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ABSTRACT. Motivated by the necessity of developing new multifractal analysis techniques to characterize
empirical fields by scale invariant (sensor resoluticn independent) codimension functions, we introduce a
new method, PDMS, to directly estimate the codimension of the singularity spectrum c(y) and we also
indicate the theoretical (or practical) limits of this method as well as its consequences for the determination
of highest values of c(y). These properties also have implications for the behaviour of K(h) — related to
c(y) by a Legendre transformation — in particular for large h. The characteristic behaviour of c(y) and K(h)
are illustrated respectively by the estimation of the scaling properties of the probability distribution and of
statistical moments of simulated fields, obtained with multiplicative self similar cascade processes.

1. INTRODUCTION

For several years now, the concepts of fractals and multifractals have increasingly served as new tools in
investigating and understanding the behaviour of atmospheric and other geophysical fields. It has been
particularly important in characterizing and mathematically linking two fundamental properties of turbulent
flows: their intermittency (high variability of the field) and scale invariance (observed over a wide range of
time and/or space scales). By scaling (or scale invariance) we mean that quantities associated with the fields
at different scales are related by transformations involving only the scale ratios. When all the statistical
properties of these quantities can be described by a unique exponent of the scale ratio, we have simple
scaling; see Schertzer and Lovejoy (1988), Lovejoy and Schertzer (this volume) for brief reviews. In
general however the complex behaviour of the fields could not be reduced to simple scaling (as already
pointed out by Kolmogorov (1962) and Obukhov (1962) since they found multiple scaling in their
log-normal! model for intermittency), which leads recently to the concept of multifractal dimensions,
introduced by Hertschel and Procaccia (1983), Grassberger (1983) and Schertzer and Lovejoy (1983).
Multiple scaling takes into account that region of varying intensities scale with different exponents and are
characterized by different (fractal) dimensions (a dimension function). The latter describe how the various
intensities level of the fields are distributed - or projected - on a given space of observation. Subtracting the
dimension of the space of observation from the dimension we obtain the codimension, a quantity not only
scale invariant but also independent of the dimension of the space in which the field is embedded, and could
be then regarded as the fundamental function characterizing the system.

The codimension function is usually determined by examining the statistical properties of the fields.
This could be done by estimating directly the probability distribution of the field 's intensities or by
looking at the behaviour of their statistical moments. The codimension functions obtained in both case are
related to each other by a Legendre transformation as discussed in Frisch and Parisi (1985) and Halsey et al.
(1986). Until now, the different attempts to estimate the codimension functions of experimental data
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belong to one of these approaches. The codimension function of the radar rain reflectivity fields (Schertzer
and Lovejoy, 1987 a,b), of the energy dissipation fields (Menevean and Sreenivasan, 1987) and of lidar rain
drops (Lovejoy and Schertzer, this volume) have been obtained by studying the scaling behaviour of their
statistical moments. On the other hand Box Counting — used recently by Hubert and Carbonnel (1988) to
analyze rain gauge data — or Functional Box Counting - introduced by Lovejoy et al. (1987) and used by
Gabriel et al. (1988) for satellite data — are techniques developed to determine the codimension function
from the probability distributions of the fields. Unfortunately the two last methods, which are designed to
work on sets, can only be applied indirectly to physical fields.

In section 2, we propose a new method to estimate the codimension function, the PDMS - Probability
Distribution-Multiple Scaling — essentially based on the scaling properties of the probability distribution.
We indicate how the finite number of samples impose upper limits on the measured codimension function .
In section 3, its consequences for the behaviour of the (highest) statistical moments of the fields, are also
discussed in parallel with the spurious (or pseudo-) scaling.

