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ABSTRACT: We critically re-examine existing empirical studies of vertical and horizontal statistics of the horizontal wind
and find that the balance of evidence is in favour of the Kolmogorov kx

−5/3 scaling in the horizontal, Bolgiano-Obukov
scaling kz

−11/5 in the vertical corresponding to a Ds = 23/9 stratified atmosphere in (x, y, z) space. This interpretation is
particularly compelling once one recognizes that the 23/9-D turbulence can lead to long-range biases in aircraft trajectories
and hence to spurious statistical exponents in wind, temperature and other statistics reported in the literature. Indeed,
we show quantitatively that one is easily able to reinterpret the major aircraft-based campaigns (GASP, MOZAIC) in
terms of the model. In part I, we have seen that this model is compatible with ‘turbulence waves’ which can be close
to classical linear gravity waves in spite of their very different nonlinear mechanism. We then use state-of-the-art lidar
data of atmospheric aerosols (considered as passive tracers) in order to obtain direct estimates of the effective (‘elliptical’)
dimension of the spatial part: Ds = 23/9 = 2.55 ± 0.02. This result essentially rules out the standard 3-D or 2-D isotropic
theories or the anisotropic quasi-linear gravity wave theories which have Ds = 3, 2, 7/3 respectively.

In this paper we focus on the multifractal (intermittency) statistics showing that there is a very small but apparently
real variation in the value of Ds , ranging for the weak and intense structures so that Ds ranges from roughly 2.53
to 2.57. We also show that the passive scalars are well approximated by universal multifractals; we estimate the
exponents to be αh = 1.82 ± 0.05, αv = 1.83 ± 0.04, C1h = 0.037 ± 0.0061 and C1v = 0.059 ± 0.007 (h for horizontal, v
for vertical). Copyright  2008 Royal Meteorological Society
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1. Introduction

In part I (Lovejoy et al., 2008c), we argued that the
23/9-D model with the extension to partially unlocalized
propagators for the observable (e.g. velocity, density)
fields provided the most physically satisfactory model of
the stratified atmosphere, being based on two turbulent
fluxes, (the energy and buoyancy force variance fluxes),
respecting generalized Kolmogorov and Corrsin–Obukov
laws and having some wave phenomenology. In this
paper, we examine the corresponding spatial empirical
evidence. In particular, we directly determine Hz (the
ratio of horizontal to vertical scaling exponents) using
nine airborne lidar vertical cross-sections of atmospheric
aerosol covering the range 3 m to 4500 m in the ver-
tical (a factor of 1500), and 100 m to 120 km in the
horizontal (a factor of 1200). One important difference

* Correspondence to: S. Lovejoy, Department of Physics, McGill
University, 3600 University St, Montreal, Quebec, Canada, H3A 2T8.
E-mail: lovejoy@physics.mcgill.ca

between such airborne lidar measurements and in situ air-
craft measurements is that the former do not suffer from
aircraft trajectory biases. This is because airborne lidar is
a remote-sensing technique in which ground is used as the
reference ‘altitude’. The key result of this experiment –
announced in Lilley et al. (2004) – is convincing evi-
dence for the 23/9-D model. It yields Hz = 0.55 ± 0.02
and therefore Ds = 2.55 ± 0.02 so that the 2-D and 3-D
theories are well outside the one standard deviation error
bars. These error bars are particularly small since each of
the nine 2-D sections have several orders of magnitude
more data than the largest comparable balloon experi-
ments (Table I). Here, the aerosols act as a tracer, and
laser light is scattered back to a telescope in the aircraft
enabling a 2-D reconstruction of its spatial distribution.
This in turns allows the determination of the degree of
stratification of structures as functions of their horizon-
tal extents. The horizontal range is particularly significant
since it spans the critical 10 km scale where the 3-D to 2-
D transition – the mesoscale gap – has been postulated to
occur. In addition, each dataset is obtained within a short

Copyright  2008 Royal Meteorological Society
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period of time (about 20 minutes) so that the meteorology
is roughly constant. The result is almost exactly that pre-
dicted from the 23/9-D model and shows that, even at
scales as small as 3 m, the atmosphere does not appear
to be three-dimensional, nor at large scales does it ever
appear to be perfectly flat (i.e. 2-D). Rather, structures
simply become more and more (relatively) flat as they
get larger.

2. Brief review of the empirical evidence

2.1. Scaling in the vertical direction

Although there is still no consensus about the nature
of the empirical horizontal spectrum (the 2-D versus
3-D debate or the various gravity wave theories), in
the vertical, things are a little easier if only because it
is easier for a single experiment to cover much of the
dynamical range. The 23/9-D theory was motivated by
the conclusions of the empirical campaign in Landes
(Schertzer and Lovejoy, 1985) and by the radiosonde
observations of horizontal wind shear along the vertical
made by Endlich et al. (1969) and Jimsphere observations
by Adelfang (1971). At about the same time, VanZandt
(1982) proposed an anisotropic k

−β
h (horizontal), k

−β
v

(vertical), gravity wave theory with βh = 5/3, βv = 2.4;
recent variants (with βv = 3 instead; it is significant that
the original βv = 2.4 is very close to the value 11/5 of the
23/9-D model and close to dropsonde estimates; Lovejoy
et al., 2007) were discussed in part I. Table I summarizes
and compares some of the vertical studies, focusing on
the horizontal wind and temperature. The most important
general conclusion is the consensus about the fact that
there is scaling in the vertical with βv > βh, i.e. there
is no evidence of isotropic turbulence at any scale
(a point made forcefully on the basis of 5 m resolution
dropsonde data in Lovejoy et al. (2007)). Recall that βv >
βh implies that the atmosphere is differentially stratified,
becoming increasingly flat at larger and larger scales.
Although the interpretations of the campaigns were made
from the perspective of various gravity wave theories,
the actual spectral exponents (βv; Table I, especially
the footnotes) are in fact generally much closer to the
Bolgiano–Obhukov (BO) value of 11/5 than the standard
gravity wave value of 3.

It is somewhat surprising that, contrary to the sit-
uation in convectively driven laboratory flows, in the
recent atmospheric literature the theoretical prediction of
Bolgiano (1959) and Obukhov (1959) is rarely discussed,
possibly because of the belief that it is not compatible
with wave phenomenology. Discussions related to the
isotropic BO scaling on the effect of buoyancy, stratifi-
cation and convection on the spectrum and the Bolgiano
length lB (at which the transition from 3-D isotropic
k−5/3 turbulence to anisotropic 3-D k−11/5 turbulence
supposedly takes place) can be found mostly in litera-
ture on the buoyancy-driven Rayleigh–Benard laboratory
experiments (discussion in Lilley et al., 2004).

