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Abstract Although current global warming may have a
large anthropogenic component, its quantification relies

primarily on complex General Circulation Models

(GCM’s) assumptions and codes; it is desirable to com-
plement this with empirically based methodologies. Pre-

vious attempts to use the recent climate record have

concentrated on ‘‘fingerprinting’’ or otherwise comparing
the record with GCM outputs. By using CO2 radiative

forcings as a linear surrogate for all anthropogenic effects

we estimate the total anthropogenic warming and (effec-
tive) climate sensitivity finding: DTanth = 0.87 ± 0.11 K,

k2xCO2;eff  3:08 0:58K. These are close the IPPC AR5

values DTanth = 0.85 ± 0.20 K and k2xCO2
 1:54:5K

(equilibrium) climate sensitivity and are independent of
GCM models, radiative transfer calculations and emission

histories. We statistically formulate the hypothesis of

warming through natural variability by using centennial
scale probabilities of natural fluctuations estimated using

scaling, fluctuation analysis on multiproxy data. We take

into account two nonclassical statistical features—long
range statistical dependencies and ‘‘fat tailed’’ probability

distributions (both of which greatly amplify the probability
of extremes). Even in the most unfavourable cases, we may

reject the natural variability hypothesis at confidence levels

[99 %.

Keywords Anthropogenic warming  Scaling  Natural
climate variability  Statistical testing

1 Introduction

Well before the advent of General Circulation Models

(GCM’s), (Arrhenius 1896), proposed that greenhouse
gases could cause global warming and he even made a

surprisingly modern quantitative prediction. Today,

GCM’s are so much the dominant tool for investigating the
climate that debate centers on the climate sensitivity to a

doubling of the CO2 concentration which—whether

‘‘equilibrium’’ or ‘‘transient’’—is defined as a purely the-
oretical quantity being accessible only through models.

Strictly speaking—short of a controlled multicentennial

global scale experiment—it cannot be empirically mea-
sured at all. A consequence is that not enough attention has

been paid to directly analyzing our ongoing uncontrolled

experiment. For example, when attempts are made to test
climate sensitivity predictions from the climate record, the

tests still rely on GCM defined ‘‘fingerprints’’ (e.g. Santer

et al. 2013) or the review in section 9.2.2 of 4th Assess-
ment Report (AR4) of the International Panel on Climate

Change (IPCC) or on other comparisons of the record with
GCM outputs (e.g. Wigley et al. 1997; Foster and Rahm-

storf 2011). This situation can easily lead to the impression

that complex GCM codes are indispensible for inferring
connections between greenhouse gases and global warm-

ing. An unfortunate side effect of this reliance on models is

that it allows GCM skeptics to bring into question the
anthropogenic causation of the warming. If only for these

reasons, it is desirable to complement model based

approaches with empirically based methodologies.
But there is yet another reason for seeking non-GCM

approaches: the most convincing demonstration of

anthropogenic warming has not yet been made—the sta-
tistical comparison of the observed warming during the

industrial epoch against the null hypothesis for natural

S. Lovejoy (&)
Physics, McGill University, 3600 University St.,
Montreal, QC H3A 2T8, Canada
e-mail: lovejoy@physics.mcgill.ca

123

Clim Dyn (2014) 42:2339–2351

DOI 10.1007/s00382-014-2128-2



variability. To be as rigorous as possible, we must dem-

onstrate that the probability that the current warming is no
more than a natural fluctuation is so low that the natural

variability may be rejected with high levels of confidence.

Although the rejection of natural variability hypothesis
would not ‘‘prove’’ anthropogenic causation, it would

certainly enhance it’s credibility. Until this is done, there

will remain some legitimate grounds for doubting the
anthropogenic provenance of the warming. Such statistical

testing requires knowledge of the probability distributions
of natural fluctuations over roughly centennial scales (i.e.

the duration of the industrial epoch CO2 emissions). To

achieve this using GCM’s one would need to construct a
statistical ensemble of realistic pre-industrial climates at

centennial scales. Unfortunately the GCM variability at

these (and longer) scales under natural (especially solar and
volcanic) forcings is still the object of active research (e.g.

‘‘Millennium’’ simulations). At present, the variability at

these long time scales is apparently somewhat underesti-
mated (Lovejoy 2013) so that it is premature to use GCM’s

for this purpose. Indeed, at the moment, the only way of

estimating the centennial scale natural variability is to use
observations (via multicentennial length multiproxies) and

a (modest) use of scaling ideas.

The purpose of this paper is thus to establish an empiri-
cally based GCM-free methodology for quantifying

anthropogenic warming. This involves two parts. The first

part is to estimate both the total amplitude of the anthropo-
genic warming and the (empirically accessible) ‘‘effective’’

climate sensitivity. It is perhaps surprising that this is

apparently the first time that the latter has been directly and
simply estimated from surface temperature data. Two inno-

vations were needed. First, we used a stochastic approach

that combines all the (nonlinear) responses to natural forc-
ings as well as the (natural) internal nonlinear variability into

a single global stochastic quantity Tnat(t) that thus takes into

account all the natural variability. In contrast, the anthro-
pogenic warming (Tanth(t)) is treated as deterministic. The

second innovation is to use the CO2 radiative forcing as a

surrogate for all anthropogenic forcings. This includes not
only the relativelywell understoodwarmings due to the other

long lived Green House Gases (GHG’s) but also the poorly

understood cooling due to aerosols. The use of the CO2

forcing as a broad surrogate is justified by the common

dependence (and high correlations) between the various

anthropogenic effects due to their mutual dependencies on
global economic activity (see Fig. 2a, b below).

The method employed in the first part (Sect. 2) leads to

conclusions not very different from those obtained from
GCM’s and other model based approaches. In contrast, the

main part of the paper (Sect. 3), outlines the first attempt to

statistically test the null hypothesis using the statistics of
centennial scale natural fluctuations estimated from pre-

industrial multiproxies. To make the statistical test strong

enough, we use scaling ideas to parametrically bound the
tails of the extreme fluctuations using extreme (‘‘fat-

tailed’’, power law) probability distributions and we scale

up the observed distributions from 64 to 125 years using a
scaling assumption. Even in the most unfavourable cases,

we may reject the natural variability hypothesis at confi-

dence levels[99 %. These conclusions are robust because
they take into account two nonclassical statistical features

which greatly amplify the probability of extremes—long
range statistical dependencies and the fat tails.

