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Abstract. In the present study, we investigate the scaling

properties of the topography of Mars. Planetary topographic

fields are well known to roughly exhibit (mono)fractal be-

havior. Indeed, the fractal formalism reproduces much of

the variability observed in topography. Still, a single frac-

tal dimension is not enough to explain the huge variability

and intermittency. Previous studies have claimed that frac-

tal dimensions might be different from one region to an-

other, excluding a general description at the planetary scale.

In this article, we analyze the Martian topographic data with

a multifractal formalism to study the scaling intermittency.

In the multifractal paradigm, the apparent local variation of

the fractal dimension is interpreted as a statistical property

of multifractal fields. We analyze the topography measured

with the Mars Orbiter Laser altimeter (MOLA) at 300 m hor-

izontal resolution, 1 m vertical resolution. We adapted the

Haar fluctuation method to the irregularly sampled signal.

The results suggest a multifractal behavior from the plane-

tary scale down to 10 km. From 10 to 300 m, the topography

seems to be simple monofractal. This transition indicates a

significant change in the geological processes governing the

Red Planet’s surface.

1 Introduction

The acquisition of altimetric data from the Mars Orbiter

Laser altimeter (MOLA) has motivated numerous analy-

ses of the Martian topography, each one aiming to prop-

erly characterize the surface roughness. A possible approach

is to assume that topography can be statistically described

with quantitative parameters able to characterize the geo-

logical units. Many statistical indicators have been proposed

and widely explored in order to study the surface of Mars:

root mean square (RMS) height, RMS slope, median slope

(Kreslavsky and Head, 2000), and autocorrelation length

(Aharonson et al., 2001) (see Shepard et al., 2001 for a re-

view of all those indicators). Useful information has been

obtained by the use of those indicators, but they have the dis-

advantage of being defined at a given scale. By construction,

they do not directly take into account the scale symmetry

that often occurs in the case of natural surfaces (Mandelbrot,

1967; Turcotte, 1997; Gilbert, 1989; Pommerol et al., 2012).

On Mars, different authors (Nikora and Goring, 2004)

have explored the scaling properties of topography by the use

of scale-invariant parameters. Malamud and Turcotte (2001)

has performed a wavelet analysis to study the polar topogra-

phy of Mars. Other studies performed more classical wavelet

analyses in the spatial domain, following the procedure pro-

posed by Shepard et al. (2001); Orosei et al. (2003) using

a quantity called the RMS deviation computed at different

scales and exhibiting a power-law dependance on scales with

a scaling exponent H (for Gaussian processes, the Hurst ex-

ponent). The value ofH , evaluated at different locations, was

found to be different from one region to the other, revealing

a strong intermittency in the statistical variability of the sur-

face of Mars (Aharonson et al., 2001; Orosei et al., 2003).

The observed intermittency, also found in the case of Earth

(Baldassarri et al., 2008) and less pronounced in the case

of the Moon (Rosenburg et al., 2011, 2015), might lead one

to reject the idea of a global description of any topographic

field at the planetary scale. However, modern developments

in the theory of scale-invariant processes might be able to

a give full account of the observed variability and intermit-

tency. As proposed by Lavallee et al. (1993), it is possible

to extend the fractal interpretation of topography to a multi-

fractal object requiring an infinite number of fractal dimen-

sions (one for each altitude level). Multifractal simulations
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performed by Gagnon et al. (2006) revealed that synthetic

multifractal fields tend to reproduce very convincingly the

variability and intermittency of natural surfaces. A multifrac-

tal study has also been performed on artificial topographic

digital elevation models (DEMs), revealing that multifrac-

tal parameters may be able to discriminate between different

stages in topographic evolution (Vidal Vazquez et al., 2008).

