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Summary Rain-drop size and position data were obtained for five different storms in the
HYDROP (HYdrometeor Detection and Ranging using stereO-Photography) experiment [Desaul-
niers-Soucy, N., 1999. Empirical test of the multifractal continuum in rain, Ph.D. thesis, McGill
University, Montréal; Desaulniers-Soucy, N., Lovejoy, S., Schertzer, D., 2001. The HYDROP
experiment: an empirical method for the determination of the continuum limit in rain. Atmos.
Res. 59—60, 163—197]. The data from 18 scenes of an region ~8 m* each containing 5000—
15,000 rain drops were systematically and statistically analyzed in spheres ranging from
10 cm to 2 m in diameter. In four of the five storms, we found convincing evidence for the con-
vergence to a multifractal scaling limit as the number of drops (N) per sphere was increased; the
observed scaling exponents were quite close to those reported in the rain literature at much
larger scales. By randomizing the positions of the drops, we directly compared the true fluctu-
ation statistics with those of the classical theory; the fluctuations in the latter were significantly
smaller. Careful consideration of the meteorological conditions, in particular the turbulence
intensity and the drop size distributions, explained the observed variations in the scale of
convergence to the multifractal regime.
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are concerned with large numbers N of such particles. In
much the same way as standard continuum mechanics treats
molecules collectively ignoring their particulate nature,
precipitation is usually treated as a continuous field. In stan-
dard treatments of fluid mechanics (e.g., Batchelor, 1970;
Tritton, 1990 etc.), the classical continuum limit is graphi-
cally illustrated by considering an immaterial sphere of ra-
dius r filled with air, e.g., a sample of the atmosphere.
For r small compared to the mean inter-molecular distance,
there will be large fluctuations in properties such as mean
density or velocity depending on whether zero, one, or sev-
eral molecules are present inside the volume. As r and
therefore N are progressively increased, the relative fluctu-
ations become smaller (classically, they decrease as N~'72).
In the atmosphere under standard conditions — even at
scales of tens of microns — the continuum hypothesis for
air accurately holds. However, due to turbulent variations
in the macroscopic density, temperature, pressure, veloc-
ity, etc. at scales typically of the order of a millimeter to
a centimeter, the mean will start to vary again. Neverthe-
less, there exists a range of scales (from microns to millime-
ters) over which the properties are independent of the
radius r. This justifies the continuum hypothesis. By averag-
ing over volumes whose radius is much larger than the
microscale while simultaneously much smaller than the
macroscale, the continuum hypothesis allows us to define
the macroscopic continuum quantities.

In the same fashion, the assumption in cloud and precipi-
tation physics has been that, in the large N limit, particle
sizes, spatial distributions, rain/snow rates, and liquid water
content (LWC) are classical continua. This has many implica-
tions including the prediction that, for large enough samples,
the spatial distribution should be Poissonian and that the drop
size statistics should be independent of the measuring vol-
umes. In spite of its important implications in cloud and rain
modeling and measurement — although it is partly linked to
experimental difficulties — only limited effort has been made
towards a systematic experimental test of this assumption.
This is true even though, simply due to the effects of turbu-
lence, the existence of a classical continuum in rain is far
from evident. Indeed, from the largest scales on down, it is
not obvious that homogeneity is ever reached even at small
scales of the order of the typical inter-drop distance.

Precipitation is strongly coupled to the wind field which
is itself highly turbulent (see, e.g. Anselmet et al., 2001,
for a recent review). Even in strong rain, the mean inter-
drop distance is typically of the order of ten centimeters
(see, e.g. the direct measurements below) and at least at
the small scales, the wind is multifractal — the result of cas-
cade processes concentrating energy and other fluxes un-
evenly into progressively smaller regions of space. One
would therefore expect the precipitation to similarly exhibit
a hierarchical clustering pattern at least down to a drop-size
dependent inner scale where the inertia of the particles be-
comes important and where the drops ‘‘decouple’’ from the
wind. In fact, starting in the early 1980s, this is exactly what
has been found at larger scales — first fractal structures
(e.g., rain perimeters, Lovejoy, 1982), and then multifrac-
tal statistics (e.g., Schertzer and Lovejoy, 1985, 1987; Love-
joy et al., 1987); see the review Lovejoy and Schertzer,
1995 and the quantitative intercomparison in ‘‘Multifractal
results in rain’’.

Several types of rainfall and cloud analyses have been
conducted in order to study the small scale properties of
rain and clouds. Until now they have not been able to suc-
cessfully investigate the large N limit by considering large
enough N over a wide enough range of scales. Most of the
relevant studies (mostly time series) have been made with
disdrometers. More detailed reviews of the literature can
be found in Desaulniers-Soucy (1999), Desaulniers-Soucy
et al. (2001); here we only mention a few of the more rele-
vant highlights in rain. Recent examples of the classical ap-
proach are Kostinski and Jameson (1997, 1999), Jameson
and Kostinski (1998, 1999, 2000a,b, 2001, 2002), Jameson
et al. (1999) and Uijlenhoet et al. (1999) who have used
disdrometers to investigate the size distributions of rain-
drops and their corresponding times of arrival over narrow
ranges of scales. Relevant studies using other measurement
devices include Kozikowska et al. (1984), Paluch and Baum-
gardner (1989), Brenguier (1993), Malinowski and Zawadzki
(1993). First — and most important — none of these studies
have found evidence that pure Poisson behavior is a good
description of rain statistics. On the contrary, they found
systematic deviations from pure Poisson statistics in time
series and in a few instances in spatial experiments. For
example, Uijlenhoet et al. (1999) found a deviation from
Poisson statistics for drops <1.14 mm, consistent with the
intuitive idea of a decoupling of the largest drops from
atmospheric dynamics at the smallest scales; Jameson
et al. (1999) found clustering in drops over time scales of
seconds to minutes. In spite of the existence of those sys-
tematic departures from Poisson statistics, the tendency
has been to introduce correction models such as ‘‘doubly
stochastic Poisson process’’, ‘‘Poisson mixture’’, and
‘‘compound Poisson processes’’ (e.g., Jameson and Kostin-
ski, 1999) that attempt to account for departures in what
could be called a ‘‘scale-bound Poisson framework’’. Such
models are not appropriate for processes with heterogene-
ity over wide ranges of scales, so that it is not surprising that
this literature has been mostly divorced from the scaling lit-
erature. Existing compound Poisson models are ad hoc in
the sense that there is no underlying turbulent cloud theory
which predicts them. They are introduced simply in an at-
tempt to mimick the data over narrow ranges of scale. In
contrast, cascade models are turbulence-based physical
models albeit ‘‘phenomenological’’, which predict multi-
fractal statistics from more basic considerations. These
are conservation of fluxes, scale invariance and Fourier
space locality of interactions (the dynamics mostly links
scales which are not too different — hence the cascade phe-
nomenology). These basic cascade properties are verifiable
features of the dynamical (e.g., Navier—Stokes) equations.
Multifractal compound Poisson models in which the number
density of particles is Poisson but with space-time mean
determined by a cascade process are compatible with turbu-
lence and will be discussed elsewhere.

Very few small scale studies have attempted to system-
atically consider the statistics as functions of scale (see
however Lovejoy et al. (2003) which is a very brief
‘*announcement’’ of the results detailed here). At the drop
scale, an early exception was a study by Lovejoy and Schert-
zer (1990) who investigated possible fractality of the sup-
port of rain (whether or not the support of rain is fractal,
the rate in the raining regions can still be multifractal).
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They used chemically treated blotting paper to record rain
drop positions in a two-dimensional surface of 128%cm?
and claimed evidence for fractal clustering of individual
drop positions and liquid water with D = 1.83 (and codimen-
sion equal to d — D=0.17, where d =2 is the dimension of
measuring space). Unfortunately, there were only 452 drops
so it was concluded that larger scale studies were required
(as underlined by Gabella et al., 2001). In spite of their lim-
itations, these results were consistent: in Gabella et al.
(2001), 16 simulations replicating the experiment lead to
the conclusion that although the systematic and random er-
rors in the blotting paper experiment limit the accuracy of
the results, the non-fractal result D = 2 was unlikely ‘‘since
2 realizations (out of 16) had D < 1.84, 6 had D < 1.88 and 13
had D < 1.92°’. In support of these early results was a study
by Lavergnat and Golé (1998) who found that the histograms
of the arrival times of rain drops follow a power law (Pareto)
behavior, which is a scaling distribution also implying hierar-
chical clustering of arrivals. Also relevant — although not
quite at the drop scale — was the study of an x — t rain sec-
tion (a spatial cut evolving in time) at a 3 m, 0.1 s resolution
(up to 540 m, 500s) obtained with a lidar (Lovejoy and
Schertzer, 1991), showing anisotropic multifractal space—
time scaling of the high resolution lidar backscatter field.
These three studies all confirmed the existence of scaling
in various small scale rain statistics. Other relevant small
scale scaling studies are those of cloud liquid water; Love-
joy and Schertzer (1995) and Davis et al. (1996) have shown
that the cloud statistics are indeed multifractal down to at
least 10 m.

