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Errata

A number of subscripts and superscripts were not properly typed. Equations where this may cause
ambiguity are corrected as follows:

Pr(ue=AT) = D pih il ©)
J

Pr(e,=A") = AP ©

<> =2 KO j e j AR g J'e(lrrcm)lnld,! o)

Also, just below eq.5: "... (¢j =min; c;;)...".

In eq. 2 the sign of o' is wrong, it should read: Pr(|.lz=l'c” .) = l-?fc

The "dead’ or "alive” "B model” is recovered with a=1, &'=0 (not ot'=es).
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Abstract

We argue that the atmosphere in particular and geophysical
systems in general, provide unique laboratories for studying
non-linear dynamics and multifractals. Indeed it is possible
that over a range of scales spanning as many as 9 orders
of magnitude, the atmosphere is symmetric with respect to
a scale changing operator involving only the scale ratio. Due
to anisotropy introduced by gravity and the Coriolis force,
this Generalized Scale Invariance is more complex than the
usual “self-similar” symmetry associated with isotropic frac-
tals. This wide range scaling is possible because the governing
equations have no characteristic length from the outer plane-
tary scale down to an inner viscous scale of the order of
millimeters. Furthermore, the variability (intermittency) is due
to cascade proceses which transfer the energy (and other
conserved fluxes) to smaller scales. In this paper, which is
largely a review, we show how these cascades generically
lead to (universal) multifractals, when the cascades are taken
to their continuous limit. We illustrate these ideas with simple
models as well as with multifractal analyses of various geo-
physical fields.

1. INTRODUCTION

The atmosphere is probably our most familiar strongly non-
linear dynamical system: the dimensionless parameter char-
acterizing the strength of the non-linearity (the Reynold's
number) is of order 1012, It displays striking {(multi) fractal
structures (clouds, eddies, fronts etc.) spanning as many as
nine orders of magnitude in scale {from planetary down to
millimetric scales). It is also very accessible: for example over
a dozen meteorological satellites operated by four different
countries collect data at a total rate of 108-10° bits/s at over
50 different frequency channels and with spatial resolutions
varying from 1 to 200km (other satellites not specifically
meteorological such as SPOT or LANDSAT can also provide
useful but infrequent measurements at resolutions of 10-30m).
Nearly 10,000 ground stations perform routine daily (and many
of these, hourly} measurements; every twelve hours six
hundred of these loft radiosonde balloons yielding detailed
vertical profiles of temperature, wind, pressure and humidity.
In addition roughly 300 weather radars measure precipitation
at a total rate of 106-107 bits/s. These rates of data acquisition
are so large that systematic archiving — not to mention
analysis — even of data from a single satellite is very costly;
with the result that much of the data is only used “on the
fly”, usually quite superficially. In addition to these “oper-
ational” systems, many other large research oriented data sets
also exist: for example if measured in terms of the precision
of measurements and range of time and space scales covered,
research weather radars (such as the one operated by McGill)
probably produce the highest quality data set of turbulent
fields anywhere (104 in time and (2x102)x(2x102)x(10") in the
two horizontal and one vertical directions respectively for
measurements of the radar reflectivity of rain).
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In this paper, we argue that physicists should seize the
opportunity to exploit this unique non-linear dynamical
laboratory. The advantages of the atmosphere (and of many
other geophysical systems), go well beyond the possibility
of exploiting readily available data sets: no other terrestrial
non-linear system spans anywhere near the same range of
scales: the comparable range for wind tunnels is =104, and
for three dimensional computer models, =102. The range of
scales is particularly important since it is the basic large para-
meter in the relevant cascade theories {discussed below). The
rapprochement of physics and meteorology has already
begun; in the last few years atmospheric applications have
played a new role in developing ideas in scale invariance
(“Generalized Scale Invariance” — see below), as well as
multifractals (including universal multifractals). It has also lead
to new data analysis techniques specifically designed for
systems displaying extreme variability over large ranges in
scale.