2 A stochastic approach

2.1 A simple stochastic hypothesis about the warming

Within the scientific community, there is a general con-

sensus that in the recent epoch (here, since 1880) that
anthropogenic radiative forcings have dominated natural

ones so that solar and volcanic forcings and changes in land

use are relatively unimportant in explaining the overall
warming. This conclusion applies to centennial scales but

by using fluctuation analysis on global temperatures it can

be extended to somewhat shorter time scales [i.e. anthro-
pogenic dominant for periods longer than &20–30 years

for the global average temperature (Lovejoy et al. 2013b)].

Let us therefore make the hypothesis that anthropogenic
forcings are indeed dominant (skeptics may be assured that

this hypothesis will be tested and indeed quantified in the

following analysis). If this is true, then it is plausible that
they do not significantly affect the statistical type or

amplitude of the natural variability so that a simple model

may suffice:

Tglobet  Tantht  Tnatt  et 1

Tglobe is the measured mean global temperature anomaly,
Tanth is the deterministic anthropogenic contribution, Tnat is

the (stochastic) natural variability (including the responses

to the natural forcings) and e is the measurement error. The
latter can be estimated from the differences between the

various observed global series and their means; it is nearly

independent of time scale (Lovejoy et al. 2013a) and suf-
ficiently small (&±0.03 K) that we ignore it.

While Eq. 1 appears straightforward, it requires a few

comments. The first point is that the anthropogenic contri-
bution Tanth(t) is taken to be deterministic whereas the

natural variability Tnat(t) is assumed to be stochastic. The

second point is that this definition of Tnat(t) includes the
responses to both volcanic, solar and any other natural

forcings so that Tnat(t) does not represent pure ‘‘internal’’

variability. While at first sight this may seem reasonable, it
is actually quite different from the usual treatments of solar
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and volcanic forcings and the corresponding responses

which are deterministic and where stochasticity is restricted
to (‘‘pure’’) internal variability (see e.g. Lean and Rind

2008). One of the reasons for the classical approach is that

there is enough data to allow one to make reconstructions of
past forcings. If they can be trusted, these hybrid model—

data products allow GCM’s to model and isolate the cor-

responding responses. However, we suspect that another
reason for these deterministic treatments—especially in the

case of volcanic forcing—is that the intermittency of the
process is so large that it is often assumed that the gener-

ating process could not be stationary. If it were true that

solar and volcanic processes were nonstationary then their
statistics would have to be specified as functions of time. In

this case, little would be gained by lumping them in with the

internal variability—which even in the presence of large
anthropogenic forcing—is quite plausibly stationary since

as assumed in GCM climate modelling, the effect of

anthropogenic forcings is essentially to change the bound-
ary conditions but not the internal dynamics.

However, it is quite likely that the basic solar and ter-

restrial stochastic processes responsible for variable solar
output and volcanic activity are unchanged over the last

millennium, yet that the corresponding stochastic realiza-

tions of these processes are highly intermittent, scaling and
multifractal giving a spurious appearance of nonstationa-

rity (multifractals have nonclassical scaling behviours:

unlike quasi-Gaussian processes, each statistical moment is
characterized by a different exponent and there are strong

resolution dependencies). While the basic analyses were

presented in Lovejoy and Schertzer (2012c) we revisit and
reanalyze them here. Consider Fig. 1a which shows the

(Gao et al. 2008) volcanic reconstruction from 500 to 2000

A.D. along with three realizations of a multifractal process
with identical statistical parameters [estimated by the

analysis of the reconstructions in Lovejoy and Schertzer

(2012c)], calibrated so that the overall process (but not
each realization!) has the observed mean. It is very hard to

distinguish the reconstruction from the three independent

realizations. Since by construction, the multifractal process
is stationary, this strongly supports the hypothesis that the

mechanism behind terrestrial volcanism during the last

1500 years has not changed. Similar conclusions apply to
the solar output (excluding the 11 year cycle) although—

since its intermittency is much smaller—this is perhaps less

surprising. Further support for this comes from the fluctu-
ation analysis in Fig. 1b which compares the RMS fluctu-

ations of the reconstruction over the (mostly) pre-industrial

period 1500–1900 and the industrial period 1880–2000
with the RMS fluctuations of the corresponding multi-

fractal simulations. We see that although the amplitude of

the industrial period fluctuations is a factor &2 lower than
for the pre-industrial period, that this is well within what is

expected due to the (very high) natural variability of vol-

canic processes (note that the fluctuations isolate the vari-
ability as a function of time scale, they are independent of

the absolute level of the forcing; for more analysis, see

Lovejoy and Schertzer 2012c; Lovejoy et al. 2014).
Finally, Fig. 1c shows the corresponding analyses for the

volcanic reconstruction as well as two solar reconstruc-

tions, with the same basic conclusions: they may all be
considered stationary and there is nothing unusual about

the statistics in the recent epoch when compared to the pre-
industrial epoch. In any event, we shall see below that

Eq. 1 can be justified ex-post-facto by empirically esti-

mating Tnat and verifying directly that it has the same
industrial and pre industrial statistics.

The wide bounds indicated by the one standard devia-

tion limits show that the variability of the process is so
large that in spite of the fact that the RMS amplitude of the

volcanic forcing over the industrial period is roughly a

factor &2 lower than over the pre-industrial period
(compare the dashed and solid green lines), that it is nev-

ertheless generally within the one standard deviation

bounds (red) of the stochastic multifractal process (i.e. the
dashed green line generally lies between the thin red lines).

2.2 CO2 radiative forcing as a linear surrogate
for anthropogenic effects

The first step in testing Eq. 1 is to empirically estimate
Tanth. The main contribution is from CO2, for which there

are fairly reliable reconstructions from 1880 as well as

from reliable in situ measurements from Mauna Loa and
Antarctica from 1959. In addition, there is general agree-

ment about its radiative forcing (RF) as a function of

concentration qCO2
:

RF;CO2
 RF;2xCO2

log2 qCO2
=qCO2;pre

 
;

RF;2xCO2
 3:7W=m2; qCO2;pre  277 ppm

2

where RF;2xCO2
is the forcing for CO2 doubling; the basic

logarithmic form is a semi-analytic result from radiative

transfer models, the values of the parameters are from the

AR4. Beyond CO2, the main other anthropogenic forcings
are from other long-lived greenhouse gases (warming) as

well as the effect of aerosols (cooling). While the recon-

struction of the global GHG forcing since 1880 is reason-
ably well estimated, that is not the case for aerosols which

are short lived, poorly mixed (regionally concentrated), and

whose effects (especially the indirect ones) are poorly
understood (see below).