2. PDMS: PROBABILITY DISTRIBUTION-MULTIPLE SCALING

It is now well established (in other paper in this book but also in Halsey et al. (1986), Meneveau and
Sreenivasan (1987), etc.) that the multiple scaling properties of the field intensities e, are correctly describe
by the following two equations:

excAY, A>1 (2.1
Pr(e), = A1) o« A1) @2

where A is ratio of the largest scale of interest to the scale of homogeneity, and v is positive it is the order
of the singularity: €3 — o when A —» . The second equation indicates that the probability distribution
of singularities of order higher than a value ¥, is related to the fraction of the space occupied by them, as
determined by their codimension function c(y). This equation holds to within slowly varying functions of
A (e.g. logs). The function c(y) and Kp(h), used in this paper, are related to the f(or) singularity spectrum
and the t(q) introduced by Frisch and Parisi (1985) and used by Halsey et al. (1986), by these simple
relations ¢(y) = d - (o) and Kp(h) = — 1(q): when o = (d - 1), h=q and d is the dimension of the space
in which the set is embedded. It could be show that the hth statistical moments of the field intensities will
generally have a scaling exponent K(h) = (h-1)C(h) and then using the definition for the statistical moments
we obtain the following relation;

<eph> o Ilh‘( A=) dPr(y) = Ah-1C(h) @.3)

In the limit A — o, the scaling exponents are related by the the following Legendre transformation:
K(h) = (h - 1) C(h) = maxy (hy - c(y)) (24)
(¥} = maxy, (hy - K(h))

where C(h) (a monotically increasing function) is the codimension function associated to the statistical
moments of the field intensities, as c(y) is the one associated to the probability distribution.

Let us now consider how these properties arise and how they could be understood in terms of cascade
processes, firs postulated by Richardson. Without losing generality, we will restrict ourselves studying the
dynamical cascade (i.e. energy flux). Although we discuss only this case, the cascade process could also be
used to describe passive scalars (e.g. scalar variance ) or pseudo scalars (the helicity flux, discussed in
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Levich and Shtilman (this volume))} and have been also used to study showers of cosmic rays (Bialas and
Peschanski, 1986). Here, the scale invariant quantity is the energy flux density & whose ensemble spatial
average is constant (i.e. scale independent) but nevertheless highly intermittient. This condition on the
ensemble spatial average of the energy flux density corresponds to the canonical case. In this process the
flux of the field at large scale multiplicatively modulates the various fluxes at smaller scales, the
mechanism of flux redistribution is repeated at each cascade step (self similarity). Figure 1 gives a
schematic illustration of the discrete cascade process in two dimensions: a large eddy of characteristic length
lp with an initial energy flux density g, is broken up (via non-linear interaction with other eddies or
internal instability) into smaller sub eddies of characteristic length Iy =lg/A (A = 2, is the scale ratio
between to consecutive cascade step), transferring in the process to each sub-eddy a fraction of its energy
flux density peg.

CASCADE
LEVEL

Fig. 1 : A schematic diagram showing a two-di ionnal process at different levels of its
construction to smaller scales. Each eddy breaks up into four sub-eddies, transferring a part or all its energy flux.

The process could be repeated, and after n iterations (or n cascade steps) we obtain sub-eddies with
length of homogeneity I, =lp/A™ and energy flux density &q:

En = {E] HEQ LIET . UEn ED
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when g is the fraction of energy flux density to sub-eddy of ith cascade step. The last quantity is a typical
"bare" quantity as long as n is finite, conversely "dressed” quantity are obtained by integrating a completely
developed cascade processes, experimental data are then best approximated by the second one; see Schertzer
and Lovejoy (1987a, b) As the cascade proceeds to smaller scale, high values of &, appears, concentrated
on smallest volume 58, which is habitually recognized as a basic characteristic of intermittency. In the
limit of the cascade scale going to zero (I, — 0), the energy flux densities ep take singular values of all
orders. Such behaviour is characteristic of multiple scaling, and could be expressed by relation (2.1).

For a generalization of discrete cascade processes to the continuous cascade process and its applications
see Wilson et al. (this volume). In particular Schertzer and Lovejoy (1987a, b) shows that in this case the
codimension functions belongs to universal classes:

Cl(Cﬂl L) i

e = (2.5)
Cy exp(C -1) a =1
C1t1

K(h)={ o (h®-h) a # 1 @6)
C; h Log(h) o.=-1

l+ -l,-=1

o o

where C; and & (0 < o < 2) are the fundamental parameters needed to characterize the processes. The first
one, Cy is the fractal codimension of the singularities contributing to the average values of the field, and
the second one, o the Lévy index indicating to which classes the probability distribution belongs. These
fundamental properties of multifractal cascade processes are extensively discussed in Schertzer and Lovejoy
{this volume).

