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Abstract We investigate precipitation variability in the ‘‘macroweather’’ regime—the intermediate
regime between the familiar weather and climate regimes—which is associated to time scales from about
10 days to 30–100 years. Macroweather precipitation is characterized by negative fluctuation exponents.
This implies—contrary to the weather regime—that fluctuations tend to cancel each other out, they dimin-
ish with time scale, this is important for seasonal, annual, and decadal forecasts. Aiming at a wide-scale
range space-time statistical description of macroweather precipitation, we study the scaling of three centen-
nial, global-scale precipitation products (one gauge based, one reanalysis based, and one satellite based)
and systematically compare them over wide ranges of time and space scales. Although these products have
very similar temporal statistics, at 58 resolution, they only agree with each other after being averaged over
scales of several years, at scales larger than 2-3 decades, they disagree again. In space, there is less agree-
ment on the statistics but—since the data have low resolutions (mostly 58 3 58)—the disagreement is only
over a small overall range of scales: the monthly data agree fairly well at scales 208–308 and larger. More-
over, we quantify the outer scale limit of the temporal scaling (20–40 years, depending on the product, on
the spatial scale, pixel, or global). Overall, results show that precipitation can be modeled with space-time
scaling processes. The improved understanding of the space-time macroweather precipitation variability
and the limitations of precipitation products provided by this work opens new perspectives to the stochas-
tic modeling and forecasting of macroweather precipitation as well as separating natural and anthropo-
genic precipitation.

1. Introduction

A better understanding of atmospheric fields is needed to improve the modeling of different processes, not
only in the atmosphere but also in systems that interact with it, namely the cryosphere, the geosphere, the
hydrosphere, and the biosphere. Applications potentially range from global to regional and to local scales.
Improved modeling also means a better ability to forecast at different scales and to develop more robust
tools that can be used for assisting in conserving and managing natural resources, contributing to an overall
improved understanding of the past, present, and future conditions on Earth.

In recent decades, numerous scaling analyses of precipitation and other atmospheric fields have clarified
several aspects of atmospheric dynamics. In addition to the familiar weather and climate regimes, there is
an additional intermediate macroweather regime. The three regimes alternate in their basic characters and,
as explained below, this is a key for their understanding. For the temperature field, this three scaling regime
picture is relatively clear, the macroweather regime spanning time scales from about 10 days to 30–100
years (in the industrial epoch, this upper limit is the lower figure, the preindustrial upper limit is not well
established, see Lovejoy [2013] and Lovejoy et al. [2013a]). For precipitation, this picture is often not so clear,
here we explore it further.

We start by noting the presence of a strong transition in the statistical properties of atmospheric fields at
time scales sw of the order of 2–10 days, that was already recognized by Van der Hoven [1957], who theor-
ized it as due to ‘‘migratory pressure systems of synoptic weather map scale. . .’’ followed by Kolesnikov and
Monin [1965] and Panofsky [1969], who introduced the term ‘‘synoptic maximum.’’ More recently, it has
been attributed to baroclinic instabilities [Vallis, 2010]. On the other hand, Lovejoy and Schertzer [1986]

Key Points:
� Precipitation is investigated on global

and monthly to centennial scales
� Macroweather precipitation space-

time variability is characterized
� The space-time variability of three

global precipitation products is
compared

Correspondence to:
M. I. P. de Lima,
iplima@uc.pt

Citation:
de Lima, M. I. P., and S. Lovejoy (2015),
Macroweather precipitation variability
up to global and centennial scales,
Water Resour. Res., 51, 9490–9513,
doi:10.1002/2015WR017455.

Received 28 APR 2015

Accepted 4 NOV 2015

Accepted article online 6 NOV 2015

Published online 13 DEC 2015

VC 2015. American Geophysical Union.

All Rights Reserved.

DE LIMA AND LOVEJOY MACROWEATHER PRECIPITATION VARIABILITY 9490

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2015WR017455
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


stated ‘‘this is the minimum time scale of planetary structures.’’ This interpretation was also recently
strengthened and nuanced (sw as a typical lifetime) by Lovejoy and Schertzer [2010], who showed that the
critical scale sw can be theoretically estimated from first principles if the (turbulent) Kolmorogov law held in
the horizontal not only to scales comparable to the atmospheric-scale thickness (�10 km)—as is conven-
tionally supposed—but up to planetary scales. This implies that the key dimensional quantity is the solar-
induced energy rate density (�1023 W/kg in the troposphere). Further evidence favorable to this theory,
Lovejoy and Schertzer [2012a, 2013] confirmed that the spectrum of ocean (also turbulent up to planetary
scales) could be analogously described since the energy rate density of surface currents is about 105 times
smaller than atmospheric winds, implying (as observed) a transition at �1 year; the theory also successfully
predicted the scaling structure of the Martian atmosphere (with a transition at about 1.8 days) [Lovejoy
et al., 2014]. Finally, (deterministic) numerical models well reproduce the weather and macroweather
regimes including exponents in a realistic range, as do (stochastic) turbulence-based cascade models.

For precipitation, the transition scale sw between the high-frequency weather regime and the low-
frequency macroweather regime varies somewhat with latitude from about 2–5 days, which is a little less
than for the temperature (5–10 days) [Lovejoy and Schertzer, 2013, Figure 8.5c]. The overall statistical picture
of precipitation variability is apparently qualitatively the same as for the temperature although for several
reasons, it is less certain. These include: (a) the existence of high-quality paleotemperature data (but
absence of comparable paleoprecipitation data) that allow us to estimate the temperature statistics at deca-
dal and centennial scales for both preindustrial and industrial epochs; (b) the temperatures are not too
intermittent so that the statistics are more robust; (c) the theoretical and GCM modeling implications of
anthropogenic effects on the temperature are more straightforward than for precipitation.

The vast majority of temporal precipitation scaling analyses have been in the weather rather than macro-
weather regime [e.g., Olsson and Niemczynowicz, 1996; Pathirana et al., 2003; Garcia-Marin et al., 2008; de
Lima and de Lima, 2009; Sun and Barros, 2010; Rysman et al., 2013; M. Nogueira and A. P. Barros, Dynamical
downscaling of quantitative precipitation estimation for hydrological predictions in the Southern Appala-
chians, submitted to Journal of Hydrology, 2015], although some provided estimates in both regimes: Ladoy
et al. [1991], Tessier et al. [1996], de Lima [1998], and Lovejoy et al. [2012]. For comparison, Table 1 shows the
(limited) number of macroweather exponents published to date; we discuss them in detail below. We could
also mention studies of clustering and extremes of macroweather precipitation that are also in a theoretical
scaling framework [e.g., Bunde et al., 2005, 2013].

One reason for the relative paucity of temporal macroweather precipitation analyses is the difficulty in
clearly identifying the transition scale sw. For example, transitions from zero to finite rain rates lead to
breaks in the scaling and it is still not clear how much of this effect is due to instrumental issues at low rain
rates, and how much is due to true transitions from rain to no-rain (see the debate in Lovejoy et al. [2008],

Table 1. A Comparison of Various Macroweather Precipitation Exponents: C1 is the Codimension of the Mean, H is a Fluctuation Expo-
nent, and b is the Spectral Exponenta

Reference C1 H b Data Analyzed

Ladoy et al. [1991] 0.3 Six 4 year segments of daily precipitation from
N̂ımes (France)

Tessier et al. [1996] 0.1 6 0.05 20.35b 0.1 6 0.10 Thirty series from France, daily data averaged to
monthly resolution; length, 10 years

de Lima [1998] 0.15, 0.17, 0.24 Respectively: 2 min data, 16 years; daily data, 32
years; monthly data, 59 years. Data are from
Vale Formoso (Portugal), analyzed at 1 month
and longer scales

Kantelhardt et al. [2006] 0.02 6 0.01 20.45 6 0.06c 0.06 6 0.12d Ninety-nine series, daily precipitation analyzed
from 2 days to decades. DFAe analysis

Lovejoy et al. [2012] 0.035 20.42 0.08 From 11 3 13 point grid over the U.S., hourly
precipitation over 29 years. Haar analysis

aThese exponents are defined later in the text. We could also note an estimate by Bunde et al. [2005] using New Mexico paleoprecipi-
tation from scales of years to over 2000 years: H 5 20.20. The new analyses from Lovejoy and de Lima [2015] are discussed in the text.

bInferred from the C1, b estimate by using b 5 1 1 2H – K(2) and assuming a 5 2 so that C1 5 K(2)/2.
cThe regression included a short part in the weather regime so that the exponent is a little too small.
dInferred from C1, H with a 5 2.
eDetrended Fluctuation Analysis.
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de Montera et al. [2009], Verrier et al. [2010, 2011], Hoang et al. [2012], and Gires et al. [2013] and the review
in Lovejoy and Schertzer [2013, Chapter 4]).

