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ABSTRACT: In this third and final part of the series, we concentrate on the temporal behaviour of atmospheric passive
scalars. We first recall that – although the full (x, y, z, t) turbulent processes respect an anisotropic scale invariance – that
due to advection – the generator will generally not be a diagonal matrix. This implies that the scaling of (1-D) temporal
series will generally involve three exponents in real space: 1/3, 1/2, 3/5, for spectra βτ = 5/3, 2, 11/5, with the first
and last corresponding to domination by advection (horizontal and vertical respectively), and the second to pure temporal
development (no advection). We survey the literature and find that almost all the empirical βτ values are indeed in the
range 5/3 to 2. We then use meteorological analyses to argue that, although pure temporal development is unlikely to be
dominant for time-scales less than the eddy turnover time of the largest structures (about 2 weeks), an intermittent vertical
velocity could quite easily explain the occasionally observed βτ ≈ 2 spectra.

We then use state-of-the-art vertically pointing lidar data of backscatter ratios from both aerosols and cirrus clouds
yielding several (z, t) vertical space–time cross-sections with resolution of 3.75 m in the vertical, 0.5–30 s in time and
spanning 3–4 orders of magnitude in temporal scale. We first test the predictions of the anisotropic, multifractal extension
of the Corrsin-Obukhov law in the vertical and in time, separately finding that the cirrus and aerosol backscatters both
followed the theoretical (anisotropic) scalings accurately; three of the six cases show dominance by the horizontal wind,
the others by the vertical wind. In order to test the theory in arbitrary directions in this (z, t) space, and in order to
get more complete information about the underlying physical scale, we develop and apply a new Anisotropic Scaling
Analysis Technique (ASAT) which is based on a nonlinear space–time coordinate transformation. This transforms the
original differential scaling into standard self-similar scaling; there remains only a ‘trivial’ anisotropy. This method is used
in real space on 2-D structure functions. It is applied to both the new (z, t) data as well as the (x, z) data discussed in
part II. Using ASAT, we verify the theory to within about 10% over more than three orders of magnitude of space–time
scales in arbitrary directions in (x, z) and (z, t) spaces. By considering the high- (and low-) order structure functions, we
verify the theory for both weak and strong structures; as predicted, their average anisotropies are apparently the same.

Putting together the results for (x, z) and (z, t), and assuming that there is no overall stratification in the horizontal (x,
y) plane, we find that the overall (x, y, z, t) space is found to have an effective ‘elliptical dimension’ characterizing the
overall space–time stratification equal to Deff,st = 3.21 ± 0.05. Copyright  2008 Royal Meteorological Society
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1. Introduction

In parts I (Lovejoy et al., 2008) and II (Lilley et al.,
2008), we argued that an anisotropic multifractal exten-
sion of the classical Corrsin–Obukhov law for passive
scalars gives an accurate description of the horizontal
stratification of the atmosphere including its intermit-
tency. We also argued that by extending this fur-
ther to anisotropic space–time, the overall result could

* Correspondence to: S. Lovejoy, Department of Physics, McGill
University, 3600 University St, Montreal, QC, Canada, H3A 2T8.
E-mail: lovejoy@physics.mcgill.ca

be used as the basis for a turbulence/wave model in
which spatially and temporally localized turbulent fluxes
provide the sources for unlocalized velocity and density
fluctuations. This model was based on an energy flux
dominating the horizontal and a buoyancy force vari-
ance flux dominating the vertical (both of which are
quadratic invariants and hence should be conserved scale
by scale). In contrast to the main quasi-linear gravity
wave models – which require a weakly nonlinear state in
order to justify the use of linear dispersion relations – this
model assumes that the atmosphere is highly heteroge-
neous and turbulent.

Copyright  2008 Royal Meteorological Society
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In Lilley et al. (2004) and in part II, we used airborne
lidar data to test a key quantitative difference between
the gravity wave and turbulence wave models; the
stratification of space (x, y, z) is characterized by Ds =
1 + 1 + 1/3 = 7/3 in the former, whereas by Ds = 1 +
1 + 5/9 = 23/9 in the latter. Since we found empirically
from vertical cross-sections of lidar backscatter ratio that
Ds = 2.55 ± 0.02, the evidence was firmly in favour of
the turbulence wave model (with a small (±0.02) but sys-
tematic decrease for more intense structures, larger q).
However, the model predicted the full space–time statis-
tical scaling behaviour; it uses classical Kolmogorov-type
arguments to argue that for the full space–time domain
(x, y, z, t), Dst = Ds + H ′

t . For more full validation, we
must therefore turn to the time domain to estimate H ′

t .
In this paper, we therefore seek to extend the vertical (x,
z) analyses to space–time (z, t) analyses.

2. Temporal scaling in the atmosphere
2.1. Pure temporal development, horizontal or vertical
dominance?

Following the classical Kolmogorov approach, we may
obtain the scaling law for horizontal and temporal veloc-
ity fluctuations using dimensional analysis based on the
fact that the nonlinear terms of the Navier–Stokes equa-
tions conserve energy fluxes. The idea is that there is
a quasi-steady energy flux input from large scales bal-
anced (on average only) by kinetic energy dissipation
at small scales. Since the kinetic energy flux (per unit
of mass) across an eddy (structure) with shear #v is
ε = #v2/τ , we need only estimate the characteristic
time for the transfer, τ . For fluctuations in the hori-
zontal, the only time-scale available is τ = #x/#v ⇒
#v = ε1/3#xHh with Hh = 1/3 which is the familiar
Kolmogorov result. (In Fourier space, the corresponding
isotropic energy spectrum – ignoring intermittency – is
E(k) ≈ k−βh ; βh = 1 + 2Hh = 5/3.)

In time, there are two classical approaches to estimat-
ing the fluctuations. The first is to consider a Lagrangian
framework (following the mean flow); dimensional anal-
ysis yields Hτ = 1/2 (Inoue, 1951; Landau and Lifshitz,
1959); this gives a spectral exponent βτ = 1 + 2Hτ = 2.
In cases where there is a very low mean velocity, the
Eulerian (fixed frame) is equivalent, so that in this case
of ‘pure’ temporal development we expect Hτ = 1/2 . At
the other extreme, if the turbulence is blown past with
mean velocity U so quickly that it is practically ‘frozen’
(i.e. it satisfies the conditions of Taylor’s (1938) ‘frozen
turbulence’ hypothesis), then we can use the horizontal
law but with #x = u#t so that #v = ε1/3U 1/3#tHh so
that Hτ = Hh1/3 (hence βτ = 1 + 2Hτ = 5/3).

Basing his work on the experimental results of Comte-
Bellot and Corrsin (1971) and Shlien and Corrsin (1974),
Tennekes (1975) argued that, even in a flow with zero
mean velocity, the largest eddies would ‘sweep’ the small
eddies past a fixed point and that this effect would
dominate the temporal Eulerian statistics. In part I, we

discussed this quantitatively with the help of space–time
scale functions, and showed that indeed, for times below
the eddy turnover time of the largest eddy, this is likely to
be true. However, this analysis ignored intermittency and
assumed that the Kolmogorov scaling held in the horizon-
tal all the way to planetary scales; it is therefore important
to return to this question with the help of empirical evi-
dence (section 2.2). Also as pointed out in part I, in the
23/9-D model there is the additional source for a roughly
βτ ≈2 spectrum – a scaling vertical velocity.

The prediction that the temporal spectral exponent βτ

would typically be either 5/3 or 2 is in accord with many
of the observations surveyed in part II and, as mentioned
in part I, the main gravity wave theories assume βτ = 2
(the saturated cascade theory) or βτ in the range 5/3 to 2
(the exact value is not so important) in the Diffusive Fil-
tering Theory. The experimental literature (Table I) gives
a review and highlights two possible temporal exponents
βτ = 5/3 and βτ = 2. The value of the scaling exponent
is not clear from the experimental results; it seems that
it is indeed variable although mostly in the range 5/3 to
2. In most papers the experimentalists did not consider
two different behaviours, e.g. Beatty et al. (1992) claimed
βτ = 1.85 ± 0.23 averaged over 21 days; this value is
also between 5/3 and 2. It seems plausible that averag-
ing was made over periods with different values of βτ .
On the other hand, Gardner and Voelz’s (1987) claim of
the difference between winter and summer results (the
former is compatible with Taylor’s hypothesis and the
latter is compatible with vertical wind domination; see
section 2.2 for discussion) is also plausible because the
vertical wind might be much stronger during summer due
to increased convection.

2.2. Using meteorological analyses to identify
different temporal scaling regimes

In the 23/9-D model, the time/horizontal structure is
basically unchanged in comparison with isotropic Kol-
mogorov turbulence; what is new is the vertical structure
which gives rise to a third term for the temporal devel-
opment. To see this, recall the anisotropic space–time
generalization of the classical Kolmogorov law given in
part I:

|#v(#R)| = ε
1/3
[[#R]][[#R]]1/3, (1)

where #R = (#x, #y, #z, #t) and [[#R]] is a space–
time scale function and #v is the velocity difference
between two points separated by #R. If we include
advection, we saw that the simplest ‘canonical scale
function’ (part I, Equation (27)) is:

[[#R]] = [[(#r, #t)]]can

= ls

[(
#x − u#t

ls

)2

+
(

#y − v#t

ls

)2

+
(

#z − w#t

ls

)2/Hz

+
(

#t

τs

)2/Ht

]1/2

, (2)
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Table I. Review of empirical evidence.

