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Abstract 

The rheology of basaltic lava flows depends on several factors including the vesicle size and shape distributions. We 

analysed vesicles in lavas from Mount Etna by sawing, painting and digitizing the collected samples. We find statistical 

properties which are common from one sample to another and which are independent of size for different types of lava 
including pahoehoe, aa and massive. For example, lava vesicular&y shows scale invariant behaviour from = 0.10 to = 4.00 

mm implying a simple relationship between vesicularity and the resolution at which it is estimated. In order to deduce the 

volume distribution from the observed area distribution, we develop transformation rules which apply to vesicles of arbitrary 
shape. On the 22 out of 25 samples, we find that the vesicle number-size density is scale invariant over the same ranges 
(n(V) a VmB- ‘) with a power law distribution of exponent B = 1. When averaging over all the samples, the results yield a 
somewhat more precise estimate B = 0.85. For small vesicle sizes (typically less than = 0.25 mm2>, another power law with 
an exponent B = 0 is found in nearly all samples. Hence, the observed similar scaling behaviours found in the samples 
reveal the existence of a common vesicle pattern which may be related to vesicle growth mechanisms in very different 
looking samples. Moreover, even for identical volcanological/geological conditions-when B 5 l-the vesicularity will 

vary significantly from one sample to another depending on the presence or absence of a few very large vesicles, implying 
significant spatial rheological variations of the lava flows. 
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1. Introduction In spite of their undoubted importance for under- 

Vesicle size distributions observed in volcanic 

products characterize the whole vesicle population 
and provide basic information about vesicle growth 

mechanisms. The size of gas vesicles can vary from 

a few microns at the nucleation level to several 
meters when they burst at the surface of the volcano. 

standing both the morphology and rheology of lava 
flows as well as the associated flow emplacement, to 

date comparatively little quantitative work has been 

done. For example, although the effect of various 

factors on lava rheology, such as the initial tempera- 
ture, crystallization, eruption rate (see Chester et al., 
1985, for a review) has received some attention, little 
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is yet known about the effects of the distribution of 
sizes and shapes of gas filled vesicles. It is, however, 
known that changes in overall vesicle content and 
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deformation strongly affect the lava rheology, partic- 
ularly the relative viscosity, compressibility, cooling 

and differential internal shearing of the flow (e.g., 

Jaupart and Vergniolle, 1988; Jaupart, 1991; Stein 

and Spera, 1992; Bagdassarov and Dingwell, 1993; 
Wilmoth and Walker, 1993, Keszthelyi, 1994). These 

studies clearly point to a nonlinear rheological rela- 

tion between the lava flows and the variability of the 

vesicle population. 

Ratios of a million or more between largest and 

smallest vesicle volumes are commonly observed 

even in samples only centimeters across. This in 
itself makes it unlikely that the basic vesicle growth 

mechanisms involve a well defined characteristic 

length. At the same time, it poses problems in the 

use of standard statistical techniques which are based 

on the notion of characteristic (e.g., mean or median) 

vesicle sizes (e.g., Walker, 1989). Such reductions of 

number distributions to single size values are only 

justified if the distribution decays rapidly (at least 
exponentially fast), necessarily involving only nar- 

row ranges of volumes. The limitations of this ap- 

proach are illustrated by the studies of Sarda and 

Graham (1990), Mangan et al. (1993) and Cashman 
et al. (1994) who suggest that vesicle (and crystal) 

sizes follow exponential distributions while admit- 

ting that the major contribution to overall vesicular- 
ity is associated with large “outlier” (nonexponen- 

tial) vesicles. Another limitation of existing studies is 

that they have been conducted on lavas with spheri- 

cal (or “near” spherical) vesicles (Walker, 1989; 

Mangan et al., 1993; Cashman et al., 1994); these are 

not representative of typical lava. Below we propose 
methods of overcoming both of these problems. 

Rather than attempting to fit distribution data to 
ad hoc functional forms it would clearly be more 

profitable to consider the implications of vesicle 

growth processes on the distributions and derive the 

latter from theoretical considerations. With this in 

mind, we quickly survey the various growth pro- 
cesses which have been proposed to explain the 
observed final vesicle sizes. Starting with nucleation 
[which may be effective at different times during the 

ascent, e.g., in the magma chamber, conduits 

(Vergniolle and Jaupart, 1986), but also in subsur- 
face flows (Cashman et al., 1994)], growth by diffu- 
sion and expansion are generally considered as major 
processes for small to medium vesicles ascending 

from depth to the surface of the volcano (e.g., Sparks, 

1978; Aubele et al., 1988). Toramaru (1990) mor- 
phologically analysed vesicles after making “correc- 

tions” for their non-spherical shapes and proposed a 

mean vesicle radius based growth model involving 
temporal scaling laws (proportional to t”; t is the 

time, n an exponent). On the other hand, in studies 

of high pressure lavas (Sarda and Graham, 1990) and 

in studies of sub-surface lavas (Mangan et al., 1993; 

Cashman et al., 1994) it has been suggested-in 

analogy with crystal size distributions-that vesicle 
size distributions are exponential. These authors hy- 

pothesized that this was the result of continuous and 

simultaneous nucleation and diffusive growth pro- 
cess and explained departures from exponential dis- 

tributions as the results of secondary mechanisms 

such as vesicle coalescence, breakage, ripening. They 
concluded that coalescence (which-according to 

Cashman et al., 1994-leads to “perturbations” 

from exponential distribution) is not important be- 

cause it does not affect a large number of vesicles. 

In contrast, other authors (e.g., Sahagian, 1985; 

Sahagian et al., 1989; McMillan et al., 1989; Car- 

bone, 1993, Gaonac’h et al., 1996) have suggested 

that coalescence is an important growth mechanism. 
Coalescence may be (1) dynamic-via the stochastic 
collection of neighbouring vesicles moving at vari- 

ous velocities (Gaonac’h et al., 1996)-or (2) static 

-as triggered by the appearance of diktytaxitic 
voids, which destroy the walls of adjacent vesicles 

(Walker, 1989). The vesicle population may also be 

affected during an eruption by the elimination of 

vesicles through degassing (Blackbum et al., 1976; 
Cashman et al., 1994) or by bursting of lava or 

shearing of vesicles (Walker, 1989). Hence-al- 
though there is not as yet any consensus on the 
importance of the different growth processes at sub- 

surface conditions-none of the proposed mecha- 
nisms operates at a well defined characteristic size, 

but rather over a wide range of sizes, they are 
“scaling”. 

In the present paper we argue that this scaling is a 
fundamental symmetry principle respected by the 
relevant nonlinear dynamics, and that this provides a 
unified framework for both analysing and modelling 
vesicle distributions. Scaling behaviour is indeed 
ubiquitous in geophysics; it is associated with fractal 
structures, multifractal statistics and power law dis- 
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tributions. Directly relevant examples of scaling dy- 
namical processes are the diffusive vesicle growth 
laws (Sparks, 1978; Toramaru, 19901, and coales- 
cence processes (see Gaonac’h et al., 1996, for a 
scaling model). For vesicles in a lava sample, scaling 
means that a function such as the number distribu- 
tion can be described as a power law: below we 
confirm this prediction on vesicle distributions from 
lavas of the 1985 and 1991- 1993 Etna eruptions. 

The finding that vesicle distributions can be scal- 
ing up to the largest vesicle volumes, combined with 
the importance of vesicles for the rheology of lava 
(both fluid and solid, e.g., viscosity and yield stress) 
suggests that the range of vesicle scaling (which a 
priori is itself highly variable) may be a fundamental 
determinant of rheological properties. This provides 
us with a quantitative way of distinguishing the 
rheology and morphology of lava flows (aspects 
which are not otherwise easy to disentangle). To 
illustrate this, consider the morphology of lava flow 
fields which show great variations of sizes, shapes, 
and surface textures such as pahoehoe and aa. In 
spite of these differences, qualitatively similar het- 
erogeneous structures can be found over a large 
range of scale suggesting similar mechanisms acting 
at widely varying scales. Gaonac’h et al. (1992) have 
shown that the lava flow morphologies of different 
volcanoes have common scaling properties down to 
at least 10 m. The scale invariance was quantified by 
exponents (fractal dimensions) relating morphologi- 
cal parameters such as the area or the perimeter of 
flow fields to the resolution. The knowledge of the 
inner scale (the small scale where this behaviour 
breaks down) is then fundamental in estimating true 
areas and perimeters (as well as other parameters 
such as eruption rates). On the basis of in situ 
morphology and texture, it was speculated that this 
inner scale was less than several meters in size. 
Independently, Bruno et al. (1992) have found direct 
evidence that lava flows are indeed scale invariant 
down to 0.5 m or less. 