However, all the key anthropogenic effects are functions

of economic activity, the CO2 levels provide a convenient
surrogate for the latter (over the period 1880–2004,

log2 qCO2
varies by only &0.5—half an octave in qCO2

—so
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that qCO2
and log2 qCO2

are linear to within ±1.5 % and

there is not so much difference between using qCO2
or

RF;CO2
as a surrogate). The strong connection with the

economy can be seen using the recent (Frank et al. 2010)

CO2 reconstruction from 1880 to 2004 to estimate

log2 qCO2
=qCO2;pre

 
, Fig. 2a shows its correlation with the

(a)

(b) (c)
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Fig. 1 a The 1500 year (Gao et al. 2008) volcanic reconstruction of
the radiative forcing (over the period 500–2000 A.D.) along with
three multifractal simulations with the measured parameters
(C1 = 0.2, H = -0.3, a = 1.8; estimated in Lovejoy and Schertzer
(2012c). The simulations differed only by their random seeds and
were calibrated to have the same average forcing value (0.15 W/m2).
The fact that the reconstruction is essentially indistinguishable from
these statistically stationary multifractal simulations strongly supports
the hypothesis that the basic volcanism responsible for eruptions over
this period is constant. The reconstruction is in the upper right, the
others are ‘‘fakes’’. b The RMS fluctuations for the (Gao et al. 2008)
reconstruction (green, thick) for the period 500–2000 (solid) and
1880–2000 (dashed; see c for the slightly different curve for the
period 1500–1900). The fluctuations over a lag Dt are defined by the
difference of the average over the first and second halves of the
interval (‘‘Haar’’ fluctuations, see Sect. 3.1). Also shown is the
ensemble average (thin black line) of ten realizations of the

multifractal process with the a parameters. The thin dashed black
lines indicate the one standard deviation bounds of the log of the RMS
fluctuations estimated from the realization to realization variability
for 500 year simulated segments. The thin red lines are for the bounds
for 100 year segments (they are wider since the variability is less
averaged out than for the 500 year bounds). c The RMS radiative
forcing fluctuations for the (Gao et al. 2008), volcanic reconstruction
(since 1500) as well as the same from sunspot based solar
reconstructions (Wang et al. 2005; Krivova et al. 2007) (from
1610). The full lines are for the period up to 1900, the dashed lines for
the period since 1880. One can see that the industrial and preindustrial
solar fluctuations are of nearly the same. In contrast, the amplitude of
the volcanic forcing fluctuations have decreased by a factor &2 in the
recent period (note that this does not imply a change in the amplitude
of the forcing itself). For a more complete analysis of the fluctuations
over the whole period, see Lovejoy and Schertzer (2012c)
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global Gross Domestic Product (GDP; correlation coeffi-

cient rRFCO2;GDP  0:963). Also shown is the annual global

production of sulfates which is a proxy for the total (mostly
sulfate) aerosol production. The high correlation coefficient

(rRFCO2;sulfate  0:983) indicates that whatever cooling

effect the aerosols have, that they are likely to be roughly

linear in log2 qCO2
=qCO2;pre

 
. Also shown in the figure

[using data from Myhre et al. (2001)], is the total forcing of
all GHG’s (including CO2); we find the very high corre-

lation rRFCO2RF;GHG  0:997. This justifies the simple

strategy adopted here of considering RF;CO2
to be a well

measured linear surrogate for RF,anth (i.e. the two are

considered to be equal to within a constant factor).
Concentrating on the total GHG radiative forcing

(RF,GHG) as well as the total anthropogenic RF (including

aerosols, RF,anth) we present Fig. 2b. We see that RF;CO2

and RF,GHG are closely related with regressions yielding:

RF;GHG  0:190 0:019 1:793 0:027RF;CO2
3

(as in Fig. 2a, rRFCO2RF;GHG  0:997) so that RF;CO2
may be

considered ‘‘enhanced’’ by the other GHG by &79 %.
Although ozone, biomass and other effects contribute, the

main additional contribution—and uncertainty—in the

total anthropogenic RF,anth, is from the direct and indirect
cooling effects of aerosols, and is still under debate. Recent

estimates (for both effects) are &-1.2 (AR4), -1.0 W/m2,

(Myhre 2009) and &-0.6 W/m2, (Bauer and Menon 2012)
(all with large uncertainties). Using the Mauna Loa esti-

mate for qCO2
in 2012 (393.8 ppm, http://co2now.org/),

these estimates can be compared to &1.9 W/m2 for CO2

and &3.1 W/m2 for all GHG (the above relation). Using

the RF,anth data in Myhre et al. (2001) we obtain:

RF;anth  0:034 0:033 0:645 0:048RF;CO2
4

with rCO2;anth  0:944 (Fig. 2b). This is tantamount to
assuming -1.5 W/m2 for aerosol cooling at the end of the

(Myhre et al. 2001) series (1995). If the most recent

cooling estimates (Bauer and Menon 2012) are correct
(-0.6 W/m2), the amplitude of the cooling is diminished

by 60 %, so that in Eq. 4 we obtain a proportionality

constant &1.25 rather than 0.645.