Author
and year

Experimental
technique

Quantity
measured

Observations
made by author

Frequency range
(Hz)

Spectral exponent β
measured

Hwang
(1970)a

Anemometers
of the three-cup
generator and
counter types

Wind speed Atmospheric
turbulence follows
−5/3 power law.

3 × 10−7 − 1 ×
10−4

1 × 10−5 − 6 ×
10−2

Reference
βτ = 5/3 is
shown.

Balsley
and
Carter
(1982)b

MST radar Horizontal
wind speed at
altitudes 8 and
86 km

Resulting curve
corresponds very well
to ω−5/3 slope out to
the high-frequency
limit.

3 × 10−3 − 1 ×
10−7

6 × 10−3 − 4 ×
10−7

Reference
βτ = 5/3 is
shown.

Larsen
et al.
(1982)c

MST radar Horizontal
wind speed at
several
altitudes from 6
to 15 km

Spectra follow −5/3
power law in period
range 2–50 hours.
Refer to Taylor’s
transformation and
−5/3 power law for
horizontal
wavenumber.

3 × 10−7 − 3 ×
10−4

βτ from 1.24 to 2
are obtained,
depending on
wind component
and altitude.

Scheffler
and Liu
(1985)d

MST radar Horizontal
wind speed

Acoustic gravity
wave theory proposed
that quantitatively
relates the MST radar
observed wind
fluctuation spectrum.

2 × 10−5 − 2 ×
10−2

βτ = 2 fits data
very well.

Balsley
and
Garello
(1985)e

MST radar Horizontal
wind speed

No theoretical
explanation offered.

3 × 10−7 − 1 ×
10−3

βτ = 2 fits
stratospheric
(13.4 km) data in
frequency range
10−4 − 10−6 Hz
and tropospheric
(9.1 km) data in
range
∼8 × 10−4 −
10−6 Hz.

Meek
et al.
(1985)f

MST radar Horizontal
wind speed

The slope of the
best-fit line is ∼1.5

4 × 10−7 − 3 ×
10−4

5 × 10−5 − 3 ×
10−3

Reference
βτ = 1.5 is shown.
Exponent 5/3 fits
data.

Gardner
and
Voelz
(1987)g

Lidar Na density –5/3 power law is predicted. 2 × 10−5 − 7 ×
10−4

Observed βτ :
2.18 summer, 1.73
winter.

Kwon
et al.
(1990)h

Radar,
ground-based
and airborne
lidar

Wind speed,
Na density

No theoretical
explanation offered.

3 × 10−5 − 1 ×
10−2

Whole Na layer
βτ = 1.52; top
side of the layer
βτ = 1.12, bottom
side βτ = 1.77

Fritts
et al.
(1990)i

MU Radar Wind speed No theoretical
explanation offered.

1 × 10−5 − 2 ×
10−3

Reference
βτ = 5/3 and 2
are shown.
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Table I. (Continued ).

Author
and year

Experimental
technique

Quantity
measured

Observations
made by author

Frequency range
(Hz)

Spectral exponent β
measured

Beatty
et al.
(1992).j

Rayleigh/Na
lidar

Passive scalar
concentration

No theoretical
explanation offered.

9 × 10−5 − 3 ×
10−3 (range for
linear
regression)

Single day
βτ = 1.7; average
βτ over 21
nights =
1.85 ± 0.23

Sica and
Russell
(1999)k

Rayleigh/Na
lidar

Passive scalar
concentration

Average exponent of
2 claimed.

5 × 10−5 − 2 ×
10−2

βτ from 1.2 to 2.7

a The data used to construct the wide frequency-range power density spectrum were taken by an MRI anemometer from 1500 LST on 14 March
to 1200 LST on 1 May 1967, and by the AN/GMQ-12 anemometer from 1105 LST on 10 April to 1600 LST on 18 April 1967.
b Time ranges for wind fluctuations: at 8 km from 6 minutes to 83 days, at 86 km from 3 minutes to ∼30 days.
c Zonal and meridional wind measurements made with the Poker Flat MST radar over a 40-day period were used to calculate the frequency
power spectra at heights between 5.99 and 14.69 km. The finest temporal resolution was 1 hour. Regression was made for frequencies in the
range 0.015–0.45 h−1. In some cases this range included an obviously noisy range.
d The time range was from 1 to ∼750 minutes. No linear regression was made by the authors.
e Horizontal wind values were formed into 4096-point datasets comprising 34 day sequences of 12-minute averaged data points. No linear
regression was made by the authors.
f 1 to 720 hour time series and 33 series from 5 min to 6 h were used.
g Observed periods were from 25 to 800 min.
h Time series from 100 s to ∼8 h were used. Temporal regressions were made over time-scales from 30 to 360 min. Top-side layer spectrum
looks noisy, the bottom-side layer spectrum fits −5/3 power law quite well.
i Spectra at higher altitudes look noisy, but fit βτ = 5/3. Lower altitude spectra fit βτ = 2 well.
j Temporal resolution was 2 min for Na data and 5 min for Rayleigh data. Linear regression fits were performed over the frequency range
∼(3 h)−1 to (5 min)−1. The authors did not separate cases close to exponents of 5/3 and 2, which is why the confidence interval is rather wide
(1.62–2.06).
k Strong deviations from βτ = 5/3 and βτ = 2 were observed in the cases when the regression includes obvious high- and/or low-frequency
artefacts.

where #r = (#x, #y, #z), the wind velocity is (u, v, w)
and the sphero-scale (ls) is the scale at which horizontal
and vertical fluctuations are of equal magnitude, and the
sphero-time, τs, is the eddy turnover time (eddy lifetime)
at the sphero-scale. Below we consider a limited spa-
tial domain with horizontal wind components u and v
as arbitrary constants given by the large scale but with
vertical component w as a random field. This leads to
a new ‘effective’ advected generator Geff,adv (see part I)
and ‘effective’ scale function; first, however, we consider
the theoretical generator with non-random constant w.

For temporal fluctuations at a spatial point (i.e. #r =
(0, 0, 0) and taking our x-axis parallel to the horizon-
tal wind, so that v = 0) we obtain the following scale
function:

[[#t]] = [[(0, 0, 0, #t)]]

= ls

{(
u#t

ls

)2

+
(

w#t

ls

)2/Hz

+
(

#t

τs

)2/Ht

}1/2

. (3)

We now see that the horizontal advection term
(u#t/ ls)

2 dominates the pure temporal development term
(#t/τs)

2/Ht for all #t < #txt , where:

#txt = u2

ε
, (4)

where we have used Ht = 2/3 and ε = l2
s τ−3

s . The Ten-
nekes ‘sweeping’ result can now be obtained by taking
#v ≈ u for the largest eddy, so that for this eddy (scale
L; planetary-scale structures), the turnover time τe,L is
u2/ε, so that #ttx ≈ τe,L. Thus, according to this analy-
sis, the critical time estimated above for the domination
of pure temporal development over the horizontal wind
term is the eddy turnover time of the largest eddies, which
in part I we argued was the synoptic maximum, i.e. about
2 weeks (see below for direct empirical estimates).

This result does not involve the new vertical wind term;
it is therefore classical. However, when we consider the
23/9-D model with scale function Equation (3), we can
see that we must also consider the new vertical advection
term (w#t/ls)

2/Hz . Since Hz < Ht < 1, we can see that
for constant w (the “naı̈ve” view) this term will be
dominant for large enough #t . There are thus two new
pairs of terms to consider; in obvious notation, we have
the following new critical times:

#ttz = τs

(vs

w

)6
, (5a)

#txz =
(

ls

w

) ( u

w

)5/4
, (5b)

In part I we have discussed the consequences of a
scaling vertical velocity; this has the effect of giving
vertical advection domination at the scale #t ′xz (Equa-
tion (75), part I). Where w = wl , an intermittent scaling
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vertical velocity, and Ht the effective temporal exponent,
we obtain:

#t ′xz = u2

ε

(vs

w

)3
(

ls

l

)3(H ′
t −Hz)

, (5c)

(using Hz = 5/9, Ht = 2/3 and vs = ls/τs). We now see
that, while the horizontal advection will dominate at
small enough #t because Hz < Ht < 1, there will only
be a pure temporal development zone if #txt < #txz

(or #txt < #txz for variable, non constant w). Since the
time-scales #txt , #txz, #ttz, #txz are highly variable and
depend on the resolution of the data, we now attempt to
evaluate them empirically.