The PDMS is a new multifractal techniques developed to directly estimate the codimension function
c(y), without using the Legendre transformation either explicitly or implicitly. The codimension function
is essentially determined by studying the multiple scaling behaviour of the probablhly distribution . The
last one is obtained by dividing the total volume, support of the field g), into Ny = Ad disjoint boxes of
volume -9, then defining N (y) as the number of boxes such that the following inequality is verified:

log 2
log 3,

then equation (2.2) is approximated by this relation:

Pr(es 2 2Y) = x_(v).

The operation could be repeated for different values of y, and for decreasing values of scale ratio A. The
corresponding rescaled field intensitics are oblained by averaging over the field intensities €3 at the finest
resolution; and are therefore "dressed” quantities. The slope of the curve of Nj(Y)/Ny, as a function of the
scale ratio A on a log-log graph, for a given value of v, will give the corresponding codimension function
¢(y). This procedure bypassed the problem of the correct but non trivial normalization of eq. (2.2).

Using this techniques, we estimate the codimension function of unidimensional (d = 1) simulated
fields generated with the help of discrete log-normal (& = 2) multiplicative cascade process. The field has
bee:} (s;imulaled over 10 cascade steps (n = 10), i.c. the scaling ratio between the largest and smallest length
is 219,
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The eq. (2.5) with o = 2 gives the theoretical expression of the codimension function:
“Srep ) 2
cw=7-( &+ @n

The free parameter C1, 0<C) < d!, is chosen to equal to 0.125 and the number of independent
samples N, used to estimate to codimension function, is equal to 10 in the first example and to 1000 in the
second. The curves of the log(Na(y)/Na) as function of log(A) (A decreasing by a factor of 1/2, from 1024
to 2) are given in fig. 2 for different values of . The straightness of the curves indicates that the scaling is

accurately respected.
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Fig. 2 : Illustration of the scaling behaviour of the probability distribution of 1000 independent samples of
density fields induced by log-normal (o =2) multiplicative cascade process over a scale range 210 = 1024,
From bottom to top, each curve corresponds to an order of singularity ¥ going from 0.1 to 0.8, in increments of
0.1. Note that the scaling is accurately followed.

In fig. 3, the curves of the estimated codimension functions, with N = 10 (black symbols) and
N =1000 (white symbols), are compared to the theoretical functions (continuous curves) given by
eq. (2.7). They are in good agreement up to a given value of 7, which obviously increases with the
samples size.

This behaviour could be understood if we recall that in the canonical case, a finite number of samples,
each of finite scale ratio, will impose an upper bound cn the highest values of the order of singularities y
that could be generated by the multiplicative cascade processes, and conversely the accessible values of 7y
will be limited by the finite sample size used to evaluated it. This implies that the estimate of the
frequency of occurrence of the largest value of v, from which we estimate the codimension function, could
not be performed on only one sample, as they will only appear in some samples events. Obviously,
increasing the number of samples will increase the probability of their observation. The codimension
function c(y) is then a measure of the fraction of the space, formed by the total number of samples of
dimension d (corresponding.roughly to the hyper space of the probability distribution)), occupied by the
singularities of order equal or superior to .

! The case C1 >d yields degenerate cascades discussed by Schertzer and Lovejoy (1987 a, b).
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Following this and noticing that c(y) is an increasing function for positive values of ¥ ( indicating that
the largest singularities are the rarest) one will find that the maximum value of y, denoted Ymax, observed
at least once in the N independent samples of volume d (with Ad sub-boxes on each sample) is
approximated, within a normalization constant, by:

N Ad A~c(fmax) ~ 1 (2.8
Introducing the definition of the dimension of sampling Dg for N samples:
APs=N

_logN
Ds “log A

Using eq. (2.8) we obtain the following relation for Ymax:
c(Ymax) = d +Dg (2.9

The last equation shows that the larger the sampling dimension Dg — or the dimension d — the larger
will be the spectrum of accessible values of ¥. Sometimes it is possible to evaluate ¢(y) corresponding to
v greater than Ymax, but they are then poor estimates. The values of ¢(Ymax) can be considered as an
indication of the maximum values of c(y) that can be estimated from a given sample size and resolution A.