2, THE EQUATIONS OF ATMOSPHERIC DYNAMICS:
2.1 Scale invariance as an atmospheric symmetry principle:

A striking and immediate feature of the atmosphere and many
other geophysical systems is the ubiquity of complex fractal
structures. This complexity prompted Richardson (wha is best
known as the father of numerical weather prediction) to ask
in 1926 “Does the wind have a velocity?” (are the trajectories
of air particles smooth enough for derivatives to exist?),
counterposing the example of the newly discovered
Wierstrass function (whose graph is a fractal that is everywhere
continuous but nowhere differentiable). Pursuing this idea,
Richardson proposed that the variability in the atmosphere
arises through a series of scale invariant cascade steps in which
the energy flux from solar heating at large scales is redis-
tributed over smaller and smaller scales by the non-linear
dynamics (see fig. 1 for a modern model). This cascade idea
is the basis of Kolmogorov's famous “scaling” (power law)
k-53 spectrum (for the energy in the wind at wavenumber
k), and for a series of cascade models (see Monin and Yaglom
1975 for an early review) culminating in the multifractal
models described below. During roughly the same period
as Richardson, and in apparent contrast to the cascades which
require a whole series of eddies of decreasing size, Bjerknes
and the Norwegian school of meteorology emphasised the
importance of a few large structures for forecasting, partic-
ularly the “fronts”, while Leray and von Neumann in fluid
mechanics in the 30’s and 40’s called for a better charac-
terization of the singularities in fluid mechanics.

For some time {Schertzer and Lovejoy 1983a, 1985a, 1987a,
1988, 1989a, 1990a,b Lovejoy and Schertzer 1986, 1988,
1990b,c), we have argued that these seemingly disparate
aspects can be united into a coherent framework if atmos-
pheric dynamics respects a scale invariant symmetry principle
in which the statistical properties of the large and small scale
are related by a scale changing operation involving only the
scale ratio. This idea is plausible since the basic equations
governing the atmosphere (the Navier-Stokes equations) are
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Fig. 1a: Schematic diagram showing two steps of the break-up
of an eddy into sub-eddies.

Fig. 1b: The result when A=4, C=0.27, the back areas are “alive”,
the white areas ““dead”.

invariant under isotropic spatial dilations {“zooms"); x—AX,
if the velocity (v) is rescaled as v—AHy, where X\ is a scale
ratio and H is an arbitrary scaling exponent (this allows for
the possibility of multiscaling/multifractal solutions).

In real flows, viscosity will break this scaling at a small
“viscous” scale {denoted 7 - typically = 1mm in the atmos-
phere). Furthermore, energy injection is primarily at planetary
scales since it comes from solar heating and the resulting
equator/pole temperature difference defines the largest scale
over which scaling can occur. Even though the energy input
is modulated by cloud clover, the latter is also scaling and
does not seem to break the overall scaling symmetry at any
intermediate scale (Lovejoy 1981, 1982). As long as the surface
boundary conditions do not break the scaling symmetry, we
may therefore expect to find a range of scales exhibiting scale

invariant statistics. Furthermore, the topography which is an
important lower boundary condition is also {multiple) scaling
over much of the same range (see fig. 2ab for a “box-
counting’” analysis of the topography of France), and so again,
the scaling symmetry is respected.

The atmosphere is not a simple fluid system: aside from the
forcing and boundary conditions mentioned above, we must
also take into account the anisotropy, notably due to gravity
(which leads to differential stratification) and due to the
Coriolis force (which leads to differential rotation). Other
dynamical processes must also be considered, especially
thermodynamic, radiative, and various processes involving
water in its different forms. Taking all these factors into
account, we will obtain a coupled system of non-linear partial
differential equations describing the dynamics. However we
may still expect the overall system to respect a scaling
symmetry (even though the anisotropy requires such sum-
metry to be more complex than the isotropic dilations
discussed above). In fact, following a standard approach in
physics, in the absence of specific symmetry breaking mech-
anisms, the scaling symmetry is the only tenable assumption
about the dynamics. This argument (which applies also to many
other geophysical systems, even when their governing partial
differential equations are not known at all}, is all the more
plausible since below, we show how scale invariance can
be generalized well beyond the restrictive self-similar systems
associated with isotropic dilations (“zooms”). Furthermore,
even self-similar scaling can be quite complex: since H is
arbitrary, we may anticipate that its value will be different
for weak and strong regions of our fields (the latter are
multifractals).

2.2 Phenomenology of fluid dynamics: flux conservation and
cascades:

Before proceeding to describe cascades in more detail along
with the relevant multifractal formalism, we will need to
appeal to two other aspects of the phenomenology of fluid
dynamics. The first is the conservation property of the critical
non-linear terms. The most important conserved guantity is
. 2 c
the energy flux per unit mass, e (= - dv%) Because of this con-
servation the energy flux sink for the energy flux injected
at large scales is therefore provided by viscosity which is only
important for very small scale structures. Furthermore, the
mechanism for transfering flux from one scale to a smaller
scales is only efficient if the scales are not very different from
each other, hence the energy is “cascaded” from large to
small scales ultimately being dissipated by viscosity. When
we consider the other dynamical processes mentioned above,
each new process will add a new conserved flux, and we
may expect to obtain a set of nonlinearly coupled cascade
processes.