In order to determine #txt , #txz, #ttz, #t ′xz we used
meteorological analyses from a component of the oper-
ational Canadian Meteorological Centre Global Envi-
ronmental Multiscale (GEM) model, the North Amer-
ica regional GEM model. The original analysis is on a
variable-step grid with a 15 km central core resolution.
We used the low-resolution (60 km at 60°) fields on a
135 × 95 polar-stereographic grid covering North Amer-
ica (and adjacent waters) over a region which includes
the North Pole. Vertical coverage of 3-D fields is pro-
vided by 28 isobaric levels. Detailed information about
the model is available at Environment Canada’s web site
(http://weatheroffice.ec.gc.ca/grib/Low-resolution GRIB
e.html). Although the grid is not exactly rectangular, it
is close enough so that we assume that four nearest pix-
els to some fixed pixel lie on two orthogonal lines going
through it.

To start with, we performed a spectral analysis of the
lowest level of the analysis for which vertical wind data
was available: 850 hPa ∼ 1450 m above sea level. We
first checked that the noon and midnight GMT analy-
ses were statistically very similar and close to k−5/3 for
the horizontal wind (so that the theory could plausibly be
applied). We confirmed that there is quite good horizontal
scaling with an exponent not far from the Kolmogorov
value 5/3. (The slope is a little steeper for horizontal
sections at the higher altitudes where the analyses are
less reliable.)

Since the transition times depend on ls , τs and the lat-
ter depend on the highly intermittent fluxes, ε, φ, we first
show the probability distributions of the latter (Figure 1).
As a technical point, we calculated the fluxes using
ε = #v(#x)3/#x, φ = #v(#z)5/#z3 for horizontal
wind gradients in the horizontal and vertical respectively.
We see that the distribution has a very long tail; in fact the
general result from cascade theory is that the ‘dressed’
cascaded quantities (i.e. those which result from a cascade
carried from large to infinitely small scales and then aver-
aged up to an intermediate ‘observation’ scale) should be
asymptotically algebraic, i.e.

Pr(ελ > s) ≈ s−qD; s >> 1

(Mandelbrot, 1974; Schertzer and Lovejoy, 1987). The
figure confirms this behaviour and we obtain an exponent

2 1 2 3 4
log10 a

Pr{log10(ε × 106, f × 107)>a}

−1

−1

−2

−3

Figure 1. Probability distributions of the energy flux ε × 106 (m2 s−3

solid) and the buoyancy force variance flux φ × 107 (m2 s−5 dashed),
averaged over 4 vertical layers (950–750 hPa; 540–2460 m) and
300 km (5 pixels) in the horizontal. Eight realizations are used. A
reference slope showing the theoretical behaviour Pr(ελ > s) ≈ s−qD

with qD = 1.66 is shown.

close to the value qD = 1.66, the empirical value found
for ε in the vertical in Schertzer and Lovejoy (1985) (see
also the similar aircraft results in Lovejoy and Schertzer,
2007). That this behaviour is very extreme is evident
from the fact that since qD < 2, the variance diverges
whereas the mean barely converges (since qD is only a
little greater than one).

In Figure 2 we calculate the corresponding ls , τs ,
vs = ls/τs values using ‘bare’ formulae which are good
approximations (appendix A of part I):

ls = ε
5/4
λ φ

−3/4
λ , τs = ε

1/2
λ φ

−1/2
λ , vs = ls/τs. (6)

Since qDε≈1.66, if the ls , τs , vs distributions are
dominated by large ε (rather than small φ), we expect
qDls = 1.66/(5/4) ≈ 1.33, qDτs = 1.66/(1/2) ≈ 3.33,
qvls = 1.66/(3/4) ≈ 2.22. From Figure 2, we see that
these predictions are fairly well respected; this shows
that the data are internally consistent, and also consistent
with radiosonde data in Schertzer and Lovejoy (1985).
The fact that the qD > 1 shows that the means are well

2 −1 1 2
log10 a

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

log10{Pr(z>a)}

Figure 2. Cumulative probability distributions of vs (m/s; left), ls (m;
centre) and τs (s; right), calculated at horizontal resolution of ∼300 km
(5 pixels). Energy flux calculated at 850 hPa level; buoyancy flux
is averaged over 4 layers between 950 hPa (∼540 m) and 750 hPa
(∼2460 m). Reference slopes of −20/9 (vs), −4/3 (ls ), and −10/3
(τs) and are shown. This figure is available in colour online at

www.interscience.wiley.com/qj
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defined. In the case of ls , we see that the values are gener-
ally <1 m, although there are about 5% which are >1 m
(the mean is 30 cm), with the extreme of nearly 10 m.
Similarly, the sphero-time is typically <10 s (the mean
is 7.2 s), but ranges up to 100 s while the sphero-speed
is typically of the order of cm s−1 with the largest value
20 cm s−1 (the mean is 2.2 cm s−1).

Finally, we turn to the time-scale estimates; Figure 3
shows plots of the cumulated probability distributions.
As we can see, as predicted by Tennekes’ argument, the
probability is low (<45%) that the critical #txt for the
transition from horizontal to temporal dominance to be
less than the eddy turnover time at the largest model scale
(∼6000 km; estimated here as 9.5 × 105 s), the probabil-
ity that the transition occurs at times less than 3 hours is
<2%. The #txt time can be regarded as a local estimate
of the planetary eddy turnover time; it is therefore inter-
esting to compare it to the probability distribution of eddy
turnover times for eddies 300 km in size: τe,l = ε−1/3l2/3

(curve 4). The fact that this curve is much steeper than
the others indicates that the eddy turnover time is quite
well defined (around 3 hours in this case; this is the effec-
tive time-scale of our 300 km degraded pixels). However,
even if the pure temporal development term dominates
the horizontal advection term, we cannot conclude that
it will be the overall dominant term; we must show that
it also dominates the vertical advection term. Certainly,
by considering the transition time #ttz, we see that #ttz
is typically much smaller than #txt so that, even when
it dominates the horizontal advection term, it does not
dominate the vertical term.

We now turn our attention to the #txz transition time,
which gives us information about when to expect verti-
cal wind dominance over the horizontal advection term.
Here, we give two curves; one for the ‘naı̈ve formula’
Equation (5b) (curve 2) and the other #t ′xz using the
‘effective’ generator discussed in part I (Equation 5c and

2 4 6 8
log10(∆t)

0.2

0.4

0.6

0.8

1
Pr{log10(∆t)>a}

1 3 4 52

Figure 3. Cumulative probability distributions of transition times. 1
is #ttz, calculated from a ‘naı̈ve’ point of view without taking into
account temporal scaling of the vertical velocity; 2 is #txz; 3 is #txz,
calculated from the ‘naı̈ve’ point of view; 4 is the eddy turnover time;
5 is #txt . All are calculated at the resolution degraded by a factor of
5 (∼300 km). The arrow shows the eddy turnover time calculated at
the largest scale 9.5 × 105 s. This figure is available in colour online

at www.interscience.wiley.com/qj

especially appendix B; curve 3). Recall that, unlike the
horizontal wind which has a well-defined mean over a
large region, the vertical velocity fluctuates around zero,
converging to zero in a (presumably) scaling way as the
space–time scale of the averaging increases. If, as pos-
tulated in part I, the mean vertical wind over time-scale
#t scales as w ≈ #tHw with Hw < 0, then the vertical
advection term (w#t/ls)

1/Hz gives an effective tempo-
ral scaling exponent H ′

t > Hz; below we argue on the
basis of lidar data that empirically H ′

t ≈ Ht . Curve 3
in Figure 3 shows this distribution of the corresponding
time-scale #t ′xz when this effective (w#t/ls)

1/Hz term
dominates. We see that it has the effect of making the
vertical term larger so that the probability of an effective
vertical term dominating the horizontal advection term
becomes appreciable (≈5%), even for periods as short as
100 s. Recall that this estimate is for 300 km horizontal
scales, i.e. an effectively 3-hour temporal resolution (see
the eddy turnover time above); this is roughly the scale of
the lidar datasets studied below. It is thus at least plausi-
ble that, for somewhat shorter resolution data, the proba-
bility will be a little higher and we will be able to observe
the vertical dominance regime at scales of 10–100 s. This
is particularly true since we expect the vertical domi-
nance to be more likely in lower, generally more unstable,
atmospheric layers. It should be mentioned that the mete-
orological data we analyzed is for the autumn season,
not summer which again should be more convectively
unstable, increasing the likelihood of vertical wind domi-
nance; the lidar data was taken in June. Finally, we should
mention that we have analyzed another eight (z, t) lidar
datasets, all of which apparently gave horizontal wind
dominance, so, including the six analyzed here, we have
three out of 14 showing vertical wind dominance.