In a recent paper, Fabry (1996) measured the acoustic
noise produced by rain hitting an approximately 2 by 2 m
sheet of metal. An analysis of the time series indicated a
break somewhere around 1s. This was interpreted as an
indication that there was a characteristic time scale of
~10m in rain. This conclusion follows only if we follow
Fabry and use an ad hoc drop velocity of 10 ms~'. Had Fabry
used instead a turbulent velocity to convert from time to
space, he would have found a scale of 1 m (i.e., the scale
of the sheet) implying that his measured time scale was sim-
ply the time corresponding to 1 m sized spatial structures
and therefore was not a fundamental scale in rain.

Finally, we could mention another paper by Zawadski
(1995) which interprets rain-drop time series from disdrom-
eters. He estimates that the correlation codimension is
~0.07 for drops smaller than 0.05 mm in diameter (in the
same paper, good statistical scaling of effective radar
reflectivity is obtained for a single radar scan over the spa-
tial range 1—20 km).

The HYDROP experiment

The HYDROP stereophotographic experiment (Desaulniers-
Soucy, 1999; Desaulniers-Soucy et al., 2001) is the most
recent in a series of experiments aimed directly at investi-
gating the large N limit in rain (homogeneous/classical or
scaling/multifractal) over the range of several centimeters
to several meters.

HYDROP used three adjacent nearly collinear Hasselblad
cameras with 60 mm film. They were triggered near-simul-
taneously to reconstruct the three-dimensional rain-drop
positions and size distributions using stereophotography.

Two key empirical constraints were to be considered: (1)
rain-drops fall relatively rapidly (up to 10ms~', e.g.,
Beard, 1976); (2) the backscattered light intensity at the
cameras is typically only 107'° of the intensity incident on
the rain-drop. The first constraint implies that in order to
‘‘freeze’’ the drops, the photographs had to be taken over
very short time scales; the second constraint implies the
use of very powerful light sources. To this end, a =50 pus
time scale flash with two 1 kJ flashlamps was used. In addi-
tion, the camera shutter had to be open for a time of the
order of 1/30s — i.e., long enough to guarantee synchroni-
zation of the cameras with the flashes. This meant that the
pictures had to be taken at night in order to minimize the
background illumination. In order to match the film resolu-
tion of 6 um and obtain a wide dynamic range of 12 bits of
information per pixel, the resulting negatives were digitized
using the scanning microdensitometer of the Dominion
Astrophysical Observatory in Victoria. Since as many as
100,000 drops could be present on any given negative, the
shape of each individual drop had to be parameterized as
functions of projected image intensity distributions to make
drop-matching between the negatives possible (see Desaul-
niers-Soucy, 1999 or Desaulniers-Soucy et al., 2001 for more
details).

The exact geometry of the stereophotography was com-
puted by first manually matching a set of roughly 50 drops
across all three negatives and then reconstructing their
three dimensional positions based on their two dimensional
positions on each of the three negatives. This allowed
regression algorithms to estimate the 20 odd projection ma-
trix elements of the stereophotographic geometry, which
allowed automatic matching of all the other drops based
on their position and also on their intensity distribution
parameters. Rain drop positions were determined to within
£3mm in the lateral direction and £3 cm in the depth of
view direction. This uncertainty is somewhat smaller than
the typical mean interdrop distance (~10cm) and does
not significantly affect the statistics we discuss below, as
they are over still larger distances. Since the drops act as
lenses, the image of both light sources was clearly visible
as two intensity peaks in the digital image of larger drops.
The size of large rain drops was thus estimated by combin-
ing the angle subtended by the image of the intensity peaks
on the rain-drop image and the estimate of its distance
from the cameras. For smaller drops, the size was com-
puted using the less accurate method based on the back-
scattered intensity, the inferred flashlamp illumination
field and the drop position. Drop size was determined with
an accuracy of +0.25 mm for drops >1 mm and 0.5 mm for
drops <1 mm. The detection limit was 0.2 mm based on the
resolution of the film used. Many other parameters were
tuned to the same limit (e.g., diffraction and ‘‘out of fo-
cus’’ settings of the optics, the scanning resolution, etc.).

In order to optimize the experiment, different set-up
geometries were tested. The size of the region of interest
(ROI), which was the region (roughly) homogeneously lit
(using custom-built parabolic reflectors) and in which rain-
drops were in sharp focus, was ~8—10 m> varying slightly
depending on the experimental lay-out used. Within the
ROI, a total of between ~5000 and ~20,000 drops were
reconstructed for each of the 18 realizations studied, ob-
tained during five different rain events; this represented
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roughly half the total nhumber of drops whose positions were
reconstructed, and all but 10% of potential drop image can-
didates within the ROI.

The remainder of the paper is structured as follows. In
‘*Theoretical overview’’, we give a theoretical description
of multifractals (‘‘Properties of cascades: conservative mul-
tifractals’’ and ‘‘Geophysical fields and non-conservative
multifractals’’), we review the results obtained for the uni-
versal multifractal exponents obtained in previous studies of
rain ("‘Multifractals results in rain’’) and we contrast the
predictions of the classical and multifractal statistics. In
‘‘Description of the data sets’’, we give a brief qualitative
and meteorological description of the five rain events. In
**Analysis’’, we introduce the method used to statistically
investigate the nature of the large N limit. We then discuss
the scaling of the statistical moments of particle size distri-
bution and liquid water content and comment in detail on
the effects of the particle size distributions on the scale of
convergence to the large N limit (“‘The statistical analysis
forincreasing scales’’ to *“Number, volume and (normalized)
nth power density drop size distributions and (mono) fractal
drop distributions’’). In ‘‘Universal multifractal parame-
ters’’, we apply the universal multifractal model to each rain
event to estimate the universal multifractal parameters for
each rain event. Finally, in ‘“‘Implications of universality
for the radar reflectivity factors Z (7 = 2)’’, we briefly discuss
the implications for the radar reflectivity Z.

Theoretical overview
Properties of cascades: conservative multifractals

In theoretical terms, the wind field is often considered to be
the solution of a complex set of coupled non-linear partial
differential equations. Structures/eddies in these fields
are non-linearly coupled over a wide range of scales. Since
the non-linear terms in the dynamical equations conserve
the flux of energy while effecting a scale invariant transfer
to smaller scales, the wind exhibits scaling properties; the
best known statistical behavior is the Kolmogorov k—>/3 en-
ergy spectrum (where k is the wavenumber). The scaling is
broken only at the large scales due to the energy injec-
tion/forcing mechanism and at the small scales due to
molecular dissipation/viscosity. Although there are no
comparable non-linear partial differential equations that
describe the rain field — the latter is always ‘‘parameter-
ized’’ — there is no reason to expect that rain breaks this
scale invariant symmetry. However, this statement does
not imply a one-to-one correspondence between the rain
field and the wind field any more than the Corrsin—Obukhov
law of passive scalar advection which implies a one-to-one
correspondence between the scalar and the wind field. In-
deed, the multifractal generalization of the Corrsin—Obuk-
hov law involves two non-trivially coupled cascades, one
for the energy flux and one for the passive scalar variance
flux. Similarly, Schertzer and Lovejoy (1987) proposed that
rain is the result of a precipitation cascade coupled to the
dynamical (wind) cascade. The direct conceptual link be-
tween the dynamical equations and the (phenomenological)
multiplicative cascade model is the scale by scale conserva-
tion of the energy ¢ and other fluxes by the non-linear

terms. In multiplicative cascades, the conserved fluxes pass
through the system from large scales down through to struc-
tures at increasingly smaller scales. The small scale struc-
tures are modulated multiplicatively by the larger scale
structures in a scale invariant way. Note that it is the energy
flux through an eddy which is a multiplicative random vari-
able, not the size of the eddy itself as in Jameson and
Kostinski (1999). The succession of weak and strong modu-
lating factors renders the survival of structures more com-
plex and leads to a wide range of intensities ¢, for larger
and larger scale ratios A = L/ (L is the largest available scale
of the set and [ is the scale of investigation). This corre-
sponds to the appearance of a hierarchy of singularities y
that are the exponents of divergence of the intensities in
the small scale limit (i.e., very large resolution limit). The
total flux is conserved, in the sense that (on average) it is
independent of scale, (¢) =1. The fraction of space occu-
pied by a singularity of order y has a (statistical) codimen-
sion c(y), i.e., the probability ‘‘Pr’’ of exceedance of a
given threshold A’ is scaling:

Pr(c, = /') ~ 20 (1)

The equality in Eq. (1) is to within slowly varying factors
(such as logarithms). When c(y) is smaller than the dimen-
sion of the embedding space d, (almost surely) every region
where ¢; exceeds 2’ has a fractal dimension D(y) =d — c(y).