Different physical effects-acting at different 
scales-are involved to produce the final flow field 
pattern, including the topography of the volcano, the 
rheology of the lava. We speculated that, over a wide 
range of scales, the observed scale invariance of the 
morphology may be explained by the scale invari- 
ance of the topography (see discussion in Gaonac’h 

et al., 1992). It is therefore quite possible that the 
inner scale of the lava flow morphological variability 
is determined by the outer scale (largest scale of 
variability) of rheological characteristics (e.g., corre- 
sponding to the largest vesicles). In other words, the 
inner scale of the morphology of flow fields may be 
explained by a change in the dominant physical 
process (e.g., rheology becoming more important 
than topography or other morphologically significant 
factors). 

In this paper we focus on the scaling properties of 
the heterogeneous distribution of gas vesicles present 
in basaltic lava, and the consequences especially on 
the large observed variability in the vesicularity of 
the lava and hence in its rheology. Aside from this 
scaling framework, we develop two related method- 
ological innovations which allow us to relatively 
easily study large numbers of samples. The first is 
the technique of sawing, painting and digitizing the 
vesicle pattern. The second is a method of obtaining 
volume distributions from the available area distribu- 
tions, using only scaling properties without any as- 
sumptions about the shape of individual vesicles (the 
method is actually more general allowing us to de- 
duce the three-dimensional distributions from obser- 
vations over any lower dimensional subsets; the de- 
tails are in Appendix A). In Section 2, we discuss the 
geology of the sample site (Mt. Etna) and in Section 
3, the implications of scale invariance for the distri- 
bution functions (the technical details are in Ap- 
pendix B): we show that the vesicle population can 
be statistically divided into two regimes character- 
ized by two different exponents. The same exponents 
are found in virtually all samples, suggesting they 
each correspond to a basic growth process, identified 
here with diffusion and coalescence dominated dy- 
namics (small- and large-scale regimes, respectively). 
While small vesicles are indeed far more numerous it 
is rather the large vesicles (in many cases the single 
largest one) which gives the main contribution to the 
vesicularity. This quantitatively resolves the debate 
about whether diffusion or coalescence is “domi- 
nant”; the former gives the largest contribution to 
the total number of vesicles, while the latter to the 
total vesicularity. In Section 4, we consider the 
problem of estimating the vesicle sizes as a function 
of the resolution of our measurements, and in Sec- 
tion 5 we sketch some conclusions. 
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2. Data collection and vesicularity analysis 

2.1. Data collection and methodology 

Mount Etna has continuous degassing from its 

summit craters, and erupts hawaiitic lavas every few 

years. Samples from the 1985 eruption were col- 

lected at its initial source at 2590 m above sea level 

(a.s.1.) (emplaced 12 March 1985), and compared 
with samples from an ephemeral bocca at 2120 m 

and an overflow at 2100 m (Fig. 1, sites l-3; see 

Gaonac’h, 1994, for more details). The flows from 

the ephemeral bocca at 2120 m a.s.1. and from the 

overflow at 2100 m a.s.1. were selected because we 

had good control on their area1 extent (to within a 
few hundred meters) and because of their relatively 

small thicknesses (l-2 m), hence avoiding the over- 

lap of flows. We also collected samples at a vertical 

section (2300 m a.s.1.) of a flow several meters thick 
to study the vertical vesicle distribution and to com- 

pare with our horizontal sampling (Fig. 1, site 4). 

We collected pahoehoe and aa lava types at each 

site. 

Samples from the 1991- 1993 eruption (Barbieri 
et al., 1993) were also collected (Fig. 1, sites 5 and 

6). The samples are from one of the first lava flows 

on 14-15 December 1991 (2900 m a.s.1.) and from a 

bocca (collected on 12 January 1992) located at 1200 

m a.s.1. and active during January 1992. The latter 

samples were collected while still incandescent and 
cooled in the snow. We therefore had .good control 

on the temporal sequence of the samples. 
All samples were sawed in half. Their surfaces 

were painted to enhance the contrast between voids 

corresponding to vesicles and solid surface, and then 

digitized, at a resolution of 0.085 mm, with a com- 
mercial scanner using 5 12 X 5 12 pixels for the larger 

samples and 512 X 256 pixels for the smaller sam- 

ples. Two samples (46a, 33a) were sawn twice to 
expose two mutually perpendicular surfaces. Thin 

ETNEA 

Fig. 1. Map of the 1985 and 1991-93 flow fields from Mount Etna. I = 1985 initial source; 2 = 1985 ephemeral bocca; 3 = 1985 overflow; 

4 = 1985 vertical section; 5 = 14-15/12/91 (1991-1993 series); 6 = 12/01/92 (1991-1993 series). 
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sections were made of each sample to qualitatively 
examine the smallest detectable vesicle size and the 
relationship between vesicles and crystals. Small 
blocks measuring 1.5 X 1.5 X 3.0 cm3 were sawn to 
estimate the three-dimensional vesicularity 
(Gaonac’h, 1994). 

We observed that the largest size of the vesicles is 
a function of the size of the sample; for example, we 
found vesicles of cm order in the cm-sized large 
sawn samples, whereas they are of mm order in thin 
sections of the same samples. Vesicles as large as 
8-10 cm were observed in the field. As mentioned 
by Blackbum et al. (1976), and Vergniolle and Jau- 
part (1986), we expect much larger vesicles to exist 
in the field that are not preserved in collected sam- 
ples. A detailed description of the samples used here 
can be found in Gaonac’h (1994). Fig. 2 and Fig. 3 

Fig. 3. Digitized surface of sample 32a collected 40 m away from 

the source of the 1985 overflow. 

illustrate the complexity and the variation of the 
typical vesicle spatial distributions. 

2.2. Vesicularity 

Fig. 2. Digitized orthogonal surfaces from sample 46a collected at 

20 cm in depth from the initial 198.5 bocca. 

Vesicle anisotropy, deformation, and heterogene- 
ity may affect vesicularity estimates. Fig. 2 is an 
example of a sample which shows strongly deformed 
vesicles on one sawn surface and relatively non-de- 
formed vesicles on its perpendicular surface. 
Anisotropy can systematically bias results if “spe- 
cial” planes (e.g., oriented parallel or perpendicu- 
larly to a characteristic direction) are sampled from 
the rock whereas the heterogeneity/variability can 
lead to large sample to sample variations (even from 
neighbouring lavas), particularly since we find that 
the sample vesicularity can be dominated by a single 
large vesicle. The large sample variability even leads 
to difficulties in estimating the 3-D vesicularity from 
2-D cross sections. However, when comparing two- 
dimensional ( P2 > and three-dimensional ( P3) vesicu- 
larities (Gaonac’h, 19941, the two were generally 
within one standard deviation error bars (except for 
samples 46a and 46b). The scaling approach devel- 
oped in Section 3 enables us to partially overcome 
this problem by expressing the sample vesicularity as 
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the product of two factors one dependent on the 

largest vesicle present and the other on the 

history/volcanology of the sample. 

Two observations may be reported concerning the 

variation of the vesicularity along flows (Table 1): 

(1) the highest P2 values are found at the earlier 

initial bocca (> 30%) and are probably due to a 

gas-rich magma that can be correlated with the lack 

of hornitos and spatter cones in the early stages of 

the 1985 eruption. The strong, quick and heteroge- 

neous degassing at the initial source can be observed 

by the large range of vesicularity (2542%). Sam- 

ples collected away from the early initial source, 
with lower P, values, were likely derived from lava 

that had been degassed at the active boccas through 

hornitos and spatter cones at 2500 m; (2) when 
plotting the vesicularity of pahoehoe and aa samples 

(Fig. 4a), we cannot discriminate in a simple manner 

between the two types according to their vesicularity. 
The toothpaste lava (17.1%) lies within the pahoehoe 

and aa ranges. We then turn to the vesicle population 

itself observed in different types of lava. 