Going back to fig. 3, the lower and the upper dotted lines corresponds to the values of ¢(Ymax), fora
number of samples N =10 and N = 1000 respectively. In both case, the value of ¢(Ymax) is an
appropriate upper limits for the maximum correct values of the estimated codimension functions. Notice
also in fig. 3, that increasing the number of samples improve the precision to which the codimension
function is determined even at small values of v.

c(Y)
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Fig. 3 : The curves of the estimated c(y), using the PDMS technique, with 1000 independent samples (white
symbols) and 10 independent samples (black symbols) compared to their theoretical values given by the
continuous curve. The horizontal dashed lines, indicate the estimated upper limits of c(y) imposed by the finite
values of the dimension of sampling Dy. In both cases, the estimated c(y) is in good agreement with the
theoretical curve when c(y) < d+Ds.
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3. UPPER LIMITS OF THE ESTIMATED CHARACTERISTIC FUNCTION K(h)

We have seen at the preceding section that a finite number of samples restricts the breath spectrum of the
accessible v, and hence of c(y), to those smaller than the maximum values Yax and c(¥max) respectively.
Now we will see its consequences on the determination of statistical moments, in particular for the
trace-moments, and how it will affect the behaviour of the codimension function C(h) associated to them.
Following Schertzer and Lovejoy (1989) we define the k" trace moment of the energy flux densities over a
set A of dimension d by these relations:

Trag eah =< [ eah dhdx > o« AKD) G.1)
Ax
with:
Kp(h) = (h - 1) [C(h) - d] 32

and approximated for discrete fields by this summation:

Trap eah =< Ze;ﬂ‘ a~hd 5 (3.3)
Ay

Using this we estimate the trace moments of ficlds, generated the by log-normal (o = 2)
multiplicative cascade process already discuss in section 2. The statistical ensemble averages are replaced
by sums over N independent samples of the fields.

LogTreh
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Fig. 4 : The estimated h™! trace moments of 1000 independent samples of density fields induced by
log-normal (ot = 2) multiplicative cascade process with scale range equal to 210, The curve correspond at
h=2,5, 7 and 9 going from the bottom to the top. Here also the scaling is accurately followed,

In fig. 4, the curves of the log (Tra3 exP ) against log() are illustrated for several values of h (for a
number of sample N = 1000); here also the scaling is well respected for all the range of A (from 1 to
1024). The slopes of these curves gives the estimated codimension functions, with N = 10 (black
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symbols) and N = 1000 (white symbals), are compared in fig. 5 to the theoretical curve (continuous line)
of K(h), obtained with eq. (2.6) and & =2, We see that for small h the three curves are in good agreement,
but for large h the estimated values of K(h) no longer correspond to the theoretical parabola, but are
asymptotically straight. This behaviour could be understood as a failure in the Legendre transformation,
given by eq. (2.4), essentially caused by the finite sample size. The Legendre transformation implies a dual
correspondence between the orders of moments h and the orders of singularities y (given by the following
relation h = ¢'(y) and y=K'(h)). So as long as v is smaller then Ymax. the corresponding h and K(h) are
in agrecment with the theoretical curve given by the Legendre transformation. The finite number of sample
implies a Ymax. but we have no restriction of this kind on the order of the moments h, that could be
increase indefinitely (in practice its value stay finite), corresponding to y greater then Ymax, and as for c(y)
the estimated K(h) is no longer in agreement with the codimension function of the system. It is clearly not
possible to estimate correctly the codimension function of singularities never encountered.
The asymptotic linear behaviour of K(h) could then be approximated by the following relation:

K(h) = h ¥max — ¢(¥max) (3.4)

(This relation could be deduced from eq. (2.3), using the asymptotic expansion for general Laplace integrals
when the maximum values of the exponent (h ¥ - c(¥)) lies at one of the endpoints of the integral and its
derivative is no longer equal to zero; see, e.g. Bender and Orszag (1978).) The asymplotic slopes and the y
axis intercept, estimated for the 5 last points K(h) in fig. 5, are equal 10 0.54 and 1.01 with sample size
N = 10, and 1o 0.74 and of 1.24 when N = 1000. Using PDMS to determine the c(y) of the same ficlds,
one found that ¢(0.55) = 1.1 when N = 10 and ¢(0.75) = 1.3 when N = 1000. So the values given by the
estimation of the asymptotic slopes of K(h) are in good agreement with that one obtained with PDMS.
However the values of Ymax observed for both examples are respectively 0.75 and 0.95 for N equal to 10
and 1000, and are slightly greater than the values given by the asymptotic slopes of K(h). But - as already
pointed out - these highest values of the order of singularity are extremely rare events and their probability
of occurrence too low to contribute significantly to the statistical moments, which is why the values of
Ymax in eq. (3.4) will be smaller than the one observed with the PDMS. Finally, the slope of C(h) is
evaluated for values of h between 0.1 and 2, and yields C; = 0.15.

K(h)
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h
Fig. 5 : The curves of the estimated moment scaling function K(h) for 1000 independent samples (white

symbols) and 10 independent samples (black symbols) compared to theirs theoretical values given by the
continuous curve. The dashed lines are the asymptotic slopes of K(h) evaluated for the five last values of h.
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This underestimation of the codimension function should not be confused with that resulting from the
divergence of the trace moments, which leads to spurious scaling. Since C(h) is a monotonically
increasing function, the scaling exponents Kp(h) of the trace moments given by eq. (3.2) have two zero:
h =1 implies the scale independence of the averaged ficlds, and h = hg > 1, defined by the following
equality:

Clhg)=d (3.5

So when h is greater than this critical value, the scaling exponent Kp(h) is positive, and in the limit of
A — eo the trace moment, given by eq. (3.1), will diverge. The divergence of trace moments and its
interpretation as a Hausdorff measure was first pointed out in Schertzer and Lovejoy (1987 a,b). However
statistical moments of the "bare” quantities always remains finite. But for the dressed fields, resulting from
the integration of a completely developed multiplicative cascade processes (i.e. in the limit A — <), the
divergence of moments implies a break down in the law of large numbers, and then the usual procedure of
estimating their statistical properties fails for h > hg. This divergence occurs because the dimension d of
the volume over which the field is integrated is not large encugh to smooth out rare high order
singularities, and rescaling the field by averaging it at larger scales will not "kill" these singularities, or
attenuated them enough, since the dimension d is not affected by this procedure. (The behaviour of the
statistical moments of dressed fields for some special cases of discrete multiplicative cascade processes and
h integer is derived in Lavallée (1990).)

As soon as the number of samples is large enough so that hpax (i.e. the order of moments
corresponding, by the Legendre transformation to Ymax) is greater than hy, it implies that rare high
singularities are encountered, and spurious scaling will be observed. However it is important to notice how
to distinguish the spurious scaling that underestimation of K(h) due to the under sampling. In the latter
case, the estimated Kp(h) becomes more and more negative, as can be seen on the graph of the
log(Tray, £2.1) versus log) in fig. 4 where their slopes decreases to lower and lower negative values, as h
increase. On the contrary spurious scaling will be observed when the slope of log(Tra;, 31 versus logh
goes to zero for h > 1, that implies Kp(h) became less negative as h goes to hy.

The following relation for hypay:

d+D 2
Bmax = (Tl's')” (36

is obtained for @ = 2, using eq. (2.9) and the Legendre transformation.