We can equivalently describe the statistical properties of
a random variable by all of its statistical moments:

(&) o 2@ (22)

where K(q) is the (convex) moment scaling function. In the
very large 4 limit, Pr(e; > A7) and (¢}) are related by a Mellin
transform which reduces to a Legendre duality for the expo-
nents c(y) and K(q) (see e.g., Parisi and Frisch, 1985, for a
development in a somewhat different context):

K(q) = max,(qy — (7))
c(y) = maxq(qy — K(q))

The statistics will then depend on the resolution A (i.e., the
scale of the region [ = L/2) over which the statistics are ta-
ken and on the order of singularity y (or equivalently its cor-
responding statistical moment q).

It is important to briefly discuss the meaning of the exis-
tence of a hierarchy of singularities, with particular empha-
sis on the rain rate (Schertzer et al., 2002). If rain is
multifractal, then, contrary to usual assumptions, rain rate
would not admit a density with respect to the usual volume
measure in the small scale limit (in the very large A limit).
Therefore, it cannot be defined with the help of (almost
everywhere) pointwise and continuous functions (the basis
of stochastic point processes), but only as (multi-) singular
measures. The latter do not fit in the classical framework
of continuum mechanics, but seem rather to be the key
ingredients of a new world of discontinuous mechanics. We
must then expect the large N limit of rain-drops to be non-
classical; the presence of fractal dimensions 0 < D(y) <d
(or codimensions 0 < ¢(y) < d) physically implies clustering
at all scales: singularities occur by patches. The singularity
clusters — i.e., fractions of a sample where ¢; > /7 — are
sparser and sparser with increasing codimensions, i.e.,
increasing singularities and the extreme events correspond-

(2b)
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ing to ¢ > d are almost surely not present on a given sample
(see Schertzer and Lovejoy, 1991, for discussion). Let us fi-
nally recall that rather generically, multifractal fields have
such a singular behavior that there is a finite critical order
gp of divergence of statistical moments, beyond which all
the (theoretical) statistical moments g > gp are infinite and
their empirical estimates are spurious and depend sensi-
tively on the sample size (c.f. various rain estimates re-
viewed in Lovejoy and Schertzer, 1995: empirically, it
seems gp ~ 3). This corresponds to the fact that the tail of
the cumulative probability distribution has a power-law of
exponent qp (it also corresponds to a first order multifractal
phase transition (Schertzer and Lovejoy, 1992)) (Added in
press: work in progress also finds gp ~ 3 for LWC estimated
for spheres in the scaling regime; in addition the value
gp = 3 is theoretically predicted on the basis of compound
multifractal Poisson models and dimensional analysis).

In principle, K(q) or c(y) can be practically any convex
function; this corresponds to an infinite number of unknown
parameters. As argued in Schertzer and Lovejoy (1997), this
means that without further information, multifractals would
be unmanageable. However, in the framework of universal
multifractals (Schertzer and Lovejoy, 1987), multifractal
processes converge into a class of ‘‘universal models’’
described by only three parameters: the degree of multifrac-
tality « characterizing the curvature of K(qg), the codimen-
sion of the mean C; characterizing the sparseness of the
mean field, and the non-conservation parameter H which is
a measure of the non-conservation of the observable geo-
physical field (see ‘‘Geophysical fields and non-conservative
multifractals’’). The moment scaling function K(q) for a con-
servative universal multifractal is then given by:

C
K(@) =~

(“—q) O0<a<1,1T<a<2and

0<q<qp (33)
K(q) = Ciqlogg fora=1 and 0 < g < qp

where qp is a critical order of moments discussed above.
The corresponding codimension function is:

) =Co+l) i teg-tadn<i<n  (b)
Here 0 <« <2, C;>0, yo= —a'/Cqa and yp are the singulari-
ties corresponding to moments g = 0 and g = qp, respectively,
and « is the Levy index of the generator of the multifractal. In
the limit « — 0, K(q) becomes linear, the system is monofrac-
tal (the so-called B-model, Frisch et al., 1978). When o = 2, it
is the log-normal multifractal, somewhat misnamed because
of the divergence at qp; the tail of the distribution is ‘‘hea-
vier’’ than that of a perfect log-normal.

In rain, universality has in fact been invoked since the
1970s as in the standard *‘law of proportional effects’’ used
notably by Lopez (1977). Lopez used the standard argument
for lognormal distributions, namely that the rain rate is the
outcome of many independent processes multiplicatively
modulating each other. He then invoked the standard cen-
tral limit theorem on the log of the factors (which will be
additive), concluding that the resulting process is lognor-
mal. The modern cascade argument for conservative cas-
cades starts with the multiplicative factors modulating the
larger scale conserved fluxes (see the following section for

the relation of this to the observables including rain rate).
To obtain a universal multifractal process, the basic law
of proportional effects is then invoked but with several
caveats. First, there is no reason to assume that the vari-
ance of the logs of the factors is finite so that the general-
ized central limit theorem must be used, leading to log-Levy
distributions. Second — and this was the technically non-
trivial point of the debate on multifractal universality
(Schertzer and Lovejoy, 1997) - the singular limit of the pro-
cess requires: (a) a study of universality over a finite range
of scales and only then, (b) the consideration of the non-
trivial small scale limit. Whereas (a) yields log-normal or
log-Levy generators, (b) leads to processes which are no
longer log-normal or log-Levy, although this terminology is
still often used instead of the convenient ‘‘universal multi-
fractals’’. Indeed, the small scale limit generally introduces
a finite critical order of divergence of statistical moments
gp and therefore power law deviations from log-Levy distri-
butions for extreme events.

Geophysical Fields and non-conservative
multifractals

The observable geophysical fields are generally not con-
served but instead the energy injected at the largest scales
gets dissipated downscale. An observable field is therefore
related to a corresponding conserved field (the direct result
of a multiplicative cascade) by an additional scaling expo-
nent H, the ‘‘non-conservation parameter’’. The classical
example of this distinction is for the turbulent velocity
shears Av, where Kolmogorov scaling implies Av = &'/ 3Ax"
with H=1/3 (¢ is the energy flux). This implies that the
mean absolute shear is (|Av|) « (¢'/3)Ax" which, contrary
to ¢, changes with scale Ax (although (¢;) ~ 1 for all scales).
To model these scale by scale non-conservative fields,
Schertzer and Lovejoy (1987) proposed the ‘‘fractionally
integrated flux (FIF)’’ model in which the non-conservative
field is obtained from a conservative one (possibly raised to
a power) by fractional integration (power law filter, power
law convolution) of order H. This is the most general linear
scaling transformation.

Although the empirical situation for the rain rate is still not
clear — primarily due to the difficulty in estimating the statis-
tics of low or zero rain rate events — it seems that H is quite
low, e.g., Tessier et al. (1996) and De Lima (1998) find
H =~ —0.1. In contrast, for cloud liquid water content (LWC),
Lovejoy and Schertzer (1995) and Davis et al. (1996) have
found robust results with H =~ 0.3 which is close to the value
found for the fluctuations in the concentration of a passive
scalar advected by the wind field (the theoretical value is
H=1/3 for the passive scalar in the well developed Corr-
sin—Obukhov theory). Also, Lilley et al. (2004) and Radkevich
et al. (2006) find horizontal values H =~ 0.33 + 0.01 for both
cirrus clouds and aerosols using lidar data (the value
0.60 £ 0.02 indicating scaling stratification was found in the
vertical, close to the theoretical value 3/5). (Note added in
press: when the spectrum of the HYDROP LWC is analysed it
also shows H = 1/3 at the lower wavenumbers with a transi-
tion to a white noise spectrum at the higher wavenumbers,
see further comments below). Moreover, since the values
for C4 in clouds (about 0.08) were found to be close to those
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in wind (and in other passive scalar studies), it appears that
the cloud field has statistics quite near those of passive sca-
lars. In rain, at the very least, the value of H is significantly
smaller than that found in clouds or passive scalars. The sen-
sitivity of the inner scale in rain to the drop/dynamics cou-
pling and the effect of drop inertia on the inner scale
appears to be the basic difference between rain and clouds.
While in clouds, the inner scale is comparable to the dissipa-
tion scale, inrain it is typically somewhat greater, allowing —
due to the weakness of the small scale coupling — drops to
move freely from one turbulent eddy to another.

