‐by‐scale effects of
intermittency on the aircraft altitude and measurements, we estimate the corresponding
scaling exponents. We argue that our results should finally permit the emergence of a long‐
needed consensus about the basic scale‐by‐scale statistical properties of the atmosphere.
They also point to the urgent need to develop anisotropic scaling models of turbulence.

Citation: Lovejoy, S., A. F. Tuck, and D. Schertzer (2010), Horizontal cascade structure of atmospheric fields determined
from aircraft data, J. Geophys. Res., 115, D13105, doi:10.1029/2009JD013353.

1. Introduction

1.1. Reinterpreting the Statistics of the Horizontal
Wind

[2] Data analysis requires a theoretical framework in which
the physical quantities can be defined and understood. In the
case of aircraft measurements of atmospheric turbulence, it is
usual to interpret the measurements in an isotropic or quasi‐
isotropic framework in which the basic exponents are the
same in the horizontal and vertical directions. However,
starting in the 1980s, studies of the vertical structure of the
atmosphere have almost invariably concluded that the hori-
zontal wind is scaling in the vertical, but with a different
exponent than in the horizontal. This empirically observed
scaling stratification has thus been interpreted either with
quasi‐linear gravity wavemodels [VanZandt, 1982;Gardner,
1994; Gardner et al., 1993; Dewan, 1997; Koch et al., 2005]
or the 23/9D strongly turbulent model [Schertzer and
Lovejoy, 1985; Lovejoy et al., 2008b].

[3] In the last few years, these results have prompted the
examination of the consequences of such anisotropic but
scaling turbulence for the interpretation of aircraft data; both
for stratospheric aircraft following isomachs [Lovejoy et al.,
2004] and for tropospheric aircraft following isobars (or
other gradually sloping trajectories) [Lovejoy et al., 2009c].
The perhaps surprising conclusions were that they are best
explained by a single wide‐range anisotropic scaling regime.
A corollary is that the usual interpretation, that the atmo-
sphere has two (or more) isotropic scaling regimes (e.g.,
small‐scale, three‐dimensional (3‐D) isotropic and large‐
scale, 2‐D isotropic), is untenable. The key finding was that
when measuring the wind field, rather than detecting suc-
cessively two different isotropic turbulence exponents, the
aircraft first detects at small scales the correct horizontal
exponent, and then, at larger scales where the departure of the
aircraft from a roughly flat to a sloping trajectory becomes
important, it spuriously measures the different vertical
exponent. In terms of traditional spectral exponents b, (i.e.,
the spectra are of the form E(k) ≈ k−b where k is a wave
number), the horizontal has b ≈ 5/3 (near the Kolmogorov
value) while the vertical has b ≈ 2.4. More precisely, as
accurately estimated by drop sondes [Lovejoy et al., 2007], b
increases roughly monotonically from about 2.15 ± 0.04 near
the surface to 2.51 ± 0.04 at 10 km altitude; see Figure 1c. The
near surface value is, to within intermittency corrections, that
predicted for buoyancy driven turbulence by Bolgiano [1959]
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and Obukhov [1959] and the error bars indicate the spread
between the mean sonde to sonde exponent and the overall
regression exponent using 235 sondes.
[4] As pointed out by Lilley et al. [2008] and especially

Lovejoy et al. [2009c], the slightly larger upper troposphere
values 2.4–2.5 are almost exactly the same as the values of
the large‐scale exponents found in all the major aircraft
campaigns including GASP [Nastrom and Gage, 1985],
MOZAIC [Cho and Lindborg, 2001] and others [Gao and
Meriwether, 1998; Bacmeister et al., 1996]. Figure 1a
adapted from Skamarock [2004] neatly compares on a sin-
gle graph, the two largest aircraft campaigns to date: GASP
and MOZAIC. It can be seen that, as predicted, at scales of
about ≈ 100 km the exponents shift from the small‐scale
Kolmogorov value b ≈ 5/3 to the vertical value b ≈ 2.4. The
spectra in Figure 1a are extremely close to those given by
Lovejoy et al. [2009c] using the same data as below (see
Figure 4c in section 4.1.1), except that the transition scale
(which varies greatly from trajectory to trajectory) is on
average ≈ 40 km rather than ≈ 100–200 km. We should note
that the persistence of a k−5/3 regime to such large scales is a
fundamental problem for the standard 2‐D/3‐D model since
at those scales the turbulence cannot be isotropic. Various
speculative mechanisms to explain it include the description
“escaped” 3‐D energy transformed to quasi‐2‐D stratified
turbulence [Lilly, 1989], “squeezed 3D isotropic turbulence”
[Högström et al., 1999] and “upscale quasi‐2D nonlinear KE
cascades from smaller scales where the KE is stirred by moist
convection” [Takahashi et al., 2006]. Other unsatisfactory
features are the unknown flux sinks in the 2‐D/3‐D transition

region, an unknown large‐scale energy flux dissipation
mechanism (surface drag?), and speculative energy and
enstrophy flux sources at ≈ 2000 km.
[5] These empirical results can be explained if atmospheric

dynamics are scaling but strongly anisotropic, i.e., with dif-
ferent exponents in the horizontal and vertical directions.
To put this anisotropic model in perspective, recall that the
classical model of atmospheric motions first postulates isot-
ropy (in either two or three dimensions) and only then scaling.
Since the troposphere is only ≈ 10 km thick large structures
must be “flattened”; that such isotropic models there-
fore require at least two scaling regimes, the usual ones
being dominated by energy flux (leading to a small‐scale
Kolmogorov, b = 5/3 regime) and a large‐scale (b = 3)
enstrophy flux dominated regime (actually such models
require a third even larger‐scale b = 5/3 inverse energy flux
cascade regime, but this is rarely discussed). This classical
model has been dominant ever since Charney [1971]
extended Kraichnan’s [1967] pure hydrodynamic two dimen-
sional turbulence model to quasi‐geostrophic turbulence. In
comparison, the anisotropic scaling model implies that the
stratification increases in a power law manner so that struc-
tures 20,000 km long in the horizontal may only be 10 km
thick in the vertical. It turns out that all that is required to
obtain a spurious k−2.4 regime is a small mean aircraft slope
with respect to the horizontal, for example, due to a slow rise
due to fuel consumption, or along an isobaric surface. If the
isobars were sufficiently rough, then following an isobar
might lead to yet another behavior. However, isobars and
geopotentials are very smooth. More precisely, if their
spectral slopes b are greater than 3 (as in, e.g., work by
Trenberth and Solomon [1993]), then their RMS variability is
due to low not high wave numbers, so b > 3 is at least a rough
criterion for “smooth enough” suggesting that sloping isobars
and straight sloping trajectories will yield the same behavior.
[6] As model resolutions increased, the predictions of this

standard 2‐D/3‐Dmodel could be directly tested numerically,
at least at the large scales. The first tests [Chen and Wiin‐
Nielsen, 1978; Boer and Shepherd, 1983] had very small
ranges of scales and are widely cited as giving support to 2‐D
turbulence, especially its prediction of a k−3 regime. How-
ever, given the long history of “shoe‐horning” atmospheric
spectra into a k−3 mold, reexamination of their original results
is salutary; see the Boer and Shepherd [1983] key result
in Figure 1b which shows the enstrophy spectrum ( = k2E(k) =
k2−b). We see that although for k > 5 the vertically integrated
and transient spectra are very close to b = 2.4, the stationary
spectrum is close to b ≈ 4, with no indication of a b ≈ 3
regime. This prompted the following prescient comment:
“For the purposes of comparison with theory, the spectral
slopes obtained from the data are somewhat shallower than
the values of −3 suggested by simple theory. It must be
emphasized however, the enstrophy containing inertial sub-
range is not really a prediction for the atmosphere but is a
possible solution to the spectral equation in an unforced
subrange which may or may not have some correspondence
to the situation in the real atmosphere” [Boer and Shepherd,
1983]. They continue: “Consequently, the fact that the spectra
obey power laws at all may be considered to be a striking,
although by nowwell known feature of the atmosphere.”This
primacy of the scale invariance symmetry, albeit a strongly
anisotropic one, is the basis of the alternative discussed here.