3. Number distribution functions 

3.1. Power law distributions 

Power law distributions occur in many fields of 

geophysics because they maintain their functional 

Table 1 

Lava sample, eruption dates and observed two-dimensional vesicularities 

Lava type Sample numbers Eruption dates P?, 2-D vesicularity (o/o) 

Hawaii 
Spongy pahoehoe 50.7 

Etna, initial source 
Pahoehoe, surface, Etna 

Aa, initial bocca 

Pahoehoe, 20 cm depth 

Bulb of lava 

46b 1985 24.8 
46c 1985 35.0 

46a 1985 33.4 
45 1985 41.5 

Etna, overflow 
Massive lava, channel 

Pahoehoe, source of overflow 

Aa, source of overflow 

Pahoehoe, 40 m from the overflow 

Aa, 40 m from the overflow 

Irregular aa, front of the overtlow 

Rounded aa, front of the overflow 

33c 1985 3.8 
33a 1985 21.5 

33b 1985 17.2 

32a 1985 29.9 
32b 1985 16.2 

34a 1985 19.1 

34b 1985 17.5 

Etna, Bocca 
Pahoehoe 

Massive lava, 40 m from the bocca 

Aa. end of flow, 100 m from the bocca 

22a 1985 19.7 
22c 1985 5.2 

23i 1985 16.3 

Etna, vertical section 
Upper aa, Etna 

Massive flow, upper part, Etna 

Massive flow, lower part, Etna 
Basal aa, Etna 

58d 1985 22.8 

58c 1985 12.6 

58b 1985 6.3 
58a 1985 16.9 

Etna, 1991-1993 series 
Pahoehoe, Etna 
Aa, Etna, 200 m from bocca 

Toothpaste, Etna, bocca 

Eroded aa, Etna 

07a 
Olb 

02b 

Olc 

14/12,‘1991 19.3 

01/1992 15.7 
01/1992 17.1 

01/1992 13.7 
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Fig. 4. (a) Vesicularity of 1985 and 1991-1993 samples. (b) 

Diagrams of 2-D vesicularity, estimated at 300 dots per inch, 

versus fractal dimension D. 

form under changes in scale. Several qualitatively 

distinct types of power laws have been found to be 

geophysically relevant. Here we are primarily inter- 

ested in number size distributions of various sets; if 
the distribution is scaling then: 

(1) 

where n is the number density ‘, V the vesicle 

volume and V * a characteristic volume (dependent 

on lava history/volcanology) discussed below; a 
means “proportionality”; for technical reasons dis- 

cussed in the appendices, such densities can gener- 
ally be valid only over finite ranges of V. Geophysi- 

tally relevant examples of this type of density (with 

-T---- 
the number of vesicles with size between V and V + dV per 

unit volume of lava. As expressed in Eq. (A.21 the number density 

is the derivative of the number distribution. 

areas rather than volumes) include ocean islands 

(Korchak, 1938) (it is presumably a consequence of 
the multifractality/resolution independence of the 

topography; LavallCe et al., 1993). In volcanology, it 

has been found to hold for the lengths of intervals of 

eruption rates exceeding various thresholds (Dubois 

and CheminCe, 1991; Somette et al., 1991). Power 

law number and probability distributions can arise in 
a qualititatively different way in scale invariant fields. 

The field (rather than geometric sets of points) may 

have intensity fluctuations which are algebraically 

distributed: “self-organized criticality” (s.0.c; Bak 

et al., 1987). The most celebrated geophysical exam- 

ple of this is the distribution of seismic intensity, the 
“Gutenberg-Richter law” (Gutenberg, 1944; see 

Schertzer and Lovejoy, 1994, 1996) for a recent 

review of such behaviour in turbulent geophysical 

systems). 
Returning to vesicle size distributions, various 

functional forms are routinely used for performing 
empirical regressions. The functional forms for the 

statistical fits are usually chosen on the basis of 

homogeneity assumptions. Different samples are fit 

and the variations in the parameters are then used to 

infer sample-to-sample differences. The differences 

in the fitted parameters are usually then used to infer 

spatial and/or temporal heterogeneity. Unfortunately 

the usual distributions are not invariant under “mix- 

ing’ ’ . For example in the case of vesicles, two 

samples with exponential vesicle distributions with 
identical characteristic volumes may undergo differ- 

ent degrees of expansion due to different pressure 
and temperature conditions and hence evolve to dif- 

ferent characteristic volumes. It will then be unlikely 

that genuine exponential behaviour ever be observed 

since any mixing of the two samples would lead to a 
non exponential result. 

On the other hand power law number densities 

(Eq. (1)) have the important feature that if two 
samples with identical exponents (B) but different 

V * values are mixed, then the exponent is con- 
served for the resulting mixture. Furthermore, under 

fairly general circumstances, if V equals the sum of 
a large number of random contributions, its density 
will tend to a “universal” limit, the “Levy distribu- 
tion” (this is the “generalized central limit theorem” 
of probability theory). A consequence of this theo- 
rem is that when the individual random variables 
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have power law tails with B < 2, the limiting sum 
has the same exponent, whereas for B > 2, the limit- 
ing result is a non algebraic function, the familiar 
gaussian. The special case B < 2 thus leads under 
addition to the conservation of the exponent B: this 
range of B is relevant here. A final argument in 
favour of power law distributions is that, during the 
1980’s, advances in the study of non-linear dynami- 
cal systems has shown that such systems generally 
(although not necessarily) lead to power law distribu- 
tions (“non classical s.o.c.“; Schertzer and Lovejoy, 
1987, 1996). 

3.2. Relationship of the vesicle number distribution 
from one space to another 

Understanding vesicle dynamics requires knowl- 
edge of their distribution in three-dimensional space; 
unfortunately most analyses (including ours) are over 
subspaces. It is therefore important to determine the 
general relation between distributions in spaces of 
various dimensions. Many authors (e.g., Sarda and 
Graham, 1990; Mangan et al., 1993) have used 
highly restrictive formulae which only apply to 
spherical vesicles. In Appendix A, using only the 
much weaker restriction of statistical isotropy (which 
allows individual vesicles to have arbitrary shapes, 
only on “average” need they be spherical), we 
derive the general transformation rules (even this can 
be extended to statistical anisotropy, as long as the 
latter is still scaling). These are particularly simple in 
the case of power law distributions, since the expo- 
nents for different spaces will then be linearly re- 
lated. 

The special cases relevant for our work are ob- 
tained using Eqs. (AS) and (A.6): 

B, = $B, + f (2) 

B, =2B,- 1 (3) 

which relates the measured vesicle area exponent B, 
to the volume exponent B, and length exponent B,, 

respectively 2. Subscripts indicating the dimension of 
the sampling space will be used whenever necessary. 
An exponent B without a subscript will generally 
correspond to volumes (three-space) although occa- 
sionally-this will be obvious from the context-it 
may refer to any dimensional (“d-volume”, i.e., 
volume, area, length, etc.). 

3.3. Size distributions of vesicles through analysis of 
individual samples 

Power law number densities such as Eq. (1) have 
the property that, depending on the exponent, they 
imply divergences in the total number of vesicles per 
unit volume in the small volume limit (B > O), in the 
large volume limit (B < 0), or at both limits (B = 0). 
Similarly, the related vesicularity distribution P will 
diverge or converge for large V depending on whether 
B is less than, equal to or greater than 1. These 
divergences mean that pure power laws can, at best, 
only be models of the vesicle distribution over a 
range greater than an inner scale or less than an outer 
scale beyond which they will break down. Because 
of these cut-offs and the necessity for the total 
vesicularity (denoted P * below 3, to be bounded 
between 0 and 1, we distinguish between five quali- 
tatively distinct cases. They are discussed in Ap- 
pendix B. 

The vesicles for Mount Etna lava samples illus- 
trate several of these cases. In each sample, we will 
find the number-size distribution functions N are a 
composite form of two of these cases, with the small 

’ It is perhaps worth noting the interesting property of B, = 

- 0.5, as estimated empirically later for the diffusion regime. This 

leads to B, = 0, which in fact corresponds to a volume number 

density uniform in log V (see Appendix B, case B = 0). 

3 which corresponds to the ensemble mean vesicularity calcu- 

lated over an infinite number of statistically identical samples, in 

distinction to the sample vesicularity P, calculated over one 

(finite) sample. 

Fig. 5. Plots of the number of vesicles of size larger and smaller than A (A in pixels), N( A’ > A), N( A’ < A) versus A. Samples 32a, 32b, 

33a, 33b, 33c, 34a, 34b are shown as examples. Slopes +0.5 and - 1.0 are shown for all samples (B, = -slope). Slope -2.0 is also 

shown for 33~. For comparison, the Hawaiian spongy pahoehoe is plotted with slopes of + 0.2. All logs are base 10. 
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and large size regimes involving different exponents. 

In Fig. 5, we express the number distribution of the 

vesicle sizes for the 1985 overflow series (32-34 

samples, Table 2). N( A' > A) versus A is the num- 

ber of vesicles larger than the vesicle area A, and 

N( A’ < A) versus A is the number of vesicles smaller 

than A (A in mm’). These numbers are both nor- 

malized to their related digitized sample surface 

(number/mm2). Log-log plots are used since power 
laws will be linear. 