2.3. The space–time scaling for passive scalars

We have seen in parts I, II and in the introduction how the
classical Kolmogorov law can be extended to anisotropic
space–time scaling behaviour taking into account the
buoyancy variance fluxes in the vertical. The key part
of the model – including the wave/turbulence model in
part I – involves the replacement of the usual Euclidean
distance by a scale function. In part II, we saw how this
could be used to obtain an anisotropic extension of the
classical Corrsin–Obukhov law for passive scalar diffu-
sion in the stratified (x, y, z) space. First, we ignored
the y coordinate (equivalently, orienting our system so
that the x-axis is parallel to the horizontal component of
the wind). Extending this to averages over a space–time
region scale l (taken for simplicity to be a reduction by
factor λ of the largest space–time region, the outer scale
of the cascade), we have for the space–time averaged
density structure function (averaged over scale l):

(|#ρ(#r, #t)|q)l = ϕ
q/3
λ lKϕ(q/3)[[(#r, #t)]]ξ(q);

ϕ = χ3/2ε−1/2;
ξ(q) = qHh − Kϕ(q/3);
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[[(#r, #t)]] = ,(-̂′)[[(#r, #t)]]can;

[[(#r, #t)]]can =
[(

#x − u#t

ls

)2

+
(

#z

ls

)2/Hz

+
(

#t

τ ′
s

)2/H ′
t

]

, (7)

where Hh = 1/3 and -̂′ is a unit vector (in the non-
linearly transformed ‘primed’ space, see part I and
below) so that ,(-̂′) represents the shape of unit ball,
[[(#r, #t)]]can is the canonical scale function (see section
2.2 and part I, Equation (27)), χ is the passive scalar vari-
ance flux, ε the energy flux, Kϕ is the moment scaling
exponent characterizing the intermittency, and ξϕ is the
corresponding structure function exponent. Note that this
expression was derived by using the multiplicative nature
of the cascade from the large external scale L down to
the region of data analysis (scale l, an anisotropic reduc-
tion by factor L/l = λ). This allows us to factor out the
low-frequency flux ϕλ; the effect of the averaging over
the remaining high frequencies in Equation (7) is approx-
imated by ensemble averages. If we ensemble average
both sides of Equation (7), we obtain an exact expres-
sion; however since we apply our analysis to individual
realizations, we need Equation (7) (see part I appendix
A for more discussion).

In Equation (7) we consider the horizontal component
u to be constant; there is no explicit vertical component w
since the statistics of w are accounted for via H ′

t and τ ′
s ;

see part I. The canonical scale function corresponds to the
‘effective’ space–time generator (part I, Equation (31);
see also appendix B of part I for definitions of τ ′

s and H ′
t

and appendix A of part I for the statistical definition of ls ,
taking into account intermittency, including the effect of
ensemble averaging the spatially averaged Equation (6)).
Just as ls will depend on q, so will the shape of the unit
ball ,(-̂′).

3. Analysis in orthogonal directions: vertical, time

3.1. Vertically pointing lidar data

We have seen that, due to the effects of advection, the
temporal scaling is expected to be somewhat more com-
plex than the pure spatial scaling discussed in part II.
In particular, we anticipate that, on the basis of the
meteorological analyses of part II, over a period of
several hours – in cases with particularly strong verti-
cal motion and particularly weak horizontal motion – we
may occasionally observe anomalous temporal scaling
corresponding to dominance of the vertical term in the
scale function.

In this section, we use ground-based, upward-pointing
lidar data from the PACIFIC 2001 experimental cam-
paign, as well as data from the MSC CARE facility in
order to obtain (z, t) sections of lidar backscatter, our sur-
rogate for passive scalar concentration. We first analyse
the exponents in order to attempt to check whether the

data are horizontally or vertically dominated; we then
estimate the ‘trivial scaling’ ,(-̂′) function using the
new Anisotropic Scaling Analysis Technique (ASAT),
applying it also to the vertical section data of part II.

The ground-based laser was operated at the fundamen-
tal wavelength of 1064 nm, suited for the detection of
particles with diameter of the order of 1 µm and had a
pulse repetition rate of 10 Hz (Strawbridge and Snyder,
2004). The measured backscatter ratio B was averaged
over various time intervals (Table II); the result was a 2-
D vertical–time planar section. All the detectors used log
amplifiers – important due to the wide dynamical range
of the backscatter.

Table II presents the main characteristics of the exper-
imental datasets. Figures 4–7 show some original lidar
pictures.

3.2. Analysis in the vertical

Before turning to a more complete analysis of the data,
we can already check Equation (7) above by considering
the 1-D spectra only in time or only in the vertical; in 1-D
this is estimated from the (possibly) ensemble-averaged
squared modulus of the (numerical) Fourier transform
of the series. Here we use the term ‘spectrum’ in order
to follow traditional term usage referring to the second-
order statistics Fourier analysis. For the spectrum, we
use the standard notation E which evokes ‘energy’ even
though, strictly speaking, E generally does not have units
of energy per mass. In Figure 8 we can clearly see the
Bolgiano–Obukhov (BO) scaling in the vertical. Some
deviations from the theoretically predicted slope are due
to problems with lidar attenuation corrections (see espe-
cially the second spectrum from the top in Figure 8).
This means that values of the backscatter ratio are too
smooth over the highest factor of 8 or so in scale. In this
connection we should mention that the airborne lidar is
much less affected by attenuation. This is because most
of the backscatter is near the ground. In order to elimi-
nate this systematic effect, we remove the mean vertical
profile from each cross-section. Another problem arises
due to the inadequate dynamical range of the digitizer
so that – to within one digital count – successive raw
values are nominally the same, i.e. spuriously smoothed
(Gagnon et al. (2006) provides a quantitative analysis of
this effect). In this case (Egbert0602) we avoided the
problem by degrading the vertical resolution by a factor
of 8 before proceeding to the refined 2-D analyses dis-
cussed below. In terms of 1-D spectra, this is roughly
equivalent to the highest frequencies with steep spec-
tral fall-off. As far as we can tell, the cirrus and aerosol
scalings are the same and both are compatible with the
anisotropic extension of the Corrsin–Obukhov law. We
can see that the BO value = 11/5 works well over a wide
range of scale (up to two orders of magnitude).

3.3. Analysis in time

To determine the temporal behaviour for vertical–time
datasets, we made standard 1-D spectral analyses in time.
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Table II. Main parameters of experimental datasets.

Dataset name Type of data Object type Resolutiona Dimensionsb

Langley0807c Vertical-time aerosol 2.997 × 1.0s 300 × 4990
Langley0808c Vertical-time aerosol 2.997 × 1.0s 300 × 5036
Egbert0530d Vertical-time cirrus cloud 3.746 × 0.5s 904 × 11468
Egbert0602d Vertical-time cirrus cloud 3.746 × 30.0s 1536 × 828
Egbert0603d Vertical-time aerosol 3.746 × 30.0s 486 × 648
Egbert0616d Vertical-time cirrus cloud 3.746 × 30.0s 800 × 752
Pacific0815t6e Vertical-horizontal aerosol 2.997 × 100.0m 372 × 952
Pacific0815t8e Vertical-horizontal aerosol 2.997 × 100.0m 844 × 776
Pacific0815t22e Vertical-horizontal aerosol 2.997 × 100.0m 956 × 932
Pacific0814t5e Vertical-horizontal aerosol 2.997 × 100.0m 384 × 750
Pacific0814t7e Vertical-horizontal aerosol 2.997 × 100.0m 386 × 846
Pacific0814t9e Vertical-horizontal aerosol 2.997 × 100.0m 372 × 846

a The first number is vertical resolution (m), and the second is time or horizontal resolution. The horizontal resolution of vertical–horizontal
section datasets is estimated with an aircraft speed of 100 m s−1.
b (Vertical × time) or (vertical × horizontal).
c acquired with ground-based lidar during PACIFIC 2001 in Langley, British Columbia on 7, 8 August.
d Egbert0530, Egbert0602, Egbert0603 and Egbert0616 are from a CARE 2003 ground-based lidar experiment, acquired in Egbert, Ontario on
30 May, 02, 03 and 16 June respectively.
e PACIFIC 2001 airborne lidar platform experiments acquired in the Lower Fraser Valley, BC on 14, 15 August (see part II).

Figure 4. Langley0808 data taken on 8 August 2001, for a case of horizontal wind dominance. The scale is linear: darker is for smaller backscatter
(aerosol density surrogate), lighter for larger backscatter. If we assume that the slopes of structures in the figure are purely due to the vertical
wind, then 45° slopes correspond to w ∼ 0.40 m s−1. There are no bad pixels in the image. There is no saturated signal and there is high

sensitivity to low signal return. This figure is available in colour online at www.interscience.wiley.com/qj

The results are represented by Figure 9; we see that there
are three cases with βτ ≈ 2 (Egbert0602, Egbert0603 and
Langley0807), and three other cases showing βτ ≈ 5/3.
Ignoring intermittency, these spectra correspond to Hτ =
(βτ − 1)/2 = 1/2, 1/3. Since in the vertical we found
βv ≈ 11/5, we have Hv = (βv − 1)/2 = 3/5, and thus
Ht ≈ Hτ /Hv ≈ 2/3, 5/9 for Hτ = 1/2, 1/3 respectively.
As we have shown, although it is very unlikely to

observe pure temporal development from time-scales
below around 104 –105 s (Figure 3), it is quite possible
to occasionally observe vertical wind dominance over
horizontal wind. Figure 3 shows that, for a somewhat
higher part of the atmosphere at a less convective time
of year, this could occur for a few percent of the time
even at 102 s. Since, for these three datasets, we observe
reasonable spectral ω−2 scaling without any clear scale
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Figure 5. Egbert0530 data taken on 30 May 2003, for a case of horizontal wind dominance. The scale is logarithmic: darker is for smaller
backscatter (cirrus density surrogate), lighter is for larger backscatter. Structures at 45° correspond to w ∼ 0.75 m s−1. There is no saturated

signal and there is high sensitivity to low signal return. This figure is available in colour online at www.interscience.wiley.com/qj

Figure 6. Egbert0602 data taken on 2 June 2003, for a case of vertical wind dominance. The scale is logarithmic: darker is for smaller backscatter
(cirrus density surrogate), lighter is for larger backscatter. Structures at 45° correspond to w ∼ 0.50 m s−1. There is no saturated signal and there

is high sensitivity to low signal return. This figure is available in colour online at www.interscience.wiley.com/qj

breaks, we consider that these three cases are examples
of vertical wind-dominated development.