Moreover, a particular class of multifractal called the univer-

sal multifractal has been proposed by Schertzer and Lovejoy

(1987) (see Sect. 2.2). Stable and attractive, universal mul-

tifractals are good candidates for modeling the variability of

topographic fields and have the advantage of being simply

characterized by three parameters (see Sect. 2.2). In the case

of Earth, this formalism has proven to be relevant (Gagnon

et al., 2006), providing a satisfying fit of the structure func-

tion computed in different areas of the globe and allowing

one to quantify multifractal behavior at the planetary scale

through the measurement of three parameters: H (the con-

servation exponent or fluctuation exponent), α (the degree

of multifractality) and C1 (the codimension of the mean). In

this study, we aim to measure the global value of H , α and

C1 in the case of Mars. After a careful choice in the defi-

nition of fluctuations computed from all the available data

in the MOLA database, statistical moments are computed on

a large range of scales in order to estimate the universal mul-

tifractal parameters.

2 Methodology

This section first describes the Martian topography data set

used in this study and the MOLA instrument. The second

part contains some elements of the theory of universal multi-

fractality. The third part contains the description of the Haar

fluctuation tool we adapted in the case of the irregularly sam-

pled Martian topography.

2.1 MOLA

MOLA (Mars Orbiter Laser altimeter Smith et al., 2001) is

a laser altimeter on board the Mars Global Surveyor (NASA)

spacecraft following a quasi-polar and circular orbit. MOLA

has recorded a huge amount of topographic data providing

a well-detailed global mapping of the planet. With 20 mea-

surements every 2 s, a vertical accuracy of 1 m, a surface spot

size of 168 m and approximatively 300 m between two con-

secutive measurements, the MOLA database stored in PDS

(Planetary Data System, http://pds-geosciences.wustl.edu)

constitutes an ideal data set to study the global properties

of Mars’ topography down to the kilometer scale. Topogra-

phy is calculated using the gravity field from Goddard Mars

Model 3 (mgm1025, Lemoine et al., 2001). The global areoid

error through degree 60× 60 for the mgm1025 model is

1.8m. The total number of individual topographic measure-

ments used for the purpose of this study is close to 600 mil-

lion. For methodological reasons, we have decided to limit

the scope of our analysis to the along-track series, meaning

that we exclude all kind of across-track fluctuations (mea-

surements extracted from different orbits). This restriction

might introduce a bias, a consequence of the single preferred

direction (close to north–south) of MOLA’s orbit. Hence,

anisotropic statistical properties if they occur will not be de-

tected by our method. However, the assumption that topog-

raphy is isotropic at the planetary scale seems reasonable.

2.2 Universal multifractality

The topography is a two-dimensional field providing, for

each pair of latitude–longitude, an elevation value. In order

to investigate the scaling properties of such fields, we must

study the distribution of slopes at different scales or, equiv-

alently, the fluctuations of elevation from one point to the

other. The simplest way to define fluctuations is to compute

the first difference for each couple of elevation data. The for-

malism used in this study is largely based on Lovejoy and

Schertzer (2013).

Once fluctuations are defined, a common way to explore

the scaling properties of any geophysical field is to com-

pute statistical moments of several orders and at different

scales. If the field is scaling and if the fluctuations are defined

properly, statistical moments will appear as straight lines on

log–log plots, meaning they follow a power-law dependency

on scales. This property is expressed by Eq. (1), where 1h

stands for fluctuation of elevation and 1x stands for scale.

In the case of simple fractality (i.e., monofractality), the q

dependency of ζ(q) is purely linear: ζ(q)= qH , where H

is called the conservation exponent used in honor of Edwin

Hurst (typically a fractional Brownian motion). A single co-

efficient (H ) is sufficient to describe the global statistics that

can be easily estimated by computing statistical moments of

order 1 and 2 to obtain the slope of ζ(q)= qH .

In the multifractal case, the scaling function is corrected by

a additional quantity K(q), called the moment scaling func-

tion: ζ(q)= qH −K(q).