Multifractal results in rain

Historically, the understanding of extreme variability in rain
has provided an important stimulus for multifractals. The
first explicit empirical estimates of dimension/codimension
functions were in radar rainfall (Schertzer and Lovejoy,
1985), as was the investigation of multifractal universality
classes (Schertzer and Lovejoy, 1987). Since then, there
have been many studies of multifractal scaling in rain. To-
day, the literature is sufficiently large that we will not at-
tempt a complete review (see however the early review
by Lovejoy and Schertzer (1995) which includes theoretical
developments). For empirical papers on multifractals and
rain, we can refer the reader to the more precise quantifi-
cations in Tables 1 and 2, which give spatial and temporal
characterizations, respectively (they are not necessarily
the same). Additional (primarily empirical) papers on multi-
fractals in rain are: Lovejoy et al. (1987), Lovejoy and
Schertzer (1990), Carsteanu and Foufoula-Georgiou (1996),
Gupta and Waymire (1990, 1993), Hubert and Carbonnel
(1989), Hubert et al. (1993), Hubert (1995), Ladoy et al.
(1991, 1993), Menabde et al. (1997), Marsan et al. (1996),
Olsson (1995, 1996), Over and Gupta (1994), Bendjouhdi
et al. (1997), Harris et al. (2001), Venugopal et al. (1999).
In the following, we will rapidly comment on a few of the
quantitative characterizations of multifractality in rain
which are relevant to the HYDROP results discussed in
“*Conclusion’’. In Tables 1 and 2, we have only included
analyses where the authors provided estimates of « and C;
since otherwise quantitative intercomparison of empirical
K(q) functions is difficult, if not impossible. The main points
to note are (a) the relative robustness of « in the range 1.2—
1.5 and C; in the range 0.1-0.2 in space, (b) the rather dif-
ferent values « in the range 0.3—0.6 and C; in the range
0.2—0.6 in time. In space, key empirical difficulties are

the fractal nature of the measuring networks for gauge mea-
surements (Tessier et al., 1994), and for radar estimates,
the conversion from reflectivity to rain (Lovejoy et al.,
1996). A problem affecting all estimates is that of poor esti-
mates of the low or zero rain rate; this is particularly acute
in time series where often (e.g., from tipping bucket
gauges) the low and zero rain rate statistics are poorly esti-
mated. This implies that the question of the fractality of the
support of rain is still an open question. Is rain only multi-
fractal on a fractal support outside of which the rain rate
is exactly zero? Should we then consider two separate pro-
cesses, one controlling where and when it rains, the other
determining the rate on the non-zero part? Or should we
consider only a single process which is truncated to zero be-
low some low threshold? In light of these uncertainties, the
relatively small spread in multifractal exponents is quite
encouraging.

The classical and multifractal large N limits

The classical large N limit yields straightforward statistical
results. It is usually assumed that the probability per unit
volume of finding a particle is constant. This implies that
the number in any volume S; (of volume volS;), at scale ratio
4, is therefore a Poisson random variable whose mean is pro-
portional to volS;. If we make the usual cloud physics
assumption that there exists a scale-independent particle
size distribution, then this distribution is the only aspect
which changes between different rains; hence, the classical
focus of research on drop size distributions. Assuming the
existence of the first two statistical moments of the particle
size distribution ((v), (v*) where v denotes the drop vol-
ume), and denoting the number density by n;, we obtain
— for large volumes (/. — 1) — for the (volume averaged)
LWC densities p; and density squared p?:

n;, — (n)

p; — {p) = (N)(v) (4)
_(m(v?)

P/g. - <Pz> ~ W

The central limit theorem then shows that the distribution
of the total LWC density converges to a Gaussian probability
distribution for the density p;:

(p, — (n (v))zvolS;)
2(n)((v2) — (v)?)

Pr(p;) o exp (— (5)

Table 1 A comparison of various gauge and radar estimates of « and C; over various spatial scales and directions

Data type Radar reflectivity, Gauge, daily 200 Meteor. Stations, 209 Meteor. Stations Radar reflectivity,
Montreal accumulations daily accumulations (France), daily Montreal

accumulations®

Domain Horizontal space Horizontal space Horizontal space Horizontal space Vertical space

Range of scales 75 m—19.2 km 150 km to global 5—50 km 30—1000 km 21 m—2.5 km

o 1.4 1.35 1.17—1.54 1.07 £+ 0.3 1.35

C 0.12 0.16 0.02—-0.1 0.35+0.2 0.11

References Tessier et al. (1993) Tessier (1993) Olsson and Hubert et al. (2002) Tessier et al. (1993)

Niemczynowicz (1996)

The errors are estimated to be about +0.1 in « and + 0.05 in C;.
2 Private communication.



Table 2 A comparison of various gauge and radar estimates of « and C; over various time scales

Data type

Location

Gauge, daily
accumulation
Global network

Gauge, daily
accumulation
Reunion Island

Gauge, daily
accumulation
Nimes

Gauge, daily
accumulation
Germany

Gauge, daily
accumulation
New Zealand

Gauge, daily
accumulation
Holland, France,

Portugal

Sample characteristics 1000 stations 1—64 1 station, 30 years, 1 station, 30 years, 1 station, 45 years, 15 s resolution, scales 1 min to 1 month

days scales 1—64 days scales 1—64 days scales 1—32 days 15sto 14 h resolution
o 0.5 0.5 0.5 0.6 — 0.48—0.67
C 0.6 0.2 0.6 0.5 0.04-0.19 0.30-0.51
References Tessier et al. (1993) Hubert et al. (1993) Ladoy et al. (1993) Fraedrich and Larnder Harris et al. (1996) De Lima (1998)

(1993)?

Data type Gauge, 25 stations of  Gauge 164 stations of  Radar reflectivity Radar reflectivity

daily accumulation 6 min and daily

accumulations

Location Doubs basin (France) All France Montreal Montreal

Sample characteristics

o
o
References

25 years, scale 1-16
days

0.62 +0.05
0.38+0.02
Hubert et al. (2002)

4 years, scales 6 h to
16 days

0.74+0.15
0.40+ 0.1
Hubert et al. (2002)

20 m resolution,
every 2s for51/2h

0.5
0.6
Tessier et al. (1993)

4 storms, 144 PPIs
each 1 km resolution
every 5 min

0.3-0.6

0.6—1.2

Seed (1989)

Note that the C; for reflectivities are not expected to be the same as for the gauge rain rates. De Lima (1998) also found that H was systematically of the order of —0.1 (in agreement with

Tessier et al., 1996).

@ Private communication.
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i.e., as long as the variance is finite, independent of the
drop size distribution, we obtain the ‘‘universal’’ Gaussian
result for fluctuations in LWC. The continuum limit is ob-
tained by taking volS; large enough that the Gaussian tends
to a ‘'sure’’ Dirac delta function: Pr(p;) — d(p; — (n)(v))
(i.e., ps & (M)(V).

On the contrary, using the (possibly anisotropic) scale
invariance of the system, one expects that the LWC distribu-
tion is multifractal and that its probability is scaling accord-
ing to Eq. (1), i.e. — at resolution 1> 1 — we have for the
cumulative probability distribution Pr(p, > 1), which is the
probability of a random density p,; exceeding a scale depen-
dent threshold /7,

Pr(p, > 2) ~ A=) (6)

As already discussed (*‘Properties of cascades: conserva-
tive multifractals’’), this implies a hierarchical clustering of
LWC. A multifractal distribution of drops therefore en-
hances coalescence. As the averaging sphere (diameter
[=L/}) gets larger (4 — 1), the values p; = 2’(p) do indeed
approach their mean (p); the distribution is less and less
**spread’’, but this occurs rather slowly, in a power law
way. With smaller and smaller averaging spheres (1> 1),
the fluctuations increase, bringing into sharp relief the role
of singularities. While the effect is not so great here, where
the outer scale is 2 m, and the mean inter-drop distance is
about 10 cm (hence 4 =20 only), if we consider the global
rain process, we may have L = 10*km (see Lovejoy et al.,
2001, and references therein), so that i=L/r=10% and
the effects of the clustering at all scales can be very large,
even for relatively small y. At the same time, each singular-
ity is distributed over a sparse fractal set of codimensions
c(y) as has been directly verified by Lovejoy et al. (1987)
on 1 km resolution radar rain data.