Figure 1a. An intercomparison of the GASP and MOZAIC
spectra from commercial aircraft flying on isobars, adapted
from Skamarock [2004]. The red lines show the behavior
predicted if the atmosphere has a perfect k−5/3 horizontal
spectrum but estimated from an aircraft following roughly
horizontal trajectories until about 100 km and then following
gradually sloping trajectories (either on isobars or gradual
changes in altitude due to fuel consumption).
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Later, Strauss and Ditlevsen [1999] applied the same Boer
and Shepherd [1983] 2‐D analysis framework to much
higher resolution ERA 40 reanalyses also finding “roughly
b ≈ 2.5–2.7… this slope is significantly different than the
classical turbulence theory prediction of 3” a fact which they
partially attribute to a “lack of an enstrophy cascade.”
[7] Today, we can revisit wind spectra using the state‐of‐

the‐art successor to the Strauss and Ditlevsen [1999] data,
the ECMWF interim reanalysis, and calculate the spectrum
directly without Strauss and Ditlevsen’s, complex 2‐D pre-
processing. Figure 1c shows the isotropic spectrum of the
zonal wind at each tropospheric 100 mbar level, compensated
by the average k−2.4 behavior so as to accentuate the small
deviations. Also shown in Figure 1c are straight reference
lines. These are not regressions but rather the predictions of
the model presented here: the slopes are those empirically
estimated in the vertical direction from drop sondes [Lovejoy
et al., 2007]. Regressions on the reanalysis spectra from
k = 2 to k = 30 give b differing by less than 0.05 through-
out the data rich lower 4 km, rising to only 0.2 at 10 km
(≈ 200 mbar). These small differences could easily be the
consequence of either intermittent aircraft and/or sonde
motion; see below. For reference, the exact values at 100 mbar
levels are: (1000, 2.15, 2.16), (900, 2.29, 2.26), (800, 2.36,
2.32), (700, 2.38, 2.40), (600, 2.40, 2.48), (500, 2.43, 2.53),
(400, 2.47, 2.62), (300, 2.52, 2.68), (200, 2.45, 2.82) for
(pressure in mbars, drop sonde b, horizontal reanalysis b).
[8] A possible explanation for the difficulties with the

standard 2‐D/3‐D picture comes from work by Bartello,

1995] and Ngan et al. [2004]. These authors pointed out
that the standard model’s small‐scale 3‐D turbulence could
destabilize any large‐scale 2‐D turbulence. This apparent
internal contradiction offers a possible explanation for the
failure to find either a k−3 regime or enstrophy cascade [Strauss
and Ditlevsen, 1999] in the reanalyses. Such instability may
also explain why some models such as the ECMWF fore-
cast model apparently fail to yield k−5/3 regimes [Palmer,
2001] yet at the same time, Princeton’s Geophysical Fluid
Dynamics Laboratory SKYHI model apparently are able to
yield both k−5/3 and k−3 regimes [see Takahashi et al., 2006,
Figure 1d; Hamilton et al., 2008]. In at least some of these
cases, the high wave number k−5/3 spectral “bump” has been
shown to be an artifact of the numerics due to incorrect
hyperviscous “tuning” [Smith, 2004]. Similar claims for
simultaneous k−5/3 and k−3 regimes have been made for the
regional WRF model [Skamarock, 2004], but even if the
claims are valid, the k−3 regime is over a very narrow range
and in addition, the purported k−5/3 range is much too shallow:
Figure 1e shows that in fact a single k−2.4 regime works
extremely well over the whole range.
[9] Ironically, the ability of the SKYHI or possibly the

WRF models to yield two scaling regimes may not be
an indication of their realism. For example, returning to
Figure 1d which compares the Takahashi et al. [2006] Earth
simulator results (6–15 day forecast) with the GASP data, we
see that the scales with the largest deviations between the
model and the empirical spectra (the range ≈ 400–3000 km,
between the arrows) are precisely those which are supposedly
explained by the existence of the two regimes! On the other
hand, cascade analyses of the type described below, which
neither make a priori assumptions about the physical nature of
the cascade quantity nor of its isotropy or anisotropy, show
that both the ERA 40 reanalyses in either space [Stolle et al.,
2009] or in time [Stolle, 2009], or meteorological models
of the atmosphere (the GFS and GEM models) have nearly

Figure 1b. The enstrophy spectrum ( = n2E(n) where E(n) is
the wind spectrum and n is the principal spherical harmonic
wave number), adapted from Boer and Shepherd [1983].
The three curves are from January data; the top solid line is for
the vertically integrated atmosphere, the dashed line indicates
“stationary“ (the spatial spectrum of the monthly average),
and the dotted transient line is the deviation from the monthly
average. We have added reference lines with slopes −2.4, −3,
and −4. Over the range n ≈ 5 to 30 (700–4000 km) the ex-
ponents of the spectra of the transient and vertically averaged
atmosphere are extremely close to the vertical value b ≈ 2.4,
but the stationary spectrum exponent is b ≈ 4. No b ≈ 3 regime
is observed.

Figure 1c. The isotropic spectrum of zonal component of
the wind at 200, 300, 400, …, 1000 mbar from the ECMWF
interim reanalysis for January 2006 averaged between ±45°
latitude. The straight lines are not regressions, rather they
have the slopes of the horizontal wind in the vertical direction
as estimated by drop sondes from Lovejoy et al. [2007]. It can
be seen that the isobaric velocity spectra have exponents close
to the vertical values (especially at the data‐rich lower levels).
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perfect scaling cascade structures over almost their entire
range of spatial scales; see, e.g., Figure 1f or the numerous
figures in the above references (the deviations from multi-
plicative cascades are between ≈ 0.5–1% up to 5000 km in
scale). As argued by Schertzer and Lovejoy [1987] or in the
review by Lovejoy and Schertzer [2010] the reason that this is
possible (even expected), is that the models, and apparently
the atmosphere, are both anisotropic but scale invariant over
huge ranges. Note that boundary conditions such as the
topography as well as the short‐ and long‐wave atmospheric
forcings also display scaling cascade structures over most of
their observed ranges so that they are not expected to break
the dynamical scaling [Gagnon et al., 2006], [Lovejoy et al.,
2001, 2009a].

1.2. Characterizing the Horizontal Scaling of
Atmospheric Fields

[10] If the atmosphere is anisotropic and scaling over wide
ranges, then it is fundamentally important to characterize the
anisotropic scaling regimes for as many of the fields as pos-
sible, i.e., to determine the type of scaling (including the
determination of the basic turbulent exponents), as well as the

limits to the scaling: the inner and outer scales. The goal of
this paper is therefore to go a step beyond the reinterpretation
outlined above to see how the data can be quantitatively used
to characterize atmospheric turbulence while attempting to
avoid spurious aircraft induced effects.
[11] The processes which account for the wide‐range

anisotropic scaling of the fields are the anisotropic multi-
plicative cascade processes, i.e., anisotropic extensions of the
explicit phenomenological cascade models that were devel-
oped through the 1960s, 1970s and 1980s [Novikov and
Stewart, 1964; Yaglom, 1966; Mandelbrot, 1974; Schertzer
and Lovejoy, 1987]. In recent papers, we have investigated
the vertical cascade structure using drop sondes [Lovejoy
et al., 2009b], the horizontal cascade structure using satel-
lite data [Lovejoy et al., 2009a] and vertical cross sections
using lidar backscatter data [Lilley et al., 2004; Lilley et al.,
2008]. In addition, meteorological reanalyses as well as
numerical meteorological models [Stolle et al., 2009;
S. Lovejoy and D. Schertzer, Space‐time cascades and the
scaling of ECMWF reanalyses: Fluxes and fields, submitted
to Journal of Geophysical Research, 2010] have recently
been shown with high accuracy to have multiplicative cas-
cade structures over almost their entire spatial ranges and up
to about 10 days in the time domain. What is missing from a
fairly complete spatial characterization of atmospheric cas-
cades is the direct verification of the multiplicative cascade
structure in the horizontal on the standard meteorological
fields including the horizontal wind, the temperature,
humidity, potential temperature; this is our task here.

Figure 1d. The comparison of a large (T639) simulation on
the Earth Simulator (zonal wind, at 45°N, 200 mbar, with
forecasts for days 6–15 shown in red) with a replotting of
the GASP aircraft spectra (cyan, crosses), adapted from
Takahashi et al. [2006]. The solid black lines show the pre-
dicted isobaric and horizontal spectra that have been added
for reference. It can be seen that while overall the model
reproduces the GASP spectra reasonably well down to the
model dissipation scales, it is striking that the largest devia-
tions of the model from the empirical spectra are precisely in
the region 400–3000 km (between the arrows) where the
isobaric k−2.4 spectrum is very accurate.