It is interesting to note that there is evidence from
work in progress on numerical weather models (by some
of the authors with J. Stolle) that Hv ≈ 0.75 (and hence
βv ≈ 1 + 2 Hv ≈ 2.5), so that these results may be close
to those of at least some numerical models. In addition,
according to the results of Lovejoy et al. (2007) on 2772
Hv estimates for 1 km thick vertical layers, that Hv for
the horizontal wind slowly increases from ≈3/5 near
the surface to 0.75 at altitudes of several kilometres
(with intermittency corrections this leads to β ≈ 2.4).
The Kolmogorov value Hv = 1/3 was found only ≈0.1%
of the time while the 2-D turbulence/gravity wave value
Hv = 1 was found only ≈0.3% of the time. At present,
the relationship between this result and those reported
here for passive scalar surrogates is not clear.

2.2. Scaling in the horizontal direction

The early claims about the horizontal spectra (in partic-
ular the influential Van der Hoven (1957) spectra) were
taken in the time domain and converted into horizon-
tal spatial spectra by using Taylor’s (1938) hypothesis of
‘frozen turbulence’. This assumption was originally made
as a basis for analyzing laboratory turbulence flows in
which a strong scale separation exists between the forc-
ing and the turbulence; one simply converts from time
to space using a constant (e.g. mean large-scale) veloc-
ity assuming that the turbulent fluctuations are essen-
tially ‘frozen’ with respect to the rapid advection of
structures transported by the mean flow. In the atmo-
sphere, the validity of this assumption depends on the
existence of a clear large-scale/small-scale separation.
The difficulties in interpretation are illustrated by the
debate prompted by the early studies – especially Van
der Hoven (1957) – which were strongly criticized by
Goldman (1968), Pinus (1968) and Vinnichenko (1969)
and indirectly by Hwang (1970). For instance, after
commenting that if the mesoscale gap (separating the
small-scale 3-D regime from the large-scale 2-D regime)
really existed, it would be only for less than 5% of
the time, Vinnichenko (1969) even noted that Van der
Hoven’s spectrum was actually the superposition of four
spectra – including a high-frequency one taken under
‘near-hurricane’ conditions.

In order to obtain direct estimates of horizontal wind
spectra, Brown and Robinson (1979) used the standard
meteorological measuring network, but the scales were
very large and intermittency was so strong that they could
not obtain unambiguous results. A more direct way to
obtain true horizontal spectra is to use aircraft data, and
indeed, since the 1980s, there have been two ambitious
experiments (Global Atmospheric Sampling Program,
GASP, and Measurement of Ozone and water vapour
by Airbus In-service Aircraft, MOZAIC) to collect large
amounts of horizontal wind data, using commercial
airliners fitted with anemometers. The basic problem
here is that aircraft are affected by turbulent updraughts
and tail winds so that their trajectories can have long-
range correlations with the turbulent structures they are
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trying to measure. In other words, the interpretation of
in situ measurements themselves requires a theory of
turbulence. For example, if one accepts that the large
scale is flat (2-D), then the vertical variability is small
so that we expect that deviations of the aircraft from a
perfect straight-line horizontal trajectory will be small
and that the effect of the turbulent motion on the aircraft
will be negligible. Similarly, if one is in an isotropic 3-D
regime, then there is only one exponent (the same in
every direction) so that if one finds scaling, it is natural
to interpret this in terms of the unique scaling exponent
of the regime.

In a recent paper (Lovejoy et al., 2004), it was shown
that due to the effects of anisotropic (presumably 23/9-D)
turbulence, aircraft can fly over distances of hundreds
of kilometres in the stratosphere on trajectories whose
fractal dimension is close to 14/9 rather than 1, i.e.
they are strongly biased by the turbulence that they
measure. In this case, the long-range bias was the result of
using a ‘Mach cruise’ autopilot that enforced correlations
between the temperature and the aircraft speed, such that
the Mach number was constant to within ±2%. Even
when the trajectory has D = 1 in a 23/9-D turbulence, the
aircraft does not fly at a perfectly flat trajectory but rather
at an average slope s, then the scale function (see part I)
of the vertical vector (#x,#z) is

∥∥ (#x,#z)
∥∥ =

∥∥ (#x, s#x)
∥∥ ≈ #x + ls

(
s#x

ls

)1/Hz

,

where ls is the sphero-scale, and Hz = 5/9. From this we
see that there is a critical distance #xc = lss

1/(Hz−1) such
that the second (vertical) term dominates the scale func-
tion so that for larger distances, the statistics will be those
of the vertical rather than the horizontal. Figures 1(a)
and (b) show that the wind statistics from GASP and
MOZAIC – which are the two largest-scale experimen-
tal campaigns to date – can readily be explained in the
context of the 23/9-D model with only very small aver-
age aircraft slopes. We find that if we take ls = 4 cm
(the stratospheric value found by the NASA ER-2 air-
craft, but also similar to the values found below for lidar
backscatter), then the low-frequency regimes of both of
the experiments can be fairly well explained in this way.

At first sight, if interpreted as a slope with respect
to the horizontal, s = 1.5 m km−1 is perhaps more than
might have been expected (although as an average
for ‘flat’ legs of a commercial jet, it is probably not
so large). However, it is a slope with respect to the
eigenvector of the G matrix discussed in part I; if there
are even small off-diagonal elements (corresponding to
non-orthogonal eigenvectors), even a trajectory perfectly
‘flat’ in the sense of being rigorously perpendicular
to the local gravity vector may still have slope of
1.5 m km−1 with respect to the eigenvector. Since the
scale function emerges as a consequence of two highly
variable fluxes, it may be expected that the G matrix (and
hence eigenvectors) are somewhat variable from place
to place (nonlinear generalized scale invariance, GSI).