The elements of scaling, conservation of flux, and cascades,
lead directly to Kolmogorov's (1941} famous k>3 energy
spectrum for velocity fluctuations at wavenumber k. Expressed
in terms of the size I of an “eddy” (fluid structure) this means
the velocity v=¢!/3[13 is an estimate of the velocity gradient
across the eddy. Although Kolmogorov originally assumed
that € was not too variable in space, (that the cascade was
“homogeneous”), it was soon realized that turbulence was
in fact highly intermittent. In laboratory flows this is the
“spottiness” analysed by Batchelor and Townshend 1949. In
the atmosphere, the intermittency is expressed by the fact
that most of the energy, water and other fluxes are concen-
trated in small (violent) regions: “storms”, “’cells” etc. Specific
stochastic models of the variability of e were subsequently
developed. The elements of scale invariance, and flux con-
servation provided the basic ingredients of these multiplic-
ative cascade processes (see fig. 1a,b) in which the large scale
“parent” eddies multiplicatively modulate the energy flux to
the smaller sub-eddies, while conserving the average energy
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Fig. 1c: The left hand side shows the step by step construction of a (“bare”) multifractal cascade (called an “a model”) starting with
an initially uniform unit flux density. The vertical axis represents the density of energy (e} flux to smaller scales which is conserved
by the non-linear terms in the dynamical equations governing fluid turbulence. At each step the horizontal scale is divided
by two, and independent random factors are chosen either >>1 or <1, normalized to ensure that <e>=1. The developing spikes

are incipient singularities of various orders. The right hand side shows the effect of smoothing (eq. 2) over larger and larger
scales, it yields a “dressed” cascade.
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Fig. 2a: Schema showing how functional box counting can be
used to estimate the fractal dimensions at various
thresholds T.
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Fig. 2b: The results of functional box counting when applied to
1024x1024km topographic map of France at a 1km
resolution (in collaboration with P. Ladoy, D. Lavallée).
The lines (bottom to top) are the box counting results
for altitude thresholds decreasing by factors of two from
3600m above sea level. The corresponding dimensions
decrease from 0.84 (3600m) to 1,92 (28m).

flux. Interestingly, two seemingly quite different models were
initially proposed to account for the intermittency: the first,
the log-normal model in involving both log-normal prob-
ability distribution of e and multiple scaling (Kolmogorov 1962,
Yaglom 1966, Mandelbrot 1972...), and the second, a birth/
death type process involving only “dead” (calm) or “alive”
(active) regions, now known as the “8 model” (Novikov and
Stewart 1964, Mandelbrot 1974, Frisch et al 1978...). In the
next section we will discuss cascade processes in more detail,

showing how they generically yield multifractals. Further-
more, we will indicate how, by rendering them continuous
in scale we obtain universal behaviour. The apparently dis-
parate lognormal and 8 models are none other than the
extremes of a continuous family of universal multifractals.

3. A REVIEW OF FRACTALS AND MULTIFRACTALS:
3.1 Sets, fractals, geometry:

Before returning to the atmosphere, we quickly survey some
of the relevant fractal and multifractal notions. Consider the
geometric idea of the dimension of a set of points. The notion
that interest us here is that which relates the number of points
in the set to its size. The intuitive (and essentially correct)
definition of measure dimension that we will use below, is
that the number of points n{} in a (fractal) set S at scale /
(e.g. in a sphere of radius ) varies as:

n(J) o< 1d(S) )

where d(S) is the dimension of the set. Defining the “co-
dimension” ¢(S)=d-d(S} where d is the dimension of space
in which the set is embedded, the set is a “fractal” if c(S)>0.
A simple atmospherically relevant example is the number of
in situ meteorological measuring stations on the earth in a
circle radius { (fig. 3). If the measuring stations were uniformly
distributed, over the surface (d(5)=2), we would obtain n(})
« 2, however the actual distribution (fig. 3a) is highly non-
uniform, empirically yielding n{) < 75, Alternatively, the
density of points is proportional to (S)/zd=-c(S) which for
fractal sets decreases with Z the rate of decrease is charac-
terized by d-d(S)=c(S). The fractal dimension of a set therefore
is a measure of its sparseness. Another example of fractal
sets commonly occuring in the atmosphere is the set of rain
drops. Fig. 4a,b shows the analogous analysis.

Fig. 3a: The locations of the 9,563 station in the global meteo-
rological measuring network showing their high degree
of sparseness (from Lovejoy et al 1986).