Technical issues concerning different data analysis techniques have also contributed to lack of clarity on
macroweather precipitation. For example, the trace moment technique often used to analyze the (strong)
intermittent component of precipitation involves a nonlinear transformation of variables at the smallest
scales (the estimation of the relevant driving fluxes, using for example, absolute first differences). In order to
use it to obtain macroweather regime estimates, the data must first be averaged over macroweather scales
before the flux is estimated; in many publications, this was not done (see however Lovejoy and de Lima
[2015], referred to below as LdL). The application of the Detrended Fluctuation Analysis (DFA) technique on
daily precipitation data [Kantelhardt et al., 2006] also has some issues (Table 1). The DFA loses a factor of 2
at the high frequencies so that the analyses of daily data start at 2 days: as a consequence, when regres-
sions were made, the weather regime was mixed in with the macroweather regime leading to biases in the
exponents. In addition, we could mention that the DFA is usually applied to the running sum of the data
rather than to the data itself; this not only increases the exponents by one (this is easy to deal with), but it
also makes scale breaks harder to detect.

From Table 1, it can also be seen that the focus of temporal macroweather scaling statistics has been from sin-
gle station data so that a clear global picture cannot easily be painted. At the empirical level, we need clarifica-
tion of (a) the (possible) variation of the exponents with latitude, (b) the variation over land and over ocean,
(c) the global-scale averaged values, (d) the expected anthropogenic (low frequency) effects, (e) the degree of
agreement/disagreement between different techniques for estimating areal precipitation, and (f) the space-
time macroweather statistics. Although the temporal statistics are in many ways deficient, at least several
have been published. In contrast, there have been no studies of spatial macroweather variability whatso-
ever—these need gridded weekly or monthly averaged precipitation fields of the type used below.

This paper focuses on these and the related theoretical issues. We investigate the temporal and spatial pre-
cipitation statistics of climatological precipitation products, and compare their statistical variabilities in time
and space; moreover, we also explore several local, particularly long gauge precipitation time series. We
quantify the outer scale macroweather limit where the temporal scaling breaks down (sc). In particular, the
empirical investigation of macroweather precipitation carried out here envisaged a theoretical framework
for modeling precipitation over the relevant range of scales. A companion paper (LdL) considers the joint
space-time properties and directly analyses the spatial cascade structure using trace moments.

The argument by Lovejoy and Schertzer [2010, 2013] that space-time turbulent cascade models (the Frac-
tionally Integrated Flux; FIF model), that were developed for weather scales, could be extended to the mac-
roweather regime (the ‘‘extended FIF’’; EFIF) simply by allowing the cascades to develop starting from an
(outer) time scale much longer than sw, leads to the conclusion that space-time macroweather statistics
should—at least approximately—satisfy a basic space-time statistical factorization property which is a theo-
retical constraint for models. This stochastic forecasting of macroweather precipitation as well as a new
space-time macroweather precipitation model—the ScaLIng Macroweather Model (SLIMM)—is discussed in
detail in LdL.

2. The Data

To investigate the space-time structure of precipitation in time, over scales from about 1 month to centuries
(or longer), and in space, from global scales down to scales of a few degrees (or less), we explored three
centennial, global-scale precipitation products: one instrument based, one reanalysis based, and one
satellite and gauge based. These products allow us to study precipitation over land, ocean, and the globe.
Table 2 gives basic information on these products that we further detail below.

The Global Historical Climatology Network (GHCN) precipitation product [Vose et al., 1992]—GHCN-Monthly
version 2, updated through 2012 and available from the NOAA site—is the most important gauge-based data
set: it consists of monthly data for the period 1900–2012, at 58 3 58 resolution. Note that only the precipita-
tion anomalies were reported (i.e., with the annual cycle removed and relative to the 1961–1990 reference
period), which lessens concerns about missing data, series consistency, etc. The GHCN product being gauge
based, it is thus also land based (i.e., restricted to land; but this product is not only missing data over ocean, it
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is often also missing data over land: virtually all the pixels have significant outages, see Table 2). Since it does
not include the oceans, which comprise 70% of the Earth’s surface, it will likely give a biased view of global-
scale precipitation. Indeed, we examine this below, it is likely that oceanic precipitation has different statistical
characteristics than precipitation over land, and (since most of the heating is of the ocean) this includes a
potentially much stronger response to anthropogenic warming. Historically, the GHCN and the Global Precipi-
tation Climatology Centre (GPCC—Global Monitoring Product version 4) [see Becker et al., 2013] products
have been similar on an annual basis, though GHCN has higher interannual variability due to its smaller net-
work [Vose et al., 2014]; because of this similarity, we did not analyze the GPCC product.

Regarding ocean precipitation, the only two relevant data sets are from the Twentieth Century Reanalysis
(20CR) [Compo et al., 2011] and the Smith et al. [2012] satellite/gauge reconstruction (hereafter abbreviated
‘‘Smith’’), but both of these products are quite indirect:

a. The 20CR data (at 28 3 28 and 6 h resolution) are derived solely from surface pressure data and monthly
Sea Surface Temperature (SST) data: the precipitation is entirely inferred from a numerical model, the
result—a ‘‘reanalysis’’—being a kind of data/model hybrid; the derived product used here is monthly at
1.8758 resolution. However, when pertinent for comparing this product with the other precipitation
products, the data were degraded spatially as appropriate.

b. The Smith data use a gauge calibrated Infrared (IR) satellite rain algorithm to infer global-scale rain over
the satellite observation period 1979–2012. This is then used to calculate Empirical Orthogonal Functions
(EOFs). Finally, in the presatellite era, the historic land-based gauge data (GHCN) are used to estimate the
coefficients of each EOF, yielding global-scale estimates at 58 3 58, monthly resolution. The Smith prod-
uct uses the base data of the Global Precipitation Climatology Project (GPCP, version 2.1) [see Adler et al.,
2003]—merged satellite and gauge analysis—for the reconstruction of historical precipitation, it super-
sedes the GPCP.

Let us now compare the temporal variability of the global-scale averages of the different precipitation prod-
ucts (GHCN, 20CR, and Smith). Figure 1 shows the annual precipitation rate anomalies averaged over land
only, ocean only, and globally. The product that spans the longest period is the 20CR 1871-2012, we analyzed
the period, 1880–2004. The main thing that eye catches in Figure 1 is that it shows differences between the
products at the highest resolution: in particular, notice that the gauge-based product (GHCN) is much more
variable than the Smith product, itself more variable than the 20CR product. We can also note that while there
is some overall agreement at the lowest frequencies, the higher frequencies are often in disagreement. We
show in the following sections that the study of Haar fluctuations extends the analysis to all scales.

Table 3 shows the global-scale raw rain rate averages obtained from the 20CR and Smith data; results are
not shown for the GHCN product because it only gives anomalies. We can see that there is a disagreement
of �20% for the land estimates, but only about 5% for the ocean estimates: overall, the disagreement is
about a 10% for the global estimates.

It is to be expected that the use of spatial interpolation/averaging techniques to obtain gridded data as
well as the different characteristics of the models/instruments have influence on the relative behaviors in
the different precipitation products. More details on the agreement/disagreement between these products
are given in the next sections.

We have also used gauge data to assess the temporal statistics of local precipitation: 15 near-complete and
exceptionally long monthly precipitation series from Portugal. The data set comprises records from 12

Table 2. Summary of the Main Characteristics of the Three Global Precipitation Products, All at Monthly Resolution: the Global Historical
Climatology Network (GHCN), the Twentieth Century Reanalysis (20CR), and the Smith et al. [2012] Satellite/Gauge Reconstruction
(‘‘Smith’’)a

Product GHCN 20CR Smith

Type Gridded stations Reanalysis Satellite/station hybrid
Reference Vose et al. [1992] Compo et al. [2011] Smith et al. [2012]
Period covered 1900–2012 1871–2012 1900–2012
Spatial resolution 58 3 58 1.8758 3 1.8758 58 3 58

Data type Anomalies Raw rain rates Raw rain rates

aThe 20CR and Smith data were complete whereas the GHCN data were quite incomplete: for example, the fraction of the pixels with
data were 14%, 31%, and 18% in 1900, 1990, and 2012, respectively.
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meteorological stations scattered over mainland Portugal (between latitudes 368560N and 428090N and lon-
gitudes 68100W and 98340W, south-western Europe) and 3 stations from the Portuguese North Atlantic
Islands of Madeira and Azores (Madeira, 328380N, 168530W; Azores, centered 388350N, 288050W). Some of the
time series date back to the nineteenth century, spanning periods that range between 98 and 148 years.
The oldest records are from 1863, the end date is 2010 for all series. In mainland Portugal, precipitation
shows high interannual variability and marked seasonality; there are strong north-south and east-west pre-
cipitation gradients: the climate is greatly influenced by the latitude, the orography, and the proximity of
the Atlantic Ocean. In the Madeira Island, the complex topography of the island and its small size play a cru-
cial role in the local precipitation regime that is marked by high spatial variability. In the Azores, located in
the North Atlantic ridge, the warm Gulf Stream and their latitudinal position affect the islands’ climatic con-
ditions; for most of the year, the Atlantic depressions track across the Azores Islands.