(a)

(b)

Figure 1. (a) Replotted from a graph of the second-order velocity
structure function from Lindborg and Cho (2001). Straight reference
lines show (from left to right) the Kolmogorov, BO and 2-D turbulence
behaviours. The 〈#v2〉 ≈ #r6/5 reference line corresponds to a slope
of 1.5 m km−1 and a sphero-scale of 4 cm. The curved line in
the right half is the log-corrected quadratic from Lindborg and Cho
(2001). The extension of this line (not shown in Lindborg and Cho)
rapidly leads to impossible negative structure functions (b) Adapted
from Gage and Nastrom (1986). The reference lines which extend
outside the box have been added; from left to right, they have slopes
−3, −5/3, and −11/5. (2-D turbulence/gravity waves, Kolmogorov
and Bolgiano-Obukhov values respectively). This figure is available in

colour online at www.interscience.wiley.com/qj

This allows the possibility for off-diagonal elements in
G and hence for non-orthogonal eigenvectors. Finally, the
estimate s = 1.5 m km−1 is based on a ball-park estimate
of the sphero-scale; if the sphero-scale is smaller than
4 cm, the required slope will also be smaller.

From Figure 1(a), we see that the aircraft inertial scale
is roughly #xi = 20 km (the end of the Kolmogorov
2/3 power regime), while at roughly #xf = 75 km, the
slope follows more closely a BO 6/5 power law (the
extra factors of 2 in the exponents come from using the
variance). The (possibly fractal) transition zone is roughly
between 20 and 75 km. It is interesting to compare this
to the theoretical 2-D turbulence reference line (a pure
quadratic law), as well as the log-corrected quadratic
law (curved line) using the coefficients from Cho and
Lindborg (2001), Lindborg and Cho (2001). We see that,
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while it is possible to use log corrections to make a
quadratic mimic a 6/5 power law over a limited range, as
soon as we go a little outside the fitted range (not shown
in Lindborg and Cho, 2001), the curve rapidly leads to
impossible negative structure functions.

Turning to the GASP experiment, we show Figure 1(b)
adapted from Gage and Nastrom (1986). Concentrating
on the more reliable solid black lines, which result from
the data-intensive GASP experiment (and ignoring the
selected ‘turbulent episode’ subset) we see that the BO
blue line does an excellent fit from 20 km upwards. Once
again, if the tropospheric sphero-scale = 4 cm, then we
find that an average aircraft slope of roughly 1.5 m km−1

explains the GASP spectra. Note that, unlike the case
of stratospheric trajectories where a significant fractal
regime was observed (from roughly 3 to 300 km), in
this case the regime is either short or does not affect
the scaling of the horizontal significantly; a small slope
is sufficient.

Not only does it seem that the 23/9-D theory is the only
one that can account for these major horizontal spectral
studies, but results of satellite studies of cloud radiances
provide additional support. Although cloud radiances are
not directly related to the horizontal wind, the two fields
are nonetheless strongly nonlinearly coupled such that
if the scale-invariant symmetry is broken in one, it will
almost certainly be broken in the other. This was the
motivation of the area perimeter (Lovejoy, 1982) and
a series of other studies (Lovejoy et al., 1993; Lovejoy
et al., 2001; Lovejoy and Schertzer, 2006) culminating in
the recent reflectivity factor, visible, infrared and passive
microwave results from the Tropical Rainfall Measuring
Mission (TRMM; Lovejoy et al., 2008a, 2008b; Figure 2
in part I). The latter study used about 1000 times the
amount of data of the previous ones (about 1000 orbits),
and showed that, to within typically about ±1%, the radi-
ance gradients followed multiplicative cascade statistics
from 5000 km down to the resolution of the measure-
ments, i.e. <10 km). It is not obvious how several dif-
ferent horizontal regimes could be hiding in this data. At
the same time, multifractal cloud simulations (including
those based on the turbulence/wave model, part I) show
how strong scaling horizontal anisotropy permitted by
GSI (with off-diagonal elements in the horizontal part of
G), can reconcile the wide diversity of cloud morphol-
ogy, texture and type with the isotropic statistics which
essentially wash out most of the anisotropy.

2.3. Lidar and direct measurements of differential
stratification

During the 1980s and 1990s, there was growing evi-
dence in favour of the 23/9-D model. This evidence
was mostly indirect since vertical and horizontal statistics
have almost invariably been studied in separate experi-
ments in separate regions of the world and at different
times. Until the lidar study (Lilley et al., 2004), the only
exceptions were the radar rain study (Lovejoy et al.,
1987) which only had a factor of 8 in scale in the ver-
tical, and the roughly simultaneous aircraft radiosonde

studies reported in Chiginiskaya et al. (1994) and Lazarev
et al. (1994). Direct tests of the fundamental prediction of
differential stratification of structures have been lacking
since they could only be obtained remotely by near-
instantaneous vertical cross-sections. Thanks to devel-
opments in high-powered lidar – primarily the ability to
digitize each pulse in real time with a wide dynamic range
using logarithmic amplifiers – this type of data is now
available. The lidar measures the backscatter ratio (B, the
ratio of aerosol backscatter to background molecular
scattering) of aerosols far from individual point sources;
the measured backscatter ratio is taken as a surrogate for
the concentration of a passively advected tracer.

Here we use lidar data which were taken as part of the
PACIFIC 2001 airborne lidar experiment using an air-
borne lidar platform called AERIAL (AERosol Imaging
Airborne Lidar) flown at a constant altitude over a grid of
flight legs of roughly 100 km in the Lower Fraser Valley
(British Columbia, Canada). Although the airborne lidar
platform is a simultaneous up–down system mounted
aboard the NRC-CNRC Convair 580 aircraft, only data
from the downward-pointing system was used. The lasers
operated at the fundamental wavelength of 1.064 µm
(suited for the detection of particles of the order of 1 µm),
with a pulse repetition rate of 20 Hz. The output power
of the downward lidar was measured to be 450 mJ. The
beam divergence was 6.6 mrad. The detectors employed
were 35.6 cm Schmidt–Cassegrain telescopes with an
8 mrad field-of-view which focused the captured photons
onto 3 mm avalanche photodiodes (APD). Each telescope
was interfaced with the APD using custom-designed cou-
pling optics. The downward lidar APD and optics were
connected to a logarithmic amplifier designed to increase
the dynamic range. The data acquisition system con-
sisted of two 100 Mhz 12-bit A/D cards with a Pentium
550 Hz computer that controlled the laser interlock sys-
tem, and collected, stored and displayed the data in real
time. The use of a logarithmic amplifier was very impor-
tant since without it – given the 1/(range)2 fall-off of
the power with range – the dynamic range of the signal
would have been too limited; it would have displayed
spuriously smooth fields.