4. Arbitrary directions in space–time

4.1. The ASAT

In sections 3.2, 3.3, we analysed the data in orthogonal
directions (vertical, time). This is only a partial analysis;

it does not allow us to test the theory at intermediate
angles in (z, t) space, nor estimate the function charac-
terizing the ‘trivial anisotropy’ ,(-̂′). We now describe
the new ASAT for doing this. In this section, we will
illustrate the technique on q = 1 (first-order) structure
functions and 2-D data (primarily the (z, t) data discussed
above), but we also revisit the (x, z) data used in part II.
Since our spectral analyses have shown that none of our
six datasets have clear scale breaks in time, we conclude
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Figure 7. Egbert0603 data taken on 3 June 2003, for a case of vertical wind dominance. The scale is logarithmic: darker is for smaller backscatter
(aerosol density surrogate), lighter is for larger backscatter. Structures at 45° correspond to w ∼ 0.15 m s−1. There is no saturated signal and

there is high sensitivity to low signal return. This figure is available in colour online at www.interscience.wiley.com/qj
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Figure 8. 1-D space (vertical) spectra as function of vertical wavenum-
ber k (m−1) for vertical–time datasets (offset in the vertical for
clarity). Top to bottom: Egbert0530 (cirrus cloud), Egbert0602
(cirrus), Egbert0603 (aerosol), Egbert0616 (aerosol), Langley0807
(aerosol), Langley0808 (aerosol). Dashed lines are reference theo-
retical slopes of −11/5. This figure is available in colour online at

www.interscience.wiley.com/qj

that they are each dominated by a single temporal scaling
regime, corresponding to domination by either horizontal
or vertical advection. In these cases of pure temporal
scaling, from Equation (7), we see that for q = 1, we
write either horizontal or vertical domination as

#ρ(#z, #t) = (|#ρ(0, 0, #z, #t)|)(lz,τ )

= ϕ
1/3
λ l1/3

s ,1/3(θ ′′
p )

×
[(

#z

ls

)2/Hz

+
(

#t

τ ∗
s

)2/H ∗
t

]1/6

, (8)
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Figure 9. 1-D time spectra as functions of frequency ω (s−1) for
vertical–time datasets (offset in the vertical for clarity). Bottom to
top: Egbert0530 (cirrus cloud), Langley0808 (aerosol), Egbert0616
(aerosol), Langley0807 (aerosol), Egbert0603 (aerosol), and Egbert0602
(cirrus). Dashed lines are reference theoretical slopes of −2 (top three)
and −5/3 (bottom three). This figure is available in colour online at

www.interscience.wiley.com/qj

where we have taken Hh = 1/3 and introduced a product
of conservative fluxes ϕ = χ3/2ε−1/2 and neglected the
intermittency corrections for this low-order moment, i.e.
taken Kϕ (1/3) ≈0, and have introduced , which is
function only of the polar angle θp

′′ in the nonlinearly
transformed space (see part I, and Equations (9) and
(11) below). As indicated, #ρ(#z, #t) is the abbrevi-
ated notation for the spatial mean (over the space–time
region (lz, τ ) of the absolute density fluctuation in the
(z, t) plane. We take H ∗

t = 1, τ ∗
s = ls/u for horizon-

tal wind domination and H ∗
t = H ′

t ≈ 2/3, τ ∗
s = τ ′

s for
vertical wind domination.

Copyright  2008 Royal Meteorological Society Q. J. R. Meteorol. Soc. 134: 317–335 (2008)
DOI: 10.1002/qj



SCALING TURBULENT ATMOSPHERIC STRATIFICATION. III 327

We shall introduce another simplifying step for the
(z, t) analyses. It is convenient to introduce another form
of scale function in the (z, t) domain:

[[(#z, #t)]]G∗ = ,∗(θ ′
p)ls

[(
#t

τ ∗
s

)2

+
(

#z

ls

)2/h
]1/2

= ,H ∗
t (θ ′′

p )ls

×
[(

#t

τ ∗
s

)2/H ∗
t

+
(

#z

ls

)2/Hz

]H ∗
t /2

;

θ ′
p = arctan

(
sign(#z)|#z/ls |1/h

#t/τ ∗
s

)

;

θ ′′
p = arctan

(
sign(#z)|#z/ls |1/Hz

sign(#t)|#t/τ ∗
s |1/H ∗

t

)

;

G∗ = G/H ∗
t ; h = Hz/H

∗
t . (9)

This new scale function satisfies the basic scaling
equation (see part I) with generator G∗ = G/H ∗

t ; ,∗(θ ′
p)

determines the trivial anisotropy for this new scale
function. The advantage of this new scale function is that
under the simple transformation which is only nonlinear
with respect to one of the coordinates:

#t ′ = ls#t/τ ∗
s , #z′ = ls(#z/ls)

1/hsign(#z),(10)

R′ = (#z′2 + #t ′2)1/2, θ ′
p = arctan

(
#z′

#t ′

)
, (11)

it is reduced to a scale function which is symmetric
with respect to isotropic (G = 1 = identity matrix) scale
transformations. (The coordinate transformation (10) is
already of this form for vertical (x, z) sections). Obvi-
ously, the transformation could have been chosen with
#z rather than #t being the linear transformation. How-
ever the datasets at our disposal spanned a much wider
range of scales in the time direction, so this would have
led to a large mismatch in available scales in the #z
compared to #t directions.

The (x, z) plane fluctuations can be written in the
analogous way:

#ρ(#x, #z) = (|#ρ(#x, 0, #z, 0)|)(lx ,lz)

= ϕ
1/3
λ l1/3

s ,1/3(θ ′
p)

×
[(

#x

ls

)2

+
(

#z

ls

)2/Hz

]1/6

, (12)

with notation analogous to that used in Equation (8) and

#x ′ = #t; #z′ = ls(#z/ls)
1/Hzsign(#z). (13)

In this nonlinear (‘primed’) space, we have the follow-
ing polar coordinates:

R′ = (#x′2 + #z′2)1/2; θ ′
p = arctan

(
#z′

#x ′

)
, (14)

so in all cases, we may write:

#ρ(R′, θ ′) ∼ ,1/3(θ ′
p)R

′1/3, (15)

where ,(θ ′
p) represents the shape of all the balls in the

(#x′, #z′) space. The virtue of this nonlinear transforma-
tion is that, in (#x′, #z′) space, the scaling is symmetric
under isotropic scale transformations, i.e. with G = the
identity so that more traditional isotropic analysis meth-
ods can be used (see part I). ,(θ ′

p) thus determines the
remaining ‘trivial’ anisotropy in the primed space; hence
it also determines the unit ball in (#x′, #z′) space. Equa-
tions (12)–(15) are the basis of the ASAT. It allows us to
simultaneously verify the anisotropic scaling hypothesis
(15) in arbitrary non-orthogonal directions while deter-
mining the function ,(θ ′

p) in the space (#x′, #z′). In
the next sections we discuss how to use structure func-
tions and spectra to estimate ,, and in section 4.3 we
discuss the interpretation of the result.

When performing numerical analysis, we use spatial
and temporal resolutions as convenient natural units of
spatial displacement and time lag, respectively (so that
distances and times can be given in dimensionless spatial
and temporal ‘pixels’; the shape function ,(θ ′

p) will
depend on this choice). This means that the ls will be
expressed in units of spatial pixels, and τs in units of
time steps.