3. Methodology: Exploring Temporal and Spatial Macroweather Precipitation

3.1. Temporal Statistics
3.1.1. The Different Character of Weather, Macroweather, and Climate Regimes
The different characters of the three scaling regimes (weather, macroweather, and climate regimes, from high
to low frequencies) can be characterized using scaling exponents. Let us consider the temporal fluctuations in
an atmospheric variable I over an interval Dt as DI(Dt); then, in a scaling regime, the mean fluctuations vary

with scale as<DI(Dt)>� DtH, where H is the
fluctuation exponent and ‘‘< >’’ indicates statis-
tical averaging. For Gaussian processes, it is
equal to the Hurst exponent; the definition used
here is more general; so that it can apply to gen-
eral—multifractal—processes. While in the
weather and climate regimes, mean fluctuations
tend to grow with scale (H> 0), they appear
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Figure 1. The annual precipitation rate anomalies averaged over (bottom) land only, (middle) ocean, and (top) globally. The black curve is
for the Global Historical Precipitation network (GHCN) from January 1900 to December 2012. The red curves are for the Twentieth Century
Reanalysis (20CR) from 1880 to 2004, and the green curves are for the Smith et al. [2012] satellite/gauge reconstruction (abbreviated
‘‘Smith’’). The GHCN and Smith products were at 58 3 58 resolution, the 20CR data were at 1.8758 resolution. The data were shifted upward
by 2 mm/month increments as indicated by the dashed horizontal lines. Reproduced from Lovejoy and de Lima [2015].

Table 3. Average Precipitation Rates for the Last Century Over Land,
Ocean, and Globe, Obtained From the 20CR and the Smith Producta

Product Land Ocean Global

Smith 67.9 87.9 81.7
20CR 85.6 93.9 91.3

aAll entries are in mm/month. Note that the Smith product yields
smaller values, but the general trend is the same for both products.
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unstable, in the macroweather regime, they decrease (H< 0), they appear stable. In the latter regime, since
H< 0, mean fluctuations tend to cancel out so that averages over longer and longer times increasingly con-
verge. However (at least for the temperature, but probably also for the precipitation and other atmospheric
fields), rather than converging to a fixed ‘‘climate’’ as one might expect, after about 10–30 years (industrial
period) and �100 years (preindustrial period), there is a transition to another scaling regime—the climate
proper—with again H> 0 (as in the high-frequency weather regime) and with fluctuations growing with scale.
A recent analysis using paleotemperatures [Lovejoy, 2014b] finds that this alternation continues through two
larger-scale (macroclimate, megaclimate) regimes, out to time scales of over 500 Myr. We could note that, for
Gaussian processes (fractional Brownian motion, fBm), the distinction 1/2< H> 1/2<1 or 0<H< 1/2 is often
made between ‘‘persistent’’ and ‘‘antipersistent’’ processes, which for Gaussian processes refers to correlations
between successive increments of the process. But this is not relevant in the more general (non-Gaussian) case
considered here and in no way contradicts our more basic and general distinction between H< 0 and H> 0.

In the next sections, we discuss how to define and statistically quantify the fluctuations as functions of scale,
give the results of the data analysis, and discuss the implications for precipitation modeling.
3.1.2. Quantifying the Variability Over Scales: Fluctuations, Structure Functions
The mean and the root-mean-square (RMS) fluctuations can be used to quantify the high and low-
frequency variability in precipitation. In this paper, we use Haar fluctuations [see Lovejoy and Schertzer,
2012b], which have numerous advantages: they are simple to understand, to estimate, and to interpret and
are useful for most geofields over huge ranges in space and time (i.e., 21<H< 1; see below). The Haar fluc-
tuation of the precipitation R at time scale Dt is simply the difference of the mean of R over the first and sec-
ond halves of the interval Dt:

DR Dtð Þð ÞHaar5
2
Dt

ðt1Dt

t1Dt=2
R0 t0ð Þdt02

2
Dt

ðt1Dt=2

t
R0 t0ð Þdt0 (1)

where we have added the subscript ‘‘Haar’’ to distinguish it from other common definitions of fluctuation
(below); moreover, we have suppressed the t dependence because we will assume that the fluctuations are
statistically stationary. With an appropriate ‘‘calibration’’ constant (a ‘‘canonical’’ factor 2 is used throughout
this paper), in scale regions where H> 0, the Haar fluctuations are nearly equal to the differences, whereas
in scale regions where H< 0, they are nearly equal to the anomalies:

DR Dtð Þð Þdif 5R t1Dtð Þ2R tð Þ

DR Dtð Þð Þanom5
1
Dt

ðt1Dt

t
R0 t0ð Þdt0; R05R2R

(2)

where R is the mean over the entire series. The reason for these relations between the different fluctuations is
that the Haar fluctuation is equal to the difference fluctuation of the anomaly fluctuation or alternatively it is
equal to the anomaly fluctuation of the difference fluctuation (they commute), see Lovejoy and Schertzer
[2012b].

The simplest way to characterize the fluctuations is through (generalized) structure functions: hDR Dtð Þqi,
where ‘‘<.>‘‘indicates statistical (ensemble) averaging; the term ‘‘generalized’’ is used to indicate the use of
fluctuations other than the usual differences, and moments of order q other than the usual value 2.

Physically, if the system is scaling, then the fluctuations are related to the driving flux u by:

DR Dtð Þ5uDtDtH (3)

where the subscript ‘‘Dt’’ is used on u to indicate that it is the flux at resolution Dt. The structure function
Sq(Dt) is:

SqðDtÞ5hDR Dtð Þqi5huq
DtiDtqH (4)

Turbulent fluxes are conserved from scale to scale so that huDti5constant (independent of scale, Dt); this
implies that hDRi / DtH so that H is the mean fluctuation exponent.

Beyond the simplicity of interpretation, the Haar fluctuations give a good characterization of the variablity
for stochastic processes with 21<H< 1. In contrast, fluctuations defined as differences or as anomalies
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only usefully characterize the variations with scale over the narrower ranges 0<H< 1 and 21<H< 0,
respectively [see Lovejoy and Schertzer, 2012b; Lovejoy et al., 2013b]. Outside these ranges in H, the fluctua-
tion at scale Dt is no longer dominated by frequencies �Dt21 so that the fluctuations depend spuriously on
details of the finite data sample; specifically, they depend on either the highest or the lowest frequencies
that happen to be present.

The generic scaling process is multifractal; so, in general, u has statistics:

huq
Dti / Dt2K qð Þ (5)

where K(q) is a scaling, convex exponent function. Substituting (5) into (4), we obtain:

SqðDtÞ5 hDR Dtð Þqi / Dtn qð Þ; n qð Þ5qH2K qð Þ (6)

where n(q) is the ‘‘structure function exponent.’’ For the moment, note again that the mean (q 5 1)
flux<uDt> is independent of Dt (see above), so that K(1) 5 0; hence, n(1) 5 H. Note also that for quasi-
Gaussian processes, none of the moments of uDt have any scale dependence so that K(q) 5 0 and n(q) 5 qH,
which means that, for these, all the scale dependence is characterized by H. The basic stochastic process
that reproduces the statistics (equation (6)) is the Fractionally Integrated Flux model [Schertzer and Lovejoy,
1987].

Finally, the RMS fluctuation hDR Dtð Þ2i1=2, denoted simply S(Dt) to lighten the notation, has exponent n(2)/2 so
that the error in using the quasi-Gaussian approximation for the variance (i.e., n(2)/2 5 H) is n(2)/2 – H 5 K(2)/2.
In the temporal domain, the latter is typically small (in the range 0.02–0.04) so that the approximation n(2)/2� H
is fairly accurate. But in the spatial domain, the same does not apply and this approximation is poor; in
section 5, we show that in the spatial domain, the difference n(2)/2 – H can be readily in the range
0.1–0.2, and that further characterization is needed. Below, we will use S to denote the RMS Haar
fluctuatio�ns structure functions. For clarity, when needed, we sometimes use the subscript t, x to denote
time and space variables, functions.

As a practical matter, for individual series, for each lag Dt, fluctuations are estimated for all the disjoint inter-
vals of length Dt that are used. In cases where there are many series (i.e., one for each spatial grid point), we
make an assumption about statistical spatial homogeneity so that the statistics at each grid point is
assumed to be the same (that does not mean they are assumed to be statistically independent!), so that for
each Dt, fluctuations are taken over all the disjoint intervals in time and over all the grid points.
3.1.3. The Uncertainty in S(Dt)
Let us briefly discuss the uncertainty with which S(Dt) (5S2(Dt)1/2) is estimated, i.e., the deviations of the
estimated S(Dt) from its true value. There are several sources of uncertainty to consider. The most problem-
atic are the systematic uncertainties associated with scientific errors in the reconstructions and in the for-
mulation of the models.

Let us first consider uncertainties due to measurement errors and uncertainties arising from limited sample
sizes. These are the classical sources of uncertainty: in deterministic theoretical frameworks in which the
series R(t) are considered deterministic, only the errors are stochastic. Measurement error is the easiest to
deal with. Recall that for each Dt, the corresponding S(Dt) is the actual average fluctuation over all the corre-
sponding intervals of the series (to simplify the discussion, we will consider a pure, single time series). For
the series studied here, the contribution of the classical measurement error—i.e., a white noise or short
range correlated noise such as an Auto Regressive order one (AR(1)) process noise—to the uncertainties is
quite small. We can be confident of this since if such a measurement error dominated the signal over any
range (presumably at small Dt), then over that range, S(Dt) would decay as the characteristic white noise
fall-off Dt21=2 (i.e., with a slope 21/2 on log-log plots); yet in the analyses presented here, there is no evi-
dence for such regimes, and we conclude that this is not an important source of uncertainty.