The direct use of vesicle areas rather than “radii” 

avoids any assumptions about the shapes of the 
vesicles. The reason we must plot both N( A’ <A) 

and N( A’ > A) is due to the fact that there are two 
regimes, one with B, > 0 and the other with B, < 0 

(see Appendix B). Data points from 33a and 33b 

samples follow a linear trend on log-log plots with 

B2 = 1.0 (B2 = -slope; B, = 1.0) for sizes larger 
than A * , and another linear trend close to B, = - 0.5 

(B, = 0) for sizes smaller than A * . In the smallest 
sizes, the linear log-log regression is less good, 

perhaps due to the resolution limit of our digitiza- 

tion. The two power law regimes we can recognize 

correspond to: 

-H, 

A<A”,forBZ<O 

N(A’>A)=N*; A>A” _ , for B, = 1 

where N * is the number distribution of vesicles at 
the transition point. A* is the outer limit of the 

small vesicle regime ( B2 < O), and the inner limit for 

the large vesicle regime ( B2 = 1). The “ = ” sign in 

the second equation indicates equality to within 

slowly varying (e.g., logarithmic) factors as dis- 

cussed in Appendix B. Both linear fits intersect in a 
region-called a transition zone-characterized by 

A * and N x values. In this zone data deviate from 
both linear trends. 

As discussed in Appendix B (Eq. (A.1 la)), all the 

vesicles in a B2 = 1 regime contribute significantly 
to the total vesicularity. In contrast, in B, < 1 regimes 

the main contribution comes from the large vesicles. 

Table 2 

Values of the transition zones of the samples. See text for explanations 

Sample 

(No.) 

Fractal 

C 
/,/I2 N’ A’N’ P? 
(mm) (mmm2) (70) 

Olc 0.62 0.16 0.09/3.5 0.25 1 0.040 15.0 13.7 

07a 0.54 0.25 0.27/3.5 0.126 0.03 1 58.5 19.3 

01 b 0.57 0.40 0.17/3.5 0.079 0.032 64.0 15.7 

02b 0.58 0.25 0.17/3.5 0.126 0.031 45.5 17.1 

Spongy 0.23 6.31 0.09/3.5 0.100 N.A. 41.5 50.7 

23i 0.64 0.50 0.27/3.5 0.079 0.040 20.5 16.3 

22a 0.64 0.25 0.27/3.5 0. I59 0.040 22.0 19.7 

22c 0.89 0.40 0.27/6.9 0.040 0.016 7.04 5.2 

32a 0.41 0.25 0.17/3.5 0.159 0.040 47.0 29.9 

32b 0.60 0.25 0.09/3.5 0.159 0.040 25.5 16.2 

33c 0.91 0. IO 0.09/3.5 0.126 0.013 3.5 3.8 

33a 0.47 0.16 0.17/2.2 0. I99 0.032 180.5 27.5 

33b 0.63 0.40 0.27/3.5 0.100 0.040 17.5 17.2 

34a 0.54 0.32 0.17/3.5 0. I26 0.040 30.5 19.1 

34b 0.56 0.25 0.17/3.5 0.100 0.025 56.5 17.5 

46b 0.50 I .26 0.27/3.5 0.079 0.100 28.5 24.8 

46c 0.38 I .58 0.27/3.S 0.050 0.079 160.0 35.0 

46a 0.38 2.00 0.27/3.5 0.032 0.063 100.5 33.4 

45 0.32 1.58 0.27/3.5 0.063 0.100 60.5 41.5 

58~ 0.59 0.50 0.69/8.7 0.050 0.025 185.5 12.6 

58b 0.77 0.13 0.17/5.5 0.126 0.016 30.0 6.3 

58a 0.57 0.40 0.17/3.5 0.079 0.032 24.5 16.9 

58d 0.47 0.79 0.27/5.5 0.079 0.063 26.5 22.8 
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The third sample collected at the source of the 

overflow, the massive pahoehoe (33~) suggests an 
additional linear trend: B, > 1.0 for the largest sizes 
(actually, it is over too narrow a range to be conclu- 

sive). Since in regimes with B, > 1 the main contri- 
bution to the vesicular&y is from the smallest vesi- 

cles, the vesicularity of sample 33c is determined 
primarily by vesicles in the range limited by the A* 

value and the break in a slope from B, = 1 to B > 1, 

i.e., between 0.10 and 0.63 mm* (Table 2). The two 

samples collected 40 m from the source of the 

overflow (32a, 32b) and the two samples from the 
front (34a, 34b) show approximately the same pat- 

tern as 33a and 33b. Sample 32a also demonstrates 

that the number distribution of large vesicles fluctu- 
ates around the linear trend, which is expected be- 

cause of the statistical variability. Finally, the transi- 

tion zone has variable N * and A * values, and is 

more or less wide according to the considered sam- 

ples (compare 33b and 32b for example). 
The overflow series exhibits the same power laws 

we find in all other series (table 2 and appendix III 

in Gaonac’h, 1994). Note that A * and N * values 

vary from one sample to another, and the product 

N *A * also varies from sample to sample (Table 2), 
increasing with higher observed vesicularity P,. We 
will examine this in more detail in Section 3.5. Only 

three samples (33c, 46b, 22~) have B, > 1.0 for 

large vesicles; however, we need more data to con- 

firm this tendency. In comparison, the Hawaiian 

spongy pahoehoe (Fig. 5) exhibits a unique general 
trend of B, = - 0.2 (B, = 0.2) slope for most of the 

size range with the positive slope extending to the 
largest vesicles. 

Vesicle growth mechanisms and vesicle popula- 

tions can be identified by statistical analysis, as 
previously documented (e.g., Toramaru, 1990). The 

existence of two separate scaling regimes-similar 

from one sample to another-with distinct exponents 
suggests two different vesicle growth regimes associ- 
ated with different predominant scaling growth 

mechanisms. In Gaonac’h et al. (1996) we proposed 
a model in which the small vesicle regime corre- 

sponds to a range of scales where diffusion is domi- 
nant whereas the large vesicles regime may corre- 
spond to the dominance of a coalescence mechanism. 
The transitional zone is thus a range of scales where 
both growth mechanisms are important. A simple 

cascade coalescence model-with the assumption 

that the gas volumes are conserved by the coales- 
cence process-theoretically yields a value of B = 1 

(Gaonac’h et al., 1996). Hence our empirical results 
support the cascading coalescence model of succes- 

sive vesicle collisions of larger and larger volumes 

with fewer and fewer vesicles acting at each step in 

the collision cascade. We further suggest that the 

scaling regimes have cut-offs associated with the 

transition zones and values ( A * , N * ). In this frame- 

work, the different A * and N * values correspond 

to different volcanological conditions and samples 
histories (initial dissolved gas content, eruption tem- 

perature, cooling rate, etc.). The very different 

Hawaiian spongy pahoehoe size distribution suggests 

that the corresponding vesicle growth mechanism is 

very different compared to the Etna lavas. This result 
is consistent with the static coalescence growth pro- 

cess suggested by Walker (1989). 

3.4. Size distributions of the normalized ensemble: 

refined estimates 

Using the vesicle distributions from the samples 

available here (which typically have only 100-300 

vesicles, and a corresponding scaling range of areas 

of factors = lo*-103), it is not possible to obtain 

very precise estimates of the exponent (or in the case 

B = 1, to obtain the exact form of the slowly varying 

corrections to the V- ’ law; see Appendix B for 

further discussion). In order to more fully test the 
scaling hypothesis and to obtain more accurate esti- 

mates of the exponents, we therefore seek to com- 

bine all the samples into a single histogram. We 

normalized each sample using the values A* and 

N * ; this is necessary to remove the effect of geolog- 
ical differences between the samples (if the scaling 

regimes were infinitely wide, this would not be 

necessary). Fig. 6a demonstrates the result showing 
power law trends identified by linear regression in 

log plots, with the two different regimes correspond- 

ing to those found in the individual plots. The nor- 
malized plot has a B, of = - 0.40 (B, = 0.05) for 

small vesicles, and B, of = 0.80 (B3 = 0.85) for 
large vesicles, which are in fact quite close to the 
two-dimensional values mentioned above which were 
crudely estimated for individual plots (- -0.5; = 
1.0). Fig. 6b exhibits the normalized distribution of 
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Fig. 6. (a) Plot of the number of vesicles of size larger and smaller 

than A (A in pixels), N(A’ > A). N( A' < A) versus A normal- 

ized to A * and N * for samples Olc, 17a, Olb, 02b. 23i, 22a, 32a, 

32b, 33a, 34a, 33b, 34b, 46~ 46a, 45, 58~ 58b, 58a, 58d, all 

together. (b) Same plot for samples 33~. 46b, 22~. 

the samples with individual slopes having B, > 1 for 
large vesicles. Theoretically, Gaonac’h et al. (1996) 
explained values slightly below 1 by some degree of 
nonconservation of volume during the cascade or 
alternatively due to some small contribution to vesi- 
cle growth from noncoalescence mechanisms. 