The datasets consisted of B measurements made con-
tinuously in a 2-D planar region. One dimension was
along the propagation axis (the vertical), and the other
was along the displacement of the aircraft, i.e. along hor-
izontal straight paths at a fixed altitude of 4500 m. The
horizontal extents of the datasets were up to 120 km,
while the spatial resolution in the horizontal was set by
the aircraft speed and laser shot averaging to 100 m. The
vertical extents were of the order of 4500 m and the
spatial resolution was equal to the pulse length of 3 m.
Therefore, the ratio of the largest to the smallest scales
achieved was in the range 500–1000 and 1000–1500
in the horizontal and vertical, respectively. Figure 2(a)
shows a typical vertical–horizontal cross-section and
Figure 2(b) is a ‘zoom’ showing the incredible detail
now available. Also noticeable is the fact that, while the
large scales are horizontally stratified, the small scales are
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(a)

(b)

Figure 2. (a) Typical vertical-horizontal cross section acquired on August 14 2001. The scale (bottom) is logarithmic: darker is for smaller
backscatter (aerosol density surrogate), lighter is for larger backscatter. The black shapes along the bottom are mountains in the British Columbia
region. The line at 4.6 km altitude shows the aircraft trajectory (b) Enlarged content of the (700–1600 m) box in (a). Note that small structures
become more vertically aligned while large structures are fairly flat. The aspect ratio is 0.016. This figure is available in colour online at

www.interscience.wiley.com/qj

much less so showing more and more vertically aligned
structures at the smaller scales – exactly as predicted by
the 23/9-D model.

These data were analyzed by Lilley (2003) and a
brief ‘announcement’ paper (Lilley et al., 2004) gave
the key anisotropy results for first-order structure func-
tions and (second-order) spectra. Below, our goal is
to consider all the moments (i.e. including the inter-
mittency), however we quickly review the Lilley et al.
(2004) results.

Analyzing the first-order moment (q = 1) case is
interesting (Figure 3), because we expect K(1) to be
small enough that the horizontal Hh and vertical Hv can

be estimated as ξh(1) ≈ Hh = 1/3, ξv(1) ≈ Hv = 3/5.
(Throughout this paper, K(q) is the scaling exponent
function for the passive scalar flux ϕ = χ3/2ε−1/6 (see
section 3.1), whereas in part I, the K(q) refers to energy
flux ε.) We can see from the figure that not only is
the scaling excellent in both horizontal and vertical
directions, but in addition that the exponents are very
close to those expected theoretically. In fact, we find from
linear regression that Hh = 0.33 ± 0.03, Hv = 0.60 ±
0.04. Also visible in the figure is the scale at which
the functions cross; this is a direct estimate of the
sphero-scale which we find here varies between 2 cm
and 80 cm, with an average of 10 cm.
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Figure 3. The symbols show the first-order vertical structure function,
and first-order horizontal structure function for the ensemble of nine
vertical airborne lidar cross-sections. ρ is the dimensionless backscatter
ratio, the surrogate for the passive scalar aerosol density. #r is either
the vertical or horizontal distance (m). The lines have the theoretical
slopes 3/5, 1/3; they intersect at the sphero-scale here graphically

estimated as ≈10 cm.

A standard method for the analysis of scaling and
turbulent fields is the calculation of energy spectra.
Lilley et al. (2004) find excellent scaling despite the
slight increase at high wavenumber which is due to the
presence of instrument noise. We have already noted that
for isotropic scaling systems E(k) = k−β ; since E(k) is
the Fourier transform of the autocorrelation, we have a
simple relation between β and ξ (2):

β = 1 + ξ(2) = 1 + 2H − K(2) (1)

From the analysis below, we find Kh(2) = 0.065,
Kv(2) = 0.10, hence the theoretical spectral exponents
are: βh = 1.60, βv = 2.10; these are within one standard
deviation of the regression values βh = 1.61 ± 0.03,
βv = 2.15 ± 0.04 reported in Lilley et al. (2004).

In Figure 3 it is important to realize that only the
intercepts of these first-order structure functions were
fitted to the data; the slopes have the theoretical val-
ues indicated. These first simultaneous measurements on
atmospheric cross-sections permitted Lilley et al. (2004)
to estimate the elliptical dimension Ds as 2 + Hh/Hv =
2.55 ± 0.02, clearly eliminating the contending 2-D the-
ory or leading gravity wave theory (which have Ds = 2
and 7/3, respectively).

The first- and second-order statistics are only very
partial descriptions of the fields. In order to more
completely test the anisotropic 23/9-D multifractal model
discussed in part I, we must investigate the statistics of
all orders, i.e. including the intermittency. (In part III
we also indicate how to verify the theory for arbitrary
directions using a new Anisotropic Scaling Analysis
Technique (ASAT)). In particular, we are interested in
testing the hypothesis that (a) the passive scalar field is
a universal multifractal, and (b) the lower- and higher-
order statistics (which correspond to weak or strong

structures/events) are stratified in the same way as the
mean (and variance) fields investigated in Figure 3.

3. Direct test of the 23/9-D model using
atmospheric aerosols and lidar data

3.1. The statistics of passive scalar advection

3.1.1. The anisotropic Corrsin–Obukov law

In optically thin media, the backscatter ratio B (or pos-
sibly B raised to a power Bη; Lilley et al., 2004) is
a good surrogate for the aerosol concentration. If one
assumes that the sources and sinks of aerosols are far
enough removed from the region that the latter may be
assumed statistically homogeneous, and if one assumes
that one can neglect chemical reactions occurring dur-
ing the roughly 20 minutes during which the data were
acquired, then B will be an approximation to a passively
advected tracer (‘scalar’; with or without wave-like frac-
tional integration). We now consider the predictions of
the 23/9-D model for such passive scalars. By introduc-
ing the scale function, the 23/9-D model automatically
predicts anisotropic generalizations of many of the stan-
dard results of isotropic turbulence theory, including the
standard Obukhov (1949) and Corrsin (1951) theory of
passive scalar advection. The standard isotropic theory is
based on two quadratic invariants: the energy flux for the
wind field (section 2.2.3) and the passive scalar variance
flux χ , so that for statistically isotropic passive scalar
concentrations ρ:

#ρ(#r) = χ
1/2
|#r|ε

−1/6
|#r| |#r|1/3;