〈1hq〉 ∼1xζ(q) (1)

ζ(q)= qH −K(q) (2)

Although three moments of distinct orders are in principle

sufficient to establish the curvature of ζ(q) and assess mul-

tiscaling properties, a field with general multifractal symme-

tries would require one to determine all statistical moments

(non-integer orders included) to fully describe the statistics.

Practically, the estimations of moments of multiple orders

can be misleading. Indeed, the estimates of high-order mo-

ments (typically moment of order > 2) are often biased by

multifractal phase transition in the effective ζ(q): beyond

critical values of q, statistical moments may all depend on

the largest value in the sample, spuriously leading to linear

behavior in the exponent (and diverging as the sample size

increases) (Schertzer and Lovejoy, 1993). Therefore, we will
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cautiously focus on moments of order < 2 that can still pro-

vide meaningful information on the shape of ζ(q). In order

to characterize multiscaling, we will use three independent

multifractal parameters introduced by Schertzer (1997).

– The mean fluctuation exponent H = ζ(1). A conse-

quence of Eq. (1), the valueH = 0 is obtained for a field

that is strictly scale-invariant (conservative), whereas

H 6= 0 rather corresponds to a fractional integration of

a conservative field.

– The codimension of the mean field H −C1 =
dξ(q)

dq

∣∣∣
q=1

measuring the mean intermittency. If C1 = 0, the field

is homogenous. A non-zero value of C1 indicated inter-

mittency. In the case of topography, C1 is expected to be

close to 0.1 (see the case of Earth Gagnon et al., 2006).

– The index of multifractality α = 1
C1

d2ξ(q)

dq2

∣∣∣
q=1

that esti-

mates the curvature of ζ(q) near q = 1. It provides in-

formation about the relative variation of intermittency

around the mean. If α = 0, ζ(q) is linear around q = 1,

indicating a monofractal behavior.

As a consequence of the above definitions, any estimate of

H , α and C1 will rely on computing non-integer-order mo-

ments around the mean q = 1. In the most general multi-

fractal case, this set of three parameters only provides a re-

stricted description of statistics in the neighborhood of the

mean (first-order moment) and presumes nothing of the vari-

ability that may be revealed by higher-order moments. Still,

there exists a class of multifractal called the universal multi-

fractals (Schertzer, 1997) whose associated structure func-

tion is fully determined by H , α and C1. In other words,

for a member of this class, a set of only three parameters

is enough to characterize all the statistical moments. Equa-

tion (3) indicates the mathematical form expected in the case

of universal multifractality with a moment scaling function

depending only on α and C1.

K(q)=
C1

α− 1
(qα − q)(0≤ α ≤ 2,0≤ C1). (3)

3 Haar fluctuations for irregular signals

Mars is well known for presenting huge fluctuations of alti-

tude on its surface despite its relatively small radius in com-

parison to Earth (RMars = 3390 km). Indeed, Olympus Mons

culminates at 22.5 km above the adjacent lowlands. In this

context, we have to define fluctuations in order to provide

an accurate statistical study. It is well established that data

analysis strongly relies on defining the fluctuations at a given

scale and location. Of course, the chosen definition must ad-

equately characterize the fluctuations and has to be picked

among all the possible definitions depending on the context.

As mentioned earlier, the simplest definition is the absolute

difference that might not be accurate in some cases. For in-

stance, in the case of a fractal field with H < 0 (a Gaussian

white noise has H =−1/2), absolute differences will only

characterize fluctuations with high wave numbers instead of

the local fluctuations at a given scale. In the case of topogra-

phy, H is expected to be > 0, so absolute differences might

be meaningful. Still, it is possible to consider a more gen-

eral definition of fluctuations that can apply for both cases

(−1<H < 1): the Haar fluctuations.