Description of the data sets

During the entire three year experiment, the hydrometeors
in approximately 450 scenes were photographed. The data

sets were all labeled with the reference number of the pho-
tographic film used in HYDROP. The digitization of the neg-
atives using the microdensitometer was a time consuming
process requiring 30 h per negative (90 h per scene) so that
only a few scenes were initially digitized, and only relatively
few scenes out of the entire set (18 of 450) have been dig-
itized to date. Out of those, only two different storms (f142
and f207, comprising three realizations each) were analyzed
in Desaulniers-Soucy (1999) and each gave very different re-
sults (see below) precluding the possibility of drawing any
strong general conclusions about the scaling. Since for each
storm, the results were quite robust across all three realiza-
tions, it was argued that the difference in the results from
the different storms could most likely be explained by their
very different atmospheric conditions (see Table 3) and cor-
responding drop size distributions (see Fig. 1). In this paper,
we make this interpretation more compelling by considering
four additional data sets (f145, f207 comprising the three

1400 y
ot
1200 | “5 pog
—e— 1295
1000 o f145
S 800 -
<
> 600
400
200 |
05
0.01
V (mm?)
Figure 1 Vn(V) on log-linear scale (areas under the curves are

proportional to the total number of drops/volume). For the
cumulative distributions, see Fig. 9.

Table 3 The atmospheric conditions were estimated from the McGill University weather station 250 m south of the experiment

Event Date and time Number of  Volume of Number of Atmospheric conditions Wind speed Rain rate
ID realizations ROl (m?) rain-drops at 300 m (mmh=1
(ms™')
f142  November 8th 1996, 3 8.1 36422/3 Reflectivity bright band 2.5 2—4
7 p.m. at 4 km: melting snow.
Rain shower
f145  November 8th 1996, 3 8.02 23708/3 Reflectivity bright 22.5 1.4-2.2
8:30 p.m. band: melting snow.
Rain shower
f207  July 14th 1997, 12:30a.m. 7 7.87 59223/7 Convective. Heavy rain. 27.5 6—10
f229  November 1st 1997, 2 7.13 30559/2 Reflectivity bright band 17.5 24
9:45 p.m. at 4 km: melting snow.
Embedded convection
f295  September 27th 1998, 3 8.04 40100/3 Storm with light 10 1.4-2.2
2:50 a.m. precipitation

This included a UHF vertical sounder which gave both reflectivity profiles and wind speed. Note that for f142, 207, the nominal rain rates
estimated from the scenes in Desaulniers-Soucy et al. (2001) were 8—10 mm/h.



Multifractal large number of drops limit in rain

initial and four additional triplets, 229 and f295) that were
chosen to be representative of various atmospheric condi-
tions and various size distributions. These data sets in-
creased the total number of triplets of photographs
analyzed from 6 to 18 and the number of different rain
events from two to five.

Table 3 summarizes the salient features of each data set
and the atmospheric conditions in which they were ob-
tained. The previously analyzed f142 set, where no scaling
was detected, clearly stands out from the others. As shown
by a bright band in the McGill University UHF reflectivity
profiler radar image, it was of stratiform rain resulting from
melting snow at 4 km. Strong coalescence and therefore
large rain drops can be expected under these conditions.
In addition, winds at 300 m were quite weak so that ground
level wind and turbulence were very weak as well. As we
discuss below, both these factors lead to weaker small scale
coupling of the rain field with the wind field so that we ex-
pect the inner scale resulting from the turbulence induced
drop clustering to be larger. The f145 data set was obtained
1.5 h later and the strength of the wind at 300 m was about
10 times higher, implying much stronger ground turbulence.
The difference in the particle size distribution should also
be noted (Fig. 1).

In contrast, f207 was photographed during a convective
heavy rain event in the summer period. This event was char-
acterized by: (1) strong winds; (2) high rain rates. The
reflectivity profile of 229 indicated a bright band at 4 km
but with a zone of embedded convection. The combination
of convection and melting snow at 4 km created the condi-
tions for large drop formation. The winds at 300 m were
weaker than in f207 or f145 but stronger than in f142.

The f295 data were obtained during a storm with light
stratified precipitation in the autumn, explaining the fairly
small rain drop sizes. The wind at 300 m, despite being
stronger than that of f142, is still weak. Both these factors
favor a large inner scale for the coupling of the rain with the
wind dynamics. This will be discussed in depth in ‘*‘The sta-
tistical analysis for increasing scales’’ and ‘‘Convergence
scale’’.

Mention should be made of the representativeness of the
meteorological conditions for the cases studied. Each ana-
lyzed rain event was chosen without particular regard to
the meteorological conditions. They were chosen for practi-
cal reasons such as the status of the equipment, the avail-
ability of the experimenter, and on the condition that it
be night-time rainfall forecasted several hours in advance.
As a result of this, the sampling was not biased in any obvi-
ous way or systematic manner and should therefore be rel-
atively unbiased with respect to the meteorology.

Analysis
The random sphere analysis method

A direct investigation of the large N limit can be made by
comparing the predictions of the classical continuum with
those of the multifractal discontinuum by considering the
statistics of rain in spheres of systematically increasing radii
r (see Fig. 2); this is equivalent to the continuum mechanics
thought experiment considered in the introduction. We

b

Figure 2 A reconstruction of one of the f295 triplets showing
the 15,000 drops in the ROI: only the relative sizes of the drops
are accurate. Also displayed is a schematic of the sphere
method. The average liquid water content is calculated over NB
spheres of radius 4~' randomly centered inside the ROI. The
axes X, y and z indicate the width, depth and height of the ROI,
respectively. (a) Shows the side view of the largest 10% of the
25,468 drops in one of the f295 scenes. (b) Shows the top view
of the same scene but with all the drops. To avoid clutter, the
sizes have only been indicated by color (blue small, pink large).

place gradually larger spheres of radius r at random over
the ROl and compute the corresponding ‘‘(normalized) 5
power densities’’ at resolution 4 (**()’’ denotes an ensem-
ble average):

P o STV (o) =1 (7)

Vies,

where V; is the volume of the ith drop in the sphere §; at
scale ratio /4 = L/r, where L is the outer scale and r the scale
of investigation. In Eq. (7), pﬁu’“’s are normalized so that the
mean is equal to unity. This is a partial correction for the
fact that as we change the sphere radius (hence 1), the sam-
ple changes slightly due to edge effects discussed below.
Note that the rain drops are observed at a much finer reso-
lution 4> 4, where each of them is individualized; p"
therefore corresponds to a coarse grained observation of
the rain drops. Ignoring constants of proportionality, chang-
ing 7 allows us to consider various fields: p'” = n, is the
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number density field; p{" = V, is the LWC, p{"/> =d, is the
rain-drop diameter field, p{"/’ = R; is the nominal rain rate
(assuming a terminal fall speed proportional to the square
root of the drop radius®), and p'” = Z, is the radar reflectiv-
ity factor field. Following Eq. (2), for each n we can define a

moment scaling exponent K(q,#):
{(p")7) oc 200 (®)

At each scale 4 and for each moment g, the ensemble aver-
aging was approximated by an average over 5000 spheres,
with centers uniformly randomly distributed within the
ROI, and over the total number of available data sets for a
given precipitation event. The 5000 spheres were partially
overlapping and as such were not independent. While there
is no reason to expect the non-independence of the spheres
to lead to a bias in the multifractal results, it will affect the
theoretical error in parameter estimates.