Specifically, a value B, = 0.85 corresponds to a 
contribution of = 10% from such mechanisms. 

3.5. Sampling properties 

We have already mentioned that when B = 1 the 

entire large vesicle range is important for determin- 

ing the total vesicularity; when B < 1 the largest will 
dominate. However, in either case, the true extent of 

the range will not be evident since the largest vesicle 

size observable will vary substantially even among 
neighbouring samples due to the slow fall-off in the 

number distribution. When such variations in the 

total vesicularity are observed, we cannot necessar- 

ily conclude that the different samples had funda- 

mentally different volcanology/history; the differ- 

ences could be due to the large random fluctuations 

and cannot be avoided in the collection process. If 

the model is valid then the appropriate characteriza- 

tion of the geological sample-to-sample differences 
will be the parameters N *, V * (as estimated by 

fitting the entire distribution). 

To understand this in more detail, consider the 
case B = 1. Using the approximation N(V’ > V) = 

N * V * /V (Eq. (A.l2b)), we can estimate the depen- 

dence of the largest vesicle (V,>, and hence vesicular- 
ity, on the volume L’, of the sample (‘&s” for “sam- 

ple”). The following argument is analogous to that 

used to estimate the maximum order of singularity 
present in finite samples of multifractal fields 

(Schertzer and Lovejoy, 1989). For the moment, we 

only consider the contribution to the total vesicular- 
ity of the sample P, from the B = 1 coalescence 

regime, PC (this is the major contribution to the total 

vesicularity, see below and Gaonac’h et al., 1996). 
First, the total number of vesicles in the sample is 

simply the total number per unit volume (N * ) multi- 

plied by the sample volume (r’,>: 

N * I’, 

The ensemble probability-over an infinite num- 

ber of samples-corresponding to the largest vesicle 

of volume V, is: 

N(V’> V,) V* 
Pr(V’>V,)= N* =y 

\ 
(4) 

We now use the fact that in a sample of N * L’, 
vesicles, the largest vesicle has a probability of 

occurrence = 1 /(N * us> (the sample frequency of 
occurrence is used to estimate the ensemble fre- 
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quency of occurrence). V, can therefore be estimated 
as: 

V,=N*V*u, 

For fixed N * , V * , the largest vesicle in the sample 
is therefore expected to increase linearly with sample 
volume (generalizations for B # 1 are given below). 
Of course, this estimate is only statistical; V, will 
actually be a random variable whose typical value is 
given by the above expression. Finally, the contribu- 
tion to the sample vesicularity due to coalescence PC 
will be given by integrating VdV) [= V(dN/dV) 
= (N * V */V)] over the size range of V * to V,: 

PC= j 
VsN*V* 

~ dV 
V’ V 

=N’V” lnA=N*V* lnN*o, (54 
where A = V,/V *. Unless the sample size is very 
large, P, will be less than P *. Of course, the 

N( V’ > V) = V- ’ approximation will break down 
for large enough sample volumes u, (specifically, 
when P, = P * >. Indeed, considering the two-dimen- 
sional situation (with a, the sampling area corre- 
sponding to us, A, to V,), we can consider the limit 
of large a, such that P, = P * = 1: this limit corre- 
sponds to N *a, = exp(l/N *A * 1. For N *A * (here 
= 0.04 _t 0.021, it will not be important for linear 
dimensions smaller than 6 = 10’ m. For smaller 
samples, the breakdown will not be reached, and the 
vesiculatity will depend on u, in the manner de- 
scribed by Eq. (5a)a. 

When B f 1, the formula corresponding to Eq. 
(5a)a is: 

(5b) 

with A > 1. Note that this reduces to Eq. (5a)a in the 
limit B tends to A s=- 1. In both Eq. @a) and Eq. 
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Fig. 7. (a) Plot of the sample size factor PC/N *A * as expressed in Eq. (5a) and Eq. (5b) [respectively log A, for B, = 1.0 (+) and 

(0.8/O.ZXA - A” ‘/A’.* - 1) for B2 = 0.8 (011 as a function of the observed vesicularity P,. The four values of the collected initial 1985 

source samples are identified by circles around the diamonds. (b) Plot of the volcanology/history factor A‘N * for all samples - 

determined as the transition points from the intersection of the diffusion and coalescence regime regressions - versus P2 (see Table 2). (c) 

Theoretical versus observed vesicularities P, = Pd + PC. Same symbols as in (a). Linear regressions are shown for the two cases, -0.5/ 1.0 

and -0.40/0.80, calculated for the 19 samples without large vesicle breaks (B, > 1). A slope 1 associated with the refined values 

-0.40/0.80 indicates that the theoretical values are unbiased vesicularity estimates; Ps associated with the values -05/l .O gives only a 0.8 

slope versus P,. 
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(5b), PC is the product of two factors, the first 
(N * V * > is dependent only on the volcanological 

characteristics/vesicle history, while the second (in- 

volving V,) is sensitive to the sample. Note that 

when B>O, A>l,wehave P,=N*V*[B/(l- 

B)]( A’ ’ - 1). When B < 1, this is sensitive to A 

whereas when B> 1, P,=N*V*B/(B- 1) which 

is independent of A as expected. 

When considering the two scaling regimes, we 

observed that they intersect in a transition zone 

defined by A * and N * values. The two values vary 

from sample to sample, suggesting volcanological 

differences such as a higher dissolved gas content in 

samples with a higher N *. On the other hand, the 

product N *A * also varies from one sample to an- 

other; we consider this variation now as a function of 
the total sample vesicularity. While in Eq. (5a) and 

Eq. (5b) we neglected-for simplicity-the diffu- 

sive term PS, we will consider it now so as to 

compare theoretical and observed vesicularities. The 

total theoretical sample vesicularity, taking into ac- 
count B, < 0 for the diffusion regime and B, 5 1 for 

the coalescence regime (see Eq. (A.lOb) and Eq. 

(5b)) is therefore P5 = Pd + PC with Pd given by: 

P,=N*A* 

where A = AS/A * > 1 for the areas (when B, = 1, 

Eq. (5al should be used for PC). P, being small 
(B, = 0.5, Bd/( B, - 1) = l/3 which corresponds to 

less than 10% of the total P,, see Gaonac’h et al., 

19961, we expect the approximation Eq. (6b) to be 
close to the total theoretical vesicularity. To make 
the comparison, we consider two cases: the first 

involves the exponent area values found in individ- 

ual samples, -0.5 and 1.0, respectively, for the 

small and the large vesicle regimes; the second 
involves the refined area values of -0.40 for the 
small vesicles and B = 0.80 for the large vesicles. 

First consider the behaviour of the sample depen- 
dent factor. In Fig. 7a, the observed vesicularity P, 

does not show any systematic variation with the 
sample size factor [log A, and (0.8/0.2l(A - 

A”.“)/(A”.8 - 11, for B = 1 and B = 0.8, respec- 
tively]. In contrast, considering the history/volcanol- 

ogy factor N *A*, Fig. 7b shows that the samples are 
systematically more vesicular for higher A * N * val- 

ues. This is in agreement with the hypothesized 

random sample to sample variability present in the 

former factor but absent in the latter. Also shown in 
Fig. 7 are the four cases found near the initial 1985 

source which have particularly large vesicularity. 

Their lower A,/A* values (full and open diamonds 
with circles) can be explained due to a lack of time 

for these samples to have developed large enough 

vesicles to reach a large AJA’ ratio. Data from 
Fig. 7c confirm that the theoretical expression of the 

total sample vesicularity as expressed in Eq. (6bl is a 

very good approximation to the observed data and 

may be used in future models. Moreover, Eq. (6b) 
with the refined exponents confirms that the 

-0.40/0.80 values are more accurate (they yield a 
slope = 1 in Fig. 7c, implying no theoretical bias) 

than the -0.5/1.0 values (slope = 0.8). From Fig. 

7, we can therefore distinguish sources of variability 
in the lava vesicularity: a sample to sample variation 

of the vesicularity associated with the presence or 
absence of a single large vesicle, and a systematic 

variation dependent on the product N ‘A’. The sys- 
tematically large vesicularity of the initial 1985 

source samples can therefore be explained by the 

higher N *A * values. 