Figure 1e. Sample spectra from WRF forecasts of zonal
wind averaged over the isobaric surfaces covering roughly
the range 3–9 km in altitude, adapted from Skamarock
[2004]. The claimed “clear k−3 regime” for the solid (oceanic)
spectrum spans a range of factors 2–3 at the relatively unreliable
extreme low wave numbers (between the arrows at top left).
Except for the extremes, the spectra again follow the isobaric
predictions k−2.4 (red) very well over most of the range.
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[12] This paper is structured as follows. In section 2 we
review the data and discuss some of their limitations,
including the connection between the wind, pressure and
altitude fields, we introduce the cascade formalism. In section 3
we discuss the basic flux and fluctuation analyses of the wind,
temperature, potential temperature, and humidity fields; and
in section 4 we give a refined treatment attempting to deter-
mine the best regime for parameter estimation and to get the
best parameter values. In section 5 we discuss outstanding
issues and conclude.

2. Data: Their Intermittency

[13] The data analyzed were from the Winter Storms 2004
experiment and involved 10 aircraft flights over a roughly a
2 week period over the northern Pacific. Each flight dropped
20–30 drop sondes which were analyzed to determine the
vertical cascade structure [Lovejoy et al., 2009b]. For air
traffic reasons, the Gulfstream 4 plane flew along either the
162, 178, or 196 mbar isobars, (to within ± 0.11 mbar; that is,
the pressure level was ≈ constant to within ± 0.068%), it has a
radar altimeter which is reliable over the ocean, but which is
only used to anchor the GPS estimates, these geometric alti-
tudes were used here. Each had one or more roughly constant
straight and constant altitude legs more than 400 km long
between 11.9, 13.7 km altitude. The data were sampled every
1 s and the mean horizontal aircraft speed with respect to the

ground was 280m/s. In addition, we checked that the distance
covered on the ground between measurements was constant
to within ±2% so that the horizontal velocity was nearly
constant (in addition, using interpolation, we repeated the key
analyses using the actual ground distance rather than the
elapsed time and found only very small differences). This is
the same data set analyzed by Lovejoy et al. [2009c] where it
is described in more detail.
[14] The basic scale by scale relations between the trajec-

tory and the fields was investigated using both spectral and
cross‐spectral analysis from Lovejoy et al. [2009c]. Figure 2a
shows an extract of the latter results for simplicity showing
only the results for the longitudinal (the along trajectory)
component of the wind. We calculated the cross spectrum
which is a kind of wave number by wave number cross‐
correlation coefficient. However, unlike the usual cross cor-
relation, it is complex‐valued; hence it is usual to introduce
the modulus. called the “coherency” (C), and argument, the
“phase” (�) [see e.g., Landahl andMollo‐Christensen, 1986].
An important difference between the coherency and a cross
correlation is that C is always positive; in Figure 2a, C > ≈0.2
implies a statistically significant relation. On the other hand, a
positive phase in Figure 2a implies that the wind leads
(pressure or altitude), a negative phase, that it lags behind.
From Figure 2a we see that between about 4 and 40 km, the
altitude leads the wind but the pressure lags behind: the sit-
uation is reversed at larger scales (smaller wave numbers).
The direct interpretation is that for the higher wave num-
bers ((4 km)−1 > k > (40 km)−1, corresponding to time scales
of 10–150 s) the aircraft autopilot and inertia cause the change
in altitude with the pressure then following the altitude. For
the smaller wave numbers (k < (40 km)−1), the situation is
reversed with the pressure changes leading (presumably
causing) the change in wind and altitude; this is presumably
the regime where the aircraft tightly follows the isobars.
[15] The coherency and phase analysis suggests that the

main effect of the trajectory fluctuations is on the wind field
and that its influence will be smaller for the other atmospheric
fields (we see this below). Going beyond phases and coher-
encies, let us consider the detailed statistics of the trajectories.
For scales less than about 4 km, the aircraft inertia smoothes
them out; the main variations are smooth and are associated
with various roll modes and the pilot/autopilot response.
However, at scales from about 4 to 40–100 km (and from
≈3 to about 300 km for the stratospheric ER‐2 trajectories
along isomachs), the trajectory is fractal with the altitude
lagging behind the (horizontal) wind fluctuations. Finally at
scales > ≈ 40 km the aircraft follows the isobars quite closely
so that the wind lags behind the pressure. These conclusions
were reached by considering the average for 24 aircraft legs
flying between roughly 11 and 13 km, each 1120 km long
as well as through a leg by leg analysis which showed con-
siderable variability in the scale at which these transi-
tions occurred. According to this analysis we may anticipate
that there will be a strong effect of the variability (indeed,
intermittency) of the aircraft altitude on the measurements,
at least for scales smaller than about 40 km where the wind
leads the altitude, imposing its strong intermittency on the
aircraft.
[16] In order to demonstrate this and to quantify the

intermittency of the trajectory we performed a standard
multifractal analysis. Since we will perform similar analyses

Figure 1f. The spatial scaling of the energy flux (") esti-
mated from the Laplacian of the zonal wind at 1000 mbar,
for the GEM model at t = 0 (reproduced from Stolle et al.
[2009]; for the details of the technique, see section 2). The
statistical momentsMq (equation (2)) are shown for q = 0.0 to
2.9 (q > 1.0: Log10Mq > 0, monotonically increasing; q < 1.0:
Log10Mq < 0) in steps of 0.1, l = Learth/L, Learth = 20 000 km.
The qth moment colors vary from q = 0 (reddish orange) to
q = 2.9 (red). The converging straight lines show that the
statistics up to order 2.9 are well approximated by a multi-
plicative cascade starting at about 10,000 km. The results for
the GFS model are almost identical, as are the forecast fields
at t = 48, 144 h. For scales < 5000 km the deviations from
the straight lines are ≈ ± 0.6%. This may be compared with
the empirical aircraft results derived in Figure 2b.
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on the meteorological fields we give a general explanation of
the method, using the example of the familiar Kolmogorov
law of turbulence.
[17] Consider wind fluctuationsDv over distancesDxwith

underlying turbulent energy flux "; we therefore have

Dv ¼ ’DxH : ð1Þ

The form (1) is a generic relation between a turbulent
fluctuation Dv and turbulent flux ’ (at resolution Dx), the
Kolmogorov law is the special casewhere’ = "1/3 andH = 1/3.
Strictly speaking, the equality in equation (1) is in the sense
of probability distributions; that is, the distribution of the
random fluctuation Dv is the same as that of ’DxH. In
the following, this distinction is not important since we use
Dv/DxH to investigate the statistical properties of ’, and
equality in this weaker probabilistic sense is sufficient. In
the data analyzed below, we generally took Dv(Dx) = ∣v(x +
Dx) − v(x)∣ but other definitions, such as the second finite
difference rather than the first, or equivalently wavelets may
be used.
[18] If over a range of scales, ’ is the result of a multipli-

cative cascade process, then the normalized flux’l′ = ’l/h ’ i
obeys the following statistics:

Mq ¼ �

�eff

� �K qð Þ
; � ¼ Lref

L
; �eff ¼ Lref

Leff
; ð2Þ

where Mq ¼ ’�
0qh i ¼ ’q

�

� �
= ’h iq is the normalized qth

moment at resolution L (scale ratio l), Lref is a convenient
reference scale (taken below as the largest great circle distance
on the Earth, Lref = 20,000 km), Leff is the “effective” scale at
which the cascade begins, and K(q) is the scaling exponent
characterizing the intermittency. Note that there is no need for
a subscript on h’i since the ensemble flux is a climatological

value independent of the resolution l (i.e.,K(q = 1) = 0 which
follows since for q = 1 the operations of spatial and ensemble
averaging commute). In order to test equation (2) on the data,
it is sufficient to use the (absolute) fluctuations at the smallest
available scales l (i.e., take l =Dx, corresponding to the large‐
scale ratio L), and then to estimate the normalized flux as