Since the centers of the spheres are generated uni-
formly anywhere inside the ROI, some spheres — especially
the larger ones of size of the order of the dimensions of
the ROl — may extend partially outside the ROI. Instead
of discriminating against all spheres extending outside
the ROl (which would greatly reduce the statistics for
the larger scales), it was decided to consider all spheres
whose centers were inside the ROl and whose volume
was >50% inside the ROI, and compensate for the fraction
extending outside by assuming the inside and outside den-
sities to be equal (see Desaulniers-Soucy, 1999). So as to
avoid unacceptable biases, spheres whose volume was
>50% outside the ROl were thus rejected from the analysis.
This procedure has the disadvantage that the extrapolation
of a sphere’s statistics inside the ROI to outside the ROI
effectively amounts to making a relatively minor homoge-
neity assumption, i.e. the variability at larger scales is
slightly reduced by this technique. This is of course true
only for a small fraction of the spheres and a small fraction
of the volume of the ROIl. However, in keeping with the
objective of maximizing the statistics and the range of
scales, this approach was favored over the stricter discrim-
inative one of rejecting any sphere extending at the out-
side of the ROI. At the same time, since a gradually
larger fraction of the spheres extends outside the ROI as
r is increased, the sample under investigation changes
somewhat with scale (the larger spheres have a tendency
to have their centers closer to the middle of the ROI; those
with centers far from the middle of the ROI are more likely
to extend outside the region by >50% and be rejected from
analysis). This is partially corrected by the fact that we are
considering normalized powers (see Eq. (7)) at all resolu-
tions A. This also partially removes small residual biases
coming from the inhomogeneities in the estimate of the
illumination field. The sphere method has the added
advantage (over other box counting type methods) of max-
imizing the use of the ROI, since the latter is a three
dimensional trapezoid bounded by the combined field of
view of the HYDROP set-up and the region uniformly illumi-
nated by the flash lamps (see Desaulniers-Soucy, 1999;

4 The square root law is commonly used as the fall speed in the
high Reynolds number regime although the d?/3 fall speed may be
m(o;e) accurate (Atlas and Ulbrich, 1977); this would imply

11/9

\ =R,.

A

Desaulniers-Soucy et al., 2001). In the figures below
(‘"The statistical analysis for increaing scales’’), we com-
puted the statistical moments ((pﬂf’))q) over spherical re-
gions of logarithmically increasing size ratio A=R/r
where r is bounded above by the size of the largest allow-
able sphere of radius R (2m) and below by the experimen-
tally accessible inter-particle distance (typically of the
order of 10 cm). The maximum range of scales is therefore
A=~ 20, but spheres of radii <10 cm contained on average
so few particles that we only display statistics over a range
of factor 10.

The statistical analysis for increasing scales

Figs. 3—7 show log,,((p"")%) as a function of logio(4) with
n=0 (), n=1/3 (b) and n =1 (c), for the f145, f207, 229,
f295 and f142, respectively, as computed by Eq. (7) and as
detailed in ‘‘The random sphere analysis method’’. The
nominal rain rate exponent 5 =7/6 is close enough to the
case 1 =1 that we do not repeat the analysis for the value
7/6 (in any event, to compute true rain rate, we would need
the fall speed of each rain-drop). The 5 =2 case (corre-
sponding to the radar reflectivity factor Z) is discussed in
section 4.6. The 5 =0 results, which are not affected by
the drop sizes but only the locations, and which will there-
fore be expected to converge at scales smaller than for the
corresponding # > 0 scales are strongly curved for a large en-
ough A (small enough r and N). With the exception of f142
however, they appear to approach straight lines at large en-
ough scales as predicted by the scaling. The ‘‘spread’’ of
the moment values at the largest scales (log/ = 0) is purely
due to the difference in the spatial means between the dif-
ferent scenes comprising each storm ensemble; for a given
n, we can compare the moments for different storms; this
shows which ensemble had the smallest scene-to-scene var-
iability. For larger 5, we see the same basic behavior except
that the onset of the linearity is at somewhat larger scales.
Given the admittedly small range of scales over which
the scaling is observed, it is important to check that the ob-
served behavior could not arise from the standard large N
limit simply as a classical statistical fluctuation. It is
straightforward to check this by comparing the observed
statistical moments with the classical predictions by retain-
ing the measured drop sizes but by randomizing their posi-
tions and then analyze again as before. Within the limits
of small statistical fluctuations (which themselves were
checked by repeating the randomization and checking the
robustness of the result), all differences between the ran-
domized data sets and the real ones are due solely to the
long range correlations in the drop positions. These random-
ized curves are directly superposed in Figs. 3—7; they show
— with the exception of f142 — a significant systematic in-
crease at all scales in the variability of the real data with re-
spect to the randomized data. Furthermore, as expected,
since for large N, they approach a Gaussian distribution —
on these log—log plots, all moments are curved asymptoti-
cally approaching a flat line at large enough N, the (non-
zero slope) linearity of the real data is in strong contrast.
It should be noted that the randomized statistics can also
be used as the basis of rigorous statistical hypothesis test-
ing; specifically, we performed ? tests to test the statisti-
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size distribution becomes important) — they require more rain-drops (smaller 1) to converge. Small values of g emphasize the more
common small fluctuations. For both large # and g, we expect convergence problems to become more and more severe.
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Figure 5 Same as Fig. 3 but for 229.

cal hypothesis that the data were indeed taken from a spa-
tially homogeneous drop distribution. Although the results
depend on scale and on the exact data set, the hypothesis
of a homogeneous population could typically be rejected
with great certainty (at confidence levels of 0.9999 or
greater).

Contrary to the homogeneous classical limit, multiscal-
ing of the statistical moments of the y-densities agrees
with the experimental results of Figs. 3—6. The statistics
depend strongly on the averaging volume in a power law
manner. The one exception is Fig. 7, f142, for which
the real data have not converged to multifractal statistics
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and which are close to the moments of the randomized
coordinates. This case has weak winds (Table 3) and larg-
est drops (Table 4), a combination which is expected to
lead to a larger scale of convergence which was not
reached given the accessible range of scales in HYDROP;
we make this case more strongly below (‘‘Convergence
scale’’). (Note added at press time: energy spectra of
the drops (considered as a multifractal measure i.e. a
set with a ‘‘weight’’ given by the drop volume) gives
not only additional confirmation of the scaling, but shows
that the latter is quite close to the Corrsin-Obukhov result
predicted for a passive tracer (i.e. the energy spectrum
E(k) ~ k=#, p=5/3, wavenumber k). At the high wavenum-
bers, on the contrary, the spectra are those of a white
noise (also) as expected; the transition scale being

Same as Fig. 3 but for f142.

roughly the same as those determined with the sphere
method).

Convergence scale

Identifying significant scaling requires both a wide range of
scales and also — because of the large fluctuations in drop
size — sufficiently large N. However, the data will presum-
ably only be multiscaling if the rain is coupled to atmo-
spheric fields. At the very least, the coupling of the rain
to the dynamics depends on the strength of the turbulence
and on the rain-drop size: at small enough scales, drop
inertia could destroy the induced hierarchical clustering.
This effect is particularly important for the heavier drops
which, due to their larger inertia, decouple more easily

Table 4 Comparisons of the scale of convergence r. to the multifractal large N limit, estimated from Figs. 3—7 forn =1, g=2,
and of the corresponding average number of drops per sphere of radius rc

Event ID Scale of
convergence r. for
n=1,q=2 (cm)

N. = average number
of drops per

n =1 critical
volume (mm?)

Ng,1 = number of
drops for n =1

n =2 critical
volume (mm?)

Ng,2 = number of
drops for =2

sphere at rc convergence convergence
f142 = = 1.7 33 7.0 165
f145 24 57 1.5 7 3.8 33
207 20 36 0.75 13 3.0 111
229 40 574 3.0 80 10.0 625
f295 23 96 0.5 5 1.5 20

For comparison, we also show the expected number of drops for 7 =1 and # = 2 convergence purely from the drop size distribution.
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than smaller ones. The scale of convergence to the multi-
fractal limit will therefore depend on the rain-drop size
distribution and the intensity of the turbulence. In the sim-
plest model, the scale of convergence depends only on
these two factors. From a theoretical point of view, this
can be understood quite simply in terms of the usual —
although not so realistic — assumption that the drop fall
speed v¢(d) is determined by the diameter 6 only (e.g., it
falls at the still air terminal velocity, the past history is
irrelevant). In this case, by equating v¢(d) to a typical
shear Av across a region of size Ax expressed using Kol-
mogorov scaling as Av=¢'"3Ax""3 (recall ¢ is the energy
flux characterizing the intensity of the turbulence), we ob-
tain an estimate of the drop size and shear strength decou-
pling scale Ax=r.:
vi(9)®

&

c (%)
If we further assume that v¢(5) x 6'/% (which is a classical
result obtained by using the terminal fall speed in the high
Reynolds number/large drop limit), then we find the decou-
pling scale:

(9b)

Eq. (9b) displays the realistic dependence of the inner
scale of convergence on meteorological conditions via the
level of turbulence and on drop inertia. Keeping this simple
picture in mind, we can use the meteorological data pre-
sented in ‘‘Description of the data sets’’ combined with
the measured drop size distributions to demonstrate the
consistency of our results for each storm, i.e., that it can
indeed explain the observed storm to storm variations in in-
ner scales consistently with Egs. (9a) and (9b).