3.6. The scale invariance ef r;esicle patterns when 

B=I 

We now consider the implications of the distribu- 

tions for the scaling of vesicle regions (i.e., the 

spatial pattern rather than the number distribution of 
the voids). To understand the special character of the 

B = 1 distribution 4, we will initially consider the 

scaling with arbitrary B > 0. Consider a spatial mag- 
nification operation of a factor A on a lava sample 

with N(V’ > V), the number distribution of the en- 

larged sample is related to the original distribution 
by: 

N( V’ > V) = AdN,( V’ > hdV) (7) 

’ Even if B = 0.85 rather than 1, the following discussion will 

be a relevant approximation over the finite range of scales ob- 

served. 
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The Ad factors (in a d-dimensional sampling space, 

the V values are “d volumes”) account for the 

increase by factors Ad of the volume of both the 
samples, and the vesicles. The power law form and 

exponent of the enlarged distribution is thus the 
same, but the amplitude is resealed as follows: 

N * = Ad’1 -B’N * 
A (8) 

This resealing corresponds to the fact that the 
relative density of large and small vesicles is the 

same before and after the enlargement, but the over- 

all number density is increased or decreased depend- 
ing on whether B > 1 or B < 1. It is only in the 

special case B = 1 that the number density is com- 

pletely invariant (N,* = N * , i.e., independent of A). 

Therefore, it is only in this case that (assuming 

statistical isotropy) the enlarged pattern of vesicles 

will be statistically identical with the original; the 

vesicle pattern will be “self-similar” (this result can 
be generalized to anisotropic, non-self-similar, scal- 

ing using Generalized Scale Invariance; Schertzer 

and Lovejoy, 198.5). In summary, whatever the value 
of B, the volume distribution is scaling, and the 

exponent B is scale invariant. However, when B = 1, 

we have the additional property that the actual pat- 

tern is also scale invariant. This means that in this 

case, it is possible over the corresponding scale 
range to find fractal structures (over limited ranges 

of scales, this will be approximately true if B is only 
approximately 1). Indeed, the empirical evidence 

presented in Section 4. indicating the scaling of 
box-counting over scale ranges comparable to those 
where B = 1 is observed supports the B = 1 hypoth- 

esis. 

4. Scaling properties of the spatial vesicle patterns 

4. I. Resolution dependence 

If B, = B, = 1, the structures will be fractal over 

some range, and hence the estimate P, will vary as a 
function of the resolution of the analyses. A higher 

resolution (I < 0.085 mm) would provide more de- 
tails on the complex shapes of vesicles. 

If we expect scale invariance of the vesicle pat- 
tern (i.e., the points on the matrix are fractal sets 
over a range of scales), the number N,(I) of 1 sized 

vesicle pixels (“boxes”) needed to cover the vesicle 

distribution will be related to the resolution 1 as: 

Nb( I) a lPD (9) 

which-recalling that N,(1) is defined by unit area 
-is equivalent to: 

Ntm 
p2( I) a l_d a 1’ 

where D is the fractal dimension, d is the dimension 

of the observing space, and C = d - D is the fractal 

codimension (C will be the linear slope of log P,(I) 
versus log 1). For datasets embedded in two-dimen- 
sional cross sections, d = 2 and 0 < D I 2, 0 I C 5 
2. In the case where D = d, P,(Z) a constant, imply- 
ing that P,(Z) is constant at all resolutions. C is the 

exponent relating the fraction of vesicles to the 

resolution 1. For a very large isotropic sample, we 

expect to have the same vesicles fraction whether the 
latter is estimated from volumes, areas or lengths; 

hence in this sense, C is dimensional invariant. 

4.2. Fractal codinension 

The estimate of the fractal codimension of each 
sample was performed by using the box counting 

method (see Falconer, 1990), which is commonly 
used for estimating the fractal dimension of strange 

attractors associated with non-linear chaotic dynami- 

cal systems. We obtained a series of area1 fractions 
corresponding to P, as functions of resolution (Fig. 

8). A, P, are non-dimensional as P, and corre- 

sponds to the ratio of largest possible box length 
(I, = 512 pixels) to the length 1 in pixels (512/Z). 

Sample 32a exhibits a linear trend from an inner 

limit 1, = 0.17 mm to an external limit 1, = 3.50 mm 

pixels with C = 0.41 (i.e., D = 2 - 0.41 = 1.591, in- 

dicating a scaling behaviour of the vesicularity over 

a scale range of 2’. We repeated the measurements 
for several samples and found a variation of f0.06 

for D. As expected, the breakdowns of the scaling 

roughly correspond to those of the B = 1 regime 
(recall that the value B = 1 is invariant with respect 

to subspaces, see Appendix A), although the ranges 
are somewhat offset towards the small vesicles. At 
low resolution (log A < 1.1; 1 > 3.50 mm>, the vesic- 
ular&y is no longer dependent on the resolution 1. At 
high resolution, the end of linearity occurs at a 
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Fig. 8. Plot of log Pz versus log A for samples 32a, the spongy pahoehoe, 58c and 58b. C is the fractal codimension of the linear trend 

between-e.g., in the 32a case-log A = 1.1, corresponding to 1, = 512/h = 41 pixels = 3.50 mm, and log A = 2.4 corresponding to 

1, = 512/A = 2 pixels = 0.17 mm. 

resolution close to 1 pixel (0.085 mm). Since this 

resolution is close to the smallest detectable vesicles 
in thin sections (0.1-0.2 mm), it may be the true 

inner limit. Here, we require more data to confirm 

this tendency at higher resolution. Results in Fig. 8 

imply that when measuring vesicularity, the resolu- 

tion at which it is estimated has to be known; going 

back to sample 32a, P,(1) a l".4'. For resolution 
lower than 3.50 mm, the vesicularity estimated this 

way is at its maximum, lOO%, while at high resolu- 

tion (smaller pixel length), the vesicularity decreases 

to = 30% as vesicle irregularities are increasingly 

taken into account. This 100% result is because 
box-counting is an all or nothing method. However, 

this is adequate for studying the scaling and gives 
similar results to other techniques such as correlation 
integrals and dimensions. 

When comparing the log P,(h) - log h plots for 
all samples (appendix II in Gaonac’h, 19941, we can 
identify a similar linear trend with an external limit 
1, varying from 2.20 to 8.70 mm. The external limit 

was always within the available size range (between 

0.085 and 43.52 mm> and was readily detected. It 

corresponds to the largest vesicle sizes encountered. 
Inner limits I, exhibit the same problem as in sample 

32a. The samples have fractal codimensions ranging 

between 0.70 and 0.30 (dimensions between 1.30 
and 1.701, except for the massive lavas (22c, 33c, 

58b) which have lower D regions (the vesicles are 

“sparser”). P, of the Hawaiian spongy sample with 
a D value approaching 1.8 (Table 2 where C = 2 - 
D) cannot be considered fractal since D approaches 

2; this is in accord with our estimate B, = -0.2 
which is significantly less than 1.0. 

It is perhaps worth noting in this connection that 
there is a certain amount of mathematical theory 
about random “cut-outs” or “tremas” (see Mandel- 
brot, 1983, for a review and discussion). These are 
stochastic processes constructed by taking a collec- 
tion of elementary geometrical shapes whose distri- 
bution as a function of size is V- ’ When these 
shapes are randomly placed, they tend to overlap. If 
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we consider that they “cut out” regions of the 
embedding space, then when the distribution V- ’ is 
continued to infinitely small scales, the remaining 
(non cut-out) regions are fractal sets. A somewhat 
surprising feature, which is a consequence of the 
special role of B = 1, is that the fractal codimension 
of the remaining set depends linearly on the prefac- 
tor in the size distribution (hence on the history 
factor N * V * ). 

If this process corresponds to the distribution of 
gas vesicles, then in the limit, the overall vesicularity 
would approach the unity with a fractal set (volume 
approaching zero) remaining. Recalling that the total 
vesicularity is mostly determined by the product of 
the sample and the history factor N * V * (Eq. (5a)), 
we may thus expect a correlation between the total 
vesicularity and the fractal dimension of the remain- 
ing of the vesicles. In fact, Fig. 4b shows that, for 
vesicularity higher than lo%, P2 estimated at the 
highest available resolution, 300 dots per inch (dpi), 
is positively correlated with the fractal dimension D 

of the vesicles. Hence, we are able to find similar 
properties between C and N * V * than for “cut- 
outs”, but in the present case, C corresponds to the 
vesicles set, the vesicle-free regions representing > 
50% of the total surface of a sample, and thus not 
varying much according to the resolution (as ex- 
pected for fractals). 