Using discrete log-normal (o = 2) multiplicative cascade process with 10 cascade steps and
C1 =0.72, we found hg = 1.388 using eq. (2.7) to solve eq. (3.5) with d = 1, and the number of samples
N = 2000, is chosen so that hyax = 1.7 is greater than hy. In the preceding example, with Cy = 0.125,
and for N = 1000, hypax =4 which is smaller than hg =8, We then use eq. (3.3) to estimate the trace
moments of the fields at different scale ratio, and as usual to estimate the scaling exponents by their slopes.
The estimated codimension function C(h) is compared to its theoretical values (continuous curve) in fig. 6.
For large values of h, the estimates stay bounded and are therefore poor estimator of the theoretical C(h)
which grows linearly with h. This behaviour is recognized as the spurious scaling. For small values of h,
C(h) is in agreement with the theoretical curve, the slope of C(h) evaluated for values of h between 0.1 and
0.9, and gives C; equal 0.75. {

So to increase the range of values of h for which one can expect to correctly determine the scaling
exponents, we must first increase N, until hyax > hg, and then measure (or project) the fields on spaces of
increasing dimension d. In practice this means that experimental data will have to be taken with
instruments of the largest dimension possible (e.g. d = 4 for isotropic processes varying in space and time).
Finally we would like to point out that while the spurious scaling can only be observed on “dressed” fields,
the finite number of samples will modified the behaviour of both the “bare” and of the “dressed” fields and
can be observed on either. One can find other examples of the application of PDMS as well as trace
moments to geophysical fields in Lovejoy and Schertzer (this volume).
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Fig. 6 : Illustration of the consequences of spurious scaling of the “dressed” quantities for the estimated C(h),
that stay bounded for large values of h, in disagreement with the linear behaviour of the theoretical C(h) given by
the continuous curve. The estimated C(h) is obtained by trace moment analysis of 2000 independent samples of
density fields induced by log-normal (c = 2) multiplicative cascade process, the scale ratio 1= 210,

4. CONCLUSIONS

The results obtained in this paper underline the importance of phenomenological stochastic models - in
particular multiplicative cascade processes - not only in understanding turbulence, but also in verifying the
relevance and limits of conceptual tools developed for analyzing their scaling properties. We introduce a
new method to directly estimate the codimension function (c(y)) which is directly related to the probability
distribution. The PDMS method avoids using Legendre transformations and their implicit assumption of
the converge of all statistical moments. Since we gencrally expect the observed “dressed” moments to
diverge for sufficiently high orders, this method is a significant improvement: it is insensitive to spurious
scaling. We also discuss how a finite number of samples reduces the range of accessible v, and how 10
characterize it with the dimension of sampling Ds. Its effects on K(h), the Legendre transform of c(y), are
also studied in parallel with spurious scaling. This clarifies their differences and shows how the asymptotic
behaviour of the real scaling exponents are medified.

We obtained specific estimates of the maximum order of singularities that can be evaluated with a
given sample size and resolution. These limits give precise information about the reliability of exponent
estimates and suggests that many Kp(h) (or equivalently t(q)) values cited in the literature should be
critically re-examined, especially in the (common) case where straight-line behaviour is observed at large h.
This asymptotic linearity could also introduce a discontinuity, or a sudden change in the derivative of
Kp(h). Since there is a formal analogy between thermodynamics and “flux dynamics”, it has often been
claimed on the basis of observed discontinuitics that phase transitions occur. We discuss several
mechanisms by which discontinuities will arise even when no “phase transition” is present. This suggests
that the analogy with thermodynamics may be largely formal in nature.



APPENDIX A

In this section, the fundamental distinction between the "bare” and "dressed” is discussed and analytical
expressions for the latter are derived. The behaviour is studied for both h smaller and greater than hp. The
theoretical expression for the "bare” hth trace moment of the energy flux densities over a set A of
dimension D is straightforward and given by the eq. (3.1). For simplicity the discrete cascade processes
will be the only ones considered, generalizations to continuous cascade processes are possible following the
same steps but are not essential for the discussion here.