From the scale at which linear (scaling) behavior is ob-
served, we can now use Figs. 3—7 to directly estimate the
inner scale r. and its corresponding average number of drops
N. in a sphere of radius r.. Table 4 gives the inner scale of
convergence r. estimated in this way from Figs. 3—7. These
rc and N estimates can then be compared to those expected
purely on the basis of the drop size distribution rqy and Ny
(i.e., without taking into account any drop position correla-
tions). Since we suggest in this paper that the inner scale of
convergence depends on the coupling between the turbu-
lent velocity field and the rain-drops, by classifying the five

data sets according to the average drop size and the wind
velocity, we can at least qualitatively place them in order
of increasing convergence scale (see Fig. 8). This serves as
a consistency check and an interpretation of the r.’s evalu-
ated quantitatively (see Table 4).

In order to estimate rq and Ny, consider the rain drop
size distributions re-plotted on a cumulative log—log plot
in Fig. 9. The advantage of these plots is that they give di-
rect information about the scale of convergence of statis-
tical moments of various orders. Indeed, if the maximum
of the probability distribution Pr(V > v) = e <12 V) is suffi-
ciently ‘‘peaked’’, the maximum contribution to the pth
statistical moment comes from rain-drops of volumes cor-
responding to n = ¢/, where ¢’ is the logarithmic derivative
of the probability distribution (see, e.g. Desaulniers-Soucy,
1999; Desaulniers-Soucy et al., 2001). For independent
drops, the main contributors to the mean, =1, and vari-
ance, n = 2 (they are fundamental for the central limit the-
orem convergence to the classical large N limit), are rain-
drops of size corresponding to the tangent of slopes —1
and —2, respectively, to the exceedance probability histo-
gram log(Pr(V = v)) versus logV. To estimate r4, we use
the second order moment since it is the critical moment
for standard central limit convergence and find V4 graphi-
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Figure 9 Exceedance probability histogram for all five
events. Each curve has been shifted up by one order of
magnitude more than its neighbors below for clarity. The
reference lines have slopes of 1, 2 indicating the critical
volumes and probabilities for the first and second order
moments.
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Figure 8 This figure depicts the dependence of the inner scale of convergence on both the dominant particle size and the
turbulence. The smallest inner scale (f207) is achieved in conditions of high winds combined with small particle sizes. The largest
inner scale — f142, for which the inner scale of convergence was outside our experimentally attained range of scales — is obtained
for weak winds and large raindrops. All other cases are intermediate, see ‘‘The statistical analysis for increasing scales’’.
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cally as the point where dlog(Pr(V = v))/dV~ —2. From
V4, we obtain rg and the number of independent drops
needed for convergence of the corresponding moments is
Ng~Pr(V = v)~'. The difference between Ny and N. is
thus purely due to the spatial correlations present in N
but absent in Ng.

As an example, in f142, drops with volumes exceeding
1.7 mm?® are the dominant contribution to the mean but rep-
resent only 3% of the drops in the ROIl. The dominant contri-
bution to the variance is determined in the same way, by
drawing the tangent of slope —2 to the exceedance probabil-
ity histogram. In f142, drops larger than 7 mm? are the dom-
inant contribution to the variance but represent only 0.61%
of the drops in the ROI; the corresponding N4 are the recipro-
cal of the probabilities and are rough estimates of the num-
ber of drops necessary for convergence of the corresponding
moments if inter-drop correlations are neglected.

By comparing N. with Ny 1 and Ny, in Table 4, we see
that they tend to vary in the same direction. However,
the fact that these numbers do not vary in the same ratio
(for example, although N, varies by a factor of 20, Ny, by
a factor of 30 and the ratio N./N4, varies by a factor of
15) indicates that the variations in drop size only partially
account for the variations in N.. These results and observa-
tions highlight the fact that it is the coupling to the dynam-
ics — which depends both on particle size distribution and
turbulence intensity — that appears to determine the scale
of convergence to the multifractal limit.

Number, volume and (normalized) yth power
density drop size distributions and (mono) fractal
drop distributions

In the classical approach to precipitation, the hydrometeor
number size distribution plays a fundamental role, hence
the perennial debate on exponential versus lognormal ver-
sus Weibull (or other) drop size distributions (e.g., Kostinski
and Jameson, 1999). In contrast, in the scale- invariant re-
gime of a multifractal rainfield (i.e., in spheres containing
large numbers of drops), it is the u-densities (n, V, Z,
etc.) which have relatively straightforward universal behav-
ior; neither the drop size distribution nor the spatial distri-
bution of individual drops need be universal and hence be
amenable to meaningful (robust) parameterization. Physi-
cally, these densities are rather determined by the large
scale turbulent fluxes (water, energy etc.). Nevertheless,
the influence of the drop size distribution can be gauged
by considering the (normalized) nth power densities: by
varying the value of 5 to which the drop volumes are raised,

we obtain fields which are increasingly sensitive to the lar-
ger drops in the distribution.

Let us consider briefly the number density which has al-
ready been the subject of several fractal correlation dimen-
sion analyses mentioned earlier. The statistics of n; can be
related to box codimensions Cs (the dimension of the sup-
port of the rain) and the ‘‘correlation codimension’’ C.
by: Cs = —K,(0), Cc = Kn(2). Recall that the number of boxes
of size /™" needed to cover a set oc 2> with D, = d — C, = box
dimension. Similarly, the number of pairs of drops within a
distance /™" varies as A% with D.=d — C. = correlation
dimension. We could also note that sometimes the informa-
tion dimension D, = d — C, is of interest; here C,=K'(1) = C;.
From Table 5, using the values of C; and « we find
Cc = Kn(2) = 0.07 £ 0.02. Before comparing it with the value
0.17 found by Lovejoy and Schertzer (1990) for the blotting
paper (or the value 0.07 found by Zawadski (1995) for small
drops in disdrometer time series), we should make two com-
ments. The first is that the universal fits have been made
assuming that rain is space filling, i.e., Cs=—K(0)=0.
Although K,(0) = 0 was indeed close to the data, the exper-
iment was conditioned on the existence of rain so that a
small non-zero D could not be excluded simply on the basis
of the measurements reported here. The second point is
that the present results show the importance of considering
scaling at scales above the inner decoupling scale r..
Although r. is a function of meteorological conditions, it is
apparently often 30 cm or more. This means that in the cor-
relation dimension analyses, we should first attempt to esti-
mate this decoupling scale, and then the scaling at larger
scales. Such a refined analysis was not possible with the
452 drops studied in the single realization discussed in Love-
joy and Schertzer (1990) but is possible in the present study
which is based on far larger numbers of drops.

Universal multifractal parameters

For the four rain events for which the large N data converge
to a scaling limit (i.e., with the exception of f142), using
non-linear regression, we fit the observed K(q)’s (the slopes
in linear regimes in Figs. 3—6) to the universal form (Eq. (3)),
and estimated the multifractal parameters o« and C;. Table 5
summarizes the results. The non-linear fits were performed
for 0 < g < 1.5 and are shown in Fig. 10. The reason for the
restriction to low q is that the universal form, Eq. (3), is only
valid up to the critical moment order gs (*‘Properties of cas-
cades: conservative multifractals’’). After gs, K(q) becomes
straight: the slope is equal to the largest singularity present
in the sample. In the case of =1, we found « = 1.5 + 0.2 and

Table 5 Summary of the multifractal parameters estimated from the moment scaling function K(qg) for the four storms with

inner scale <1 m

Event ID n=0 n=0 n=1/3 n=1/3 n=1 n=1
C1 o C1 o C1 o
f145 0.039 1.4 0.044 1.5 0.13 1.6
207 0.046 1.7 0.090 1.4 0.24 1.3
229 0.037 1.6 0.042 1.7 0.10 1.6
f295 0.032 1.6 0.040 1.6 0.09 1.6

n=0, 1/3, 1 corresponds to n, d and V, respectively.
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Figure 10 Universal multifractal K(q) vs. g for f145, f207,
f229 and 295 for n = 1. The lines are the regressions using the
parameters indicated in Table 5.