3.2 Measures, multifractals, dynamics:

Clouds are not sets, dynamics is not geometry; geophysical
systems are usually fields (more generally measures) and their
treatment takes us well beyond the geometry of sets, providing
us with dynamical “multifractal” generators. Consider in more
detail the cascade model shown in fig. 1b which was produced
by dividing the unit square (the initial eddy, with e=1 every-
where), into four sub-squares {sub-eddies) each of scale A-7xA-
where A (=2 here) is the scale ratio. In each sub-eddy, we
pick a random factor (ue) from the following binomial process
(this just corresponds to a biased coin);

Priue=AC/a) = \-C

Pr(pe=ACle’) = 1 - A\-C
where “Pr’” indicates “probability’” and the parameters C, e,
a’ are constrained so that on average the entry is flux

(2)
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Fig. 3b: Open circles are the average number of stations within
annuli of geometrically increasing radii, closed circles are
the integral of the previous function, the function <n(L)>
described in the text. The straight line has slope 1.75.

conserved i.e. <ue>=1. Just as in thermodynamics, we can
distinguish between “micro-canonical” and “canonical” cas-
cades in which e is conserved respectively on each realization
{in the above, the sum of the four random factors introduced
at each step is constrained to be exactly =4) or only over
the ensemble as in the above. Although in fregent use (e.g.
Meneveau and Sreenivasan 1987), because of the scaling, the
microcanonical conservation is actually quite restrictive (it
could better be termed picocanonical — Schertzer and
Lovejoy 1990a) and will not be discussed further. In the
simplest canonical model, a=1, a’==: eddies are either “dead”
or “alive” (zero of finite), and in the limit of infinitely many
cascade steps, the support of e (the alive regions) is a fractal
set, codimension C (see e.g. fib. 1b). This is the 8 model
mentioned above. However, taking «, o’ finite, we already
obtain the much more interesting "alpha model” (fig. 1c, see
Schertzer and Lovejoy 1983) which involves a whole hierarchy
of intensity levels, each distributed over a different fractal
set. Note that the @ and &’ used in this section should not
be confused with those used elsewhere in this paper.

The notation we have adopted makes the multifractal nature
of the process evident. Consider the above process iterated
twice down to scales A-2. There are now three possible states
with the following probabilities and values:
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Fig. 4a,b: Raindrops on blotting paper: similar to 3a,b (see Lovejoy
and Schertzer 1990d for more details).

Pr[FF()\CIa)z) = (x-Cp2
Pripe=AC/ax-C/a’y = 2)-C(1 - A-C) 3)
Priue=(A-C/ej2) = (1-A-Cp2

where now ue is the total random factor for the two steps.
The above two steps of the binomial process (3}, are clearly
identical to a single step of a trinomial process with scale
ratio A’=A2 (=4 here):

Pr{ue=x'Cl/a) = \'-C
 Pripe=n"Cl1/a-1/a')y = 20-C/2.9)\-C 0
Pripe=\"-C/a’y = 14x-C2\-C/2

repeating the process of replacing an n step binomial process
with scale ratio A per step, by a single step n+1 state process
with scale ratio AN, we can associate each value of ¢ with
specific exponents {(e=Avi) each with probabilities:

Priue=Ayi) = Zpii)\‘cij (5)

Where the pjj's are various weights (the “submultiplicities”
Schertzer antj Lovejoy 1987b) of the various nascent co-
dimensions cjj and A is the total scale ratio of the n steps.
In the limit A—o, the smallest ¢j; will dominate the rest
allowing us to associate specific codimensions (cjj =min; cjj)
for every order of singularity ;. Denoting the multlfractal



cascade constructed down to scale A-1 by ex, we obtain a
fundamental multifractal relation (Schertzer and Lovejoy
1987b):

Pr{eh=A-y) = r-€(¥) (6)

where the symbol “~" indicates equality to within factors
of vy and slowly varying functions of A (such as loga, logloga,
etc.). It turns out that the limit A—20 is mathematically quite
singular, and e can only be defined as a weak limit of measures:
i.e. the limiting ¢ is no longer a function — it is rather a
measure, hence to obtain meaningful values, it must be
integrated over various sets. In fact, the singular nature of
this limit enables us to define both “bare” and “dressed”
cascade quantities at resolution A (the left and right hand
sides respectively of fig. 1). The “bare” quantities are those
obtained after a finite number of steps down to scale A,
whereas the “dressed” quantities are those obtained after
integrating a completed cascade over the same scale. As can
be seen from the figure, the “dressed” quantities appear to
be more variable — this is indeed the case — we return to
this important distinction later (section 4.2).