The definition is given by Eq. (A1). For each even number

2n of along-track consecutive points, we compute the aver-

age A of the first n points (〈hi〉1, i = 1. . .n) and the average

B of the n last points (〈hi〉2, i = n+ 1. . .2n). The fluctuation

at scale L is defined by the absolute difference | B−A |, L

being the spherical distance between the first point and the

last point. On synthetic multifractal series obtained by simu-

lation (Lovejoy and Schertzer, 2012), Haar fluctuations have

proven to be strong estimators of the input multifractal pa-

rameters. However, Haar fluctuations unlike first differences

are more complicated to implement, particularly in the case

of one-dimensional irregular series (see Appendix A). For the

purpose of this analysis, we computed both first-difference

and Haar fluctuations. Although the two methods produced

similar results (as expected sinceH > 0), we noticed a better

convergence in the case of Haar fluctuations. Hence, in the

result Sect. 4, we will focus on the results obtained by Haar

fluctuations.

4 Results

For each scale, we compute moments of several orders q =

0.1,0.2. . .2. The scale dependence of every moment is ex-

pected to be a straight line on a log–log plot with a slope

predicted by Eq. (2). Figure 1 shows the results (plot on the

left). In order to compare the experimental results to simula-

tions, the right plot in Fig. 1 is obtained by performing the

same analysis on synthetic series with multifractal param-

eters H = 0.5, α = 1.7 and C1 = 0.1. The global aspect of

curves in Fig. 1 (right plot) and their resemblance to synthetic

curves over a significant range of scales strongly confirm the

scaling behavior of topography with a value of H close to

0.5. Still, some features need to be discussed. We will focus

on scales> 600 m where reasonably straight lines occur (due

to the definition of Haar fluctuations, no relevant data can be

found outside that range). In Fig. 1 (right plot), statistical mo-

ments seem to exhibit two distinct scaling regimes. The first

regime starts at 10 km to the planet scale 20 000 km covering

nearly 4 orders of magnitude. The second one is identified

in the range of scale (600 m to 10 km) covering 1 order of

magnitude. Scaling needs to be studied separately for both of

these ranges of scale.
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Figure 1. Statistical moments of several orders (from 0.1 to 2) as a function of scale for simulated series (left plot) and for actual MOLA

data (right plot). In both plots, red diamonds (or red triangles) stand for moment of order 1 (or order 2). Integer-ordered moments are also

computed in order to test the multifractal formalism. They are plotted in shades of red (left plot) and blue (right plot).

4.1 Possible artifacts

Before going any further, we discuss in this section possi-

ble artifacts that may cause the observed transition around

10 km.

– Uncertainty due to the accuracy of measurement at

small scales: the characteristics presented in Sect. 2.1

indicate that the error in the topography measurement

is a few meters (areoid error + instrument error), lower

than the mean fluctuations at the lowest relevant scale

(∼ 10 m in Fig. 1). Hence, if there is a bias at small

scales, it can not be responsible for the transition iden-

tified around 10 km, the mean fluctuation at that scale

being close to 40 m.

– Due to the quasi-polar orbit of MOLA, the density of

measurements depends on latitudes. The minimum is

obtained near the Equator, whereas the maximum is ob-

served near the poles. This could introduce a bias into

our results. Indeed, a global analysis might only reflect

the statistics of high-latitude regions where the signal is

oversampled in comparison to low latitudes. To check

that hypothesis, we performed the following: for each

contributing fluctuation, we apply a factor cos(θ), θ be-

ing the latitude of the center of the fluctuations in order

to artificially restore the homogeneity. This statistical

correction reduces the weight of the contributions over

a range of latitudes to compensate for the oversampling.

It turned out that the final result is unaffected by this

correction, rejecting the hypothesis of a bias due to an

inhomogeneous density of measures.

– By construction, all fluctuations have a privileged ori-

entation (north–south) due to the orientation of along-

track series. We can not exclude the possibility that

a similar analysis would produce a different result with

a different along-track direction. This would occur in

the case of a strong anisotropy of topography at the

planetary scale, outside the scope of this analysis.