#ρ(#r) = ρ(r + #r) − ρ(r). (2)

The subscripts indicate the spatial resolutions of the
fluxes. As discussed in part I, in order to obtain the
anisotropic generalization of Equation (2), we need only
to make the replacement |#r| →‖ #r‖ (the spatial scale
function; see part I for a definition and part III for
space–time). Taking ‖(#x, 0, 0)‖ = #x, ‖(0, 0,#z)‖ =
ls(#z/ ls)

1/Hz and ls = ε5/4/φ3/4, where φ is the buoy-
ancy variance flux and ls is the sphero-scale (see part I, in
particular, appendix A for technical details including the
distinction between the bare and dressed sphero-scale),
this yields the following horizontal and vertical laws:

#ρ(#x) = ϕ
1/3
#x #x1/3; ϕ#x = χ

3/2
#x ε

−1/2
#x

#ρ(#z) = κ
1/5
#z #z3/5; κ#z = χ

5/2
#z ε

−5/2
#z φ#z. (3)

The first is the standard Corrsin–Obukhov law while the
second is new. Although any power of ϕ or κ could also
have been used, the particular choice in Equation (3) was
made for convenience since with the transformation
ϕ → ε; κ → φ, the resulting anisotropic passive scalar
formalism maps onto the anisotropic Kolmogorov law
(for the velocity); we make a few more comments below.
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Although the lidar only measures a surrogate for ρ,
according the the 23/9-D model, any physical atmo-
spheric field whose dynamics are controlled by the fluxes
ε and φ should have the same scale function and hence
the same ratio of horizontal to vertical exponents. Hence,
the experiment can still estimate Hz and hence Ds even
if the relation between B and ρ is nonlinear or is only
statistical in nature.

3.1.2. The statistical moments

Until now, we have ignored intermittency, concentrating
instead on the predictions of spatially homogeneous
turbulence theories. However, during the 1980s it became
increasingly recognized that turbulent scaling regimes
often had cascade phenomenologies generically leading
to strong multifractal intermittency. For example, taking
qth powers of Equation (2) and performing ensemble
averaging, we expect the following statistics in passive
scalar advection:

〈|#ρ(#r)|q 〉 =
〈
ϕ

q
‖#r‖

〉
‖#r‖q/3. (4)

In part I we show that if we consider data from a
single realization over a region width lx , thickness lz,
we can use the multiplicative property of the cascades to
factor the fluxes into low-frequency and high-frequency
components allowing us to make the following estimates:

(|#ρ(#x, 0, 0)|q)
(lx,lz)

≈ ϕ
q/3
λ

(
lx

#x

)Kϕ (q/3)

#xq/3 = ϕ
q/3
λ l

Kϕ(q/3)
x #xξϕ(q),

(|#ρ(0, 0,#z)|q)
(lx,lz)

≈ κ
q/5
λ

(
lz

#z

)Kκ (q/5)

#z3q/5 = κ
q/5
λ lKκ (q/5)

z #zξκ (q), (5)

where the fluxes have the following dependence on the
ratio λ over which the cascade is developed:

〈ϕq
λ 〉 = λKϕ(q); 〈κq

λ 〉 = λKκ (q) (6)

and the horizontal (#x) and vertical (#z) structure
function exponents (subscripts h, v) are:

ξh(q) = q/3 − Kϕ(q/3),

ξv(q) = 3q/5 − Kκ(q/5). (7)

(For simplicity we suppose horizontal isotropy and do not
give explicitly #y dependencies). We mentioned above
that the choice of variables ϕ, κ was somewhat arbitrary
since any of their powers could have been used. Now,
we note that although ϕ, κ are combinations of conserved
fluxes, a priori, they are not themselves exactly conserved
scale by scale (i.e. we do not expect Kϕ(1) = 0, Kκ(1) =
0 although we expect deviations will be small). Finally,

it is tempting to hypothesize the statistical independence
of the basic conserved fluxes ε, χ , φ; this would imply

Kϕ

(q

3

)
= Kχ

(q

2

)
+ Kε

(−q

6

)
and

Kκ

(q

5

)
= Kχ

(q

2

)
+ Kε

(−q

2

)
+ Kφ

(q

5

)
.

We do not do this because, on the one hand, this
is implausible – the real physics undoubtedly involve
coupled cascades – and, on the other hand, for pos-
itive q it would involve Kε of negative arguments
(Kε(−q/2), Kε(−q/6)) and, for universal multifractals
(except when α = 2), these are divergent. In the context
of a passive scalar treatment of the temperature field,
Schmitt et al. (1996) have a detailed discussion of this
issue and propose a simple alternative. For the moment,
due to these theoretical uncertainties, we will adopt a
more empirical view and define horizontal and vertical
exponents as:

ξh(q) = ξϕ(q) = qHh − Kh(q);
Hh = 1/3; Kh(q) = Kϕ(q/3);

ξv(q) = ξκ(q) = qHv − Kv(q);
Hv = 3/5; Kv(q) = Kκ(q/5). (8)

We can now use the structure function ratio ξh/ξv to
determine the anisotropy exponent Hz:

Hz = ξh(q)/ξv(q) = Hz,1 + #Hz;

Hz,1 = Hh

Hv
= 5

9
, (9)

where #Hz is a small intermittency correction and
we have introduced Hz,1 = 5/9 with the subscript ‘1’
because if Kh(1) = Kv(1) = 0, then Hz = Hz,1. In terms
of the Ks, we have:

#Hz = 1
qHv

{
Hz,1Kv(q) − Kh(q)

}

{1 − Kv(q)/(qHv)}

≈
{
Hz,1Kv(q) − Kh(q)

}

qHv
. (10)

This shows that, unless Kh(q)/Kv(q) = Hz,1 = 5/9,
there will be intermittency (K-dependent) corrections to
the Hz,1 = 5/9 value. Since in multifractals there is a
one-to-one correspondence between singularities (struc-
tures) and statistical moments, a small q-dependence in
Hz implies a small difference in the degrees of stratifi-
cation of strong and weak structures. This is discussed
in more detail in part I appendix A, where we used
dropsonde data to estimate #Hz for the horizontal wind
field. Conversely, the complete absence of such intermit-
tency corrections implies specific statistical dependencies
between the fluxes such that, for all q, Kh(q)/Kv(q) =
5/9.
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In the general cascade theory, the only restriction of
K(q) is that it is convex. However, due to the existence
of stable, attractive multifractal universality classes (the
multiplicative analogue of the additive central limit
theorem in probability theory; Schertzer and Lovejoy,
1987, 1997), under fairly general circumstances, K(q)
is determined by two basic parameters as:

K(q) = C1

α − 1
(qα − q), (11)

where C1 is the co-dimension characterizing the sparse-
ness of the mean field whereas 0 ≤ α ≤ 2 is the index of
multifractality (the Levy index of the generator); it char-
acterizes the relative importance of low ‘holes’ in the field
(α = 0 is totally hole-dominated; it is the monofractal
limiting case). If Kh and Kv are both of the universal form
Equation (11), then the condition Kh(q)/Kv(q) = 5/9
implies that αh = αv and C1h/C1v = 5/9.