2.3 The instrumental data and the effective climate

sensitivity

If we take RF;CO2
to be a well-measured linear surrogate for

RF,anth (i.e. Tanth / RF;CO2
) we can define the ‘‘effective’’

climate sensitivity k to a doubling of CO2 by:

Tantht  k2xCO2;eff log2 qCO2
t=qCO2;pre

 
5

In order to empirically test Eq. 1, it therefore suffices
to perform a regression of Tglobe (t) against log2
qCO2

t=qCO2;pre

 
; the slope yields k2xCO2;eff and the resi-

dues Tnat(t). As mentioned above, empirical estimates of

the annually, globally averaged surface temperatures do not

perfectly agree with each other, the differences between the
series may be used to quantify the uncertainty in the esti-

mates. For example, in this analysis, we used data over the

(a) (b)

Fig. 2 a This shows the annual world sulfate aerosol production from
1880 to 1990 [top, pink, from Smith et al. (2004)], the total
Greenhouse Gas radiative forcing from 1880 to 1995 [orange, from
Myhre et al. (2001), including CO2], and the world Gross Domestic
Product (GDP, 1880–2000, blue, from J. Bradford DeLong of the
Department of Economics, U.C. Berkeley: http://holtz.org/Library/
Social%20Science/Economics/Estimating%20World%20GDP%20by
%20DeLong/Estimating%20World%20GDP.htm) all nondimension-
alized by their maximum values (6.9 9 107 metric tons/year,
2.29 W/m2, $4.1 9 1013 respectively). The regression lines have
slopes corresponding to an increase of 2.8 9 108 metric tons of

sulfate for each CO2 doubling, and an increase of GHG forcing by
6.63 W/m2 for each CO2 doubling, an increase of GDP by
$1.1 9 1014 for every CO2 doubling. The correlation coefficients are
0.983, 0.997, 0.963 for sulfate production, total GHG forcing and
GDP respectively. b Over the period 1880–1995, the relationship
between the radiative forcing of CO2 (RF;CO2

), the radiative forcing of
all the long lived Greenhouse Gases (including CO2: RF, GHG) and the
total radiative forcing of all the anthropogenic emissions including
aerosols; data from Myhre et al. (2001). For reference, current (2012)
RFCO2

is estimated as &1.9 W/m2. The slopes and correlation coef-
ficients are: 1.79 and 0.997 (top) and 0.645 and 0.944 (bottom)
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period 1880–2008 from three sources: the NOAA NCDC

(National Climatic Data Center) merged land, air and sea

surface temperature dataset (abbreviated NOAA NCDC
below), on a 5 9 5 grid (Smith et al. 2008), the NASA

GISS (Goddard Institute for Space Studies) dataset (Han-

sen et al. 2010) (from 1880 on a 2 9 2) and the HadC-
RUT3 dataset (Rayner et al. 2006) (on a 5 9 5 grid), and
as mentioned earlier, these series only agree to within

about ±0.03 K even at centennial scales. There are several
reasons for the differences: HadCRUT3 is a merged

product created out of the HadSST2 Sea Surface Temper-
ature (SST) dataset and its companion dataset of atmo-

spheric temperatures over land, CRUTEM3 (Brohan et al.

2006). Both the NOAA NCDC and the NASA GISS data
were taken from http://www.esrl.noaa.gov/psd/; the others

from http://www.cru.uea.ac.uk/cru/data/temperature/. The

NOAA NCDC and NASA GISS are both heavily based on
the Global Historical Climatology Network (Peterson and

Vose 1997), and have many similarities including the use

of sophisticated statistical methods to smooth and reduce
noise. In contrast, the HadCRUT3 data are less processed,

with corresponding advantages and disadvantages. Ana-

lysis of the space–time densities of the measurements
shows that they are sparse (scaling) in both space and time

(Lovejoy and Schertzer 2013). Even without other differ-

ences between the data sets, this strong sparseness means
that we should not be surprised that the resulting global

series are somewhat dependent on the assumptions about

missing data.
The mean and standard deviation of the Tglobe(t) series is

shown in Fig. 3a as functions of log2 qCO2
t=qCO2;pre

 
; the

result is indeed quite linear with slope equal to the effective

climate sensitivity to CO2 doubling. We find:

k2x;CO2;eff  2:33 0:22K 6

(note that for the northern hemisphere only, k2x;CO2;eff 
2:59 0:25K so that hemispheric differences are not very

large). For 5 year averages for 1880–2004 (the CO2 from
the reconstruction) and 1959–2004 (using the mean of the

instrumental Mauna Loa and Antarctica CO2), the corre-
lation coefficients are respectively rRFCO2;T = 0.920, 0.968.

Note that this simple direct estimate of k2x;CO2
can be

compared with several fairly similar but more complex
analyses (notably multiple regressions which include CO2),

see Lean and Rind (2008), Muller et al. (2013). By use of

the proportionality constants between RF,anth and RF;CO2
we

can estimate the effects of a pure CO2 doubling. For the

strongly cooling aerosols (Myhre et al. 2001) we obtained
0.645 (Eq. 4) whereas for the weakly cooling (Bauer and

Menon 2012), aerosols we obtained 1.25. These lead to the

pure CO2 doubling estimates k2x;CO2;pure = 3.61 ± 0.34

and 1.86 ± 0.18 K respectively.

If we plot the temperatures in the usual way as functions
of time, we obtain Fig. 3b, c where we also show the

anthropogenic contribution estimated with k2x;CO2;eff from

Eq. 6 and Tanth from Eq. 5. It follows the temperatures very

well, and we can already see that the residues (Tnat(t)) are
fairly small. Using these estimates of the anthropogenic

contribution, we can estimate the total change in temper-

ature as Tanth = 0.85 ± 0.08 over the entire industrial
period (see the discussion below). Note that the same

(a)

(b)

(c)
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methodology can be used to analyze the postwar cooling

and the recent ‘‘pause’’ in the warming; this is the subject
of current work in progress.

2.4 The time Lagged sensitivities

It may be objected that the most immediate consequence of

RF is to warm the oceans (Lyman et al. 2010) so that we
expect a time lag between the forcing and atmospheric

response, for example, with GCM’s (Hansen et al. 2005)

finds a lag of 25–50 years, and (Lean and Rind 2008)
empirically find a lag of 10 years (of course, the situation is

not quite so simple due to feedbacks). By considering the

time lagged cross correlation between RF;CO2
and Tglobe

(Fig. 4) it is found that the cross correlations are so high
(with maximum 0.94) that the maximally correlated lag is

not well pronounced. To clarify this, we also calculated the

corresponding curves for the cross correlation of the tem-
perature fluctuations (DT, differences) at a 5 year resolu-

tion. The fluctuations are more weakly correlated than with

the temperatures themselves so that this is a bit more
sensitive to varying lags. In all cases, we can see that the

maximum is roughly between a lag of zero and 20 years.