5. Discussion and conclusion 

In this paper we have proposed a scaling frame- 
work for analysing and modelling vesicle distribu- 
tions in lava. This was justified by basic empirical 
and theoretical considerations: the observation that 
even small lava samples commonly displayed enor- 
mous ranges of vesicle volumes (factors of a million 
are routine), coupled with the absence of characteris- 
tic sizes in any of the known mechanisms of vesicle 
formation (diffusion, expansion, coalescence). Rather 
than proposing ad hoc regressions - or simplistic 
characterizations of such broad distributions by mean 
or median vesicle sizes - this scale invariant frame- 
work predicts power Jaw distributions (these - and 
log corrections - are the only distributions without 
characteristic scales). A scale invariant framework 
was also considered attractive since it has been 

generally quite successful in geophysics (accounting 
notably for the ubiquity of fractal structures, multi- 
fractal statistics and power law distributions in geo- 
physics). Specifically it has also provided a surpris- 
ingly accurate account of lava morphology over wide 
ranges of scale (Gaonac’h et al., 1992; Bruno et al., 
1992). 

The predicted power law densities [n(V) = 

VmB- ‘1 have several peculiarities (due to either small 
and/or large V divergences) which we carefully 
outlined. In particular, since probabilities and vesicu- 
larities must be well defined between 0 and lOO%, 
this leads us to divide such distributions into five 
subclasses; in each we indicate how the exponents 
can be empirically estimated. This includes the com- 
parison of cumulative number distribution functions 
for both the number of vesicles exceeding a fixed 
threshold, as well as - perhaps for the first time - 
the number less than a fixed threshold. A second 
theoretical point is that although power law number 
distributions are themselves scale invariant, the asso- 
ciated spatial distributions of vesicles will generally 
not be scale invariant (fractal). The only exception is 
when B = 1, a value close to that observed for the 
large vesicles. It is only in this case that the spatial 
vesicle pattern will define fractal sets; a prediction 
we confirm using a box counting algorithm. Finally, 
for exponents less than 1, the vesicularity is mostly 
determined by the largest one or two vesicles in the 
sample (even though the vast majority of the vesicles 
are small). This leads to large sample to sample 
vesicular&y fluctuations - even if the lava samples 
have identical volcanological characteristics. 

The scaling framework has another advantage; it 
enables us to develop formulae relating the distribu- 
tion measured on one subspace (here planar cross 
sections) to that of another (here the volume distribu- 
tions). This enables us to avoid restrictive assump- 
tions of vesicle sphericity and the complex “correc- 
tions” sometimes used for estimating volume distri- 
butions from cross sections. Our technique, coupled 
with an original - and simple - method of saw- 
ing, painting and digitizing lava samples enabled us 
to study many more samples than just the ones 
containing spherical vesicles. 

Results of our analysis of vesicle size distribu- 
tions of Mount Etna confirm that they are character- 
ized by power laws. We find two distinct regimes: a 
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small-scale regime (with an area exponent BZ = 

-0.5 equivalent to a volume exponent B, = 0.0) as 

well as a large-scale regime (with B2 = B, = 11 with 
transition vesicle area scale A* and density N* 

which we argue capture the volcanologically signifi- 

cant sample to sample differences. Refined exponent 

values are B, = -0.40 (B, = 0.05) and B2 = 0.80 

(B, = 0.85). respectively, for the small and large 

vesicle regimes. The results also determine the limits 

of the two scale invariant regimes. Table 2 shows 
these characteristic sizes and parameters established 

from the different samples. Considering vesicles from 

the 1985 and 1991-1993 lavas we find that aa and 

pahoehoe were not different, nor were samples from 

horizontal and vertical sections. For sizes smaller 

than A”, the vesicles have smooth rounded bound- 
aries whereas for sizes larger than this-as theoreti- 

cally predicted-they are fractal (we estimate the 

corresponding dimensions). An important implica- 

tion of our findings is that although lavas are classi- 

fied into different types according to their morphol- 

ogy, they have similar statistical behaviour related to 
their vesicle size distributions. 

Although-along with Mangan et al. (1993)-we 

find that the small vesicles are far more numerous 

than the large ones, contrary to them, we find that 
their relative contribution to the total vesicularity is 

nearly negligeable. This is because the long tail on 

the number distributions implied by B = 1 means 

that a few very large vesicles will dominate the 
vesicularity. Large variation of the vesicularity of a 

lava flow will affect for example the relative viscos- 

ity or the compressibility of the flow and may lead to 

strong non linear rheological behaviour of the flow. 

Vesicles a few meters in size (as observed for exam- 

ple by Blackburn et al., 1976) reveal extreme rheo- 
logical behaviour. Because of the large sample-to- 

sample variations implied by B = 1 (which may hide 

a variation of A * , N * from the source to the lava 

front) the study of larger surfaces will yield even 
larger vesicles which will strongly affect the total 
vesicularity. 

The presence of two different scaling regimes, 
systematically observed in each collected sample 
leads us to suggest that these regimes are associated 
with two different vesicle growth regimes where 
diffusive processes may be involved in the small 
vesicle growth, and a dominant coalescence mecha- 

nism may be involved in the large vesicle growth. 

This supports the scaling cascading model for the 

coalescence of the large vesicles (Gaonac’h et al., 

1996) which predicts B = 1 for large vesicles. Using 
the theoretical formula for sample vesicularity de- 

rived from this model and using the observed param- 

eters, we find excellent agreement between the theo- 

retical and empirical sample vesicularities. Further- 

more, the theoretical vesicularity is the product of 

two terms; one sensitive to the largest vesicle present 

in the sample (it varies randomly), whereas the other 

(N *A* > depends on the volcanology/history. In 

particular, the product N *A* exhibits a systematic 

correlation with P,, explaining the higher values of 
the initial 1985 source samples. 

In recent years, the role of vesicles on lava mor- 

phology, rheology, and their associated emplacement 
styles has been increasingly recognized. The stan- 

dard approach to the problem has been-in spite of 

the evident strong heterogeneity of the observed 

flows-to develop homogeneous models (e.g., of 

diffusion or growth by collision) and to characterize 
the vesicle distributions by single scales correspond- 

ing to median or other classical measures of charac- 

teristic size. In this paper, we have considered the 

heterogeneity as a fundamental aspect of the problem 
and developed statistical methods appropriate for 

handling strong variability over wide ranges of scale. 
The heterogeneous vesicularity leads to heteroge- 

neous structure of a lava flow implying nonlinear 

dynamics. Hence, when collecting samples we have 
to keep in mind the large variability from one sample 

to another. More studies in this direction are neces- 

sary, particularly with more silicic magmas and lavas. 
These results also are expected to have implications 

for pumice (work in progress). 
The discovery of new examples and types of 

volcanological scale invariance give more robustness 
to the general scaling approach to the volcanological 

phenomena. The scale invariance found for vesicles 
may be associated with the scale invariance of the 
lava morphology, and the outer scale “cut-offs” of 
the vesicle scaling may be the same (as the inner 
break of the scale invariance of the morphology). In 
the search for causes of the morphological scale 
invariance, we have beeen interested in one particu- 
lar aspect of the rheology present at resolution of 
mm to meter scales in basaltic lavas. More work 
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must now be done to better constrain the inner limit 

of the scale invariance of the morphology and relate 
the different scale invariant sets or fields involved in 

the formation of lava flows. 
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Appendix A 

Transformation from one-dimensional to two-dimen- 

sional scaling exponents 

Consider a vesicle population in a dimension 

space d (i.e., volume when d = 3, or “D volume” 
for fractal subspaces) whose size is Ld, where L is 
the linear measure of the size. We are interested in 

comparing the number (or with appropriate normal- 
izations, probability) distributions in various sub- 

spaces, especially area1 or linear sections and will 

only consider the case of statistical isotropy (where 
all the subspaces of interest have the same statistical 

properties independent of direction) and statistical 

homogeneity (where all the subspaces of interest 
have the same statistical properties independent of 

spatial location). Although this allows each individ- 

ual vesicle to have arbitrary (even fractal) shapes and 
orientations, there is no overall preferential direction 

(the more general case involving differential stratifi- 
cation and rotation can be handled with Generalized 
Scale Invariance, Schertzer and Lovejoy, 1985). 
Strictly speaking, the result will apply to a group of 
statistically equivalent samples or to a single suffi- 

ciently large sample. In practice, number distribu- 

tions empirically established over finite subspaces 

will only approximate the ensemble distribution. 
The argument we used is similar to that establish- 

ing fractal codimensions are independent of the sub- 
space (dimension-invariant) over which observations 

are made (for discussion, see Schertzer and Lovejoy, 

1989, 1991). Denote by PCdj. the fraction of space 
occupied by vesicles with sizes greater than Ld (the 

vesicularity distribution): 

P@)( Cd > Ld) (A.la) 

is the contribution to the total vesicularity P due to 

vesicles with sizes > L’. This vesicularity will be 

equal to the probability that a point taken at random 

on either the space or the sub-space will be on a 

vesicle size Ld or greater. The basic property we use 

is that for randomly sampled subspaces, that this 
probability does not depend on the subspace and its 

dimension. For example, for d = 3, 2. 1, we obtain: 

P,(V’>V)=P2(A’>A)=P,(L’>L) (A.lb) 

with V = Lx and A = L2. We can now consider the 

fraction of space occupied by vesicles with sizes 

between L” and Ld + d(L’I), which is obtained by 
taking the differential of Eq. (A.2): 

d P = Ldn,( Ld) d( Ld) (A.lc) 

where nd, the d-dimensional number density, is the 

number of randomly chosen vesicle cross sections on 

the subspace having size between Ld and Ld + d( Ld). 