4.2. The ASAT in real space: anisotropic structure
functions

To empirically verify Equation (15), we consider the
q = 1 (first-order) 2-D structure function dependence on
primed radial polar coordinate R′ for fixed value of angle
θ ′

p in the (#z′, #t ′) and (#x′, #z′) spaces. We have
already given the equation for the first-order spatially
averaged structure function (Equations (8) and (12)); in
the nonlinearly transformed (isotropic) space, in polar
coordinates, we may write (for both (x, z) and (z, t) cross-
sections):

S1(R
′, θ ′

p) = |#ρ|. (16)

In section 4.3 we consider the effects of intermit-
tency using higher-order structure functions; these will
be small for this low-order (q = 1) moment. Testing
this on the data, we obtain Figures 10(a), 11(a), 12(a),
and 13(a). As one can see by the parallel lines for var-
ious values of θ , the theory works well over a wide
range of scales for both cirrus clouds and aerosols, for
both horizontal and vertical advection-dominant cases of
temporal development. The difference between the 1-
D structure functions in different directions means that
the unit ball is not a circle (sphere). To clearly see this
‘trivial’ anisotropy ,(θ ′

p), we remove the theoretically
expected R′ dependence by calculating the ‘compensated’
2-D structure function, Sc,1 = R′−1/3S1(R

′, θ ′
p)p. If the

theory and hence the transformation defining R′, θ ′ is
correct, then Sc,1 = ,1/3(θ ′

p) i.e. it is just a function of
θ ′

p; it determines the shape of the unit ball. Figures 10(b),
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Figure 10. (a) 2-D structure function S1 as a function of R′ for four directions: θ ′
p = 0 (short dashes, corresponding to R′ = #t ′), π/4 (long

dashes), π/2 (dash-dot, corresponding to R′ = #z′), and 3π/4 (dash-dot-dot) in the nonlinearly transformed (#z′, #t ′) space for Egbert0603.
The solid line is the theoretical slope of 1/3. (b). Polar plot of compensated structure function Sc,1 = R′−1/3S1(log10(R

′), θ ′
p) averaged over

0.2 < log10(R
′) < 3.4 for Egbert0603 (centre line), with angle representing the direction of (#x′, #z′) and distance from the origin representing

the size of S1,c. Quantities log10(#t)/Ht and log10(#z)/Hz show distance from the centre of the plot in time and vertical directions but
they are not Cartesian coordinates. Outer/inner lines indicate plus/minus one standard deviation. This figure is available in colour online at

www.interscience.wiley.com/qj
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Figure 11. As Figure 10, but for Egbert0530. In (b), the averaging is over 0.2 < log10(R
′) < 2.6. This figure is available in colour online at

www.interscience.wiley.com/qj

11(b), 12(b), and 13(b) were determined from tables of
Sc,1 = R′−1/3S1 values as functions of log10(R

′) and θ ′
p

with increments of log10(R
′) = 0.2. Along rays of fixed

angle θ ′
p, the relative error (the ratio of the standard devi-

ation to mean Sc,1 and to the mean of Sc,1) does not
exceed 10% over wide ranges of scale (R′

max/R
′
min > 103

in many instances); often this variation does not exceed
5% (Figure 14(b)). The ranges chosen for averaging are
indicated in the captions for the figures. Thus, ASAT
analysis applied to first-order (q = 1) 2-D structure func-
tions allows us to verify the theory to within about 10%
over more than 3 orders of magnitude of space–time
or space–space scales, and this at various angles in (z′,
t ′) space. Note that, from their definitions, the structure
functions are symmetric with respect to inversion about
the origin.

While the near-constancy of the compensated struc-
ture functions as functions of angle gives strong support
to the correctness of the coordinate transformation and
passive scalar theory (the exponent 1/3 in the first of

Equations (7)), one can also use the technique to test the
alternatives, the Ds = 7/3 gravity waves, and the Ds = 3
isotropic turbulence. This can be easily done by using
the corresponding nonlinear coordinate transformations
and visually checking for the constancy of the resulting
, functions.

Figures 14(a), (b) and (c) show a comparison of con-
tour plots of log[S1(log(R′/Ri), θ ′

p)] with nonlinear
transformation (10) (or (11)) corresponding to differ-
ent models: isotropic turbulence, the 29/9-D model
and quasi-linear gravity waves. If the contours of
log{S1(R

′, θ ′
p)} are invariant under an isotropic scale

change (i.e. they have the same shapes), then the cor-
responding contours of log[S1{log(R′/Ri), θ ′

p}] will not
have the same shapes but they will be rather equally
spaced in all directions (Ri is a non-dimensionalizing
inner scale; below Ri , the signal is dominated by instru-
mental noise). The advantage of using a
(log(R′/Ri), θ ′

p) space representation is that we can visu-
ally represent a much wider range of scales on the same
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Figure 12. As Figure 10, but for Langley0807. In (b), the averaging is over 0.2 < log10(R
′) < 2.4. This figure is available in colour online at

www.interscience.wiley.com/qj
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Figure 13. As Figure 10, but for Pacific0815t6. In (b), the averaging is over 0.2 < log10(R
′) < 2.8. This figure is available in colour online at

www.interscience.wiley.com/qj

picture. The analysis is done using the alternative scale
function Equation (9). For the left column correspond-
ing to h = Hz/H

∗
t = 1 (i.e. no transformation of coor-

dinates), we can see that as we move from contour to
contour, the spacing between the contours is different in
the horizontal and vertical directions. In the centre col-
umn (using the theoretical transformation from the 29/9
model, i.e. Ht = 2/3), we can see that the contours are
spaced pretty much the same distance apart (i.e. equally
spaced in all directions as expected). Finally in the right-
hand column, the gravity wave value of h = Hz/H

∗
t is

used in the transformation, again leading to contours
which are not equally spaced – this time they are closer
in the vertical than in the horizontal. Note that all the
contours are spaced at equal factors of S1 of 1.12 (for
the 23/9 model, i.e. with Hh = 1/3, this corresponds to
a factor of 1.41 in scale); the total range of scales is
roughly 100.

4.3. Multifractal analysis in space–time

4.3.1. Discussion

Until now, we have applied ASAT to confirm the
anisotropic space–time scaling extensions of the
Corrsin–Obukhov law; we did not use it to empirically
estimate the theoretical exponents. In Radkevich et al.

(2007), we show one way of doing this. Here, we return to
the method of part II (orthogonal directions), but consider
the anisotropy of the moments of all orders (i.e. includ-
ing the effects of intermittency). All the results discussed
above were obtained for first- or second-order statistics,
S1, E, respectively.

Consider first the advection-free cascade starting at a
large outer space–time scale (Lx, Lz, T ) with data taken
at the region (lx, lz, τ ) which is (anisotropically) reduced
by factor λ. As discussed in appendix A of part I, the
qth-order structure functions spatially averaged over the
space–time region (lx, lz, τ ) are given by:

(|#ρ(#x, 0, 0, 0)|q)(lx,lz,τ )

= ϕ
q/3
λ

(
lx

#x

)Kϕ(q/3)

#xq/3 = ϕ
q/3
λ l

Kϕ(q/3)
x #xξh(q);

(|#ρ(0, 0, #z, 0)|q)(lx,lz,τ )

= κ
q/5
λ

(
lz

#z

)Kκ (q/5)

#z3q/5 = κ
q/5
λ lKκ (q/5)

z #zξv(q);

(|#ρ(0, 0, 0, #t)|q)(lx,lz,τ )

= χ
q/2
λ

( τ

#t

)Kχ (q/2)

#tq/2 = χ
q/2
λ τKχ (q/2)#tξτ (q),

(17)
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(a) Egbert 0530, wind domination
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(c) Pacific 2001 0815t6, vertical–horizontal cross-section

−2 −1 0 1 2
sgn(Rx) log10(Rx)

−2

−1

0

1

2

−2 −1

sgn(Rt) log10(Rt)

−2

−1

0 1 2

0

1

2

sg
n(

R
z)

lo
g 1

0(
R

z)

sgn(Rt) log10(Rt)

−2

−1

−2 −1

sg
n(

R
z)

lo
g 1

0(
R

z)

0 1 2

0

1

2
sg

n(
R

z)
lo

g 1
0(

R
z)

−2 −1
sgn(Rx) log10(Rx)

−2

−1

0 1 2

0

1

2

sgn(Rt) log10(Rt)

−2 −1

−2

−1

0 1 2

0

1

2

sg
n(

R
z)

lo
g 1

0(
R

z)

sgn(Rt) log10(Rt)
−2 −1

sg
n(

R
z)

lo
g 1

0(
R

z)

−2

−1

0 1 2

0

1

2

sg
n(

R
z)

lo
g 1

0(
R

z)

−2 −1
sgn(Rx) log10(Rx)

−2

−1

0 1 2

0

1

2

Figure 14. Contour plots of S1 with three different nonlinear transformations: left, no transformation (isotropy); centre, the 23/9-D model
discussed in the text; right, the gravity wave model. The three cases (a), (b), (c) correspond to (z, t) horizontal wind domination, (z, t)
vertical wind domination and vertical cross-sections (x, z), respectively. In the left column h = 1; in the centre column h = (a) Hz/H

′
t = 5/9,

(b) Hz/H
′
t = 5/6, (c) Hz = 5/9 (see Equation (10) for cases (a) and (b) and (13) for (c)); in the right column h = (a) 1/3, (b) 1/2, (c) 1/3.