’L

’Lh i ¼
Dv lð Þ
Dv lð Þh i ; L ¼ L

l
: ð3Þ

That is, it is not necessary to know H or even the physical
nature of the flux ’ so that our results are independent of any
specific theory of turbulence. The fluctuations can be esti-
mated either by differences (when 0 <H < 1) or (equivalently)
by wavelets. The normalized flux at lower resolution l < L is
then obtained by straightforward spatial averaging of the fine‐
scale (L) resolution normalized fluxes. We do not attempt to
determine the direction (i.e., from large to small or small to
large) of the cascade. Note that we follow standard conven-
tions usingDx for the length scale of fluctuations and l and L
for the resolutions of fluxes;L, l (both ≥ 1) are dimensionless
scale ratios, largest scale to inner resolution scale (L being the
smallest available, l can vary in the range 1 ≤ l ≤ L).
[19] When this method is applied to the aircraft altitude, we

obtain Figure 2b which shows that equation (2) is well veri-
fied with lines converging to log10leff ≈ 2.9 corresponding to
Leff ≈ 30 km. This shows that for scales < ≈ 30 km, the altitude
has very strong intermittency which is of the type theoreti-
cally predicted for turbulent cascades. This result is com-
patible with the phase and coherence analysis summarized
above to the effect that for scales < ≈ 40 km that the phase of
the wind leads the phase of the pressure causing deviations
from isobaric flight and provoking autopilot altitude com-
pensation. While this mechanism can apparently make the
altitude fluctuations lead the wind, the intermittency in the
altitude due to the wind remains. At the larger scales the phase
changes sign and the pressure leads the wind so that (due to
the autopilot) the aircraft starts to closely follow the isobars
which are much smoother (the response time of the autopilot

Figure 2a. Coherencies (C, right axis) and phases (� in ra-
dians, left axis) of the longitudinal wind with pressure (blue)
and altitude (red). Solid curves are coherencies; those greater
than ≈0.2 are statistically significant, and they are highly sig-
nificant over most of the range. Thick dashed lines are phases,
and thin purple dashed lines are the 1 standard deviation con-
fidence intervals for the phases (they increase at low wave
numbers due to the smaller number of samples). A positive
phase means that the wind leads (pressure or altitude); a neg-
ative phase means that it lags behind.

Figure 2b. The normalized moments q = 0.2, 0.4, …, 3 for
aircraft altitude z; log10l corresponds to 20,000 km ( = Lref).
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is much shorter than the 2–3 min needed to cover ≈ 40 km but
apparently, the turbulence is too strong at smaller scales).
[20] We now seek to quantify the accuracy with which

the altitude intermittency follows the cascade form. First, we
may use the logarithmic slopes of Mq to estimate K(q), and
then use a parametric form of K(q) in order to reduce it to
a manageable (finite) number of parameters. This is most
conveniently done by exploiting the existence of stable,
attractive cascade processes, the result of a kind of multipli-
cative central limit theorem, which gives rise to “universal
multifractals” [Schertzer and Lovejoy, 1987; Schertzer and
Lovejoy, 1997]. For universal multifractals K(q) has of the
form

K qð Þ ¼ C1

�� 1
q� � qð Þ; q � 0; 0 � � � 2: ð4Þ

The parameterC1 (0 <C1 <D) characterizes the intermittency
of the mean:C1 =K′(1), it thus characterizes the intermittency
of the mean field (D is the dimension of the observing space,
here D = 1). The second parameter is the multifractal index a
which characterizes the degree of multifractality, it quantifies
how rapidly (with intensity, with q), the statistics deviate from
the monofractal case a = 0). In Table 1 we give the estimates
of the parameters for the altitude and various other fields. We
return in section 4 to the parameters attempting refined esti-
mates and also comparing the values with those of reanalyses
and meteorological models.
[21] To quantify the accuracy, we may characterize the

deviations by the mean absolute residuals for the statistical
momentsMq of order q from 0 to 2 for all points between the
smallest available scale and the much larger scales indicated
in the text (generally the largest possible, for a total range of
280 m to 1120 km):

D ¼ log10 Mq

� �� KðqÞ log10 �=�eff

� ��� ��: ð5Þ

To convertD to a percent deviation, use d = 100(10D‐1) (see
Table 1 for the mean � averaged over the q ≤ 2).

3. Scaling Analyses

3.1. Trace Moments and the Cascade Structure
of the Fields

[22] Based on the analysis of the aircraft altitude and cross
spectra, we have argued that the aircraft trajectory fluctua-
tions and their coupling with the fields must be taken into
account for quantitative analyses of the statistics. However,
before we attempt a more refined analysis, we present the
basic cascade (flux) and then fluctuation analyses. As indi-
cated in section 2 (see equation (3)), the dimensionless,
normalized flux is estimated using absolute fluctuations at the
smallest scales. In the case of the horizontal wind in the ≈k−5/3

Figure 2c. Same as Figure 2b but for the fields strongly affected by the trajectories: (top left) the longi-
tudinal wind, (top right) the transverse wind, and (bottom left) pressure.

Table 1. Horizontal Cascade Parameter Estimatesa

T Log� h vlong vtrans p z

C1 0.052 0.052 0.040 0.033 0.046 0.031 0.23
a 2.15 2.20 2.10 2.10 2.10 2.2 2.15
Leff (km) 5000 10,000 10,000 105 25,000 1600 30
d (%) 0.5 2.0 0.5 0.4 0.8 0.5 2.6

aThese are estimated over the range 100 km down to 2 km except for z
which is over the range 20 km to 0.5 km. The regressions force the lines to
pass through a common external scale (equation (2)). Leff is given in round
numbers since the values were only believed to be accurate to the nearest
100.1 i.e., to about ±25%. We have not given error estimates on the param-
eters because of the significant systematic (trajectory) effects. These are dis-
cussed in section 4 along with refined parameter estimates and comparisons
with the reanalyses and numerical model parameters. Note that the aircraft a
estimates are a bit too big since the theoretical maximum is a = 2. They were
estimated with the double trace moment technique which depends largely on
the statistics of the weaker events, and these could be affected by aircraft
turbulence. In our experience, values of a > 2 are always accompanied by
error bars that encompass values < 2. T, temperature; �, potential temperature;
h, humidity; vlong and vtrans, longitudinal and transverse components of the
horizontal wind; p, pressure; and z, altitude of the aircraft.
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regime, it is presumably the energy flux to the one third
power, but knowledge of the exact physical nature of the flux
is not necessary to test the prediction of cascade processes
(equation (2)). First we decompose the wind into longitudinal
and transverse components anticipating that the altitude
fluctuations will affect each somewhat differently. Figure 2c
shows the results along with those of the pressure. Although
the basic structure is reasonably close to (near) planetary‐
scale cascades, we can see evidence of the three regimes
discussed above; at scales smaller than about 4 km, the var-
iability is a little too large (compared with the regression
lines), logMq is quite linear from 4 to 40 km, and then flattens
out a bit at scales > 40 km. Qualitatively this can be under-
stood by the action of inertially smoothed trajectories at small
but nonzero slopes (scales < ≈ 4 km), by turbulent wind
induced altitude fluctuations for scales between 4 and 40 km
and then at larger scales an excess of variability since the
aircraft starts to follow the isobaric slopes and responds to
the (larger) vertical intermittency (at 40 km the statistics are
still quite good and we see a systematic departure above
the regression lines, not just noise). For the pressure, on the
contrary the variability at the largest scales is low since the
aircraft does not stray far from the isobars. We may also note
that for the wind, the outer scales are somewhat larger than the
planetary scales (Table 1), especially for the longitudinal
component. Lovejoy et al. [2009c] have already argued on the
basis of cross‐spectral analysis that the longitudinal compo-
nent was the most affected by the trajectory; it is presumably
partially responsible for the corresponding large value of Leff
which implies an excessively large variability at all scales. In
comparison, the value of Leff for the transverse component,
although perhaps still too large, is about the same as that
reported for satellite radar reflectivities from precipitation
[Lovejoy et al., 2008a]; the fact that it is larger than the
largest great circle distance (20,000 km) simply means that

even at planetary scales there is residual variability due to
the interactions of the wind with other atmospheric fields. In
comparison the outer scale of the pressure is somewhat
smaller than planetary scales; this is not surprising since the
aircraft was attempting to fly along isobars.
[23] Turning our attention to the analyses of the relatively

unbiased temperature, humidity and log potential temperature
fields (Figure 2d), we again see evidence for the three regimes
and we note that the cascade structure is somewhat more
closely followed with external scales somewhat smaller than
20,000 km. Overall, we conclude that the basic predictions
of the cascade theories are well respected; in particular
there is no evidence for a break anywhere near the mesoscale
(≈ 10 km, no sign of a 2‐D/3‐D transition). The outer scales of
these fields are in fact very close to those of visible, infrared
and passive microwave radiances as determined by satellite
[Lovejoy et al., 2009a]. Note that the log equivalent poten-
tial temperature is not shown here or below because the
humidity is sufficiently low at the aircraft altitude that the
graph is nearly indistinguishable from that of the log potential
temperature.