From here to the end of this section A = lp/ln+1 (A > 1) will be the constant scale ratio between two
consecutive cascades steps (or between the length of homogeneity of two consecutive sub-eddies) (see
fig. 1). The expression for the hth statistical moments of the energy flux densities is then given by the
following relation: '

<ggh> o« ARM-DC(R) 5> 1 (A.1)

'I‘heindcxnindicatesﬂlenumberofcascadestepsusedtoimwmecascadcprocessmobtain the field €p
distributed over the volume IpP = A8 (when lo and €g are put equal to 1 for simplicity). It also refers
to "bare” quantities (as long as it is finite).

Using the same fields, they are divided in A™P disjoint boxes of equal volume A~mD  covering the
entire field. When the index m takes values between 0 and n, the average energy flux density on each boxes
of volume A~™D is given by the following expression:

ZE’ = a-nD

2 a-nD

€m I (A2)



for h, h-1, ..., 2, 1 hp and the coefficients ay, are independent of the number of cascade steps n. Then
for n >> 1, the h'™ moment of the energy flux and the hih trace moment — using eq. (A.4) - of averaged
fields have respectively the following behaviour:

[ a l<h<hp Kp(h) <0
<I(en)™> {ah AnKD() h > hp Kp(h) > 0

KD(h) 1<h<hp Kp(h)<0
ho |2l Am D D
TrtAm Em) {ah ARKD() > pp Kp(h) >0 =

where we keep only the dominant term, and we use the fact that Kp(h) > Kp(h-1) for h > hp because
C(h) is a monotonic increasing function.

The values of the hth trace moment of averaged ficlds given by eq. (A.4) and (A.5) — without the
approximation used to obtain eq. (A.6) - are compared to the estimated trace-moments in figs. 7 and 8. In
the first case the trace moments have been estimated using 1000 indea:endent samples of density fields
produced by log-normal cascade processes with scale range equal to 210, The free parameter C; = 0.08 is
chosen such that hp > hyax>4. Both values are in good agreement, and the approximation used in
€q. (A.6) — corresponding to the first case, 1 <h < hp - that the trace moment of averaged fields scale
like their "bare” counterpart is more accurate when the volume of integration of the boxes (or averaging
volume) A™P js much larger then the volume of homogeneity AP,
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Fig. 7 : - The estimated h'" moments of the average energy flux densities as a function of the number of
cascade steps, for h=2,3 and 4 <hp from bottom to top, are compares to the values of the expression (A.4)
given by the continuous curve. Both of them are in good agreement. The energy flux density fields are produced
by a log-normal (@ =2) multiplicative cascade process over a scale range 210 = 1024, and the number of
independent samples N = 1000.
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Fig. 8 : Same as figure 7, but for for h=2,3,4 and 5, hp <2 from bottom to top. The estimated trace
moment for h=7 and 9 are given alone, observe that their behaviour becomes constant as m decreases. The
energy flux density fields are produced by the "ai-model”. The parameters were the following; C =143,

o = 1.1 (not to be confused with a, the Lévy index used in the preceding secnon)mdﬁlenmnberofmdependem
samples N = 1500,

In fig. 8 the estimated trace moments have been evaluated using the a-model (see Schertzer and
Lovejoy (1987a, b) and Scherzer and Lovejoy (1990). In these a-model simulation the parameters take
respectively the following values: ¢ = 1.43, a = 1.1 ( not to be confused with a the Lévy index used in
the preceding section), the number of samples N = 1500 and hp = 1.14 < hyyax. Again both values are
in good agreement, and the behaviour of the trace moment given by eq. (A.6) — corresponding this time to
the second case when h > hp — indicating that the trace moments go to constant values as expected when
AmD is much larger then A"D, The same behaviour is also observed for larger values of h in fig. 8. The
trace moment of fields genemted by log normal cascade processes exhibit also the same behaviour for h
> hp, but the number of samples needed to obtain convergence to the value given by eq. (A.6) is larger
than in the case of the a-model, especially for largevaluesofh This is essentially due to the fact that the
latter has a bounded maximum value of v.