However, for each Dt, there will be errors in S(Dt) due to inadequate sampling. This arises from the fact that
we have a finite segment of a single stochastic realization of the precipitation process. Since for a given Dt,
the number of disjoint intervals used to estimate S Dtð Þ varies inversely with the interval width, the uncer-
tainty will be larger at large Dt than at small Dt. If the intervals were statistically independent of each other,
then classically, the standard deviation of the estimated S Dtð Þ values due to poor sampling would increase
as Dt21=2. However, since empirically S Dtð Þ does not falloff with Dt21=2, on the contrary, the process has
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long range statistical dependencies, so that the standard theory (that supposes statistical independence)
will not apply. The only practical way to estimate this uncertainty is to construct an explicit stochastic model
using a bootstrap procedure wherein the model and optimal parameters are estimated from the (single,
finite) realization and then obtain uncertainties estimates from numerical simulations. However, it is not the
aim of this paper and thus it has not been done here.

Finally, there is the less familiar stochastic uncertainty that is more difficult to deal with, especially in the
presence of statistical long range dependencies. In our case, stochastic uncertainty refers to the fact that we
are dealing with a single space-time realization of the atmosphere (the Earth’s atmosphere over roughly the
last century), yet we are attempting to estimate statistics (exponents) of a stochastic space-time macro-
weather process. The difficulty is underlined since scaling is a symmetry that is only exactly respected on an
(infinite) statistical ensemble and we only have access to a single realization.

Clearly, such stochastic uncertainty needs to be investigated with stochastic models. For volcanism, this was
done, for example, in Lovejoy [2014b]: four simulated multifractal volcanic forcing series from the same sta-
tistical ensemble were produced differing substantially from each other (as one would expect for four differ-
ent millennial volcanic series). The realization to realization variations in the estimated S Dtð Þ were then
determined, notably for subseries of various lengths. But what does such a stochastic uncertainty analysis
tell us? In the case of simulated volcanic reconstructions mentioned above, it is best viewed as the variabili-
ty in volcanism over epochs separated by large time intervals: it is really the epoch to epoch variability in
the signal (although the sampling characteristics were also studied). The interpretation of stochastic uncer-
tainty in scaling processes with long range dependencies is thus rather different from the uncertainties with
which we are more familiar.
3.1.4. Comparing the Precipitation Products at Different Time Scales
Although there are many ways of estimating areal precipitation, these are all indirect, involving various
assumptions. While this may be obvious for radar (which measures reflectivity, not rain rate), it is also true
for instrumentally based products such as the GHCN or the CPC (Climate Prediction Center; see more details
below) gridded precipitation products. In the latter case, the difficulties are due to large amounts of missing
data: ‘‘holes’’ at all scales, the data collection sites themselves are typically fractal (scaling), e.g., Lovejoy et al.
[1986], Korvin et al. [1990], Nicolis [1993], Giordano et al. [1995], Doswell and Lasher-Trapp [1997], and Mazzar-
ella and Tranfaglia [2000], and see also the discussion in Lovejoy and Schertzer [2013]. The result is that all
estimates of global-scale precipitation involve nontrivial assumptions leading to different products. While
this is also true of the standard atmospheric variables of state, it is especially true of precipitation which has
a huge variability combined with nontrivial measurement issues, notably for low and zero rain rates, and
extreme high rain rates (depending somewhat on the estimation technique). We thus anticipate that the
three precipitation data sets analyzed here will be quite different since they are of qualitatively different
natures: a gridded instrumental product (GHCN), an indirect instrumental/model product (20CR) and an
indirect (gauge, satellite) instrumental product (Smith).

The only way to gain confidence in the quality and accuracy of any of the products is to systematically com-
pare them as functions of space and time scale. Such an evaluation is important because even if they are sig-
nificantly different at high resolution, we may expect them to become more and more similar with increasing
space-time averaging scales, and their agreement/disagreement will shed light on their intrinsic limitations.

Consider two precipitation products R1(t) and R2(t). The simplest way to study their similitude is to consider
the differences: dR(t) 5 R1(t) – R2(t); these can then be directly investigated by considering their Haar fluctua-
tions, DdR(Dt). At the scale Dt, denote the series with the largest variance by R1: hDR1 Dtð Þ2i � hDR2 Dtð Þ2i (i.e.,
hDR1 Dtð Þ2i5max hDR1 Dtð Þ2i; hDR2 Dtð Þ2i

h i
). Consider the extreme cases of two identical series (R1 5 R2;

hence, DdR(Dt) 5 0), and of two series identical but with opposite signs (R1 5 –R2; hence, DdR(Dt) 5 2DR1(Dt)).
These cases are the extremes of positive and negative correlations:

hDdR Dtð Þ2i50; R15R2

hDdR Dtð Þ2i54hDR1 Dtð Þ2i; R152R2

(7)

Finally, consider the case of two statistically independent series:

hDdR Dtð Þ2i5hDR1 Dtð Þ2i1hDR2 Dtð Þ2i � 2hDR1 Dtð Þ2i (8)
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Combining these results, we see that for positively correlated series:

hDdR Dtð Þ2i1=2 �
ffiffiffi
2
p

max hDR1 Dtð Þ2i1=2; hDR2 Dtð Þ2i1=2
h i

(9)

This will presumably be the range of interest for two products supposedly representing the same rain fields.
For reference, for positively or negatively correlated series, we have:

ffiffiffi
2
p

max hDR1 Dtð Þ2i1=2; hDR2 Dtð Þ2i1=2
h i

� hDdR Dtð Þ2i1=2 � 2max hDR1 Dtð Þ2i1=2; hDR2 Dtð Þ2i1=2
h i

(10)

3.2. Spatial Fluctuation Statistics
Before considering the spatial variability, we must discuss a complication arising in connection with anoma-
lies that was absent in the analysis of temporal fluctuations. Recall that station data are usually used to esti-
mate anomalies since this allows for the detection and elimination of many systematic errors; for the GHCN
product, these were the only data that were available. However, for the 20CR and Smith products, we are
supplied with the absolute rain rates. From these, the first step in calculating the anomalies is to remove
the annual cycle for each spatial location (pixel) r . Let us call this field (with only annual detrending) the
‘‘raw’’ precipitation rate R r ; tð Þ at location r . The anomalies Ranom( r ,t) are then determined by subtracting
the location’s long-term time average R rð Þ:

Ranom r ; tð Þ5R r ; tð Þ2R rð Þ (11)

Conventionally, R rð Þ is given by 30 year averages (for the GHCN, 1961–1990); here for the 20CR and Smith
data, we used the averages over their full lengths (otherwise we artificially introduce a time scale of 30
years).

For the temporal fluctuations, we have:

DR r ;Dtð Þ5 2
Dt

ðt1Dt

t1Dt=2
R r ; t0ð Þdt02

2
Dt

ðt1Dt=2

t
R r ; t0ð Þdt0

5
2
Dt

ðt1Dt

t1Dt=2
Ranom r ; t0ð Þ1R rð Þ
� �

dt02
2
Dt

ðt1Dt=2

t
Ranom r ; t0ð Þ1R rð Þ
� �

dt0

5DRanom r ;Dtð Þ

(12)

This shows that the raw and anomaly temporal fluctuations are the same, and that is why we ignore the
distinction in section 4, on temporal variability. However, for the spatial fluctuations, we have:

DR Dr; tð Þ5 2
Dr

ðr1Dr

r1Dr=2
R r0; tð Þdr02

2
Dr

ðr1Dr=2

r
R r0; tð Þdr0

5
2
Dr

ðr1Dr

r1Dr=2
Ranom r0; tð Þ1R r0ð Þ
� �

dr02
2
Dr

ðr1Dr=2

r
Ranom r0; tð Þ1R r0ð Þ
� �

dr0

5DRanom Dr; tð Þ1DR Drð Þ

(13)

Therefore, for the spatial fluctuations, it is important to distinguish the statistics of DR(Dr,t) (‘‘raw’’) and
DRanom(Dr,t) (in the above, for simplicity, we have reduced the vector position dependence to a scalar one:
below r and Dr will only be taken as zonal or meridional coordinates and coordinate differences,
respectively).