However, the effective climate sensitivity to doubling CO2

increases from 2.33 ± 0.22 (zero lag) to 3.82 ± 0.54 with

a 20 year lag (see Fig. 3c for a comparison with the zero

lag anthropogenic and empirical global temperatures). If
we use a Bayesian approach and assign equal a priori

probabilities to all the lags between zero and 20 years, then

we obtain the estimate k2x;CO2;eff = 3.08 ± 0.58 K which

is (unsurprisingly) quite close to the 10 year lag value

(Fig. 4). Note that we could use a general linear relation
between forcings and responses using Green’s functions,

but this would require additional assumptions and is not

necessary at this point.

2.5 Effective and equilibrium climate sensitivities

Our estimate of k2xCO2;eff has the advantage of being not

only independent of GCM’s, but also with respect to

assumptions about radiative transfer, historical (non CO2)
GHG and aerosol emission histories. However, k2xCO2;eff is

an ‘‘effective’’ sensitivity both because it uses CO2 as a
surrogate for all the anthropogenic RF, and also because it is

not a usual ‘‘equilibrium climate sensitivity’’ defined as ‘‘the

equilibrium annual global mean temperature response to a
doubling of equivalent atmospheric CO2 from pre-industrial

levels’’ (AR4). Since only GCM’s can truly attain ‘‘equi-

librium’’ [and this only asymptotically in a slow power law
manner (Lovejoy et al. 2013a)], this climate sensitivity is

really a theoretical/model concept that can at best only be
approximated with real world data. From an empirical point

of view, whereas the effective climate sensitivity is the

actual sensitivity to our current (uncontrolled) experiment,
the equilibrium and transient sensitivities are the analogues

for various (impractical) controlled experiments.

Because of the differences in the definitions of climate
sensitivity, it would be an exaggeration to claim that we

have empirically validated the GCM based results, even

though our value k2xCO2;eff = 3.08 ± 0.58 (taking into

account the uncertainty in the lag) is very close to literature

values (c.f. the AR5 range 1.5–4.5 K, the AR4 range

2–4.5 K, and the value 3 ± 1.5 K adopted by the National

b Fig. 3 a The mean global temperature estimated from NASA-GISS,
NOAA NCDC, HADCrut3 data bases as a functions of the logarithm
of the mean CO2 concentration from Frank et al. (2010). The dashed
lines represent the one standard deviation variations of the three series
at 1 year resolution, the thick line is the mean with a 5 year running
average. Also shown is the linear regression with the effective climate
sensitivity to CO2 doubling: 2.33 ± 0.22 K. b Five year running
average of the average temperature. The brown line is the estimate of
Tanth(t) from Eq. 6 with k2xCO2

= 2.33 and the difference (residue) is
the estimate of the natural variability Tnat(t). Also shown is the
regression of the latter with time (straight line) as well the overall
estimates DTanth = 0.85 ± 0.08 for the unlagged relation and the
overall range DTglobe,range = 1.04 ± 0.03 K which presumably
bounds DTanth. c The comparison of the mean global temperature
series (red), one standard deviation limits (dashed, all from the three
surface series discussed above, all with a 5 year running average),
compared with the unlagged (brown, corresponding to a) and 20 year
lagged (blue) estimates obtained from log2 qCO2

versus Tglobe
regressions as discussed in the text

Fig. 4 The green curve is the cross correlation coefficient of the
lagged RFCO2

[from the CO2 reconstruction of Frank et al. (2010)] and
the global mean temperatures (averaged at 5 year resolution) with
dashed lines indicating one standard deviation variations (as
estimated from the three global mean temperature series). As can
be seen, the cross correlations are so high that the maximally
correlated lag is not well pronounced. To bring out the maximum
more clearly, we also calculated (red) the corresponding curves for
the cross correlation of the fluctuations (differences) of 5 year
averages. We can see that the maximum is roughly between zero and
lag 20 years. However, the effective climate sensitivity to doubling
CO2 (purple, divided by 10) increases from 2.33 ± 0.22 (zero lag) to
3.82 ± 0.54 with a 20 year lag
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Academy of Sciences (1979) and the AR1–3 reports). It is

not obvious whether effective or equilibrium sensitivities
are more relevant for predicting the temperature rise in the

twenty-first century.

3 Statistical analysis

3.1 The stationarity of the residuals Tnat
and comparison with the pre-industrial Tnat

While the linearity of Fig. 3a, c is encouraging (even

impressive), its interpretation as representing an anthropo-
genic component is only credible if the residuals (Tnat(t))

have statistics very similar to those of Tglobe in pre-industrial

epochs (when Tanth = 0) so that as hypothesized in Eq. 1,
they could all be realizations of the same stochastic process.

As a first confirmation of this, in the top two curves of Fig. 5

we plot both Tglobe and Tnat estimated from the residuals
i.e. Tnatt  Tglobet  k2xCO2;eff log2qCO2

t=qCO2;pre.
Even without any formal statistical analysis, we see—as

expected—that whereas Tglobe is clearly increasing, Tnat is

roughly flat. However, for Eq. 1 to be verified, we also
require that the residuals have similar statistics to the pre-

industrial fluctuations when Tanth = 0 and Tglobe = Tnat. In

order to establish this, we must use multiproxy reconstruc-
tions which are the only source of annual resolution prein-

dustrial global scale temperatures.

Following the analysis in Lovejoy and Schertzer

(2012a), the more recent (mostly post 2003) multiproxies
(those developed after 2003) were argued to be more

faithful to the low frequency (multicentennial) variability.