The "dressed" quantities are usually defined for n — s, and therefore the behaviour of the "dressed” trace
moment is well described by the last equation. As long as Kp(h) is negative, i. e. C(h)<D the "dressed”
trace moments are scaling, and their estimates at different scales of integration A~™D, allows the scaling
exponents to be estimated by the slope of Tram (Em)! as a function of the scale ratio A™ on a log-log
graph. The (multiple) scale invariance of the "dressed" fields observed at a given scale, is only the
consequences of the same behaviour of the "bare” fields at the corresponding length scale as indicated by eq.
(A.4). When Kp(h) is positive, i. €. C(h) > D, the "dressed” trace moment have no more dependance on
the scale of integration A~™D, gs illustrated in fig. 8, and the methods of determination of the scaling
exponent suggested for Kp(h) < 0 is of no use here. This behaviour is a consequence of the divergence of
statistical moments for n — o= when h> hp. It is related 10 the impossibility of filtering out or
smoothing out the largest order singularity of the fields without increasing the dimension of the space in
which the field is embedded.



where the sum is over all A(m)D gyb-boxes of volume A~20, The numerator is simply the energy flux
over the boxes of volume A~™MP, and the denominator its volume. Their ratio gives the (spatial) average
values of the energy flux densities (indicated by a bar over g,) We obtain therefore a rescaled field at larger
resolution A™™, ;

Taking into account the fact that the €, appearing in eq. (A.2) results from a multiplicative cascade
process it can be then factored into two parts: €n = &m €n.m. When €py, is the flux density distributed
over the sub-eddy of the mth generation before each of them breaks into A(+1D sub-eddies, and is then the
common ancestor of the &.m distributed over sub-eddies of volume AP as the cascade progresses from
the mth (o the nth cascade step. The prefactor e, is then independent of the sum in eq. (A.2). Averaging
the process over disjoint boxes of a given size corresponds to a translation in the number of cascade steps:
equivalent to the evaluation of energy flux of fields resulting from a cascade processes developed over
(n - m) cascade steps, with a particular distribution of the initial energy flux densities over eddies of
volume A~™MP_ Following this the average becomes:

€m =€m Z €n-m A~ (2-mD

and, using eq. (3.3), the hth trace moment at the same resolution A~™P is then:

Tram Em)t = <2, Tmb A-mD >

The multiplicative increments operating at a given cascade step are statistically independent of those of
the previous steps so that €n, is not correlated 10 €n.m, even though the en of the same generation are
correlated. This essentially means that the redistribution of energy flux density from eddy to sub-eddies is
independent of the preceding one. The hth trace moment of an averaged field is then given by these
expressions:

Tram Em)? = A0 Y <epbs> <)) e A-@mD b > (A3)

where the first sum is made over the A™D boxes of the set A, and the second over A(-MD sub-boxes
included in each box of volume A~MhD_ Using eq. (A.1) and the fact that the second sum can be identified
as the usual energy flux TT(€q-m), for h = 1, transferred from the eddy of the m! generation to that of the
(n-m)th generation as the cascade proceeds to smaller scales, the last equation could then be rewritien:

Tram Em)? = AMKD(M) <I(eq.m)'>, Kp(h) = (h-1) (C(h) - D) (A4)

The first term on the right hand side of the proportionality sign is the expression for "bare” trace moment
and the second is the usual hth statistical moments of the fields.

The factorization used to obtain eq. (A.4) could also be used to obtain a recursion formula for the hth
statistical moments <IT(e,)"> of a cascade process developed to the nth cascade step, when h is a positive
integer. A detailed derivation of this formula can be found in Lavallée (1990); it consists mainly in first
factorizing the energy flux density of the first generation €; from the energy flux I(e,) and recognizing
that the term multiplying each €; are proportional to TI(en-1). Finally using the statistical independence
of the multiplicative increments and multinomial expansion leads to the recursive formula sought. In
particular for D=1 and A = 2, we can establish, using the relations (A1) and (A.4), that for positive
integer h the hth moment of the energy flux is given by:

<T(e)P> = ap, ABKD®) 4 g, ; ARKD(®-1) 4 429 APKD@) 4 (A.5)
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