3.2. Multifractal analysis

3.2.1. qth-order structure functions

Until now, we have only tested the theory in orthogonal
directions (coordinate axes) and for first- and second-
order moments. In part III we estimate the angle function
- characterizing the ‘trivial anisotropy’ using the ‘ASAT’
technique (see Equation (16), part I). Here, we turn to
testing over a wider range of statistical moments, q. We
need to compare horizontal and vertical ξ(q) and K(q)
exponents. The simplest way is to calculate the structure
functions which are simply the moments of the absolute
differences (Equation (2)); this is a ‘poor man’s wavelet’,
adequate for our purposes. Figures 4(a) and (b) show the
scaling in the horizontal and vertical for the structure
functions of order 0 ≤ q ≤ 5 and Figure 5 shows the
corresponding exponents ξh(q), ξv(q) obtained from the
slopes. The straight lines qHh, qHv are also shown; the
deviations are purely due to the multifractal intermittency
corrections K(q) which we study in the next subsection.

3.2.2. Trace moments, and C1

In order to characterize ξ(q), we need to estimate the
nonlinear part, K(q). However, due to the fact that the
C1 values are much smaller than the H values, we find
that for low q, K(q) will be much smaller than ξ(q). It
is therefore best to estimate K(q) directly; this can be
done by removing the linear scaling ‖#r‖qH in Equa-
tion (4) so as to study the scaling of the fluxes

〈
ϕ

q
‖#r‖

〉

directly. This can be achieved by fractionally differenti-
ating ρ by Hh in the horizontal, and by Hv in the vertical
(Figure 6; this is simply a Fourier filter of kHv). In prac-
tice, if the H values are <1, it is sufficient to take the
modulus of the gradient vector which is a surrogate for
the (absolute) first-order derivative, itself a surrogate for
the flux at the finest available resolution. From this high-
resolution flux estimate, we estimate the flux at lower
resolutions by simply spatially degrading it. This ‘trace

(a)

(b)

Figure 4. (a) Horizontal and (b) vertical structure functions of order q

between 0.5 and 5 at increments of 0.5. The regressions were estimated
over the scaling range.

Figure 5. The scaling exponent ξ(q) of the qth-order structure
functions; the lower points and curves are for the horizontal direction,
the upper points and curves are for the vertical direction. They are
determined from the slopes of Figures 4(a) and (b). The straight
lines are the basic (non-intermittent) scalings, with slopes 1/3 and
3/5 respectively. The curves are from universal multifractal forms
with parameters C1h = 0.037, αh = 1.82 and C1v = 0.059, αh = 1.83,

respectively.

moment’ method (Schertzer and Lovejoy, 1987) is fairly
standard and has been tested extensively numerically (e.g.
Lavallée et al., 1993).

We have mentioned that the basic characterization
of K(q) (obtained as the exponent of ϕ‖#r‖ with
scale ‖#r‖) is the sparseness of the mean, C1, and
the multifractal index, α (Figures 6(a) and (b)). Using
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Figure 6. The scaling exponent function K(q) for the horizontal direc-
tion (lower points and curve) and vertical direction (upper points and
curve), from the slopes of the trace moments in Figures 5(a) and (b),
respectively. The curves are regressions to the universal multifrac-
tal forms with parameters C1,h = 0.037, αh = 1.82 and C1,v = 0.059,

αv = 1.83, respectively.

Figure 7. A scatterplot of the basic universal multifractal exponents
C1 and H , as estimated from trace moments and structure functions
respectively for each of the nine cross-sections. Shown for reference is
the theoretical slope Hz = 5/9. The scatter is within a standard error;
see the text. This shows that the strong (intermittent) structures are also
stratified with roughly the same exponent Hz. The abscissa is a vertical

exponent and the ordinate is a horizontal exponent.

moments near unity allows us to use the relation C1 =
K ′(1), to estimate C1 by numerically differentiating
K(q). We obtain C1,h = 0.037 ± 0.006, C1,v = 0.059 ±
0.007. From Equation (8) we see that, if the universal-
ity hypothesis holds and #Hz = 0 (see next subsection),
the ratio C1,h/C1,v = Hz and αh = αv. In Figure 7 we
show the corresponding scatterplot with the H and C1
values. Due to their much smaller values, the relative
spread in the C1 values is larger than for H . How-
ever, when the standard error estimates are included,
C1,h/C1,v = 0.70 ± 0.2 is within one standard deviation
of the theoretical value 5/9.

3.2.3. Double trace moments and α

In principle, we could perform a nonlinear regression
in K(q) to determine α as well as C1. In practice
however, the regression is not very well posed; this is
particularly true since the universal form (Equation (11))

is only valid for q’s below a critical value after which
K(q) becomes linear. This ‘multifractal phase transition’
(Schertzer et al., 1993) arises because either the sample
size is too small to estimate the high-order moments,
or because of the divergence of moments greater than a
critical value qD (cf. the value qD = 2 in the turbulence
wave model, appendix C of part I, or the empirical value
qD = 5 for the velocity (Schertzer and Lovejoy, 1985)).
A better way to estimate the value of α is via the ‘double
trace moment’ (DTM) technique. The DTM is essentially
the same as the Trace Moment method except that, after
fractionally differentiating ρ, at the finest resolution .
one first takes the η power. One then degrades the
resolution to an intermediate resolution λ:

〈(
ϕ
η
.