3.2. Fluctuation Analysis Using Structure Functions

[24] In section 3.1 we discussed the statistics of the turbu-
lent flux, we now turn our attention to the (absolute) fluc-
tuations as functions of scale (Dx), here estimated using
differences: e.g., Dv(Dx) = ∣v(x + Dx) − v(x)∣. Defining the
qth‐order structure function (Sq),

Sq Dxð Þ ¼ Dv Dxð Þqh i; ð6aÞ

we can now take the ensemble average of equation (1) and
obtain

Sq Dxð Þ / Dx� qð Þ; � qð Þ ¼ qH � K qð Þ: ð6bÞ

Figure 2d. Same as Figure 2c but for the fields that are relatively unaffected by the trajectory: (top left)
temperature, (top right) relative humidity, and (bottom left) log potential temperature.
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The difference between the structure function and the fluxes
can be clearly seen in the special case of 1‐D analyses where
fluxes at the smallest scale are estimated by absolute first‐
order differences (as described in section 2). In this case, the
large‐scale fluxes are obtained by adding/integrating the
absolute small‐scale differences. In the case of structure
functions, the large‐scale fluctuation is given by adding/
integrating the signed small‐scale differences. In terms of
scaling, the former yields an exponentK(q) (with respect to l)
while the latter has exponentHq − K(q) (with respect toDx =
Louter/l). Since the linear termHq is frequently larger than the
nonlinear term K(q) (associated with intermittency) studying

the fluxes is a more sensitive way of investigating the cas-
cade, intermittency behavior.
[25] The results for altitude are given in Figure 3a. We

again see evidence for three regimes; the large‐scale regime
very nearly corresponds to linear variations (H = 1), i.e., to a
constant slope with the aircraft nearly exactly following the
isobars. As we shall see in more detail in the section 4, where
we estimate H as a function of scale from the logarithmic
slopes of Figure 3a, H decreases at the smallest scale from a
value ≈ 1 corresponding to inertially smoothed trajectories, to
a minimum value ≈ 0.5 at around 4 km, and then increases to
the maximum value 1 for scales > 40 km where the trajec-
tories are close to isobars and are again, relatively smooth.
Note that in Figures 3a, 3b, and 3c we plot the nondimen-
sional structure functions obtained by dividing the fluctua-
tions by the mean at the smallest scale.
[26] In Figure 3b we show the corresponding results for the

longitudinal and transverse wind and pressure. While the
behavior for the wind has essentially two scaling regimes
with a 4–40 km transition regime, unsurprisingly, the pres-
sure has poor scaling; we reserve a detailed analysis for
section 4. In Figure 3c we show the corresponding plot for
those fields less affected by the trajectory fluctuations, the
temperature, humidity and log potential temperature; we see
that the scaling is indeed very good.

4. Refined Analysis

4.1. Horizontal Exponent Estimates

4.1.1. Intermittency Exponents and the Optimum Scale
Range
[27] In section 3 we considered the raw flux statistics; no

attempt was made to quantitatively correct or take into
account the effects of the trajectory, we turn to this task now.
From the “raw” flux and fluctuation analyses, we saw that the

Figure 3a. Structure functions of order q = 0.2, 0.4,…, 2.0
for the aircraft altitude (bottom to top). Distances Dx are in
kilometers. Separate sets of regression lines are shown for
both small and large scales in order to emphasize the change
with scale.

Figure 3b. Same as Figure 3a a but for the fields strongly affected by the aircraft trajectory: (top left) the
longitudinal wind, (top right) the transverse wind, and (bottom left) the pressure.
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aircraft trajectories are highly intermittent for scales < 40 km
(Figure 2a) after which they begin to accurately follow
isobars and have nearly constant slopes (Figure 2b). We also
saw that for the fields not strongly affected by the trajec-
tory (temperature, humidity, log potential temperature), that
the overall scaling was very good. However, if we want
to quantitatively characterize the corresponding horizontal
scaling and estimate K(q) and hence the parameters H, C1, a,
it is not clear what is the optimum range of scales that should
be used. In order to obtain a more exact picture of the scale by
scale variations in the statistics, we first consider scale by
scale estimates of the basic flux and intermittency parameters
using the logarithmic derivatives of the second‐order flux
exponent (K(2)) and first‐order (q = 1) structure function
exponentH.K(2) was chosen to characterize the amplitude of
the intermittency rather than the more fundamental C1

because it is directly related to the spectral exponent b = 1 +
2H − K(2) and so can be directly used to determine the con-
tribution of intermittency corrections to the spectrum (note
that since a ≈ 2 we have C1 ≈ K(2)/2 (equation (4)); in any
case, C1 is directly estimated below using C1 = K′(1)).
[28] Figure 4a shows the results for the second moment of

the flux M2; Figure 4a (right) for the moments themselves,
Figure 4a (left) for the corresponding logarithmic derivatives
estimated from the corresponding right hand graphs by
performing regressions over an octave of scales centered on
the scale indicated. Focusing on Figure 4a (top) for the wind,
we see that the logarithmic derivatives bring out the three
regions quite clearly. At small scales < ≈ 4 km (large l), the
intermittency is large corresponding to the strong intermit-
tency of the trajectory while at the largest scales > ≈ 40 km
(small l) it is again large due to the fact that the near constant
slope means that the aircraft is picking up the (large) vertical
intermittency indeed, if we use the vertical value K(2) ≈ 0.17
estimated from the drop sondes we find that it is not far from

the value of the top left (velocity) graph in Figure 4a. Note
that the estimate of the logarithmic slope is itself highly
fluctuating at low l since the statistics get progressively
worse at large scales due to the smaller and smaller number of
large‐scale structures. Detailed consideration of the scale by
scale estimates of K(2) for the altitude show that it is actually
not so constant in spite of the relatively straight appearance of
the lines in Figure 2a. For the velocity, the region 4–40 km is
the least intermittent (in the sense of the lowest exponent K
(2)); this is presumably the optimum region for estimating the
scaling exponents: at smaller scales, the aircraft trajectory is
too intermittent whereas at the larger scales, the intermittency
increases again since, at least for the wind, the aircraft is
moving significantly in the vertical along a near constant
isobaric slope (in any case at the large scales, we obtain the
vertical rather than the horizontal exponents and the vertical
intermittency is larger; see below and Figure 2c). We there-
fore used this regime to estimate the exponents (Table 2
shows the estimates obtained by taking regression over the
range 4–40 km). We see that in conformity with the cross‐
spectral analyses and our previous discussion, that the scale
by scale intermittency (i.e., K(2) = dlogMq/dlogl) for T, log�
and h is nearly constant for scales > ≈ 4 km confirming that
the main deviation from scaling for these fields is only at the
smallest scales. We also observe that the exponents are nearly
the same for all three fields. In Table 2 we also give the
corresponding C1 estimates obtained by numerically esti-
mating K′(1) using regressions over the range 4–40 km.
4.1.2. Fluctuation Exponent H
[29] Turning our attention to the fluctuation exponent H

(Figure 4b, top right; see the reference lines), we see that they
reasonably follow successively the values H = 1/3, 0.75 (i.e.,
the standard Kolmogorov value and the observed vertical
value, respectively). However, the scale by scale estimates
(Figure 4b, top left) show that this mean behavior hides an