C, =0.14 £ 0.06 by taking the mean of the estimates in Table
5. These results are comparable to the values found at larger
scales for both rain (see Tables 1 and 2) and in turbulence
(e.g., «=1.5, C;=0.08 for the wind field, Schmitt et al.,
1992). We obtain very similar results for « for all data sets
and all values of » studied. Furthermore, o, = oy = o = const.
was directly confirmed by taking regressions of log((p")?)
against log((p™)J) for various 5, n; which were found to
be fairly linear with slopes equal to (1/17)* independent
of g. These tests indicated that the « is independent of 7,
with a value of about 1.5.

Up until now, we have not discussed the non-conserva-
tion parameter H. The most convenient way to measure H
is via spectra; the result (work in progress) mentioned ear-
lier that the low wavenumber spectral exponent was close
to the passive scalar value ff =~ 5/3 implies H~ 1/3.

At first sight, the value of C; may seem small. For exam-
ple, it implies that if we consider an experiment in the scal-
ing regime with C; = 0.14 (our average for LWC, i.e., n=1)
over a range of scales /4 = 10 (somewhat larger than the scal-
ing regime here), then the fraction of the volume which
contributes substantially to the mean is 2= = 72% which
is not much below the continuum result (100%). Even if we
consider the second moment, we find from the Legendre
transform (Eq. (2b)) that the dominant singularity is
y=K'(2)=0.31 (using «=1.5), and the corresponding
contributing fraction 2~¢-3") = 40%. It would not be surpris-
ing to find that with the use of several carefully selected
parameters, classical (i.e., non-scaling) compound Poisson
processes A could be arranged so as to reproduce this rela-
tively mild inhomogeneity. It is only if we start to consider
the large ranges of meteorologically significant scales that
the difference between the large N multifractal and contin-
uum limits becomes important. For example, even if the
multifractality only holds up to the scale of a typical weath-
er radar pulse (1 km? say, i.e., A= 10%/10"" = 10%), then the
corresponding figures are 28%, 2.6% for the mean and vari-
ance: the classical compound Poisson would require a dras-
tic change in ‘‘optimum’’ parameters in order to even
approximate this level of heterogeneity; indeed, it would

probably already demand that the Poisson parameters
themselves vary in a scaling way; the ‘‘multifractal com-
pound Poisson process’’ to be discussed in a forthcoming
publication. The situation is likely to be even more drastic
since — as the largest study of atmospheric statistics to date
shows (nearly 1000 satellite photographs in Lovejoy and
Schertzer, 2006; Lovejoy et al., 2001) — the outer scale is
of the order of 10*km, then 1= 10® which yields, respec-
tively, 8%, 0.07% of the volume.

Implications of universality for the radar
reflectivity factors Z (y = 2)

Since we have no velocity information for the individual
drops, we cannot properly estimate R, and we cannot di-
rectly verify the statistical ZR relation. However, we can at-
tempt to test the analogous ZV relation (i.e., the above for
n =2 and n = 1). The only difficulty is that # = 2 corresponds
to a fairly high order moment. Depending on the inner scale
for a given storm, scaling may not be obtained over a suffi-
ciently wide range in order to be clearly visible. Considering
the case with the smallest inner scale (widest scaling range)
295, Fig. 11 shows the resulting scaling with some evidence
for convergence at the largest accessible scales. By fitting
the universal form of K(q) to the slopes of the moments,
we obtain an estimate C; 7~ 0.21 and « ~ 1.5, which are
reasonably close to the values found for the effective radar
reflectivity factor in radar data in Tessier et al., 1993:
Cize~0.12 and a ~ 1.4.

When comparing our exponents with real radar values,
we can already note that radars do not measure Z, but
rather the ‘‘effective Z’’ (Zts) which differs from Z because
of the modulation by position and radar wave-vector depen-
dent phase factors. In contrast, Z is a primarily theoretical
quantity requiring HYDROP type 3-D data for its determina-
tion. In the classical large N limit, the drop positions are sta-

tistically independent, hence the drops scatter
0.8
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Figure 11  Statistical moments of order g=0.4, 0.8, 1.2, 1.6,

2.0 for f295 for n = 2, corresponding to the radar reflectivity Z.
The solid lines are the statistical moments calculated for the
randomized drop positions, the data points are the statistical
moments calculated for the real drop positions.
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incoherently; however, in the multifractal large N limit, the
clustering at all scales implies some degree of coherent
scattering so that there is a systematic scale dependent bias
if Zegr is used as a surrogate for Z (see Lovejoy et al. (1996)
for a full analysis of this *‘multifractal observers problem’’).

Conclusion

A central concept in atmospheric physics is the particle size
distribution N(d), the number of particles per unit volume
with diameter between 6 and ¢ + do. Although it is rarely sta-
ted explicitly, N(9) is only well defined if the large particle
number (N) limit is the classical continuum. Specifically, if
N(0) is defined on a sphere of radius r, there should exist a
range of scales over which N(o) is independent of r. Based
on stereophotography of rain drops in a roughly 8 m* volume,
we directly examined the statistics as a function of r (equiv-
alently of N), finding that, in at least four of the five storms
studied, the large N statistics are close to power laws; the
statistics are multifractal in contradiction with the classical
continuum. Since the turbulence is multifractal, this is a nat-
ural consequence of the dynamical interaction between the
turbulence and the particles. Due to complex inter-drop pro-
cesses, we do not expect the wind and precipitation to have
the same statistics, however, these interactions need not
break the scaling and, apparently, only modify the expo-
nents « and C; a little if at all. Similarly, we find that in
the observed large N scaling regime, the exponent parame-
ters « and C; values are not far from other estimates in rain
at much larger scales. In the multifractal limit, although the
statistics are continuous, each realization is singular with re-
spect to the usual Lebesgue measures; hence in this sense,
the large N limit is a ‘‘discontinuum’’. According to this,
the main difference between the rain rate and wind statis-
tics is the non-conservation parameter H which, for the hor-
izontal wind as a function of horizontal displacement, has
the Kolmogorov H = 1/3 value whereas for the rain rate, H
is apparently close to zero (although as mentioned above,
the LWC statistics do have H ~ 1/3).

According to this picture, the fields of meteorological
interest (drop number n, LWC, V, rain rate R, radar reflec-
tivity Z, etc.) are controlled by turbulent processes acting
over a wide range of scales; these determine the fundamen-
tal scaling exponents. However at small enough scales, we
identified a direct role for the drop size distributions in
determining the inner scale which we argued is roughly pro-
portional to %2 while inversely proportional to the inten-
sity (¢) of the turbulence (Eq. (9b)). This was supported by
a comparison with the single storm (f142) for which no inner
scale was observed; it had both very large drops and very
small ¢ (inferred by UHF radar wind measurements). Quanti-
tative analysis of the observed inner scales in the four other
cases supported this simple picture. By comparing the rains
of the different storms, we gave direct empirical evidence
in favor of this picture.

By fitting the observed scaling exponent functions into
multifractal universality classes characterized by the two
fundamental exponents « and C;, we showed that the highly
variable fields were quantitatively compatible with the tur-
bulent coupling. This is in qualitative agreement with the
multiplicative phenomenology and lognormal parametriza-

tion of rain. However, quantitatively, the value of o~ 1.5
is already different from the lognormal value « = 2. We also
remarked that, in any case, the probability tails (of n, V, R,
Z, but not necessarily of the drop sizes) are likely to be alge-
braic (power law). Insofar as the universal multifractal pic-
ture is valid, the exponents coupled with the inner scale
then allow us to calculate all the LWC statistics at all scales.
More direct evidence for turbulent coupling comes from
spectral analysis (work in progress) which shows a transition
from large scale (>30—50 cm) passive scalar spectra to small
scale white noise spectra.

If these findings are supported by others — preferably at
somewhat larger scales perhaps along the lines of work in
progress by Carsteanu and Castro (2002) — then the empha-
sis of precipitation physics will no longer be on precipitation
characteristics at fixed scales/resolutions, but rather in the
exponents which allow us to calculate the statistics at any
scale/resolution over the scaling regime. At the same time,
the scale dependent relations which emerge are not deter-
ministic, but rather statistical so that a stochastic formula-
tion (and corresponding multifractal modeling) will be
necessary. Since longstanding problems in precipitation
physics hinge on comparing fields at different space—time
resolutions (e.g., rain gauge versus radar reflectivities),
the emerging scaling relationships between different pre-
cipitation fields are promising.
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