We use the notation Rx = #x′, Rz = #z′, Rt = #t ′. Note that, although sgn(Rt ) log10(Rt ), sgn(Rx) log10(Rx) and sgn(Rz) log10(Rz) show the
distance from the centre of the plot in the corresponding direction, they are not Cartesian coordinates of the plot. This figure is available in

colour online at www.interscience.wiley.com/qj

where we have introduced the product of conserved fluxes
κ = χ5/2ε−5/2φ and ξh, ξv, ξτ are the structure function
exponents of the corresponding fluxes:

ξh(q) = q/3 − Kϕ(q/3),

ξv(q) = 3q/5 − Kκ(q/5),

ξτ (q) = q/2 − Kχ(q/2), (18)

where Kϕ(q), Kκ(q), Kχ(q) are the moment scaling
exponents of the fluxes ϕ, κ , χ respectively.

We now consider the effect of advection; this will
only affect the temporal exponents. We have already
argued that the pure temporal scaling behaviour assumed

in Equations (17), (18) is likely to be academic due
to advection effects. The two behaviours that we
found empirically were identified with either horizontal
advection domination, or vertical advection domination.
These are obtained by taking [[(0, 0, 0, #t)]] = u#t and
[[(0, 0, 0, #t)]] = ls(#t/τ ′

s)
1/H ′

t respectively; they lead to:

(|#ρ(0, 0, 0, #t |q)(lx ,lz,τ )

= ϕ
q/3
λ

( τ

#t

)Kϕ(q/3)

(u#t)q/3

= ϕ
q/3
λ τKϕ(q/3)(u#t)ξh(q), (19a)

(|#ρ(0, 0, 0, #t |q)(lx ,lz,τ )
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= ϕ
q/3
λ

( τ

#t

)Kϕ(q/3)/H ′
t

(

ls

(
#t

τ ′
s

)1/H ′
t

)q/3

= ϕ
q/3
λ τKϕ(q/3)/H ′

t ls
q/3τ ′

s
−q/(3/H ′

t )#tξh(q)/H ′
t .(19b)

The top equation (19a) is for horizontal wind domina-
tion and u is assumed constant across the data region;
we ignore possible intermittency effects in u. These are
not expected to be significant since for the horizontal
velocity (unlike the vertical velocity) Hh > 0, so that the
scale dependence is in gradients #u, not in the mean. In
comparison, the lower equation (19b) assumes vertical
wind domination with the effective generator resulting
from the presumed scale dependence of the mean verti-
cal velocity (see appendix B in part I for more details).
According to this interpretation, the τ ′

s is determined by
the mean vertical velocity over the region via the equation
τ ′
s = τs(vs/wl)(l/ ls)

Hz−H ′
t , where l is the effective scale

of the data region (the region of averaging), so that wl is
the overall mean vertical velocity due to the large-scale
variability (at scales larger than the averaging region).
These two different scalings yield:

ξτ (q) =
{

ξh(q) u dominant
ξh(q)/H ′

t w dominant
(20)

The anisotropy exponents are now given by the ratios:

Hz = ξh(q)

ξv(q)
= Hz,1 + #Hz; Hz,1 = 5

9
,

Ht = ξh(q)

ξτ (q)
= Ht,1 + #Ht ; Ht,1 ≈ 0.66,

Hzt = ξτ (q)

ξv(q)
= Hzt,1 + #Hzt ; Hzt,1 = Hz,1

Ht,1
. (21)

We have broken up the anisotropy exponents into
basic non-intermittent components (Hz,1, Ht,1, Hzt,1) and
small intermittent corrections (#Hz,1, #Ht,1, #Hzt,1).

The value of Ht,1 is based on the ‘effective’ scale
function (see part I) Since there is a one-to-one relation
between structures, singularities and statistical moments,
this small q dependence will tell us about the variation
of the space–time anisotropy with the intensity of the
structure. Note that although the basic non-intermittent
value Hz,1 = 5/9 is the same as for the velocity field, this
presumably is not true of the intermittency corrections.
In addition, the temporal value Ht,1 has two values
depending on whether there is horizontal or vertical
dominance. We have indicated the rough estimates based
on the spectra in Equation (19); below we estimate them
more precisely.

4.3.2. Mean anisotropy exponents

Before calculating the ratio of structure function expo-
nents in order to estimate the anisotropy exponents, we
display Figures 15(a) and (b) which give an indication of
the quality of the estimates. First, we consider the con-
sistency with which they estimate the vertical exponents
(Figure 15(a); these should be the same irrespective of
whether there is horizontal or vertical wind dominance),
and the intercomparison with the airborne results of part
II (Figure 15(b)). In Figure 15(a) we note that, starting
with low q, all the values of ξv agree very well, however
they eventually disagree at large enough q. This is a
consequence of the fact that, after a certain critical q, a
single large singularity can dominate the statistics. Since
one of the structure functions (for Egbert0807) falls off
quickly after q ≈ 1.5, we put it aside in order to calculate
the ensemble mean up to moments of order q = 3; this
is shown in Figure 15(b) where we also show the ξv for
ensemble mean of the the airborne lidar data in part II.
Recall that the attenuation is more severe for the ground-
based lidar used in part III; it appears that the attenuation
has been adequately dealt with since the two values of
ξv(q) agree to within one standard deviation up to q = 3.

We now consider the overall mean anisotropy, first
on the parametric plot of ξv versus ξτ in Figure 16
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Figure 15. Structure function scaling exponent ξv as a function of the order of statistics q: (a) different vertical–time cross-sections: Langley0807
(solid), Langley0808 (short dash), Egbert0530 (dash dot), Egbert0616 (dash dot dot), Egbert0602 (long dash), Egbert0603 (long dash short dash).
(b) average value over several realizations with standard deviation as error bars; black diamonds are vertical–horizontal cross-sections (see part
II), and triangles are vertical–time cross-sections (average over 5 cases from (a) without Langley 0807). This figure is available in colour online

at www.interscience.wiley.com/qj
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(analogous to Figure 9 in part II). Although – as in
Figure 15 – we see deviations from linear behaviour
occur at high values of q due to poor statistics, the basic
low-q behaviour is quite linear although it clearly breaks
into two families, with slopes close to the theoretical
value (Htz,1 = 5/9, horizontal wind domination) and a
slope close to the theory for vertical wind domination
with H ′

t = 2/3, i.e. Htz,1 = (5/9)/(2/3) = 5/6.
Before considering the small deviations from linearity,

we will consider the average behaviour by averaging over
all values of q between 0 and 3 at intervals of 0.1. For
the three cases with horizontal wind domination, we find
an average Htz,1 = ξτ /ξv = 0.54 ± 0.02 (theory predicts
5/9); for the cases of vertical wind domination Htz,1 =
ξτ /ξv = 0.81 ± 0.04 (theory predicts (5/9)/0.66 = 0.83).

In order to find the temporal exponent H ′
t,1 = Htz,1/

Hz,1, we must make an assumption for Hz,1. Assum-
ing the theoretical value Hz,1 = 5/9, we obtain H ′

t,1 ≈
0.68 ± 0.03. Alternatively, assuming that Hz is the mean
structure function exponent ratio for the wind domination
case ξτ /ξv = 0.54 ± 0.02 (very close to theoretical pre-
diction of 5/9), we obtain Ht,1 = (0.54 ± 0.02)/(0.81 ±
0.04) = 0.67 ± 0.06. Thus, using either the theoretical
value of the stratification exponent of Hz or the exper-
imental one, we obtain compatible estimates of H ′

t .
Finally, we obtain the effective elliptical dimension of
space–time atmospheric motions which is the trace of
the generator Gst:

Dst,eff,advec = Tr(Gst) = 2 + Hz,1 + H ′
t,1. (22)

The corresponding experimental values based on the-
oretical and empirical Hz,1 are Dst,eff,advec ≈ 3.24 ± 0.03
and Dst,eff,advec ≈ 3.21 ± 0.06, respectively.