4.2 Scales > 10 km

Over nearly 4 orders of magnitude, beginning from around

10 km up to the planetary scale, the linear behavior of sta-

tistical moments up to order 2 is quite accurate, as shown

in the right plot from Fig. 1 (the area between 4 and 7 in

log10 units). The global scaling behavior is established over

that range of scales, but the multiscaling properties (if they

occur) still need to be tested. In order to apply the universal

multifractal formalism, we evaluate the slope of each curve in

Fig. 1 by computing linear fits. Figure 2 illustrates the results

obtained on each curve. As one can see, the linear regres-

sion is rather satisfying. For scales> 10 km, each fit provides

a scaling exponent that can be studied as a function ζ(q) (q

being the statistical moment order) in order to test the valid-

ity of Eqs. (1) and (2). In Fig. 3 (red points), we have plotted

the experimental structure function ζ(q). The apparent cur-

vature of ζ(q) in Fig. 3 indicates multiscaling. Indeed, in the

case of simple scaling behavior, the structure function is ex-

pected to be linear: ζ(q)= qH . Instead, the 21 red points in

Fig. 3 can not be adjusted by a simple linear fit.

The multifractal formalism may be tested by adjusting the

experimental structure function ξ(q) with Eq. (2). In Fig. 3,

the red lines show that the experimental structure is accu-

rately adjusted, indicating that the universal multifractal for-

Nonlin. Processes Geophys., 22, 713–722, 2015 www.nonlin-processes-geophys.net/22/713/2015/
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Figure 2. Linear fit on the two different scaling regimes (below and

above 10 km) for every 21 statistical moments from 0.1 to 2. The

color code is the same as in Fig. 1. Quantities on that plot are scaled

according to the moment scaling function ξ(q).

malism is well suited to fitting the data with only three pa-

rameters H , α and C1. Moreover, it allows us to estimate the

values of the degree of multifractality α and the codimension

of the mean C1. Those estimates are presented in Table 1.

4.3 Scale < 10 km

Over the range of scales covering only 1 order of magnitude,

the behavior is clearly different. Still, topography seems to

exhibit scaling behavior over that range. Figure 2 shows the

linear fit obtained, indicating that the log–log variations of

moments according to scale is again satisfyingly linear. How-

ever, slopes are significantly steeper: fluctuations decrease

faster when the scale decreases, indicating a larger H . The

regression slope is computed for each statistical moment in

order to study the experimental structure function. Figure 3

(blue points) shows the result. As one can see, the behavior

differs from the one analyzed earlier. This time, the q depen-

dence of the structure function is clearly linear, indicating

that topography is not multiscaling in that range of scale.

5 Conclusions

Our goal was to validate the accuracy of the universal mul-

tifractal formalism to describe the global scaling properties

of the Martian surface in order to test whether the rough-

ness intermittency is scaling. From our results, multiscal-

ing seems to occur over a large but restricted range of scale

(above 10 km). At a smaller scale, the topography is still scal-

ing, but the symmetry is only monofractal, with a parameter

H = 0.75.

This result is consistent with Aharonson et al. (2001), who

obtained similar results by studying the power spectra of two

Figure 3. Theoretical structure function ζ(q) combining the 21 lin-

ear fits shown over Fig. 2. Red points (or blue points) correspond to

the range of scales larger (or smaller) than 10 km.

Table 1. Estimates of the fractal and multifractal parameters for

scales below and above 10 km. The last two columns were taken

from Aharonson et al. (2001). Region 1 is a heavily cratered south-

ern terrain. Region 2 is an area in the northern lowland.

scale H α C1 A(2) β β(reg.1) β(reg.2)

> 10 km 0.52 1.86 0.11 0.85 1.85 1.4 2.0

< 10 km 0.76 NaN NaN 1.43 2.43 3.4 3.4

large significant regions of Mars (similar scale break). The

power spectrum of a topographic transect is related to the

second-order moment (square of Fourier transform) and is

therefore expected to obey a scaling law if the global topog-

raphy is scaling. Let β be the scaling exponent for the power

spectrum. It can be shown that β is related to the structure

function for q = 2. This relation is given by the following

equation:

β = ζ(2)+ 1= 2H + 1−K(2). (4)

Aharonson et al. (2001) found two scaling regimes similar

to ours with a transition around 10 km. Our estimates of β for

the small- and large-scale regimes are given in Table 1. Cor-

responding results from Aharonson et al. (2001) are also re-

produced. For scales greater than 10 km, we found β = 1.85

to be compared to the estimate of Aharonson et al. (2001)

in region 1 (heavily cratered southern terrain) where β = 1.4

and region 2 (area in the northern lowland) where β = 2.0.

Our global estimate of β = 1.85 stands between the values

obtained by the authors. As we found multiscaling properties

in that range of scale (> 10 km), we can interpret this dif-

ference in terms of intermittency, i.e., local variations of β.

www.nonlin-processes-geophys.net/22/713/2015/ Nonlin. Processes Geophys., 22, 713–722, 2015
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Indeed, intermittency is an expected feature of multifractal

fields. For scales less than 10 km, our estimate of β differs

clearly from the one obtained by Aharonson et al. (2001).

Still, it might be interesting to notice that the authors found

a similar value of β in both of these regions, indicating a low

intermittency in that range of scale. This is consistent with

our previous conclusion about the monofractal nature of scal-

ing in that range of scale. At low scales, the measured value

of H (0.75) is close to the value obtained by Schmittbuhl

(1995) in the case of fractured topography (H = 0.8), indi-

cating that this process may play a role in that range of scale.

We demonstrate that a change in processes governing the

Martian topography occurs at 10 km. The generic multifrac-

tal process is a multiplicative cascade. Such processes can re-

produce the statistical behavior at scales greater than 10 km,

but a simpler monofractal scaling process occurs at smaller

scales. Craterization is well known to be a fractal process

with a single fractal dimension (Rosenburg et al., 2015).

We propose that the low scales are dominated by crateriza-

tion processes, at the origin of the monofractal scaling law.

This process has already been proposed by Aharonson et al.

(2001). Future investigations are required to understand the

multiplicative cascade processes at a large scale.

Nonlin. Processes Geophys., 22, 713–722, 2015 www.nonlin-processes-geophys.net/22/713/2015/
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Appendix A: Haar fluctuations for irregular signals

1x(L)= 〈hi〉2−〈hi〉1 (A1)

A1 Irregularity

The above definition for Haar fluctuations implicitly requires

that along-track points are regularly spaced. However, the ac-

tual MOLA data sets exhibit different kinds of irregularities,

mainly due to the occurrence of clouds of various lengths

and random dysfunction of the instrument that might intro-

duce a bias into our analysis. Figure A1 provides typical ex-

amples of such irregularities in the MOLA along-track series

and Fig. A2 shows the distribution of distance between two

along-track points computed among the entire MOLA data

set. It clearly indicates that most of the points are ∼ 300 m

spaced, as expected, but a subsequent numbers of irregulari-

ties occur (one point missing, two points missing, etc.).

In order to take this into account, we define an adjustable

quality criterion for the Haar fluctuations (see Lovejoy,

2014): for a given fluctuation at scale L, we compute the

spherical length of the first half L1 and the spherical length

of the second half L2. In the case of perfect regularity, L1 is

exactly equal to L2. If the measures are non-equally spaced,

L1 might be inferior or superior to L2. The degree of irreg-

ularity may be estimated by a ratio R defined by Eq. (A2),

equal to 0 if the measures are regular, and close to 1
2

in the

case of extreme irregularity.

R =

∣∣∣∣1

2
−

L1

L1+L2

∣∣∣∣ (A2)

The next step is to define a threshold to be applied to the

ratio so that irregular fluctuations can be excluded from the

global analysis. The threshold has to be chosen carefully:

a very restrictive threshold might be damageable by exclud-

ing a lot of fluctuations. Indeed, a huge amount of fluctua-

tions is needed for a statistical purpose. On the other hand, a

nonrestrictive threshold might involve irrelevant fluctuations

in the calculation. That may also introduce a bias.