)q

λ

〉 = λK(q,η) (12)

The new exponent K(q, η) is related to K(q) via

K(q, η) = K(qη) − qK(η), (13)

so that if K(q) = K(q, 1 ) is of the universal form (11),
then we have the particularly simple relation:

K(q, η) = ηαK(q, 1) = ηαK(q), (14)

so that for fixed q, α can be determined directly by
log–log regression of K(q, η) versus η. Figures 8(a)
and (b) show the results for K(q, η) in the horizontal
and vertical respectively. The linearity shows that the
universality hypothesis is accurately obeyed. From the
regressions, we obtain: αh = 1.82 ± 0.05, αv = 1.83 ±
0.04. Consistent with the possibility #Hz = 0 (same
stratification for intense and weak structures), these are
equal within error bars. Finally, from the measured values
of α and the regression intercepts K(q, 1), we obtain
the additional estimates C1,h = 0.037 ± 0.006, C1,v =
0.059 ± 0.007, which are very close to those obtained
from the Trace Moment method discussed above.

3.2.4. The cross-section to cross-section variability

Until now, we have mostly pooled the data from the
nine cross-sections in order to obtain improved statistics.
However, it is of interest to confirm that the statistics
for individual cross-sections are indeed close to each
other, i.e. that they are not from totally different statistical
ensembles. Also, since the sphero-scale depends on two
highly variable fluxes, we anticipate that it will vary
considerably about the ensemble estimate (10 cm). In
Table II we give the values of ls and 〈|#ρ(ls)|〉; we notice
a slight tendency for the larger ls cases (less stratification)
to occur when 〈|#ρ(ls)|〉 is larger. Overall ls varies from
2 cm to 80 cm. Also, in Table II we see the cross-section
to cross-section variation of the universal multifractal
parameters; it is generally small.

Overall we find that Hh varies between 0.31 and 0.39
with an ensemble mean of 0.33 ± 0.03 while Hv varies
between 0.59 and 0.69 with an ensemble mean of 0.60 ±
0.04. (Note that the values quoted in the row ‘ensemble’
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Table II. A comparison of various universal multifractal parameters, as estimated for each of the nine cross-sections.

Dataset Hh Hv Hz αh αv C1,h C1,v C1,h/C1,v #ρ(ls) ls (m)

08–14-t5 0.35 0.62 0.56 1.86 1.85 0.031 0.064 0.48 0.018 0.03
08–14-t7 0.36 0.63 0.57 1.82 1.78 0.027 0.048 0.56 0.025 0.03
08–14-t17 0.33 0.59 0.56 1.90 1.90 0.029 0.059 0.49 0.050 0.79
08–14-t20 0.34 0.60 0.56 1.90 1.85 0.044 0.049 0.89 0.056 0.63
08–15-t20 0.31 0.61 0.51 1.80 1.80 0.040 0.039 1.02 0.022 0.10
08–15-t2 0.33 0.60 0.55 1.77 1.81 0.037 0.052 0.71 0.020 0.08
08–15-t6 0.39 0.69 0.56 1.87 1.80 0.039 0.059 0.66 0.063 0.31
08–15-t8 0.38 0.65 0.58 1.76 1.80 0.040 0.050 0.80 0.036 0.10
08–15-t22 0.32 0.59 0.54 1.85 1.85 0.037 0.051 0.72 0.045 0.31

Ensemble 0.33 0.60 0.55 1.82 1.83 0.037 0.053 0.72 0.037 0.14
Error ±0.03 ±0.04 ±0.02 ±0.05 ±0.04 ±0.006 ±0.007 ±0.2 ±0.17 –

Table III. Summary of results of various experiments which obtained estimates of universal multifractal parameters
for turbulent passive scalars in the atmosphere.

Reference Field Type α C1 H

Finn et al. (2001) SF6 Time 1.65 0.11 0.40
Finn et al. (2001) H20 Time 1.60 0.07 –
Finn et al. (2001) ∗T Time 1.69 0.09 0.44
Schmitt et al. (1996) T Time 1.45 0.07 0.38
Pelletier (1995) T Time 1.69 0.08 –
Pelletier (1995) H2O Time 1.69 0.08 –
Wang (1995) T Time 1.69 0.10 0.41
Chigirinskaya et al. (1994) T Space (horizontal) 1.25 0.04 0.33
Schmitt et al. (1992) T Time 1.40 0.22 0.33

Average Scalar Time 1.64 0.085 0.41

∗ T = temperature

are not the averages of the values for the individual
datasets, but are the values found from regression for
the actual ensemble statistics.) Hz varies between 0.51
and 0.58 with an ensemble mean of 0.55 ± 0.02. Similar
comparisons can be done for the other parameters. The
ensemble means are arithmetic means with the exception
of ls , for which it is geometric. In part III we obtain
similar estimates of ls using meteorological models.

3.3. Comparison with other multifractal results on
passive scalars

It is interesting to compare our parameter estimates with
those of other passive scalars reported in the literature.
Table III displays a number of other results. Caution
should be used in this comparison, since, with only one
exception, the literature values are for variations in time
whereas we analyse (nearly) pure spatial data. Clearly it
is not possible to make a strict and direct comparison
between the results in this table and ours. In addition,
the majority of the results were for temperature which
is not obviously passive at all! Despite these limita-
tions, there is fairly good quantitative agreement between
the values obtained in the earlier studies and the values
reported here. Since, as discussed in parts I, III there is

a space–time anisotropy (if we ignore the effect of hori-
zontal and vertical wind, it is characterized by Ht = 2/3
in the place of Hz), we should expect C1, H to differ by
factor Ht . However, as we discuss in part III, the time
variation is often dominated by advection, in which case
we expect C1, H to have the horizontal values. From
Table III, we find that while our α values are generally
a little higher, those of C1 are considerably higher. This
may be a consequence of the fact that the lidar-measured
concentration surrogate is actually nonlinearly related to
the measured B; from Equation (11), if ρ = Bη, then we
have αρ = αB but C1ρ = C1Bη

α; this is discussed in Lil-
ley et al. (2004).

3.4. Analysis of the anisotropy

In multifractals there is a one-to-one correspondence
between singularities (intensity levels) and statistical
moments, hence by examining the stratification of both
high- and low-order statistical moments, we are in fact
determining whether both intense and weak structures are
differentially stratified to the same degree (they have the
same Hz). In Figure 9 we show Hz calculated directly
from the ratios of structure function exponents, with
the latter estimated both directly and from the Trace
Moment technique discussed above. We see that the ratio
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(a)

(b)

Figure 8. The (a) horizontal and (b) vertical K(q, η) as a function of
η. The regression lines have slopes αh = 1.82 in (a) and 1.83 in (b).
The lines have different q values (1.5, 2.0, 2.5, 3.0, 4.0) from bottom

to top in (a) and from top to bottom in (b).