3.3 Data analysis and the Probability Distribution/Multiple
Scaling (PDMS) technique:

Before considering other multifractal properties, we briefly
show how equation 6 can be empirically tested using satellite
data. Consider a typical empirical data set such as a satellite
cloud picture, obtained by a sensor with resolution f where
L=y, L is the outer scale of the variability, and 5 the inner
(e.g. viscous) scale. Define the scale ratio A=L/>1 and the
field smoothed at scale A by:

fixydx
_SA f 7)
dx
SA

where SM is an averaging set (e.g. for a satellite resolution
element, the denominator is just the area of the element)
of scale A. In the simplest case called “self-similarity”, SA is
just a reduced copy of the large scale region S1 (see section
5 for a discussion of more complex “reductions’). We have
also assumed that f has been non-dimensionalized (normal-
ized) for example, by dividing the original field by its clima-
tological average value so that the statistical average <fA>=1.
As A—oo, fX is an increasingly finer resolution function which
we expect to behave as a (dressed) e; if it represents a satellite
image with a sensor of increasing resolution, we find that
structures in the fields are more and more sharply defined,
occupy smaller and smaller fractions of the image while
simultaneously brightening (increasing in value) to com-
pensate.

A

We can now use eq. 6 to obtain empirical estimates of c(v)
(Lavallée et al 1990). Taking logs and rearranging, we obtain:

log Pr((log fA)/(log A) >v) i
log v

Hence, plotting the normalized log probability distribution
(- log Pr/log A} against the normalized intensity (logfA/logh)
we obtain the resolution (A) independent function c(v).
Fig. 5a,b shows the results when this technique is applied
to 5 visible and 5 infra red GOES (Geostationary Operational
Environment Satellite) pictures respectively over Montreal.
Before the analysis was performed, the raw data (in an
inconvenient satellite map projection) were remapped on a
regular 8x8km? grid (conic projection) over a region of
1024x1024km2. As can be seen, all the distributions are nearly
coincident, in accord with the multifractal nature of the fields.
To judge the closeness of the fits, we calculated the mean
cly) curves as well as the standard deviations for 8, 16, 32,
64, 128, 256 km, finding that the variation is very small, being

cly)=-

typically about £0.02 in c(y} (Lovejoy and Schertzer 1990a,b,
see Lavallée et al. 1990 for theoretical discussion and some
numerical results).

3.4 Multiple scaling properties:

Equation 6 has an equivalent statement in terms of the
statistical moments of eA: :

<eAh>=AK(h) = f J\h'}qr»,»d.}.r >=I=f)\hv—q:!(')«]{j.W = fe{h*v—c{y)}log)\d-y {9

Where “<>" indicates ensemble (statistical) averaging and
Prd?é is the probability density taken from eq. 6. Since AK(h)

(h)logh, as logh—=, for each moment h, there is a
corresponding singularity vh which dominates the average:
h=c'(yh) (the method of “steepest descents”) and we obtain
another (equivalent) multifractal relation:

AK(h) = xmaxthy-c{v))

K(h) = M3X (hy-c(y) e

Cy)

0" T
0.8 , 0.2

Fig. 5a: Estimates of the function c(y) obtained from five visible
satellite images with resolution 8km over an area
1024x1024km. The points indicate the mean of the six
individual c(y) functions obtained at 8, 16, 32, 64, 128,
256km. The solid line is the best fit regression to the
universal form (eq. 10), and yields =0.6.
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Fig. 5b: The same scenes viewed at infra red wavelengths. o=1.7,



The above (Legendre) transformation is equal to its inverse,
hence we also obtain:

cly) = mhax {(hy-K(h)) an

showing the complete equivalence between a description
in terms of moments {characterized by K(h)) or probabilities
{characterized by c(y)). It is also possible to define another
{“dual”) codimension function (Hentschel and Procaccia 1983,
Grassberger 1983, Schertzer and Lovejoy 1983; see eq. 16
below for its physical significance) associated with moments
of various orders:
Kih)

C(h) hot {12}
For those who are familiar with multifractals, it is worth noting
here that we have denoted the orders of singularities by the
symbol ¥ because the atmospheric quantities of interest are
modelled by densities of multifractal measures (such as )
and +y gives the orders of these singularities directly. In other
systems such as phase space portraits of strange attractors
{Halsey et al 1986), it is more usual to treat the singularities
of the measures (rather than the singularities of the densities)
usually denoted by the symbol « (not to be confused with
the « discussed in the following sections!); the relation
between a and y being y=d-a where d is the dimension of
space in which the process occurs. Furthermore, we use the
codimension function c{vy) rather than a dimension function
since we are really interested in a family of measures each
identical except for the dimension of the space in which it
is embedded (in some applications it is even useful to take
the latter as a fractal set, e.g. the global measuring network
fig. 3), and the codimensions specify the probabilities inde-
pendently of the latter. In contrast, in studying strange
attractors, d is usually kept fixed and the dimension is denoted
fla). We therefore have fla) = d - c(d-a).