In particular, when compared to ice core paleotemperatures
the low frequencies in Huang (2004), Moberg et al. (2005)

and Ljundqvist (2010) were found to be more realistic with

fluctuations starting to increase in amplitude for
Dt[& 100 years (preindustrial). However, one of these

series (Ljundqvist 2010) was at 10 year resolution and was
not suited for the present study which required annual

series. It was therefore replaced by the Ammann and Wahl

(2007) update of the original (Mann et al. 1998) recon-
struction which although having somewhat smaller multi-

centennial variability was statistically not too different (see

Fig. 6 for a comparison of the probability distributions of
the differences at lags of 1 year). This shows that at 1 year

resolution, fluctuations from the different multiproxies

have nearly the same probability distributions although
with slightly different amplitudes (c.f. the left–right shift

on the log–log plot). Changes in the amplitude arise due to

varying degrees of spatial averaging so that—given the
different types and quantities of data contributing to each

multiproxy—these amplitude differences are not surprising

(see Lovejoy and Schertzer 2013). In the figure we also see
the residuals of the unlagged estimate of Tnat. At this scale

the residuals have slightly larger variability (see the com-

parison of the standard deviations as functions of scale in

Fig. 5 The three lower curves are the means of the three multiproxies
discussed in the text over three consecutive 125 year periods starting
in the year 1500 with their standard deviations indicated. Each
segment had its overall mean removed and was displaced by 0.3 K in
the vertical for clarity. The fourth curve from the bottom is from the
(unlagged) residuals with respect to the CO2 regression in Fig. 3a
(1880–2004). The top (dashed) curve is the annual resolution mean
temperature. Whereas the curves from the three multiproxy epochs
are quite similar to the residuals in the recent epoch, the actual recent
epoch temperature shows a fairly systematic increase

Fig. 6 The temperature differences for Dt = 1 year for the three
multiproxies (red, 1500–1900) compared with the (unlagged) resid-
uals from Fig. 1. ‘‘Pr’’ indicates Pr(DT[ s) which is the probability
that a random temperature difference DT exceeds a fixed threshold
s. The smooth curves are the Gaussians with the same standard
deviations. We see that the multiproxies are quite close to each
other—although with some small variations in amplitude—about
10 % between each curve—but not much in shape
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Fig. 7), although after Dt & 4 years, it falls within the

epoch to epoch variations of the mean of the multiproxies.
We can now make a first comparison between the

industrial epoch residuals and the pre-industrial anomalies;

see the bottom three curves in Fig. 5. To mimick the
125 year industrial period, the multiproxies were divided

into 3 9 125 pre-industrial periods (1500–1624,

1625–1749, 1750–1875) as shown, each with its overall
mean removed. We see that while the industrial epoch

temperatures increase strongly as functions of time, that the

amplitudes and visual appearances of the residuals and the
multiproxies are strikingly similar.

We now turn to the problem of making this similitude

quantitative. The traditional way to characterize the vari-
ability over a wide range of scales is by spectral analysis. It

is typically found that climate spectra are dominated by red

noise ‘‘backgrounds’’ and over wide ranges, these are
roughly power laws (scaling) indicating that over the range,

there is no characteristic scale and (in general) that there

are long range statistical dependencies (e.g. correlations;
see Lovejoy 2014 for recent overview and discussion).

However spectral analysis has disadvantages, the most

important of which is that its interpretation is not as
straightforward as for real-space alternatives. This has

lead to the development of wavelets and other methods of

defining fluctuations [e.g. Detrended Fluctuation Analysis
(Peng et al. 1994)]. However Lovejoy and Schertzer

(2012b) shows that the simple expedient of defining fluc-

tuations over intervals Dt by the differences in the means

over the first and second halves of the interval (‘‘Haar

fluctuations’’) is particularly advantageous since unlike
differences—which on (ensemble) average do not

decrease—Haar fluctuations can both increase and

decrease. The critical distinction between increasing and
decreasing fluctuations corresponds to a spectral exponent

greater or less than b = 1 (ignoring small intermittency

corrections). In regions where the Haar fluctuations
increase they are proportional to differences, in regions

where they decrease, they are proportional to averages so
that the interpretation is very straightforward.

3.2 Fluctuation analysis of the industrial residuals
and preindustrial multiproxies

In Fig. 7, first note the comparison of the RMS difference
fluctuations of the three surface series (1880–2008) with

those of the three multiproxies (1500–1900). Up until

Dt & 10 years they are quite close to each other (and
slowly decreasing), then they rapidly diverge with the

RMS preindustrial differences (rDt) remaining roughly

constant (rDt & 0.20 ± 0.03) until about 125 years. Fig-
ure 8 shows the corresponding figure for the Haar fluctu-

ations. Again we find that the industrial and preindustrial

curves are very close up to &10 years followed by a
divergence due to the high decadal and longer scale

industrial period variability. Note that the preindustrial

Haar fluctuations decrease slowly until &125 years. When
we consider the RMS residuals we find they are mainly

within the one standard deviation error bars of the epoch

to epoch multiproxy variability so that as predicted (Eq. 1)
removing the anthropogenic contribution gives residuals

Tnat with statistics close to those of the pre-industrial

multiproxies (Fig. 8).
For the (preindustrial) multiproxies we see that between

&10 and 125 years, the RMS differences are &constant,

this is expected due to the slight decrease of the Haar
fluctuations (Fig. 8) over this range, see the ‘‘Appendix’’

for a discussion. The solid line at the right (at scales[125

years) has a slope &0.4; it shows the increase in the var-
iability in the climate regime. From the graph at 125 years

the RMS difference may be estimated as 0.20 ± 0.03 K.

The Haar fluctuations were multiplied by a ‘‘calibra-
tion’’ factor = 2 so that they would be close to the dif-

ference fluctuations (Fig. 7). Note that a straight line slope

H corresponds to a power law spectrum exponent 1 ? 2H
so that a flat line has spectrum E(x) & x-1, and hence

long range statistical dependencies (for comparison

Gaussian white noise has slope -0.5). The roughly log-log
linear decline of the multiproxy variability to about

Dt & 125 years is the (fluctuation cancelling, decreasing)

macroweather regime, the rise beyond it, the ‘‘wandering’’
climate regime (Lovejoy 2013).