Figure 3c. Same as Figure 3a but for those fields relatively unaffected by the aircraft trajectories: (top left)
the temperature, (top right) the humidity, and (bottom left) the log potential temperature.
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increase in H from ≈ 1/3 at the smallest scales to H ≈ 0.75 at
scales 40–100 km. According to the leg by leg analyses by
Lovejoy et al. [2009c], this fairly systematic increase of
ensemble mean H hides highly variable transition scales in
individual legs; the observed fairly continuous change inH is
in fact the result of the transition scale varying greatly from
leg to leg. On the structure function (Figure 4b, top right) we
can also see that fitting a single line through the entire range is
not so bad, and yields roughly the mean of 1/3 and 0.75; this
may explain the wind valueH ≈ 0.56 ± 0.02 from S. J. Hovde
et al. (Vertical scaling of the atmosphere: Dropsondes from
13 km to the surface, submitted to Nonlinear Processes in
Geophysics, 2010) (using nearly the same data set as here).
This can be compared to the stratospheric estimates over
(different) fractal isomach trajectories of 0.50 ± 0.02, 0.52 ±
0.03 (transverse and longitudinal wind, respectively [Lovejoy
et al., 2004]) and 0.53 ± 0.01 [Tuck et al., 2004]. Note that the
latter finds significant differences in H for the wind for
stratospheric trajectories across or along the polar jet (0.45 ±
0.14 and 0.55 ± 0.12, respectively) but this could be a
reflection of a systematic shift in the transition scale from an
H ≈ 1/3 to anH ≈ 0.75 regime (see however the interpretation
by Tuck et al. [2004] and Tuck [2008], which is consistent
with the thermal wind equation).
[30] Moving down Figure 4b (middle), we see that at small

enough scales, the altitude has Htr ≈ 1 presumably as a con-
sequence of the inertial smoothing leading to near linear
behavior (nearly constant slopes; the subscript “tr” is for
“trajectory”). At larger scales, the inertia effect is gradually
overcome by turbulence so that at 4 km it reaches a minimum

near Htr ≈ 0.48 after which it systematically rises again to the
smooth trajectoryHtr ≈ 1 (for scales > ≈ 40 km) as the aircraft
flies increasingly close to a constant isobaric slope. Up to this
scale, the altitude statistics are thus close to those of the ER‐2
stratospheric trajectories except that the latter maintain a
valueHtr ≈ 0.58 along isomachs (over the range ≈ 3 km until ≈
300 km when the systematic vertical rise of ≈ 1 m/km (due
to fuel consumption) eventually implies Htr ≈ 1 (on aver-
age, for scales > ≈ 300 km [Lovejoy et al., 2004]). As noted
above, along this fairly wide fractal range, the ER‐2 had an
“anomalous” wind exponent Hwind ≈ 0.5 which is nearly the
mean of the horizontal and vertical values (1/3, 0.75) so that
the effect of following a fractal trajectory with fairly well
defined fractal dimension (= 1 +Htr) apparently leads the ER2

Figure 4a. (right) Second‐order trace moments and (left) their logarithmic derivatives (estimates of K(2),
an intermittency index). (top) Wind, longitudinal (blue) and transverse (red). The region within the dashed
lines has particularly low K(2) (≈ 0.05). (middle) Pressure (blue) and altitude (red). (bottom) Temperature
(blue), humidity (red), and log potential temperature (gold); reference lines K(2) = 0.12. Log10l = 0 corre-
sponds to 20,000 km ( = Lref).

Table 2. Parameter Estimates Over the Optimum Range 4–40 kma

T log� h

a 1.78 1.82 1.81
b 1.89 1.91 1.99
K(2) 0.12 0.12 0.11
C1 0.064 0.063 0.051
C1,st 0.040 0.042 0.028
C1mean 0.052 ± 0.012 0.052 ± 0.010 0.040 ± 0.012
Hst 0.49 0.50 0.52
Hb 0.51 0.52 0.50
Hmean 0.50 ± 0.01 0.51 ± 0.01 0.51 ± 0.01

aHere b is the spectral exponent, Hst = c(1) is estimated from the first‐
order structure function, Hb = (b + K(2) − 1)/2, and Hmean is the average
of the two. C1 = K′(1) from the trace moments, and C1,st = x(1) − x′(1);
C1mean is the average. T, temperature; �, potential temperature; h, humidity.
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to sample both horizontal and vertical exponents yielding
overall an average of the two.
[31] Consider now the pressure exponent. At the smallest

scales, it starts off with a value near 2/3 decreasing system-
atically to zero at scales > ≈ 40 km indicating very low
fluctuations consistent with near isobaric trajectories (there
are some large fluctuations in the scale by scale estimates
presumably due to poor statistics). The small‐scale value ≈
2/3 is presumably a consequence of the dynamic pressure
relationDp ≈ rDv2/2 so thatHpress = 2Hwind withHwind ≈ 1/3.
[32] Finally, in Figure 4b (bottom), we show H estimates

for T, log�, h, again finding relatively good scaling (constant
exponents) for scales > ≈ 4 km withH ≈ 0.50 for all three (see
Table 2). For temperature, this is also close to the value 0.52 ±
0.02 obtained from the similar tropospheric data (Hovde
et al., submitted manuscript, 2010) and also not far from
stratospheric ER‐2 analyses withHtemp ≈ 0.45 ± 0.02 [Lovejoy
et al., 2004], and Htemp ≈ 0.54 ± 0.01 [Tuck et al., 2004].
This value is so close to a ratio of small integers (1/2) that
one would expect there to be a straightforward theoretical
explanation (or at least dimensional analysis) leading to this
value but we are not aware of any adequate theory. The usual
argument is to consider temperature to be a passive scalar
in which case Corrsin‐Obukhov theory predicts H = 1/3 (see
Tuck [2008] for arguments about the nature of atmospheric
temperature that imply it is not a passive scalar). Alterna-
tively, consider the prediction of Bolgiano‐Obkuhov theory
for isotropic buoyancy driven turbulence, which for the
wind predictsH = 3/5 which, recalling b = 1 + 2H −K(2) with

K(2) ≈0.05, is the vertical value observed near the surface
(≈2.15, see section 1.1). However, the same theory predicts
Htemp = 1/5 which is even further from the empirical value
[see Monin and Yaglom, 1975]. Further support for the non
standard value H ≈ 1/2 for temperature (corresponding to b ≈
1.9) comes from aircraft temperature spectra in the lower
troposphere [Chigirinskaya et al., 1994] where b ≈ 1.9 fits
very well over the range > 1 km in scale, and stratospheric
potential temperature spectra where b ≈ 1.9 is also very close
to data for scales > ≈3 km in scale [Bacmeister et al., 1996]
(recall that K(2)≈ 0.1 so that b = 1 + 2 × 0.5 − 0.1 = 1.9).
4.1.3. Spectral Exonent b
[33] Finally, we consider the spectra (Figure 4c). As indi-

cated above, since the spectrum is a second‐order statistic, we
expect that the scale by scale analysis of the latter (again by
logarithmic derivatives) should at least roughly satisfy the
equation b = 1 + 2H − K(2) (actually, this equation is strictly
only valid when the scaling is satisfied over wide ranges so
hence some deviations are to be expected; note that to esti-
mate the spectrum, we used a standard Hanning window).
Starting with the wind (Figure 4c, top), we see the spec-
tral version of the transition discussed earlier: at low
wave numbers (k < (40 km)−1),b ≈ 2.4 ( = 2 × 0.75‐ 0.1) to b ≈
1.6 ( = 2 × 1/3 − 0.05 for (40 km)−1 > k > (4 km)−1). In the high
wave number regime, we see a new feature which is a slight
bump near k ≈ (1 km)−1, (magnified in the derivative on the
left) which may be a residual signature of various aircraft roll
modes and autopilot feedbacks. Turning our attention to
Figure 4c (middle) (altitude, pressure), we see that the small

Figure 4b. (right) First‐order structure functions and (left) their logarithmic derivatives (estimates of H).
(top) Wind, longitudinal (blue) and transverse (red); the reference lines correspond to the exponents 1/3 and
0.75. (middle) Pressure (blue) and altitude (red); the reference lines correspond toH = 1, i.e., constant mean
slopes. (bottom) Temperature (blue), humidity (red), and log potential temperature (gold); reference lines
H = 0.5.
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scales are indeed particularly smooth with the larger scales
following near Kolmogorov (b ≈ 5/3) behaviors (probably the
maximum near (200 km)−1 is only a statistical fluctuation).
Interestingly, the regime with reasonable b ≈ 5/3 scaling
seems to be a consequence of the partial cancellation of a
continuously varyingH andK(2) (compare the corresponding
plots of Figures 3a and 3b). Finally, the temperature, humidity
and log potential temperature (Figure 4c, bottom) are seen to
have significant fluctuations (Figure 4c, bottom left), but the
overall scaling (to the right of Figure 4c, bottom right) is
nevertheless fairly good.
[34] We now consider the parameter estimates (Table 2),

taken from the “optimum” regime 4–40 km. For both the
C1 and H, there are two slightly different ways to estimate
them.H can be estimated from both structure functions:Hst =
x(1) and also from the spectral exponent b via: Hb = (b − 1 +
K(2))/2. TheC1 can be estimated from the fluxmoments:C1 =
K′(1) and also from the structure function exponent: C1 =
x(1) − x′(1). In Table 2 we have given all these estimates as
well as the mean of the two as the best guess, and with the
error as half the difference. From Table 2 we see that the three
fields have nearly identical exponents, and that the important
parameter H, which should ultimately be determinable by
dimensional analysis, is near the value 1/2.
[35] In Figure 5 we show the moment scaling exponents