Figure 9. Scatterplots of ξh(q) and ξv(q) obtained for each cross-section
using the trace moment method (×) after adding qH, and directly from

the structure functions (+). The reference line has slope Hz = 5/9.

of exponents is indeed nearly constant (all the points
lie near the line of slope 5/9); we need to quantify the
small deviations from this theoretical slope. In section

Figure 10. The intermittency correction to Hz as estimated from the
horizontal and vertical ξ(q) and K(q) (top at right and second at right,
respectively; from Figure 9). The top at left (smooth) curve is the
estimate for the horizontal velocity based on multifractal parameters
from a single pair of dropsonde estimates for the horizontal wind
field (see part I appendix A), and the bottom at left (smooth) curve
is the theoretical estimate based on the mean universal passive scalar
parameters from Table II. This figure is available in colour online at

www.interscience.wiley.com/qj

3.1 we quantified how Hz varied with q by introducing
the deviation #Hz; this is shown in Figure 10. We see
that the deviation is very small (of the order of −0.03
to +0.02, depending on q). One way to see whether
these deviations are real or are due to experimental
measurement error is to compare the two somewhat
different analysis methods; in Figure 10 we see that their
absolute difference is only noticeable for q > 1.5 and it
stays <0.02 for q up to 5. We thus conclude that the
basic trend is real.

Yet another way to quantify the accuracy of these
very small exponent differences is to use the universal
multifractal parametrization discussed in section 3.3.
Recall that, in section 3.1, we showed how #Hz was
related to Kh(q), Kv(q), noting that in the case of
universal multifractals, #Hz could vanish for all q
if αh = αv and C1h/C1v = 5/9. Since in section 3.3
we empirically found that αh ≈ αv ≈ 1.82, the entire
deviation #Hz depends on the deviation of C1h/C1v from
the value 5/9. Putting this into Equation (10), we obtain:

#Hz ≈ 1
Hv

(Hz,1C1,v − C1,h)(q
α−1 − 1)

(α − 1)
(15)

(α = αh = αv). Since empirically, we found C1,h/C1,v ≈
0.7 ± 0.2, we expect a small non-zero #Hz. In Figure 10
we see that, using the mean parameters, we indeed
obtain a close but non-identical curve; one reason for
the non-coincidence is that the universal multifractal
parametrization assumes K(1) = 0 so that #Hz(1) = 0,
whereas the direct estimates find it to be a little larger.

4. Conclusions

One of the most basic aspects of atmospheric structure is
its spatial stratification. In part I we discussed various
models and proposed a new one – a turbulence/wave
generalization of the classical 23/9-D model in which
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the stratification is differential, i.e. the typical ‘flatness’
or anistropy of structures increases with scale in a scaling
way, i.e. without characteristic length-scale. In this paper
(part II), we considered the experimental evidence, first
reviewing the data on horizontal and vertical statistics; we
argued that they were compatible with the value Ds =
23/9 rather than 2, 3 or 7/3 (the competing 2-D, 3-D
and linear gravity wave theories respectively); in part III
(Radkevich et al., 2008) we investigate the stratification
of the full space–time. However, the classical evidence
on stratification is indirect; the only direct way to
investigate the stratification is through vertical cross-
sections. With the advent of high-powered lidars with
logarithmic amplifiers, this is now possible. Here we
studied stratified structures spanning over three orders of
magnitude in both horizontal and vertical scales. Using
such state-of-the-art lidar data, Lilley et al. (2004) made
the first direct measurements of the elliptical dimension
Ds characterizing the stratification finding that it is Ds =
2.55 ± 0.02, which is very close to the theoretically
predicted value 23/9 = 2.555 . . ., but quite far from the
standard values 2 (completely flat) or 3 (completely
isotropic). In this paper, we extend the Lilley et al.
(2004) study by examining the stratification of both high-
and low-order statistical moments, we showed that both
intense and weak structures were apparently differentially
stratified to the same degree (same Hz).

The ‘unified scaling’ or ‘23/9-D’ theory which predicts
this result is based on the primacy of buoyancy forces in
determining the vertical structure while allowing energy
fluxes to determine the horizontal structure. It predicts the
observed wide-range scaling in cloud radiances, and – as
our review shows – it is compatible with the available
observations of both the horizontal and vertical wind
and temperature spectra. In contrast, the standard model
does not directly consider the buoyancy at all and it
involves two isotropic regimes – at small scales it is 3-D
energy driven, while at large scales it is 2-D and both
enstrophy and energy driven. The model also explains the
difficulty in making aircraft measurements of horizontal
structure: 23/9-D turbulence can lead to fractal aircraft
trajectories (the result of long-range correlations between
the trajectory and the atmospheric variables), hence to
long-range biases so that the spectra may be incorrectly
interpreted. In addition, a very small average vertical
gradient leads to a transition from k−5/3 to k−11/5; we
quantitively showed this on the two major campaigns to
date: GASP and MOZAIC. Finally, the 23/9-D model
naturally explains how the horizontal structures in the
atmosphere can display wide-range scaling, right through
the mesoscale.

The 23/9-D turbulent model is physically satisfying
since it finally allows buoyancy to play the role of fun-
damental driver of the dynamics. With the allowance for
a wave-like fractional integration, it can be compatible
with gravity wave phenomenology. While to numerical
weather forecasters the dimension of stratification may
seem academic, until now virtually all turbulent theo-
ries have been very nonlinear (energy or enstrophy flux

driven), while the mainstream interpretations of the data
have been in terms of (quasi-) linear waves. Our model
and empirical findings thus promise a more theoretically
satisfying overall (large- to small-scale) picture of atmo-
spheric dynamics. The full implications of the model may
take many years to discern. For the classical numerical
models, the challenge will be either to show that the
existing stratification assumptions (e.g. the hydrostatic,
anelastic or Boussinesq approximations) lead to realistic
anisotropic scaling, or to replace them with approxima-
tions which are. Conversely, in part I we showed that
it was not so hard to use such a realistic stratification
in stochastic multifractal models; for these, the challenge
is to go beyond a scalar framework to incorporate other
atmospheric fields using the notion of ‘state vectors’ and
Lie cascades (Schertzer and Lovejoy, 1995).
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