4. UNIVERSAL MULTIFRACTALS:
4.1 Continuous cascades:

The cascade discussed above was based on iterating a scale
invariant cascade step each of which increased the range
of scales by a discrete (integer) ratio A. In these processes,
the limit of an infinite number of cascade steps is simultane-
ously the limit of infinite scale ratios. It turns out that if these
limits are taken simultaneously, universal behaviour is gener-
ally not obtained — this is the source of some misplaced
claims that universal behaviour is either absent or is very
limited. However, rather than involving discrete ratios, phys-
ical models should be continuous, i.e. we should take first
the limit A—1 for each step while keeping the entire range
of scales modelled finite. We may subsequently take the
second limit in which this range tends to infinity. It is this
“densification” of the cascade process effected by the first
limit that leads directly to universal multifractals.

Using this densification idea, and introducing the generator
of the process 'A=logeX, we have shown (Schertzer and
Lovejoy 1987a,b} that in order to obtain eq. (6) and (9) (i.e.
to obtain multifractals), that it is sufficient that A has an
energy spectrum E(k)=k- (it is a ““1/f noise”). We have also
known that c(y), K(h) have the following stable and attractive
limiting forms for c{y), K(h):

cly) = Cq (7’_ + 1) Py K(h) = S1¢ (hah) (13)
Cile’ « o
with C1=d, 0<a<2, 1/a+1/a’=1, a1 (for a=1, see below). Cq
and « are the fundamental parameters: unlike the geometric
parameter d(S) which describes the sparseness of scaling sets,
Cq1 and « are dynamical, characterizing the (probability)
generator '\ of the process. Cq characterizes the codimen-
sion of the mean of the process, hence the sparseness of

the mean field, a (see below), the distance from mono-
fractality. Note that with the unique exception a=2, the
formula for K(h) is valid only for h>>0, when h<0, K(h)=c=.

The derivation of eq. (13) relies on the (general) central limit
theorem for the addition of random variables since the
generator T'A is the sum of elementary noises; a=2 is the
familiar case, T\ is gaussian. a<2 corresponds to the less
well known infinite variance cases of the central limit theorem:
rather than gaussians, we obtain (stable) “Levy” distributions,
index « (an interesting technical point is that only the
maximally asymmetric or “extremal” Levy variables are pos-
sible here, since otherwise K(h) would not be finite for any
h — this appears to be the first application of extremal Levy
variables, see Schertzer et al 1988, Schertzer and Lovejoy 1990
in particular appendix A).

There are five principle universality classes: &=0, 0<<a<1, a=1,
1<a<2, a=2 (see fig. 6 for an illustration). We have already
seen that the case a=2 yields the log-normal multifractal: this is
actually a multifractal presentation of the process discussed
by Kolmogorov 1962, Obukhov 1962. As we decrease o
(1<a<(2), we still have a regime with unbounded singularities
(e>2) but the generator becomes discontinuous character-
ized by extreme regularities and “holes”. In the limit a—1,
we obtain exponential behaviour (c(y)=Cqexp(y/Cq-1),
K{h)=Cqhlogh}. In the case a<0<1, we have bounded sin-
gularities (the upper bound is -Cqja'/a,0'<<0), and finally in
the limit «—0, we obtain the (monofractal, single fractal
dimensional) 8 model, the other early cascade model cor-
responding to a birth/death process.

When «=2, the multifractals filtered at a finite scale of
homogeneity have lognormal probabilities (see however the
caveate below about “dressed” quantities corresponding to
the small scale limit), and when « is not too much less than
2, they will be not too far from lognormal (the extreme
fluctuations will be less violent). The multifractal nature of
the atmosphere is therefore consistent with the widespread
atmospheric lognormal (or “roughly” lognormal) phenome-
nology (see however fig. 5 where we find empirical values
o=~1.7, a=0.6 which are <2). Geophysical quantities generally
are extremely variable, and the geophysical literature abounds
with empirical fits to log-normal distributions. We suspect
that closer inspection will reveal that the corresponding fields
are actually multifractals and that the distributions are not
really log-normal.