Fig. 7 The rootmean square difference fluctuations for themean of the
three global surface series [top right, magenta, 1880–2004; from
Lovejoy and Schertzer (2012a)]; in the notation of Sect. 3; rDt. The
corresponding (long blue) curve is for the northern hemisphere
multiproxies from 1500 to 1900 and the dashed lines show the one
standard deviation error bars estimated from the three 125 year epochs
indicated in Fig. 5 indicating the epoch to epoch variability. For periods
less than about 10 years the fluctuations are roughly the same so that
there is no significant difference in the northern hemisphere multipr-
oxies and the global instrumental series. Their divergence beyond
10 years is due to global warming in the recent period
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3.3 Estimating the probability that the warming is due

to natural variability

Regressing RF;CO2
against the global mean temperature

leads to satisfactory results in the sense that the residuals
and preindustrial multiproxies are plausibly realizations of

the same stochastic process. However, this result is not too

sensitive to the exact method of estimating Tanth and
Tnat—the 20 year lagged residuals are a bit better although

using simply a linear regression of Tglobe against time is

substantially worse; see Fig. 8. From the point of view of
determining the probability that the warming is natural,

the key quantity is therefore the total anthropogenic

warming DTant = Tant(2004) - Tant(1880). Using the
log2 qCO2

method (Fig. 3a) we find DTanth & 0.85 ±

0.08 K and with a 20 year lag &0.90 ± 0.13 K (the zero

lag northern hemisphere value is 0.94 ± 0.09 K). With a

Bayesian approach, assuming equal a priori probabilities
of any lag between 0 and 20 years, we obtain

DTanth & 0.87 ± 0.11; for comparison, for the linear in

time method, we obtain &0.75 ± 0.07 K (essentially the
same as the AR4 estimate which used a linear fit to the

HadCRUT series over the period 1900–2004). We can

also estimate an upper bound—the total range
DTglobe,range = Max(DTglobe) & 1.04 ± 0.03 K so that

(presumably) DTanth\DTglobe,range.

We now estimate the probability distribution of tem-

perature differences from the multiproxies first over the
shorter lags with reliable estimates of extremes (up to

Dt = 64 years, Fig. 9), and then using the scaling of the

distributions and RMS fluctuations to deduce the form at
Dt = 125 years, (see the ‘‘Appendix’’). We find the

125 year RMS temperature difference DT1252
D E1=2


r125  0:20 0:03K (Fig. 7). Theoretically, spatial and
temporal scaling are associated with probabilities with

power law ‘‘fat’’ tails (i.e. Pr(DT[ s) & s-qD for the

probability of a fluctuation exceeding a threshold s; qD is
an exponent), hence in Fig. 10 we compare qD = 4, 6 and

qD = ? (a pure Gaussian). We see that the former two

values bracket the distributions (including their extremes)
over the whole range of large fluctuations (the extreme

3 %).

Stated succinctly, our statistical hypothesis on the nat-
ural variability is that its extreme probabilities (Pr\ 3 %)

are bracketed by a modified Gaussian with qD between 4

and 6 and with standard deviation (and uncertainties) given
by the scaling of the multiproxies in Fig. 7:

r125 = 0.20 ± 0.03 K. For large enough probabilities

(small s), the modified Gaussian is simply a Gaussian, but
below a probability threshold (above a critical threshold

sqD) the logarithmic slope is equal to -qD; i.e. it is a power

Fig. 8 The RMS Haar fluctuations for the surface series (magenta,
top) and the multiproxies from 1500 to 1900 (long, thick green) with
the green straight lines showing (roughly) the one standard deviation
error bars estimated from the three 125 year epochs (1500–1624,
1625–1749, 1750–1874) indicated in Fig. 5. The difference between
the preindustrial multiproxies and industrial epoch surface tempera-
tures is due to global warming. These are compared with the residuals
from 1880 to 2004 obtained after subtracting the anthropogenic
contribution obtained from the regression in Fig. 3a (thin black line),
from the corresponding residuals for a 20 year lag between forcing
and temperature (thick black line), and for a linear CO2 concentration
versus temperature relation (dashed line). Both the lagged and
unlagged log2 qCO2

residuals are generally within the one standard

deviation limits, although the 20 year lagged residuals are a little
closer to the mean

Fig. 9 This shows the total probability of random absolute pre 1900
temperature differences exceeding a threshold s (in K), using all three
multiproxies to increase the sample size (compare this to Fig. 6 which
shows that the distribution are very similar in form for each of the
multiproxies). To avoid excessive overlapping, the latter were
compensated by multiplying by the lag Dt (in years, shifting the
curves to the right successively by log102 & 0.3), the data are the
pooled annual resolution multiproxies from 1500 to 1900. The blue
double headed arrow shows the displacement expected if the
difference amplitudes were constant for four octaves in time scale
(corresponding to negative H for Haar fluctuations, H = 0 for
differences, see Fig. 7 for the standard deviations each octave is
indicated by a vertical tick mark on the arrow). The (dashed)
reference curves are Gaussians with corresponding standard devia-
tions and with (thin, straight) tails (Pr &\ 3 %) corresponding to
bounding s-4 and s-6 behaviors
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law (see the ‘‘Appendix’’ for details). With this, we can

evaluate the corresponding probability bounds for various

estimates of DTanth. These probabilities are conveniently
displayed in Fig. 10 by boxes. For example, the AR4

DTanth = 0.74 ± 0.18 K (thick red box) yields a proba-

bility (p): 0.009 %\ p\ 0.6 % whereas the (unlagged)
log2 qCO2

regression (filled red box) yields

0.0009 %\ p\ 0.2 % and the 20 year lag (dashed blue)
yields 0.002 %\ p\ 0.2 %, the northern hemisphere

yields 0.009 %\ p\ 0.1 % with most likely values (using

qD = 5) of 0.08, 0.08, 0.03, 0.03 % respectively. In even
the most extreme cases, the hypothesis that the observed

warming is due to natural variability may be rejected at

confidence levels 1 - p[ 99 %, and with the most likely
values, at levels[99.9 %. The other cases considered do

not alter these conclusions (Fig. 10).

4 Conclusions

Two aspects of anthropogenic global warming are frequent

sources of frustration. The first is the lack of a quantitative
theory of natural variability with which to compare the

observed warming DTanth, the second is the near exclusive

reliance on GCM’s to estimate it. In this paper we have

argued that since &1880, anthropogenic warming has

dominated the natural variability to such an extent that
straightforward empirical estimates of the total warming

can be made. The one favoured here—using CO2 radiative

forcing (RF) as a surrogate for all anthropogenic RF—gives
both effective sensitivities k2xCO2;eff and total anthropo-

genic increases DTanth (3.08 ± 0.58 and 0.87 ± 0.11 K)
comparable to the AR4, AR5 estimates (1.5–4.5 K and

0.74 ± 0.18 K for the slightly shorter period 1900–2005).