4. Temporal Macroweather Precipitation Fluctuations and Variability

4.1. The Temporal Variability of the Precipitation Products
Figure 2a shows the first-order (q 5 1) structure functions (the mean absolute Haar fluctuation) for monthly
precipitation data from the GHCN and 20CR products (the different curves correspond to different subprod-
ucts and are explained in the caption of Figure 2a). This figure shows also the structure function of the 20CR
reanalysis data at 458N (6 h, 28 resolution, from 1871 to 2008) and, complementary, the corresponding struc-
ture function of the Climate Prediction Center (CPC, hourly resolution) gauges (continental U.S., some of the
CPC data were also incorporated into the GHCN product); the curves for the CPC data are from Lovejoy et al.
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[2012]. NOAA’s CPC product is unique in its high temporal resolution over a large number of contiguous
grid points. The product analyzed was a (near complete) subset of the CPC data for the 29 years 1948–1976
(at this date there is a data gap of several weeks so that we did not extend the analysis to more recent
times). The CPC data were gridded on 2.58 3 2.08 boxes by using a modified Cressman scheme (an interpo-
lation technique); its central rectangular 13 3 21 point region was used: from 2122.58 to 272.58 longitude
(every 2.58 � 210 km at these latitudes) and from 308 to 548 latitude (every 28 � 220 km). Each grid box had
a near-complete �257,000 hourly series.

The different statistical regimes emerge in Figure 2a; in particular, note the weather regime approximately
at scales Dt< 2 days and see the rise beyond �30 years (in particular, for the 20CR data): the transition
from macroweather to the climate. The macroweather scaling exponent parameter estimated for the CPC
data, H 5 20.42, is higher than the value 20.5 corresponding to a Gaussian white noise process (see the ref-
erence lines in Figure 2a). The RMS pixel-scale Haar fluctuations are also shown for comparison; they are
mostly shifted up due to the difference between the q 5 1 and RMS amplitudes.

The analysis of the ratio of the mean q 5 1 and RMS fluctuations (i.e., using hDR Dtð Þi= hDR2 Dtð Þi1=2 � DtK 2ð Þ=2)
for the CPC data set confirms the transition from high intermittency behavior at scales less than a few days (the
‘‘weather regime,’’ K(2)/2 � 0.35, with K(2)/2 used as an approximation to C1—the intermittency coefficient)
to low but not insignificant intermittency behavior at scales of months to years (the ‘‘macroweather regime,’’
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Figure 2. (a) Upper right curves: the temporal RMS Haar structure functions for the 20CR and GHCN precipitation products at 58 3 58 pixel
scale. The original (1.8758 3 1.8758) 20CR data were first converted into anomalies by subtracting the long-term mean of the annually
detrended data. The monthly 20CR product was degraded to the same 58 3 58 grid of the GHCN product. The pixel-scale GHCN curve is
shown (black) along with the 20CR curves ensemble averaged over all the pixels (with map factors, the whole globe average: red, short
dashed curve), and only over the same pixels as the GHCN data (land: red, short solid curve). Lower curves: the first-order (not RMS) struc-
ture function (the mean absolute Haar fluctuation) using precipitation data from the Climate Prediction Center (CPC, continental U.S.)
gauges (blue dots) as well as the corresponding structure function of the 20CR reanalysis at 458N (6 h, 28 resolution, from 1871 to 2008,
red, long dashed curve). DR is the mean absolute fluctuation in the rain rate over a time interval Dt. For the CPC product, we also show the
corresponding one-standard-deviation limits (thin, blue) with reference lines slopes H 5 20.42 (solid black lines) and 20.5 (dashed black
line, corresponding to a Gaussian white noise process). The one-standard-deviation limits are calculated from the ensemble of Dt scale
fluctuations for each grid point, for each Dt, it quantifies how much the amplitude of the fluctuations varies from one grid point to
another. These curves are from Lovejoy et al. [2012]. b. The pixel-scale world maps of the distribution of Ht for monthly precipitation for the
three data sets discussed in the paper (58 3 58, 3.758 3 3.758, and 58 3 58 resolutions for GHCN, 20CR, Smith data sets, respectively, top to
bottom; the 20CR resolution was degraded 2 3 2 pixels so as to be more comparable to the resolutions of the other data sets). The transi-
tion from reddish to bluish occurs at roughly the mean Ht value of 20.4. The exponents were estimated from the annually detrended data
using the Haar analysis technique with exponents fit over the range 6 months to 12 years (to avoid possible biases at low frequencies due
to anthropogenic effects or poor statistics). The pink in the GHCN map corresponds to no data (mostly oceans). Reproduced from Lovejoy
and de Lima [2015].
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K(2)/2 � 0.035, see Lovejoy et al. [2012] and LdL for a comparison of the weather and macroweather statistics).
The use of the second moment is conventional since it directly determines the exponent b of the spectrum
E(x) � x–b, where x is the frequency: b 5 1 1 n(2); we therefore have used the RMS statistics below. However,
in section 5, we see that in the spatial macroweather domain K(2)/2 � 0.1 so that the approximation n(2)/2� H
is poor, and a full multifractal characterization is needed (i.e., including K(q)); in the weather regime, the spatial
intermittency is even stronger: K(2)/2 � 0.4 (see Lovejoy et al. [2012] and LdL [Table 2], for global-scale weather
regime estimates). Finally, we should note that, even when K(2)/2 is small, the probability distribution of the
fluctuations may be far from Gaussian (Gaussian white noise would be flat, K(2) 5 0). A clear example of non-
Gaussian behavior in precipitation is given later, see Figure 7c.

These highly spatially averaged results raise the issue of the spatial homogeneity of the exponent: does H
really vary from location to location or are the variation small enough to be essentially random estimation
errors? In LdL, the time series were analyzed on a pixel by pixel basis and we found: H � 20.41 6 0.07,
20.38 6 0.09, and 20.43 6 0.10 for the GHCN, 20CR, and Smith data, respectively (the uncertainties are the

Figure 2. (continued)
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standard deviations of the pixel to pixel varia-
tions; for regressions from each individual
pixel, the uncertainty in the H values were
nearly always in the range 60.02 to 60.03, so
the pixel to pixel variations are statistically sig-
nificant). The corresponding estimates of the
intermittency parameter C1 were: 0.026 6 0.02,
0.020 6 0.025, and 0.00 6 0.01. H is thus
roughly globally constant with a value �20.4.
In order to see if the spread is simply due to
estimation errors, in Figure 2b, we show the
spatial distribution of H estimates. There is
some spatial organization and reasonable
agreement between the GHCN and 20CR
maps, less agreement with the Smith map.
There is also a tendency for H to be low over
oceans (especially the Pacific); this is physically
plausible since H values closer to zero corre-

spond to longer range memory and hence predictability [Lovejoy et al., 2015]. However, the values should be
taken with caution since the 20CR temperatures have lower H over the oceans and the 20CR estimates of the
precipitation are rather indirect.

A comparison of the macroweather scaling exponents is given in Table 4, for the different precipitation
products (all at 1 month), in time and space, in particular for parameters H and C1. The macroweather pre-
cipitation anomaly fluctuation exponents (H) were generally not estimated with high accuracy partly
because of the high intermittency (the scaling was noisy) but also because more exact values are not war-
ranted since the exact limits of the scaling ranges are not clear (because of this, the philosophy adopted in
the relevant figures was to show reference lines rather that regression lines, for illustrating the estimates of
H). This uncertainty in the limits of the scaling regime also limits the relevance of the standard statistical
uncertainty estimates. Note that while the data agree very well on the temporal exponent, they disagree
strongly on the spatial exponent including its sign (see section 5, below). For the spatial 20CR and Smith
fields where the absolute precipitation rates were known, the spatial Hs for the raw and anomaly fields
were quite close (see e.g., Figure 9d, discussed below). For the macroweather intermittency parameter C1 in
Table 4, note that the ‘‘time’’ column refers to pixel-scale spatial resolutions. The macroweather intermitten-
cies (C1) are significantly lower than the corresponding weather values, especially in time; the temporal C1

of globally averaged values are slightly higher. The spatial macroweather C1 parameters were estimated
using trace moments in LdL.

4.2. Pixel and Global-Scale Temporal Precipitation Variability
We now use Haar structure functions (section 3.1.2) to explore the effect of spatial averaging on the tempo-
ral variability; we compare products of different spatial resolutions (pixel and global scale). Figures 3a and
3b show land, ocean, and global comparisons of GHCN, 20CR, and the Smith products. The interpretation of
Figure 3a (see also Figure 3b) is thus straightforward: we see that out to at least 10–30 years, the scaling
with exponent 20.4 is fairly well followed by all the data sets (there is a bit of a broad ‘‘bump’’ near Dt 5 1
year especially in the Smith series indicating that the annual cycle has not been fully removed). Considering
the top three curves in Figure 3a (land), we see that, at small Dt, the GHCN data are indeed more variable
(by almost exactly a factor of 2), and this to at least 10–30 years. We also see that the Smith series is more
variable than the 20CR series (at weather scales, the somewhat low 20CR variability has been quantified)
[see Lovejoy et al., 2012]. These RMS fluctuations’ differences quantify the different visual appearances (e.g.,
the different degrees of smoothness) of the curves in Figure 1.