A2 Choice of a threshold

In this paragraph, we try to quantify how the choice of

a threshold might affect the analysis. For that purpose, we

have analyzed multifractal simulations after having manually

introduced holes of different kinds into the data. To produce

relevant statistics, 1000 universal multifractal series have

been generated using the simulation technique called the

fractionally integrated flux (FIF) developed by Schertzer and

Lovejoy (1987) (http://www.physics.mcgill.ca/). Each series

is composed of 100 000 equally spaced points. The univer-

sal scaling parameters used for this simulation are H = 0.5,

α = 1.7 and C1 = 0.1. That particular choice relies on the as-

sumption that scaling laws on Mars might be similar to the

ones observed on Earth (see Gagnon et al., 2006). The first

step is to introduce irregularities in order to reproduce the

MOLA distribution of distance between consecutive points

plotted in Fig. A2. This is obtained by suppressing data from

the synthetic series. The accurate number of artificial holes

of different kinds (one point missing, two points missing,

etc.) is adjusted by comparison with the actual distribution of

holes plotted in Fig. A2. This figure compares the effective ir-

regularity of MOLA (blue line) and the synthetic irregularity

distribution manually introduced in simulations (red points).

The kind and distribution of irregularities are realistic if red

points coincide with maxima of the blue lines. As one can see

in Fig. A2, the correspondence between simulated and actual

data is satisfying.

We can now compute Haar fluctuations on both biased and

unbiased data and see how the choice of a threshold impacts

the analysis of the biased series. We evaluate statistical mo-

ments of order q = 0.5, q = 1, q = 1.5 and q = 2 at differ-

ent scales with different values of threshold R. Figure A3

shows how the biased moments deviate from the unbiased

ones depending on the threshold. As one can see, the dif-

ference between blue dots and red dots in Fig. A3 is mini-

mal, regardless of the threshold. Our conclusion is that in the

case of a huge data set and given a relatively small density of

missing points, the statistical multifractal properties are not

significantly affected by high-ratio fluctuations. Hence, we

are left to chose the least restrictive ratio in order to involve

as many fluctuations as possible in the calculation and opti-

mize the convergence. In the following analysis, the ratio is

fixed at R = 0.5 (completely unrestrictive). The total num-

ber of fluctuations computed to perform this analysis is over

a billion that are spread into 74 bins of scales, equally spaced

logarithmically from the largest scale possible (10 000 km,

the half-circumference of the planet) down to the meter scale.

Figure A4 shows the distribution of Haar fluctuations accord-

ing to scale. Under 600 m (∼ 102.7), the number of fluctua-

tions decreases really fast, a consequence of the definition of

Haar fluctuations.
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Figure A1. A few examples of irregularly spaced points in the MOLA database.

Figure A2. Comparison between effective irregularities in the MOLA database and artificial irregularities in simulations. Irregularities are

expressed as a proportion of occurrences from the maximum possible in log10 space (0 means all fluctuations are observed). The blue line

represents the effective irregularity of actual data. Red points are obtained from the synthetic irregularities in multifractal simulations. The

good agreement between maxima of the blue curve and red points indicates that effective irregularity is accurately reproduced by simulations.
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Figure A3. Statistical moments of order q = 0.5, q = 1, q = 1.5

and q = 2 computed for biased and unbiased synthetic data at dif-

ferent scales. From left to right, the threshold isR = 0, 0.25, and 0.5

from the more to the less restrictive. Blue points stand for the regu-

lar reference data. Red points represent irregular series (all ratios).

Red points are satisfyingly centered inside blue points, regardless

of the threshold. Therefore, the kind of irregularity that occurs in

real data does not significantly impact the quality of Haar analysis.
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Figure A4. Distributions of Haar fluctuations depending on the

scale.
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