The above c{y), K(h) functions are for conserved (stationary)
quantities. For other quantities such as the velocity field, or
the concentration of a passive (inert) admixture (see fig. 7
for an illustration) which are related at least for the “bare”
singularities to these by either dimensional and/or power law
relations, the corresponding c(vy) functions can be obtained
by the linear transformation y—ay+b.
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Fig. 6: The five basic universality classes.



Fig. 7: Multifractal passive scalar cloud from a continuous cascade process with o=1.6, on a 512x512 point grid (Schertzer and Lovejoy

19904, in collaboration with Jean Wilson, Gadjendra Sarma).

4.2 Bare and dressed muiltifractal properties, statistical outliers
and the measurement of atmospheric quantities:

Before turning to the problem of anisotropy, we must first
discuss a complication which arises because of a basic
distinction between “bare” and “dressed” multifractal prop-
erties. The “bare” properties are essentially theoretical: they
are typically obtained after a cascade process has proceeded
only over a finite range of scales (see the left hand side of
fig. 1c); strictly speaking, the above equations for c(vy), K(h)
apply only to these quantities. The experimentally accessible
quantities are different; they are obtained by integrating
cascades (e.g. with a measuring device} over scales much
larger than the inner scale of the cascade (i.e. in the atmos-
phere over scales >>> 1mm). The properties of such spatial
{(and/or) temporal averages are approximated by those of the
“dressed” cascades ie. those in which the cascade has
proceeded down to the small scale limit and then integrated
over a finite scale (see the right hand side of fig. 1c). The
small scale limit of these multiplicative processes is singular
and is responsible for this basic distinction (it is also because
of this that measuring atmospheric quantities is far from
trivial!).

Unlike the bare cascade, the dressed cascade displays the
interesting phenomenon of divergence of high order statis-
tical moments, that is:

<eh>—co for all h=hgy (14)

Where hg is the critical exponent for divergence. The precise
condition for divergence is quite simple (Schertzer and
Lovejoy 1987a,b):

Clhg)=d(S) (15)

where 5 is the averaging set (e.g. line, plane, or fractal in
the case of typical measuring networks), over which the
process is averaged. The phenomenon of divergence of high
order statistical moments arises directly from the fact that
Cih) is often unbounded (see eqs. 12, 13), and hence for large
enough h, C(h)>d(S). Conversely for a fixed h, divergence
will still occur if the set S is sufficiently sparse so that d(S)
is small enough. The dressed codimension function is the
same as that of the bare function for y<{yd where c’{y4)=hg.
For y>vq, it is a straightline, slope hg. Empirical values of
hg include 5, 5, 1.7 for wind, temperature, and rain respec-
tively (see Lovejoy and Schertzer 1986 for a review). In

empirical data sets the divergence of moments implies that
moments increase with sample size; troublesome “outliers”
continue to exist even when the latter is enormous. Failure
to appreciate this basic distinction between bare and dressed
quantities has lead to abusive simplifications of multifractals
such as the notion of “point dimension” where it is assumed
that the fractal dimension literally varies from point to point.
The fact that multifractals are generally mathematical mea-
sures and not functions means that the dimensions cannot
be understood as point values, and that the corresponding
multifractals will not be “soft” or “calm” but wild and extreme.

5. SELF-SIMILARITY, SELF AFFINITY, GENERALIZED SCALE
INVARIANCE:

We have considered the example of scaling in fluid turbulence
where isotropic scaling ideas have been developed over a
considerable period of time. However, the atmosphere is not
a simple fluid system, nor is it isotropic; gravity leads to
differential stratification, and the rotation of the earth to the
Coriolis force and to differential rotation; radiative and micro-
physical processes (e.g. cloud/raindrop dynamics) lead to
further complications. However even though the exact dy-
namical equations are unknown (as is generally the case in
geophysics), we have argued that at least over certain ranges,
that these phencmena are likely to be symmetric with respect
to scale changing operations. This view is all the more
plausible when it is realized that the requisite scale changes
(effected by a scale changing operator TA) needed in eq. 7
to transform the large scale Sq to the small scale S) can be
very general.