The method was justified because we showed that over a
wide range of scales, the residuals have nearly the same

statistics as the preindustrial multiproxies. An additional

advantage of this approach is that it is independent of many
assumptions and uncertainties including radiative transfer,

GCM and emission histories. The main uncertainty is the

duration of the lag between the forcing and the response.
Whether one estimates DTanth using the empirical

method proposed here, or using a GCM based alternative,

when DTanth is combined with the scaling properties of
multiproxies we may estimate the probabilities as functions

of time scale and test the hypothesis that the warming is

due to natural variability. Our statistical hypothesis—sup-
ported by the multiproxy data—is that due to the scaling—

there are long range correlations in the temperature fluc-
tuations coupled with nonclassical ‘‘fat tailed’’ probability

distributions which bracket the observed probabilities.

Both effects lead to significantly higher probabilities than
would be expected from classical ‘‘scale bound’’ (expo-

nentially decorrelated) processes and/or with ‘‘thin’’ (e.g.

Gaussian or exponential) tails. However, even in the most
extreme cases, we are still able to reject the natural vari-

ability hypothesis with confidence levels[99 %—and with

the most likely values—at levels [99.9 %. Finally, fluc-
tuation analysis shows that the variability of the recent

period solar forcing was close to preindustrial levels (at all

scales), and that volcanic forcing variabilities were a factor
&2 times weaker (at all scales), so that they cannot explain

the warming either.

In the AR5, the IPCC estimated our confidence in the
truth of the anthropogenic warming hypothesis as

95–100 %. While our new result is easily compatible with

this, it is really more complementary than equivalent.
Whereas the IPCC focuses on determining how much

confidence we have in the truth of anthropogenic warm-

ing, the approach outlined here estimates our confidence
in the falsity of natural variability. But there is a funda-

mental asymmetry: whereas no theory can ever be proven

to be true beyond a somewhat subjective ‘‘reasonable
doubt’’—a theory can effectively be disproven by a single

decisive experiment. In the case of anthropogenic warm-

ing, our confidence is based on a complex synthesis of
data analysis, numerical model outputs and expert

Fig. 10 The probability of anthropogenic warming by DTanth as
functions of the number of standard deviations for the five cases
discussed in the text. Also shown for reference is the equivalent
temperature fluctuation using themean standard deviation at 125 years.
The vertical sides of the boxes are defined by the one standard deviation
limits of DTanth/r, the horizontal sides by the qD = 4 (upper) and
qD = 6 (lower) limits; themiddle curve (qD = 5) is themean (andmost
likely) exponent. The classical statistical hypothesis (Gaussian, corre-
sponding to qD = ?) is indicated for reference. The AR4
DTanth = 0.74 ± 0.18 is indicated by the thick red line and using
log2 qCO2

as a surrogate for the RF followed by linear regression

(DTanth = 0.85 ± 0.08; the AR5 value for 1880–2012 is 0.85 ± 0.20)
is shown in the filled orange box. The other cases are shown by dashed
lines: log2 qCO2

but with a 20 year lag, linear regression ofTglobe against

time and the upper bound on DTanth = 1.04 ± 0.03
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judgements. But no numerical model is perfect, no two

experts agree on everything, and the IPCC confidence
quantification itself depends on subjectively chosen

methodologies. In comparison, our approach makes no

use of numerical models nor experts, instead it attempts to
directly evaluate the probability that the warming is

simply a giant century long natural fluctuation. While

students of statistics know that the statistical rejection of a
hypothesis cannot be used to conclude the truth of any

specific alternative, nevertheless—in many cases includ-
ing this one—the rejection of one greatly enhances the

credibility of the other.
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Appendix: Scaling modified Gaussians with fat tails

In Fig. 9 we showed the empirical probability distributions

(Pr(DT[ s), for the probability of a random (absolute)

temperature difference DT exceeding a threshold s for time
lags Dt increasing by factors of 2. Note that we loosely use

the expression ‘‘distribution function’’ to mean Pr(DT[ s).

This is related to the more usual ‘‘cumulative distribution
function’’ (CDF) by: CDF = Pr(DT\ s) so that

Pr(DT[ s) = 1 - CDF. Two aspects of Fig. 9 are sig-

nificant; the first is their near scaling with lag Dt: the shapes
change little, this is the type of scaling expected for a

monofractal ‘‘simple scaling’’ process, i.e. one with weak

multifractality (as discussed in Lovejoy and Schertzer
(2013), over these time scales, the parameter characterizing

the intermittency near the mean, C1 & 0.02 so that this is a

reasonable approximation).
This implies that there is a nondimensional distribution

function P(s):

Ps  Pr
DTDt
rDT

[ s

 
; rDT  DTDt2

D E1=2

rDt is the standard deviation. Due to the temporal scaling,

we have rkDt  kHrDt where H is the fluctuation exponent

and P(s) is independent of time lag Dt. From Fig. 9 it may
be seen that as predicted by the RMS fluctuations (rDt,

Fig. 7), H & 0. This is a consequence of the slight

decrease in the RMS Haar fluctuation (with exponent
HHaar &-0.1; Fig. 8). Unlike the Haar fluctuation, the

ensemble mean RMS differences cannot decrease but

simply remains constant until the Haar fluctuations begin to
increase again in the climate regime (compare Figs. 7, 8,

beyond Dt & 125 years).

The second point to note is that the lag invariant dis-

tribution function P(s) has roughly a Gaussian shape for
small s, whereas for large enough s, it is nearly algebraic.

This can be simply modelled as:

PqDs 
PGs; s\sqD

PGsqD
s

sqD

 qD

; s sqD

where PG(s) is the cumulative distribution function for the

absolute value of a unit Gaussian random variable. The
simple way of determining sqD used here is to define sqD as

the point at which the logarithmic derivative of PG is equal

to -qD so that the plot of log PqD versus log s is
continuous:

d logPGs
d log s


ssqD

 qD

this is an implicit equation for the transition point sqD.
In actual fact the only part of the model that is used for

the statistical tests is the extreme large s ‘‘tail’’ which

Fig. 9 empirically shows could be bracketed between:

PqD1s\Ps\PqD2s; qD1 [ qD2; s[ sqD1 [ sqD2

(with qD1 = 6, qD2 = 4) hence the Gaussian part of the

model is not very important, it only serves to determine the
transition point sqD. In any case, for the extremes we can

see from the figure that this bracketing is apparently quite

well respected by the empirical distributions.
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