The fraction of space d P is the same when estimated 

over any subspace (e.g. area, length, etc.) of the full 

space. Hence Eq. (A.la) provides a dimension-in- 

variant way of quantifying the vesicularity that could 

be used directly displaying empirical results, particu- 
larly when comparing different analysis techniques. 

We now consider the special cases where nd is a 

power law with exponent - (Bed) + 1) over various 
ranges. The vesicularity distribution, number distri- 

bution, and number density are all related by: 

The absolute value signs take into account the possi- 
bility that N can be defined as N(V’ > V), hence 
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dN/dV= -n(V), or as N(V’< VI, hence dN/dV 

= n(v). 
Using this assumption: 

nd( Ld) a ( Ld) -BO’- ’ (A.31 
d(L,) can be expressed as: 

d( Ld) a dL”- ‘dL (A.4a) 

then, dP is proportional to: 

L-d(Q- I)- 1 (A.4b) 

We conclude that d(B(,, - 1) is invariant, which 

shows how scaling probabilities/densities can easily 

be transformed from one space to another. An imme- 
diate consequence is the special role played by the 

exponent Bd = 1 (invariant under intersections) 
which is associated with scale invariant vesicle dis- 

tributions. 

In practice the following special cases are particu- 

larly important: 

B, = $2 + + (A3 

B, =2Bz- 1 (A-6) 

Appendix B 

Exponents of the number distributions 

As is frequent in geophysics, we will assume that 

the number distribution functions, the vesicularity 

and the number densities of the vesicles follow 

power law functions and are related as in Eq. (A.2). 
Because of divergences at small or large volumes, 

we will distinguish five different cases, carefully 
taking into account the constraint that the total vesic- 

ularity is bounded between 0 and 1. For simplicity, 

we treat only the volume distribution (B, case), 
although the entire discussion holds equally well for 
the area distributions (B2 case) in lava cross sec- 
tions. 

When B < 1, from Eq. (A.7a), the vesicularity 

diverges for large V. It is therefore no longer possi- 
ble to consider a pure power law vesicularity distri- 
bution with a lower scaling cut-off; the finiteness of 

the total vesicularity restricts the power law be- 
haviour to V I V * Although for B < 1 the vesicu- 

larity distribution is bounded above, for B > 0 the 

number distribution will diverge for small V (this is 
not serious since the large number of small vesicles 

will not contribute significantly to the vesicularity). 

This divergence explains the change in the direction 

of the inequalities in the relations below: 

I-L3 

VIV’ (A.8a) 

B.1. B > 1: 

(1-B) P* _B&!!J-l~ vsv* 

(A.8b) 

This case is quite straightforward; the distribution We have not used the symbol N * since the total 
decays with large V sufficiently rapidly so that we number of vesicles per volume is infinite. Of course 

may take (for simplicity, we drop here the subscript 

value for P and B): 

1-B 

P(V’> V) =P* VTV” (A.7a) 

-H 

v2v* (A.7b) 

with: 

P” B-l 

N*=V’- B 

The cut-off V * is a characteristic size of the scaling 

regime (necessary to stop the vesicularity divergence 
at small V), N * is the total number per unit volume 

corresponding to V li ) and 0 < P * < 1. Although for 
a large enough range of scaling, the largest vesicle 

will provide a negligeable contribution to the total 
vesicular&y; in practice if B is not much bigger than 

1, there may be significant fluctuations from sample 

to sample. 

B.2. 0 I B I I. 
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in practice, the largest observed V may be much 
smaller than V * and the approximation N(V’ > V) 

= [(l - B)/B](P */V * )(V/V *)-B may be used. 
Two cases have to be considered: (1) This could 

apply to the small vesicle regime since, empirically, 
it might be the case for B, =I - 0.40, hence B, = 0.05 

for small vesicles in normalized distributions (Sec- 
tion 3.4). In this case, the upper cut-off V * is 
observed and corresponds to a transition from one 
type of behaviour (e.g., a power law with 0 I B s l), 
to a power law with different B. This cut-off will 
fundamentally determine the total vesicularity in this 
regime (Section 3.5 gives the result for a given 
largest vesicle present in an empirical sample). (2) 
This distribution may be relevant since the refined 
analyses seem to indicate B, = 0.80 (B, = 0.85, Sec- 
tion 3.4). It may also be the empirically relevant for 
the large vesicle regime case for the Hawaiian spongy 
pahoehoe (B, = - 0.2; B, = 0.2). However, we may 
expect a break in the distribution due to another 
physical processes limiting the total vesicularity to 
< 1. 

B.3. B = 0: 

The case B = 0 may be relevant since it corre- 
sponds to B, = 0 and hence to the empirically ob- 
served small vesicle regime in individual Etnean 
samples with B, = -0.5. This case is special be- 
cause the number density n(V) = V- ’ yields loga- 
rithmic form N. We can simply define the vesicular- 
ity distribution: 

P(V’<V)=V$ v<v* (A.9a) 

and hence: 

N(V’>V)=$-In; VSV* (A.9b) 

Once again, the fact that the number distribution 
diverges for small vesicles 5 is unimportant since its 
contribution to the vesicular&y is negligible. n(V) = 

V- ’ is equivalent to a uniform volume number 

5 Actually, if necessary, in this marginal case, we may intro- 

duce logarithmic corrections to P which can allow for the small V 
convergence of the total number of vesicles per unit volume. 

density defined in classes of 5 = In V [n(V)dV = 
n&ode; n&t> = constant]. 

B.4. B < 0: 

Both the vesicularity and number distributions 
converge for small V, so that this case is straightfor- 
ward, we have: 

P(v’<v)=P* ; 
i 1 

1-E 

I/IV’ (A.lOa) 

N(V’< V) =N* ; 
( I 

-B 

vsv* (A.lOb) 

with: 

(B-l) P* 
N”=_- 

B V* 

It is interesting to note that by changing the 
dimension of space, we may change the sign of B. It 
is therefore possible (and empirically possibly rele- 
vant since B, = - 0.40, B, > 0) that studying area1 
cross sections will lead to a finite number of small 
vesicles per unit area, whereas, studying the volumes 
would lead to an infinite number of vesicles per unit 
volume. The whole point is that the vesicularity 
distribution rather than the number distribution is 
physically significant, and this remains invariant. 
The large number of very small vesicles is simply 
irrelevant to the vesicularity. This underscores the 
dangers of judging the significance of different phys- 
ical processes (e.g.. diffusion vs. coalescence) by 
considering the relative number of vesicles involved. 

B.5. The special case B = 1 

The vesicle distribution will clearly be the result 
of complex non-linear lava dynamics. However, we 
have argued that-at least over certain scale ranges 
-the dynamics will have no characteristic scale, and 
will therefore respect scaling symmetries (i.e., some 
aspect, typically an exponent, will be invariant under 
scale changes). Up until now, we have made the 
automatic identification of scaling with power law 
distributions; this was adequate for our purposes. 
Unfortunately, this is not enough for the case B = 1, 



152 H. Gaonac’h et al. / Journal of Volcanology and Geothermal Research 74 (1996) 131-153 

since a pure power law with this exponent will 

involve both small and large V divergences in the 

all-important vesicularity distribution. 

ment is a bit simpler, but the implications for the 
vesicularity will be the same. 

Although power laws are the only distributions 

that exactly maintain their form for all V under a 

“zoom” (scale change) ratio A (i.e., under the trans- 

formation V - A3 V), we have already seen that an 

inner or outer cut-off is necessary if such distribu- 

tions are to provide useful models for vesicle sizes. 
More generally, functions of the form: 
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