K(q) estimated over the 4–40 km range. We see that T, log�,
h remain almost indistinguishable out to very large q values
(corresponding to rare extreme fluxes) whereas the longitu-
dinal and transverse components separate for q > ≈3 (already
a large value of q). The corresponding asymptotic linearity

is predicted as a consequence of a “multifractal phase tran-
sition” [Szépfalusy et al., 1987; Schertzer et al., 1993] and
depends on the finite size of the sample (the asymptotic slope
is simply the largest singularity present in the sample).

4.2. Comparison With Reanalyses and Numerical
Models

[36] In section 1 we mentioned that the same basic hori-
zontal cascade structure was found in reanalyses and in
numerical models of the atmosphere (see the example in

Figure 4c. (right) Spectra and (left) their logarithmic derivatives (estimates of −b). (top) Wind, longitu-
dinal (blue) and transverse (red). The thin reference lines correspond to b = 5/3, 2.4. (middle) Pressure (blue)
and altitude (red), with reference lines corresponding to b = 5/3. (bottom) Temperature (blue), humidity
(red), and log potential temperature (gold); reference lines b = 2. Vertical dashed lines indicate the region
with scales 4–40 km where the velocity intermittency is low.

Figure 5. The K(q) functions for altitude and pressure
(upper and lower blue curves, respectively), temperature,
humidity, and log potential temperature (lower, middle, and
upper green curves, respectively), and longitudinal and trans-
verse wind (upper and lower red curves, respectively).
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Figure 1e and Stolle et al. [2009]). It is therefore of interest
to compare the cascade parameters with those found for
the aircraft data studied here. Before doing so, it should
be mentioned that the turbulent fluxes estimated for the
spatial cascade analyses are based not on scaling range esti-
mates (as here; see equation (1)) but rather on the model
(hyper) dissipation scale estimates (using absolute numerical
Laplacians). As pointed out by Stolle et al. [2009], the fluxes
estimated in the two different ways will in general be dif-
ferent. In the simplest case, assuming the standard turbulence
results for the velocity field with k−5/3 horizontal spectrum,
the two fluxes are related by a power law (exponent h = 3/2).
For universal multifractal cascades, this implies that the C1

parameters are estimated by C1diss/C1scaling = (h)a, and with
a ≈ 1.8, we find a ratio ≈ 2.08 in this basic intermittency
parameter (the parameter a should be the same). Although
in general the relation between the fluxes and the parameters
will bemore complex, the ratio 2.08 turns out to be reasonable
estimate.
[37] In Table 3, we compare the best aircraft and model

estimates. Overall, we see that there is surprisingly close
agreement.

4.3. Horizontal‐Vertical Comparison, Vertical
Stratification, and Estimating Hz and Del

[38] We have argued that atmospheric fields are compatible
with wide‐range horizontal scaling and have estimated the
corresponding exponents. This work complements that of
Lovejoy et al. [2009b] where high‐resolution drop sondes
were used to estimate the corresponding vertical cascades and
exponents; the overall conclusion is thus that the dynamics
are scaling and turbulent but anisotropic. The simplest
anisotropic turbulence model involves a unique scale func-
tion for all the fields. This would imply that the ratio of
horizontal and vertical components is Hhor/Hver = Hz =
constant, so that for universal multifractals ahor = aver and
C1hor/C1ver = Hz. Lilley et al. [2008] provided an extensive
analysis of this for the lidar backscatter data (B) from passive
pollutants. Recall that the significance ofHz is that it controls
the scaling of the aspect ratio of structures in vertical sections.
In particular, if we assume horizontal isotropy, then volumes
of structures vary as L2+Hz where L is their horizontal extent,
hence the “elliptical dimension” Del controlling the rate of
change of volumes of nonintermittent structures is Del = 2 +
Hz. The 23/9 D model derives its name from Hz = 5/9, the
result of Kolmogorov scaling (H = 1/3) in the horizontal
and Bolgiano‐Obukhov scaling in the vertical (H = 3/5). In
comparison, the popular quasi‐linear gravity wave theories
[Gardner, 1994;Dewan, 1997] haveH = 1/3 in the horizontal
and H = 1 in the vertical so that Hz = 1/3 and Del = 7/3.
[39] Combining the results from the aircraft and the drop

sondes and taking into account a small apparent altitude
dependence of the sonde intermittency exponents C1 (so as
estimate them at the 200 mbar aircraft level), we obtain
Table 4. Note that the value for the horizontal wind is given as
the theoretical value 1/3 whereas the detailed leg by leg
analysis by Lovejoy et al. [2009c], which fits two power laws
(one for small, the other for large scales), gives 0.26 ± 0.07,
0.27 ± 0.13 for the dominant small‐scale exponent (transverse
and longitudinal, respectively). Given the strong coupling
between the aircraft trajectory and the wind, it seemed best
to assume that these estimates support the Kolmogorov value
1/3 and it was used without an error bar. Similarly, the value
ofHz for velocity is from the analysis of Lovejoy et al. [2009c]
which fits two power laws, one fixed at Hh = 1/3, the other
(large‐scale one corresponding to Hv) varying.
[40] It should be noted that although in Table 4 we give the

ratio of the C1 values, since their values are small, their rel-
ative errors are large and consequently their ratios have large

Table 3. Optimum Parameters at the 200 mbar Level for the
Temperature, Zonal Wind, and Humidity for the Analysis of
the ERA40, GFS, and GEM Reanalysis Modelsa

C1 a Leff d

T (200 mbar) 0.075 ± 0.05 1.89 ± 0.04 10500 ± 2000 0.6
T (aircraft) (0.107), 0.056 1.78 5000 0.5
U (200 mbar) 0.078 ± 0.006 1.88 ± 0.03 13700 ± 4000 0.4
U (aircraft) (0.088), 0.040 1.94 25000 0.8
H (200 mbar) 0.098 ± 0.012 1.66 ± 0.10 25000 0.6
h (aircraft) (0.083), 0.040 1.81 10000 0.5

aThe 200 mbar level is roughly the aircraft altitude (boldfaced entries).
ERA40, GFS, and GEM reanalysis models are estimated over a scale
range starting from the model hyperdissipation scales up to 5000 km
(taken from Table 2 of Stolle et al. [2009]). The principle value is the mean
and the plus/minus indicates the spread about the mean. For h (200 mbar)
the model values for Leff were 10,000 (GFS), 33,000 (GEM), and 50,000
(ERA40), so that the geometric mean but no spread is given. For the C1

aircraft estimates, the second value is from Table 2; the first (in parenthe-
ses) is the same but increased by the factor 2.08 as a rough attempt to correct
for the difference in the fluxes estimated in the scaling and dissipation
regimes. C1 is the codimension of the mean characterizing the sparseness of
the intensity level which gives the dominant contribution to the mean, a
characterizes the degree of multifractality, Leff is the effective outer scale of
the cascade, and d is the percentage deviation from the theoretically predicted
cascade form.