“Self-similar” measures will satisfy eq. 6, 9 (with fA in place
of eX) of TA is simply a reduction by factor A. However, much
more general scaling transformations are possible; detailed
analysis shows that practically the only restrictions on TX is
that it has (semi-) group properties with a generator G. The
resulting formalism is called “generalized scale invariance”
or GSI: Schertzer and Lovejoy 1985b, 1987a (see also Lovejoy
and Schertzer 1985 for anisotropic fractal cloud simulations
based on GSl). For example “self-affine” measures involve
reductions coupled with compression along one (or more)
axes; G is a diagonal matrix. If G is still a matrix (“linear GSI")
but has off-diagonal elements, then Th might compress an
initial circle S into an ellipsoid as well as rotate the result.
Linear and non-linear GSI have already been used to model



galaxies and clouds (see Figs. 7, 8 for examples, and for a
review, see Schertzer and Lovejoy 1989). Empirically, the trace
of G (called the “elliptical dimension” dg| of the system) has
been estimated in both rain {Lovejoy et al 1987) and wind
fields Schertzer and Lovejoy 1983, 1985) to have the values
2.22 and 2.55 respectively, indicating that the fields are neither
isotropic {de|=3), nor completely stratified (de|=2), but are
rather in between, becoming more and more stratified at
larger and larger scales. This contrasts with the conventional
view that arbitrarily splits the atmosphere into a large scale-
similar two-dimensional (flat) regime with dg|=2, and a small
scale (isotropic) three dimensional self-similar regime (with
de|=3) seperated by an elusive “dimensional transition”.

Other relevant applications of anisotropic scaling include
work (in progress) to estimate G empirically from satellite
pictures in order to determine the scale changing group
associated with differential rotation in the horizontal and to
study its relation to cloud texture and classification. GSI is
also the natural framework for introducing dynamics (time
evolution) into the cascade (Schertzer and Lovejoy 1985a,
Lovejoy and Schertzer 1985). For example preliminary results
in rain indicate that dg|=2.62 for (x,y,t) space (two horizontal
coordinates and time), showing that structures in (x,y,t) space
are compressed along the t axis. Combining this result with
the above for spatial stratification indicates that the full (x,y,z,t)
rain process has de|=2.84.

Defined by both the function civy) (or equivalently, by the
probability generator), and the scale changing generator G,
anisotropic multifractals display a tremendous variety of
behaviour: scaling systems therefore form a very broad class.
Although in meteorology, there are good theoretical reasons
to expect multifractal behaviour, we are just beginning to
explore these systems, and there is no consensus about the
exact limits. Systematic multifractal analysis of atmospheric
fields as well as their numerical simulation (which produces
surprising multifractal images — see fig. 7), will undoubtedly
help us understand atmospheric dynamics, predictability and
its limits, as well as contribute towards quantitative uses of
remotely sensed and in situ data.

6. CONCLUSIONS

In the past, physicists have often shunned the atmosphere
as an object of study, partly because it is practically impossible
to control the parameters of this “laboratory”, but even more
importantly because of the extreme variability and strong
anisotropy which easily leads to the impression that the
statistical properties are quite non-stationary, and hence that
appropriate statistical ensembles are impossible to define.
This impression was all the more cogent since the necessary
theoretical frameworks and corresponding data analysis and
simulation techniques were not available until recently (and
are currently undergoing rapid development).

In this paper, we have argued that both objections are not
as relevant as they once seemed. On the one hand, the sheer
quantity of data available helps to compensate for the lack
of laboratory controls. More fundamentally, laboratory situa-
tions even approaching the range of scales in the atmosphere
are not possible, so that in practice such data may be
indispensible. On the other hand, by outlining some recent
developments in non-linear dynamics — particularly multi-
fractals — we have shown that extreme variability (very similar
to that which is observed) arises quite naturally as a result
of the multiplicative cascade processes actually at work. We
showed that the apparent non-stationarity of atmospheric
statistics (including the frequent occurence of statistical “out-
liers”, which are often regarded as symptoms of non-
stationarity), is in actual fact totally consistent with stationary
multifractal cascades processes. In principle, it is possible that
most atmospheric “situations” can be regarded simply as

different realizations of the same ensemble (produced by the
same dynamical stochastic process). We illustratd these ideas
by analysing various data sets and producing simple multi-
fractal cloud and topography models which, already displayed
many realistic features. Further study of the various universal
multifractals, in particular in conjunction with (anisotropic)
“Generalized Scale Invariance” (“GS1”), may help reduce the
existing meteorological zoo” of structures (“fronts”, “highs”,
“lows”, “troughs”, “clusters”, “cells”, “supercells”, “jets”, etc.)
to a few manageable dynamically significant statistical para-
meters, It also provides an exciting new framework in which
to study the issues of predictability and its limits, order,
disorder, data analysis and stochastic simulation.

Fig. 8: Galaxy simulations and examples of differential stratifi-
cation and rotation.
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