The fact that the curves in Figure 3a are roughly parallel—hence, that they differ by constant factors—
may reflect differing ‘‘effective’’ spatial resolutions (i.e., their primary difference may be differing amounts
of spatial averaging) since, for the GHCN data, fluctuations diminish rapidly in amplitude with the spatial
resolution; this is because the spatial fluctuation exponent is negative: Hx � 20.2, see Table 4. Finally,
note the break in the scaling at about 10 years in the 20CR curves which is particularly pronounced for

Table 4. Comparison of Macroweather Scaling Exponents for Different
Precipitation Products (All at 1 Month, Anomalies), in Time and Spacea

Scaling
Exponents GHCN 20CR Smith CPC

H Time 20.4 20.4 20.4 20.42
Space 20.2 0.2 0.1

C1 Time 0.01 0.02 0.01 0.035
Space 0.11 0.11 0.18

aGHCN refers to the Global Historical Climate Network; ‘‘20CR,’’ the
Twentieth Century Reanalysis; ‘‘Smith’’ the Smith et al. [2012] IR satel-
lite data-based product; and CPC, the Climate Prediction Center. The
effective external spatial scales are between roughly 10,000 and
50,000 km (see LdL). The H, C1 estimates for the spatial 20CR and
Smith are the averages of the zonal (EW) and meridional (NS) values
over the range <5082808. Note that over the range >508–808, both
the Smith and 20CR spatial H values are �20.2 in agreement with the
GHCN value. In space, the H values of the raw data are 0.2 for the
20CR and 0.15 for the Smith data (LdL). The outer scales of the 20CR
and Smith were estimated using trace moments analysis to be approx-
imately 25,000 km (for more details, see LdL). The CPC data (Figure 2a)
are from Lovejoy et al. [2012].
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the ocean data; this is seen more clearly in Figure 3b. In a future publication, we argue that this break
is a low-frequency anthropogenic effect. The fact that the break is much stronger over ocean than land
helps to explain why anthropogenic effects on precipitation are so difficult to detect (e.g., the
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Figure 3. (a) Comparison of the Haar structure functions S 5 hDR Dtð Þ2i1=2 for the land, ocean, and global GHCN (black), 20CR (red), and
the Smith product (green; the global-scale series in Figure 1 were analyzed). The ocean and land curves are offset in the vertical for clarity
by the amounts indicated (10.2 and 10.4, respectively). The reference line has a slope of 20.4. (b) The same as Figure 3a, but with the
global 20CR curve and the (land only) global GHCN curve. The global 20CR is lower than the land and ocean curves because it involves
more spatially averaging. Notice that at 1 year scales, it is nearly a factor of 3 lower than the GHCN curve (the corresponding ratio for the
moment q 5 1 is 2.28). Reference lines with slopes 20.4 are shown. Note that the amplitudes decrease (top to bottom) as the area over
which the averages are taken increases from the GHCN land only pixels to the 20CR global.
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International Panel on Climate Change (IPCC) Fourth and Fifth Assessment Reports—AR4 and AR5—
respectively, IPCC [2007] and IPCC [2013]). In addition, the break/transition scale is a little larger than 10
years so that 10 year trend statistics have very low sensitivities to anthropogenic changes in precipita-
tion; this helps explain why postulated multidecadal and centennial-scale anthropogenic increases in
precipitation have not been identified with high levels of confidence.

To further understand the temporal variability, we can consider the RMS fluctuations S(Dt)) for different lati-
tudes. Figure 4 shows the analysis of the GHCN data over five 308 latitude bands. The figure shows analyses
at 58 3 58 (‘‘pixel’’ scale) resolution (top set) and 308 3 3608 resolution (i.e., spatially averaged over the
whole band, the bottom set). The pixel-scale analyses had to contend with the large amount of missing
data, thus a special Haar algorithm described in Lovejoy [2014b, Appendix A] was used. The pixel-scale anal-
yses show nearly perfect scaling (again, with exponent n(2)/2 � H 5 20.4) with the strongest break being in
the band 608–908. By considering the spatially averaged curves, we can more easily notice the break and
even discern a low frequency increasing S(Dt) regime, in particular for the 608–908 curve. Also note that the
effect of spatial averaging is to reduce the fluctuations by roughly a factor 6 (as indicated by the red arrow);
this is due to the negative spatial fluctuation exponent Hx � 20.2 (first-order moment, Table 4) and strong
spatial intermittency (that amplifies this resolution effect for higher-order moments since K(q)> 0 for q> 1,
see (5, 6)). Notice that the averaged curves deviate from the straight lines much more clearly than the 58

curves, presumably, since by averaging out the natural variability, the anthropogenic signal is (relatively)
more important.

We can also consider the pixel-scale relationships between the different series both over 308 latitude bands
(Figure 4) and with pixel-scale statistics averaged globally, see Figure 5. Also, in Figure 4, the scale break
moves to shorter times as we move further north, which is consistent with an anthropogenic effects being
stronger at northern latitudes. In Figure 5, we note that the Smith data show the best scaling at large Dt,
the 20CR the worst (largest break).
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Figure 4. The Haar structure function for the GHCN data at pixel scales. The data were divided into 308 latitude bands (only five are shown
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(thick) are spatially averaged over the band and then analyzed in time. The black reference lines have slopes n(2)/2 � 20.4.
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It is also interesting to compare and contrast the RMS fluctuations of the GHCN product at its highest reso-
lution 58 3 58, averaged over all the pixels, with the RMS analysis of the (single) globally averaged series,
see Figure 6. First, we note that the pixel and global-scale GHCN are virtually identical in shape, but differ
by a factor of nearly 10. This is a pure resolution issue: the fact that the shape is the same is due to the spa-
tial scaling (for the mean, Hx � 20.2, see Table 4), the fact that it is such a large factor is a symptom of the
high-precipitation spatial intermittency (multifractality) that amplifies this effect for the higher-order
moments (see section 5, below). The scaling exponent n(2)/2 � H is again �20.4 with deviations starting to
be noticeable at about 20 years. In comparison, the RMS global temperature fluctuations have a smaller
slope (n(2)/2 � H � 20.2) and the transition (the scale break associated with anthropogenic effects)
[Lovejoy, 2014a] starts at shorter time scales and is much stronger.

4.3. Temporal Variability of Individual Stations
The analysis of station data can help put the analysis of the global precipitation products in perspective,
namely by comparing the temporal fluctuation statistics of the gridded GHCN product (obtained by com-
bining series from several individual stations at each grid point), with those from individual stations; such
analysis can provide insights into the importance of station data and also the spatially averaged gridded
estimates. Thus, similarly to the precipitation products, the station data need to be explored using Haar fluc-
tuation analysis (not only rain rates or anomalies, as it is usually done for single station data—see e.g., the
relevant studies referenced in section 1). Figures 7a and 7b give some examples using instrumental data
from near-complete exceptionally long monthly series from Portugal: 15 precipitation series (Figure 7a) and
9 temperature series (Figure 7b); see section 2 for the different origins of the series. In Figure 7a, in order to
bring out the low-frequency break, we have compensated the structure function by multiplying by Dt0.45,
so that flat behavior indicates a power law decay with Dt20.45. The transition becomes noticeable in most
(but not all) of the series after about 40 years. Once again, the comparison with temperature statistics (for a
subgroup of the same stations, Figure 7b) shows that the break is more pronounced, it is at smaller Dt and
the low-frequency variability is stronger.
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We have also explored the probability that a random monthly precipitation rate change/difference DR
exceeds a fixed threshold s, for these 15 station series (pooled); the probability distribution Pr(DR> s) is
shown in Figure 7c. The data illustrate that even if the second-order statistics are close to those expected
for a Gaussian (i.e., n(2)/2 � H), that macroweather precipitation statistics may nonetheless be non-Gaus-
sian: for DR exceeding a high enough fixed threshold s, we find Pr(DR> s) � s2qD with qD � 3.6 (a bit
lower than the macroweather temperature value qD � 5, but close to the weather-scale precipitation
value qD � 3; see Lovejoy and Schertzer [2013, Chapter 5] for a review, which includes 12 references with
similar qD values). For example, for macroweather precipitation in Portugal, de Lima [1998] reports the
values of qD � 3.5 for gauge data from Vale Formoso (1932–1990, semiarid climate; mean annual precipi-
tation: 566 mm) and qD � 5.7 for Coimbra (1901–1990, maritime climate; mean annual precipitation:
990 mm).

4.4. How Reliable, How Accurate Are the Series at Different Time Scales?
We can now use the results discussed in section 3.1.4 to interpret the structure function plots and compare
the precipitation products at different time scales. If the RMS fluctuations of the individual series
hDR1 Dtð Þ2i1=2, hDR2 Dtð Þ2i1=2 are plotted on log-log plots, then for positively correlated series, the RMS dif-
ference fluctuations hDdR Dtð Þ2i1=2 are bounded above the maximum of the two curves plus the constant
(log102)/2 � 0.15 (see (9)). This provides a convenient point of comparison when interpreting the figures (if
the difference is larger—the maximum possible being (log102) � 0.30—then the series are negatively corre-
lated). For example, Figure 8a compares the GHCN and 20CR (anomaly) data at 58 3 58 pixel scales, with
double-headed arrows of length 0.15 (i.e., log10(20.5)) shown for reference. We see that while the statistics of
the two series (green and blue in the figure) are quite close over the entire available range of time scales,
that they are not always very highly correlated with each other: at scales up to about 1 year they are nearly
statistically independent with a similar comment for scales greater than about 20 years. We could mention

- 0.5 0.5 1.0 1.5 2.0 
Log 10 

t 

0.2 

0.4 

0.6 

0.8 

1.0 

Log 10 
S 

Global R 

Pixel R 

Units: Global R, mm/month 

Units: Global T, K/30 

Units: Pixel R, cm/month 

1 year 100 years 

Climate ClimateMacroweather 

10 years 

Global T 

-0.4 

(yrs) 
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precipitation transition scale (the pixel-scale temperature transition scale is closer to 20–30 years, see also Figure 7b and Lovejoy et al.
[2013a]).
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that our analysis is essentially equivalent to a cross-correlation analysis—but of the fluctuations, not of the
series themselves: hDR1 Dtð ÞDR2 Dtð Þi5 1

2 hdDR Dtð Þ2i2hDR1 Dtð Þ2i2hDR2 Dtð Þ2i
� �

.