Table 4. An Intercomparison of Multifractal Parameters in the Horizontal and Vertical Directionsa

T Log� h v B

ah 1.78 1.82 1.81 1.94 1.83
av 1.70 1.90 1.85 1.90 1.82
Hh 0.50 ± 0.01 0.51 ± 0.01 0.51 ± 0.01 1/3 0.33 ± 0.02
Hv 1.07 ± 0.18 1.07 ± 0.18 0.78 ± 0.07 0.75 ± 0.05 0.60 ± 0.02
Hz = Hh/Hv 0.47 ± 0.09 0.47 ± 0.09 0.65 ± 0.06 0.46 ± 0.05 0.55 ± 0.02
C1h 0.052 ± 0.012 0.052 ± 0.010 0.040 ± 0.012 0.04 0.076
C1v 0.072 0.071 0.091 0.088 0.11
Hz = C1h/C1v 0.72 0.71 0.44 0.45 0.69 ± 0.2

aUsed is the estimate of the verticalHv,C1v from sondes [Lovejoy et al., 2009b, Table 2]. The (horizontal) values forHh for T, log�, h are from Table 2 (from
4 to 40 km; see section 4.1), for the lidar reflectivity B it is from Lilley et al. [2008]. Finally, the C1 for v is for the range 4–40 km using trace moments. The
horizontal a values were for nonlinear fits of the K(q) for 0 < q < 3 (same range of scales). T, temperature; �, potential temperature; h, humidity; and v,
longitudinal component of the horizontal wind.
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uncertainties. Since the H are larger, the ratio Hz = Hh/Hv is
more reliable than C1h/C1v; indeed in the latter case the error
is very hard to reliably estimate and is not indicated except
in the lidar case. The main conclusions are (1) for T, log � and
v, the exponent ratio Hz is close to 0.47, (2) for T, log �, B,
and Hz it is within 1 standard deviation of the 23/9 D model
value Hz = (1/3)/(3/5) = 5/9, and (3) the value for the humid-
ity is somewhat larger. Note that finding virtually identical
exponents for T and log� is not surprising since if the pressure
is exactly constant, then the two have a one to one (albeit
nonlinear) relation. Finally, also using the Gulfstream 4 data,
Hovde et al. (submitted manuscript, 2010) find H = 0.45 ±
0.03 for the humidity (see also Tuck [2008] for a possible
explanation for the low value).
[41] If the ratios in Table 4 are taken at face value then we

are led to the conclusion that two or possibly three scale
functions are required to specify the scale of atmospheric
structures. While this is certainly possible, let us for the
moment underline the various difficulties in obtaining the in
situ estimates: the nontrivial vertical dropsonde outages and
the nontrivial aircraft trajectory fluctuations. In addition,
recall that detailed analysis of the altitude dependence of the
horizontal velocity exponent by Lovejoy et al. [2007] in-
dicates that starting with the theoretical Boligano‐Obukhov
value 3/5 near the surface, the exponent increases somewhat
with altitude to the value ≈ 0.75 at 10–12 km. Similarly, the
humidity (and hence log�E) exponents may have both hori-
zontal and vertical variations which may account for their
high Hz values (recall however that the values of H are
expected to be determined by dimensional analysis on fluxes;
they are not expected to have truly continuous variations).We
should therefore regard these studies as only early attempts to
quantify the stratification.

5. Conclusions

[42] Satellites and other remote methods make the deter-
mination of the scale by scale statistical properties of atmo-
spheric radiances relatively easy to establish. In comparison,
our knowledge of the corresponding variability of the stan-
dard atmospheric fields (wind, temperature, humidity, etc.) is
quite meager and is based almost entirely on problematic in
situ measurements. The fact that today’s in situ atmospheric
data are often orders of magnitude better than those avail-
able even 20 years ago, and are often easily accessible, has
unfortunately encouraged naïve applications. For example, in
a series of papers, we have argued that the extreme (and
highly clustered) nature of data outages in drop sonde profiles
must be carefully taken into consideration when they are
analyzed [Lovejoy et al., 2009b]. In situ aircraft data provide
another relevant example: not only do aircraft now have about
10 times higher resolution than they did in the 1980s (e.g.,
3 km for GASP, 280 m for the Gulfstream 4), more im-
portantly, their altitude data are sufficiently accurate so as to
permit a quantitative study of the relation between the aircraft
altitude, pressure and turbulence. In a related paper, we used
this information to argue that due to strong coupling over
wide ranges of scale between the wind and the trajectories,
that aircraft measurements require a theory of anisotropic
scaling turbulence for their interpretation [Lovejoy et al.,
2009c]. Whereas the classical interpretation of aircraft wind
statistics assumes that the turbulence is isotropic and inter-

prets the observed break at around 40 km as a transition
between two isotropic regimes, in the reinterpretation, it is
spurious and is simply a transition from horizontally to ver-
tically dominated parts of the trajectory.
[43] In this paper, we have attempted to exploit this new

understanding in order to both demonstrate and to quantify
the wide‐range horizontal scaling of the key atmospheric
fields: wind, temperature, humidity, potential temperature.
The basic theoretical framework for such wide‐range scaling
is anisotropic cascades; we demonstrate the horizontal cas-
cade structure by directly analyzing the raw turbulent fluxes
finding that they all follow a multiplicative cascade structure
with external scales on the order of 10,000 km. Although this
basic structure was present in all the analyzed fields, we noted
the presence of the three different regimes predicted on the
basis of their cross spectra with the aircraft altitude and with
the pressure. The deviations were fairly strong for the wind
and pressure which were strongly coupled with the trajectory,
but relatively small for the temperature, humidity and poten-
tial temperature which were only weakly coupled. A rough
summary is that at scales < ≈ 4 km the trajectories vary
smoothly but are affected by aircraft roll and pilot/autopilot
controls, for scales ≈ 4–40 km the aircraft follow a rough,
intermittent fractal trajectory; finally for scales ≥ 40 km the
aircraft very closely follow the isobars which have significant
vertical slopes. These regimes are for the ensemble statistics;
the transition points vary considerably from trajectory to
trajectory.
[44] Refined analyses of the statistics was performed by

considering the scale by scale intermittency (characterized
by the second‐order moment of the flux) as well as the scale
by scale smoothness of the fluctuations (characterized by the
first‐order structure function). It was argued that the optimum
scale range for parameter estimation was ≈ 4–40 km where
the intermittency in the altitude was not strong, the effect of
the pilot/autopilot rolls was weak and the constraint of flying
on an isobar was not yet so strong as to impose the verticals
statistics on the wind field. We therefore used this range to
give refined parameter estimates. Perhaps one of the most
surprising results was the near identity of the scaling para-
meters H, C1, a for temperature, log potential temperature
and humidity, and in particular the nonstandard result H =
0.51 ± 0.01 for all three fields which is extremely close to the
fraction 1/2 but which nevertheless (apparently) still belies
theoretical explanation (see, however, Tuck [2008]).
[45] Finally, we compared the estimates of the horizontal

exponents with those from drop sondes of the corresponding
vertical exponents. Overall, the ratiosHz for v, T, log�, hwere
not far from the 23/9 Dmodel prediction 5/9 (based on energy
flux domination of horizontal statistics and buoyancy vari-
ance flux domination of vertical statistics), yet there were
apparently systematic deviations: v, T, log� hadHz ≈ 0.47 and
for h, Hz ≈0.65. For the moment, there is no satisfactory
theoretical explanation for these results, although some
clarification may come from a comparison with the structure
of atmospheric reanalyses and (hydrostatic) numerical mod-
els which not only have nearly perfect cascade structures in
the horizontal, but also at least some similar (and nonstan-
dard) parameters including, at least for the ECMWF interim
reanalysis, nearly identical spatial exponents for the isobaric
wind exponents and the vertical sonde exponents. The fact
that we find qualitatively (and in many cases quantitatively)
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similar wide‐range cascade structures in the simulations and
in the atmosphere opens up new avenues for statistically
verifying the models: their scale by scale statistics should be
the quantitatively the same as those of the measurements.
[46] It is remarkable that in spite of the current golden age

of meteorological observations there is still no scientific
consensus about the atmosphere’s basic scale by scale sta-
tistical properties, in particular those of the dynamical (wind)
field. However, if we reinterpret the (systematically observed)
transition from b ≈ 5/3 to ≈ 2.4 spectral scaling in terms of a
single anisotropic scaling turbulence, then there are no longer
serious obstacles to the emergence of a consensus. To com-
plete this emerging “new synthesis” [Lovejoy and Schertzer,
2010] the analyses presented here must be extended to the
time domain, to different altitudes, and should be rechecked
with different sensors and in particular to aircraft flying on
isoheights. Perhaps most importantly, completion of the
synthesis requires that we abandon the dogma of isotropy (or
quasi‐isotropy) and embark upon the systematic development
of anisotropic but scaling theories of turbulence.

[47] Acknowledgments. We thank the crew of the Gulfstream 4 who
gathered the data.
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