4.3.3. The small q-dependent corrections

We now consider the small deviations from linearity
in Figure 16. Figures 17(a) and (b) show dependencies
of intermittency corrections #Hz, #Ht on the order of
statistics (see part I, appendices A and B for theoretical
considerations). These corrections are calculated as the
ratios ξt/ξz with subtraction of the corresponding strat-
ification exponent (Hz,1 or Ht,1) for cases of horizontal
wind domination (#Hz) and vertical wind domination
(#Ht ). Figure 17(a) compares intermittency corrections
#Hz for different types of data cross-sections ((x, z) and
(z, t)). For the horizontal wind dominance, the agree-
ment is to within about 0.01 with the results for vertical
sections (part II). One can see that estimated intermit-
tency corrections for two experimental campaigns are
in satisfactory agreement. Figure 17(b) shows theoretical
corrections calculated with formula (part I, appendix B):

#H ′
t = Hz,1

1 + Hz,1

ξh(q)
ξw

(
ξh(q)

H 2
z,1

) − Ht,1, (23)
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Figure 16. Parametric dependence of ξτ (q) versus ξv(q) (q = 0.1,
0.2, . . ., 3) for three cases of horizontal wind domination and
three cases of vertical wind domination. The slopes of reference
theoretical lines are Ht/Hz = 9/5 (dashed) and Ht/Hz = 6/5 (solid).
Data from: Langley0807 (solid boxes), Egbert0603 (solid triangles),
Egbert0602 (solid diamonds), Egbert0616 (open boxes), Egbert0530
(open triangles) and Langley0808 (open diamonds). This figure is

available in colour online at www.interscience.wiley.com/qj

where we used Hz,1 = 5/9 and Ht,1 = 2/3 and we
assumed that vertical wind exponent ξw is a universal
multifractal with αw = 1.8, C1w, Hw = −0.13 as indi-
cated (αw and C1w are chosen to be close to those of
the horizontal wind; cf. Lovejoy et al., 2007). We have
not attempted an optimum fit; to a first approximation,
the result is very insensitive to αw – the value of Hw

adjusts the curve vertically, and the value of C1w adjusts
the slope. The main point is that plausible, small values
of Hw, C1w can roughly explain the vertical dominance
intermittency behaviour. The mean value #H ′

t of about
0.05 suggests that H ′

t ≈ 0.66 + 0.05 ≈ 0.71 is a better
estimate. The difference with the previous estimates is
because we have used only two of the three relevant
datasets. (The Langley0807 dataset was excluded from
the analysis since it does not provide a wide enough range
of q values for which ξτ (q) versus ξv(q) is linear.)

5. Conclusions

In part I of this series, we proposed an anisotropic turbu-
lence/wave model for the horizontal velocity and passive
scalar fields. The model was an anisotropic, space–time,
multifractal extension of the classical Kolmogorov and
Corrsin–Obukhov laws – a turbulence/wave extension of
the classical Fractionally Integrated Flux model. In part
II, we considered the spatial part of the turbulent pro-
cesses concentrating on the vertical stratification, survey-
ing the literature (which we argued was compatible with
the new model), and also using airborne lidar data to
get crucial vertical cross-section information. This led
directly to the precise estimate for the elliptical dimen-
sion of the spatial structures: Ds = 2.55 ± 0.02, which
eliminates the main competing theories of stratification
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Figure 17. Intermittency corrections for stratification exponents. (a) #Hz averaged over three cases of horizontal wind domination (solid), and
over nine vertical–horizontal cross-sections (dash dot dot); (b) #H ′

t averaged over two cases of vertical wind domination (excluding Langley0807,
solid) and theoretical curves (dashed), calculated with Equations (22) and (23) using parameters αw = 1.8, Hw = −0.13 and C1w = 0.013, 0.025

and 0.038 from shallow to steep. This figure is available in colour online at www.interscience.wiley.com/qj

(with Ds = 2, 7/3, 3). We also found a small system-
atic q – or equivalently intensity – variation of about the
same magnitude (0.02).

In this paper, we focused on the temporal behaviour,
primarily the space–time stratification, but also the inter-
mittency. The temporal scaling is more complex than
the pure horizontal or vertical scaling treated in part
II due to the effect of advection which leads to non-
diagonal generators G. The consequences for (1-D) time
series is that there are in general three competing scalings
with exponents H = 1/3, 3/5, 1/2 (corresponding to
βτ = 5/3, 11/5, 2). The first two correspond to domi-
nation by horizontal and vertical advection, the third to
‘pure’ temporal development. Surveying the literature, we
again found support for the theory since many studies
found βτ in the range 5/3 to 2. (In addition, the main
gravity wave theories agree about this.)

While the 5/3 value poses no special problem, the other
two values have difficulties. First, the vertical dominance
value 11/5 has apparently never been observed, but this
is not surprising in view of the fact that, unlike the
horizontal wind (which typically has a large mean which
may not vary much even over large space–time regions),
the vertical velocity typically averages to a value near
zero as we average over larger and larger regions.
Indeed, this is the expected behaviour if, unlike the
horizontal wind (which has Hh = 1/3 in the horizontal),
its corresponding Hw parameter is likely to be negative.
On the other hand, concerning the value βτ = 2, an
argument of Tennekes shows that, for times less than
the eddy turnover time of the largest eddies (in the
atmosphere, about 2 weeks), the large eddies will ‘sweep’
the small eddies past any fixed point so that the pure
temporal development will not be observed. We therefore
used meteorological analyses to directly estimate the
relative importance of the various terms in the temporal
scale function. The result not only confirmed Tennekes
argument (although nuancing it with the consequences of

intermittency), but also simultaneously showed that the
vertical velocity term could occasionally dominate the
horizontal velocity term. This is especially the case if
the temporal scaling of the vertical velocity is taken into
account. In this case we found that the effective temporal
exponent decreased the naı̈ve vertical exponent value
βτ = 11/5 to around the (occasionally) observed value
βτ = 2, while simultaneously increasing its probability
of occurrence enough to make it quite possible that it
was indeed observed in our summer data.

In sections 3, 4, we again used lidar data – although
this time of both aerosol and cirrus clouds – from six
ground-based lidar vertical–time cross-sections. We first
confirmed the theoretical predictions in orthogonal (z, t)
directions, finding the vertical scaling to be very close to
the theoretical prediction (βτ ≈ 11/5), while in the hor-
izontal we found the two values βτ ≈ 5/3, βτ ≈ 2 each
for three cases which – given the discussion above – we
interpreted as horizontal and vertical dominance respec-
tively.

In order to test the theory more generally (in non-
orthogonal directions) and to more fully determine the
physical scale function (the existence of which is the
basic hypothesis of the FIF model), we developed a
new Anisotropic Scaling Analysis Technique (ASAT).
We compared the theoretically predicted behaviour to the
data and showed good agreement between theory and
experimental results over a wide range of space–time
scales. As far as we could tell, the scaling of the cirrus
clouds and aerosols were the same; they both followed
the theoretical predictions of the turbulence/wave 23/9-D
space–time model.

In its simplest form, the 23/9-D model introduces a
unique anisotropic physical scale function to replace stan-
dard isotropic scales. If this function is identical – for
both weak and strong structures – then the anisotropies of
the weak and strong structures are the same, hence there
will be constant ratios for structure function exponents
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in orthogonal directions. However the scale function is
in fact the consequence of highly turbulent and intermit-
tent flux dynamics, so that it would be quite surprising
that there were no systematic variations of anisotropy
with level of intermittency (conveniently parametrized by
the order of moment q). However, in part II we found
that for the vertical stratification, for mean (q = 1) the
ratio ξh/ξv = 0.55 ± 0.02, with only a very small vari-
ation with intensity, q; we estimated that the Hz was
in the range 0.53 to 0.57 for most of the significant
range (q decreasing from 5 to 0). For the space–time
stratification investigated here, we had to consider the
two cases: horizontal and vertical wind domination.
For the horizontal-wind-dominated cases, we find for
q = 1 the ratio Ht = ξτ /ξv = Hz = 0.54 ± 0.02 (theory
predicts Hz = 5/9) and for the vertical-wind-domination
case, we found the corresponding ratio ξτ /ξv = 0.81 ±
0.04. (In each case, the spread is the realization to
realization variability). Assuming Hz = 5/9, this implies
the corresponding H ′

t = ξτ /ξh = (5/9)(0.81 ± 0.04) =
0.68 ± 0.03. In order to check for systematic varia-
tions with q, we considered the ensemble-averaged struc-
ture functions and found a fairly constant values of
about Ht = 0.54 and H ′

t = 0.71 respectively with vari-
ations of the order 0.02 over the range 0 < q < 3, i.e.
the theory is well respected, although for the vertical-
wind-dominated cases there is not a precise theoretical
prediction.

If the analyses and models discussed in this series
of papers are correct in their essentials, then atmo-
spheric dynamics are in many ways simpler than usually
assumed, primarily because the 23/9-D model unifies the
dynamics over the entire dynamically significant range of
space–time scales. Theoretically, this is compatible – if
not demanded – by the dynamical equations which are
scaling from planetary down to dissipation scales. On
the contrary, all the competing models require the exis-
tence of scale separations with the small and large scales
interacting only weakly. This is true not only of the
classical 2-D/3-D isotropic turbulence model, but also
of the anisotropic gravity wave models which require
a linearization of the dynamics about an ill-defined ref-
erence state. The failure of modern data to corroborate
the existence of a scale separation is probably the single
most compelling argument in favour of the anisotropic
scaling model; in this series, state-of-the-art lidar data
quantitatively support the 23/9-D model while exclud-
ing the competing 2-D, 3-D and 7/3-D (gravity wave)
models. Work in progress (by some of the authors and
J. Stolle) shows that some general circulation models
also respect wide-range space–time scaling (with a cas-
cade structure) and so these results are probably at least
roughly compatible with numerical models of the atmo-
sphere. Finally, there has been particular ambiguity about
the temporal scaling properties; the finding here that one
may expect either the horizontal or vertical wind to dom-
inate with corresponding different exponents may finally
allow a deeper understanding of the evolution of meteo-
rological systems. It may be that the distinction between

horizontal- and vertical-dominated systems provides a
quantitative basis for the current phenomenological dis-
tinction between convective and stratiform systems.
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