Figure 8b shows the comparison of the two data sets that have no missing data: the 20CR and Smith series,
categorized into land, ocean, and global (Figure 8a was for land only due to the limitations of the GHCN
data). Notice that the RMS difference fluctuations (the difference between the Smith series and the 20CR,
brown curve) are systematically larger than the maximum of the corresponding 20CR and Smith fluctua-
tions indicating generally poor agreement; in Figure 8b, the arrows at around 5–10 years are placed at
scales Dt where the two curves are nearly equal so that it can be seen that the difference is about the same
as for independent processes. At scales larger than about 10 years (especially for the global curve), the dif-
ferences become somewhat smaller, indicating an increasing measure of agreement. The low-frequency
divergence between the products is because they disagree in the break in the scaling, itself expectedly
associated with different estimates of anthropogenic effects.

Figure 7. (a) The RMS Haar structure functions for monthly resolution precipitation from 15 individual Portuguese stations, chosen for their long lengths (data outages were not interpo-
lated). In order to bring out the change in behavior at �40 years (where low-frequency climate processes, presumably primarily anthropogenic in origin, become dominant), we have
‘‘compensated’’ the structure functions by multiplying by Dt0.45. Note that there is a ‘‘bump’’ at around 1 year due to the annual periodicity. This periodicity was not removed since the
data had sufficiently numerous outages to make this difficult to do. Note that the overall behavior is quite similar from one station to another, although the overall amplitude (a vertical
translation on this log-log plot) varies by about a factor 7. (b) The analysis for nine of the Portuguese stations in Figure 7a (eight series from mainland Portugal and one series from the
Azores), but for monthly temperature fluctuations. The data cover periods between 114 and 148 years (the end date is 2010 for all series); the data selection was based on the length of
the series and their degree of completeness. There is no interpolation for missing data and no compensation (RMS fluctuations in units of K). Notice that the transition from macro-
weather to climate is strong and occurs at �20 years rather than �40 years. (c) The probability distribution, Pr(DR>s): the probability that a random monthly precipitation rate change/
difference DR exceeds a fixed threshold s; units: mm/month for the data (pooled) from the 15 Portuguese stations used in Figure 7a. The reference line shows the power law tail
Pr(DR> s) � s2qD with absolute slope qD 5 3.6.
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Figure 8. (a) The temporal RMS Haar structure functions for the GHCN and 20CR precipitation products at 58 3 58 pixel scale. The original
(1.8758 3 1.8758) 20CR data were first converted into anomalies by subtracting the long-term mean of the annually detrended data. The
monthly 20CR product was degraded to the same 58 3 58 grid at the GHCN product. The pixel-scale GHCN curve from Figure 6 is shown
(black) along with the 20CR curves ensemble averaged over all the (58 3 58) pixels (whole globe; red, dashed) and only over the same pixels
as the GHCN data (land; red, solid). Also shown is the corresponding structure function of the differences in the GHCN and 20CR anomalies
(brown, thick upper curve). Notice that the differences are about the same as the values (two uncorrelated series would have differences
with double the variance, hence a factor 20.5 � 1.4 difference; the double-headed arrows indicate the factor 20.5). Reference lines with
slopes 20.3 and 20.4 (20CR and GHCN, respectively) are given. (b) Comparison of the temporal RMS Haar structure functions for the
global-scale Smith series (green) and differences (brown, thick) with the 20CR series (red). The land curves (upper curves) were displaced
upward by 0.8 for clarity, the ocean curves (middle, dashed curves) by 0.4. The double-headed arrows indicate the factor 20.5, which would
be the upward shift of RMS fluctuation of the differences of two statistically identical but statistically independent products.
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Overall, for data at 58 3 58 spatial resolution, the GHCN and 20CR are thus closest with reasonable agree-
ment at annual and larger scales whereas even at global spatial scales, the Smith data are in poor agree-
ment with the 20CR until decadal scales.

5. Spatial Macroweather Precipitation Statistics

In this section, we explore the spatial fluctuation statistics in macroweather precipitation using the
approach described in section 3.2. Both raw data and anomalies are inspected, and the statistics are com-
pared for the two data types.

We now turn to the RMS Haar structure functions in Figure 9a that compares the spatial anomalies for the
GHCN, 20CR data in both the zonal (EW) and meridional (NS) direction. We see that the GHCN anomalies
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Figure 9. (a) A comparison of the GHCN (anomalies, 58 3 58, land, black curves) with the 20CR anomalies (at 1.8758 3 1.8758, land only, red curves), monthly data, Du is the angular scale
in degrees. RMS Haar spatial structure functions are shown in the EW (solid) and NS (dashed) directions. Notice that there is close agreement for distances greater than about 208. The
reference line has slope nx(2)/2 � 20.3. (b) Monthly east-west Haar structure functions for 20CR anomalies (at 1.8758, the whole earth; long thin red curve) and the others at 58 resolution,
only over the same pixels as the GHCN data (red, short curve). Also shown is the GHCN east-west structure function (black) along with the structure function of the difference between
the GHCN and the 20CR anomalies (brown, thick curve). The GHCN and 20CR structure functions agree quite well past 208 yet the difference between them is still quite large. The
double-headed arrows show the length 0.15, corresponding to statistical independence of identical processes, see (9) showing that at about 108, the GHCN, 20CR products are nearly
statistically independent. Du is the angular scale in degrees. The reference line has slope nx(2)/2 � 20.3. (c) A comparison of the RMS spatial fluctuation statistics of the 20CR (red)
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esses, see (9). (d) A comparison of the RMS Haar 20CR structure functions for anomalies (thin, bottom) and raw precipitation rates (thick, top) in both the EW (solid) and NS (dashed)
directions. Du is the angular scale in degrees. Reference lines with slopes nx(2)/2 � 0.3 have been added.
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are reasonably scaling with RMS exponent nx(2)/2 � 20.3 and that for scales larger than about 308

(�3000 km at the equator), the 20CR has very similar statistics (for the spatial statistics, we do not use the
approximation nx(2)/2 � Hx, see below). Notice however that even at scales as large as 108, they differ by
roughly a factor of 2 in their RMS amplitudes.

More insight is obtained by considering their differences dR in Figure 9b. This confirms that at scales below
about 308, the spatial distributions are nearly statistically independent with agreement becoming significant
only at distances of 308 and more. It seems likely that the 20CR anomalies at scales below about 308 are arti-
ficially smoothed resulting in positive slopes rather than negative (high variability) slopes of the instrumen-
tal GHCN anomalies. For the spatial comparisons at 1 month temporal resolution, we see that the 20CR and
GHCN are reasonably in agreement at scales of 208–308 of arc and larger whereas the Smith data are in
poor agreement with the 20CR until at least 508 of arc.

We can also compare the 20CR and Smith data (Figure 9c). Again, we see nearly a factor of 2 difference in
variabilities at smaller scales (at 108, the Smith data are smoother), with very low spatial correlations (nearly
statistical independence at the left hand side of the graph), but with some limited convergence at the larg-
est scales. For the Smith data there is no clear spatial scaling regime. Note that the Smith data are based on
satellite measurements after 1979 and gauge data before this date. However, the spatial H for the Smith
data is very close to that of the satellite IR data that were used to estimate it [Lovejoy et al., 2009]; we there-
fore do not expect a big change in behavior before and after 1979.

Finally, we can compare the analysis of the anomalies and raw RMS fluctuations. For the 20CR product, Fig-
ure 9d shows that they follow each other fairly well up to �308, with the RMS anomaly fluctuations about a
factor of 2 smaller. Also of note is the scaling of the raw rain rates which have positive slopes (nx(2)/2 � 0.3)
and which continue up to quite large scales (especially in the zonal direction where it continues up to �908,
i.e., 10,000 km; the 20CR and Smith anomalies for Du � <308 are probably not trustworthy, see Figures 9a–
9c). By comparing the raw fluctuations in Figure 9d with those of the anomalies in Figures 9a and 9b, it is
plausible that the spatial scaling of the raw data has a quite different exponent (nx(2)/2 � 0.3) from the
anomalies (nx(2)/2 � 20.3).

The overall conclusion of the comparisons of the three data sets using the fluctuations of the differences is
that in time, at 58 3 58 resolution, the GHCN and 20CR are quite close at a scale of about 1 year and longer
whereas even the globally averaged 20CR and Smith data are dissimilar until decadal scales and are differ-
ent at the longest scales. At 1 month resolution, the GHCN and 20CR were similar at scales larger than 208–
308 of arc whereas the 20CR and Smith were quite dissimilar until at least 508 of arc. The obvious interpreta-
tion is that the GHCN and 20CR are the most reliable (because the most similar).

Although it is outside of the scope of this work to characterize the space-time variability in precipitation, its
importance deserves a brief discussion. A full characterization of the space-time variability involves deter-
mining the joint space-time fluctuation statistics, for example, the structure functions of fluctuations
S Dx;Dtð Þ5hDR Dx;Dtð Þ2i1=2. It turns out that if space-time turbulent cascade models (that model the
weather regimes) are extended to the macroweather regime by the simple expedient of greatly increasing
the temporal outer scale, it leads to a model (EFIF) that approximately satisfies a space-time statistical facto-
rization property [Lovejoy and Schertzer, 2010, 2013]. For example, it predicts the approximate relation:

S Dx;Dtð Þ � Sx Dxð ÞSt Dtð Þ (14)

where Sx(Dx) and St(Dt) are the spatial and temporal structure functions determined above. The physical
interpretation is that Sx(Dx) represents the statistical variation from one climatic zone to another and the cli-
matic zones spatially modulate the temporal statistics which are otherwise of the same basic form. This is
discussed and tested and generally well confirmed in LdL.

6. Discussion and Conclusions

While several studies have considered single station (i.e., temporal) precipitation statistics from weeks to
decades (and occasionally century) scales—the macroweather regime—a clear picture of temporal macro-
weather statistics has not emerged. In addition, there have been virtually no studies of spatial macro-
weather precipitation, i.e., of the spatial variability of precipitation fields averaged over weekly, monthly, or
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longer periods yet their characterization is needed to construct macroweather models. In this paper, we
explored three relevant global-scale macroweather precipitation products: the Global Historic Climate Net-
work product (GHCN) [Vose et al., 1992], which are the conventional station precipitation series restricted to
land only; in addition, the globally complete Twentieth Century Reanalysis product (20CR) [Compo et al.,
2011] and the satellite-based product [Smith et al., 2012]. Thus, by analyzing these precipitation products
(land, ocean, and global) and adopting a scaling framework, we expected (a) to clarify the character of
weather and macroweather precipitation regimes, (b) to better understand the limitations of different pre-
cipitation products, and (c) to explain the space-time macroweather precipitation variability, relevant for
the stochastic modeling and forecasting of macroweather fields. Also, by analyzing monthly, centennial,
instrumental station data, and comparing them with the relevant precipitation products, we aim at a better
insight into some difficulties that often hamper assessing clearly the macroweather regime statistics from
single station data analysis.

The statistics of precipitation as functions of space and time scale were studied using Haar fluctuations and
statistically characterized using generalized structure functions. In spite of their simplicity, the Haar fluctua-
tions allow precipitation to be analyzed over its full range of space-time scales (i.e., both 0<H< 1 and
21<H< 0 regimes). We then systematically analyzed and compared the three products over the ranges
from 1 month to �100 years and from one pixel (primarily 58 3 58) to global scales. Results showed that
even with Haar fluctuations, due to the extreme variability (high multifractal intermittency), that precipita-
tion statistics have nonclassical behaviors. In the time domain, for all products, we found very similar behav-
iors: for land, ocean, global, and for various latitude bands for pixel and global scales, we found Ht � 20.4
which is a little higher than Gaussian white noise (H 5 20.5); the main differences between the data sets
are the amplitudes of the fluctuations (e.g., the RMS variability at a given scale such as 1 year) and the outer
scale sc, the transition scale to the climate regime (here presumably associated with anthropogenic effects).
The global-scale analyses had sc � 20 years whereas the pixel-scale analyses (including several individual
long station series from Portugal) had sc � 40 years (presumably due to the smaller amount of averaging).
Although the systematic analysis of anthropogenic effects was outside our scope, we noted that the breaks
in the scaling of the global ocean precipitation rates were at somewhat shorter time scales than for the cor-
responding global land series as expected if the anthropogenic effects were stronger over the ocean.

These robust temporal scaling statistics may lead one to conclude that macroweather precipitation is well
estimated, and this in spite of the quite different techniques used to estimate precipitation rates (instru-
ments, reanalyses, and satellite based). However, the agreement of the statistics over wide ranges of time
scales is only a necessary condition for the products to agree with each other, it is not sufficient: indeed,
each product could be from a statistically independent realization of the same stochastic process. To gain
further confidence in the quality, accuracy of the precipitation products, we therefore compared the prod-
uct fields directly to each other by considering the difference of two products and studied the fluctuation
statistics of the difference fields.

This analysis showed (section 4.4, time; section 5, space) that the agreement between the products was not
so good. For example, for the GHCN and 20CR products at 58 3 58 spatial resolution, the agreement at
scales both below a year and also greater than 10 years was poor (Figure 8a). The 20CR and Smith products
(the two that were not missing data) for times below about 5 years were in poor agreement with each other
even at global spatial scales, and again displayed poor agreement at scales beyond about 30 years (Figure
8b). In space at 1 month resolution, the situation was somewhat different with agreement between the
20CR and GHCN for scales above 208–308 arc and with the 20CR and Smith data only becoming at all close
to each other at 508 of arc and larger (Figures 9b and 9c). It also seemed that the spatial scaling exponents
were significantly different (see Table 4) with the 20CR and Smith products being much smoother (Hx about
0.4–0.5 larger—hence smoother—than for the GHCN product); the smoothness may be an artifact of the
limitations of the 20CR model and the smoothness (larger H exponent) of the satellite IR fields that were
used to infer the Smith product. Additionally, we have compared the precipitation statistics obtained for
the raw data fluctuations with those of the anomalies, and concluded that the spatial scaling exponents can
be quite different, although they agree over certain ranges of scale.

The macroweather spatial and temporal scaling properties of precipitation that we have identified are quali-
tatively very similar to those of macroweather temperatures as analyzed, for example, in Lovejoy and Schert-
zer [2012a, 2013]. The main differences between temperature and precipitation statistics is that the latter
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have generally lower temporal H values, higher spatial C1 values (parameter C1 characterizes the intermit-
tency near the mean) and somewhat longer transition scales sc. Similar comments also pertain when com-
paring weather-scale temperatures and precipitation (although here, the intermittency parameter C1 is
much larger for precipitation than for temperature). Note that, regarding intermittency, there is an impor-
tant (near) exception: the temporal macroweather precipitation variability, which has a small C1 and is
therefore not too far from being quasi-Gaussian, see Table 4; however, the extremes are very non-Gaussian
(Figure 7c). Overall, both at weather and macroweather scales, of all the standard atmospheric fields, precip-
itation has the largest C1. This higher intermittency explains why conventional analysis methods do not eas-
ily give evidence of anthropogenic changes in precipitation, as a consequence of warming, one must
consider scales of several (3–4) decades for the anthropogenic ‘‘signal’’ to exceed the natural variability
‘‘noise.’’ Similarly, it can explain the failure of clear trend to emerge at the local scale, from analysis of single
station series, particularly if the data cover only a few decades, as it is often the case. Additionally, it is
expected that anthropogenic effects may be primarily visible over the oceans since this is where increased
heating is expected to translate most strongly into increased evaporation and precipitation, whereas many
precipitation studies are limited to land only.

Our results indicate that precipitation may be treated in the same theoretical framework as the temperature
(and other atmospheric fields): that it can be modeled with the help of space-time cascade processes. In
this picture, the scaling laws are emergent high level statistical (turbulent) laws expected to apply in the
limit of high nonlinearity. The weather/macroweather transition-scale sw is determined by the solar flux-
induced energy rate density and the macroweather regime is a consequence of a ‘‘dimensional transition’’
in which the spatial degrees of freedom important for weather-scale processes become gradually
‘‘quenched’’ at time scales � sw. A consequence (worked out in detail in Lovejoy and Schertzer [2013,
Appendix 10A]) is that one generically obtains temporal macroweather exponents H in the range
20.5<Ht< 0 (especially in the range 20.4<Ht<20.2). The model predicts that a statistical space-time
macroweather factorization property should approximately hold—this means that, for example, the joint
structure functions should also factor. Lovejoy and de Lima [2015] verify this on these same data sets, and
propose a more direct space-time macroweather model, the ScaLIng Macroweather Model (SLIMM) that is
multifractal in space (to account for the strong intermittency associated with different climate zones), yet
monofractal (Gaussian) in time (since C1 � 0 in time). Physically, the interpretation is that spatial variations
in macroweather statistics are controlled by different ‘‘climatic zones’’ which modulate the otherwise quali-
tatively similar (scaling) temporal variability. In the time domain, SLIMM is a fractional Gaussian noise whose
predictability properties are known, hence this provides the basis for seasonal, annual, and interannual (i.e.,
macroweather) precipitation forecasts.

The clarification of space-time macroweather precipitation variability, which was our concern in this work, is
a necessary step for understanding macroweather precipitation and the limitations of the corresponding
precipitation products, and opens new perspective to the stochastic modeling and forecasting of macro-
weather fields.
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