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ABSTRACT Scaling models and analyses of rain have now been around for over ten
years, a period in which the corresponding scale invariant notions have seen rapid
development, We review these developments concentrating on multifractals that are believed
to provide the appropriate theoretical framework for scaling nonlinear dynamical systems.
Although early scaling notions were geometric rather than dynamic, they contributed
towards establishing and testing scaling ideasin rain and in determining the limits of scalingin
both time and space. The problematic of passive scalar clouds and (continuous) turbulent
cascades, provided them with a sound physical basis. Building on these advances, later
analysis methods ( particularly Double Trace Moment technique) made it possible to obtain
robust estimates of the basic multifractal parameters. Continuous (and universal ) cascades
allow us to exploit these parameters to make dynamical models. We also discuss various
applications of multifractals to rain including multifractal objective analysis, statistics of
extreme values, multifractal modelling, space-time transformations, the multifractal radar

observer’s problem, stratification, and texture of rain.

INTRODUCTION

Stochastic models of rain, atmospheric scaling and
multifractals

The atmosphere is probably the most familiar highly non-
linear dynamical system; the nonlinear terms are roughly
~10"2 (the Reynolds number) times larger than the linear
(dissipation) terms, and structures vary over 9-10 orders of
magnitude in space (= 1 mm to 10* km) and at least as much
in time (~ 10~ s on up). The nonlinearity involves many
fields: rain is dynamically coupled with the velocity, tempera-
ture, radiation, humidity, liquid (and solid) water fields.
Because it so palpably impinges on the human senses, it is
undoubtedly subjectively experienced as the most extremely
variable atmospheric field. For similar reasons, in terms of
accuracy of measurements over the widest range of space and
time scales, the associated radar (‘effective’) reflectivity field
is likely to be the best measured turbulent field in geophysics
or elsewhere.

While this extreme variability is undeniable, traditional
modelling approaches have been limited by lack of knowl-
edge of the nonlinear partial differential equations governing
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rain. Since the 1960s, these two circumstances have com-
bined to lead to the development of stochastic' rain models?.
In the 1980s, with the growing recognition of the fundamen-
tal importance of ‘scaling’ (especially associated with the
fractal geometry of sets, Mandelbrot, 1983); scale invariant
symmetries and fractals, it was natural to construct stochas-
tic models that respected such symmetries (Lovejoy & Man-
delbrot, 1985, Lovejoy & Schertzer, 1985). Unfortunately,
the first scaling models were totally ad hoc, designed only to
respect a purely statistical scaling symmetry (i.e., with no
direct connection either with physics or phenomenology),
and worse still, were restricted to a very simple kind of scaling

! Influenced by the rapid pace of developments in deterministic chaos, the
idea was recently suggested (e.g. Tsonis & Elsner, 1989, Rodriguez-Tturbe
et al., 1989) that only a very small number of degrees of freedom were
dynamically important, and that in rain deterministic rather than stochas-
tic models would be appropriate. As argued by Osborne & Provenzale
(1989), Ghilardi (1990) and Schertzer & Lovejoy (1991a) (section on
stochastic chaos vs. deterministic chaos), such conclusions are based on
overinterpretations of the data; in our view, there is no compelling reason
for abandoning stochastic (large number of degrees of freedom) models.
See also Visvanathan et al. (1991) for a discussion of stochastic behaviour
of deterministic models.

Early models include Cole (1964), Arajimo (1966) and Bras & Rodriguez-
Iturbe (1976).

[
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now known as ‘simple’ scaling®. This was all the more true
since evidence had been accumulating since the 1960s sug-
gesting that rather than being qualitatively distinct, the large
and small scale regimes of the atmosphere were actually both
part of a very wide single scaling regime. Rather than
consisting of an isotropic two dimensional turbulent regime
at large scales, and an isotropic three dimensional regime at
small scales, the atmosphere is apparently scaling but aniso-
tropic throughout®,

In parallel with the development of these geometric
‘monofractal’ models, work in turbulent cascade processes
and strange attractors showed that real dynamical systems
were much more likely to be ‘multifractal® (Hentschel &
Proccacia, 1983; Grassberger, 1983; Schertzer & Lovejoy,
1983, 1984, 1985b; Parisi & Frisch, 1985). They therefore
require an infinite number of scaling exponents for their
specification, a fact soon empirically confirmed in rain with
radar data®.

The multiscaling/multifractal problematic provided much
more than just an improved empirical fit with the data. The
bold proposal (Schertzer & Lovejoy, 1987a) that rain varia-
bility could be directly modelled as a turbulent cascade
process for the first time provided the physical basis for
stochastic rain modelling. This proposal was all the more
attractive since such cascade processes were found to generi-
cally yield multifractals. In the same way that Gaussian
noises frequently occur in linear (sums) of random variables,
cascade processes generically produce special (universal)
multifractals by nonlinear mixing of scaling noises. The
existence of stable and attractive universality classes implies
that the infinite number of multifractal dimensions can be
described by just three basic exponents. This finding greatly
simplifies analysis and simulation of multifractal fields.

Monofractal analyses, scaling and intermittency

In the following sections, we will argue that scaling systems
will generally involve universal multifractals. This current

* Keddem & Chiu (1987) discuss an even simpler scaling which we called
‘very simple’ scaling, Lovejoy & Schertzer (1989), but it does not seem to
be relevant to rain.

* Forearly discussion and reviews of scaling and its limits in the atmosphere,
see Schertzer & Lovejoy (1985a), Lovejoy & Schertzer (1986a); for more
recent discussion see many of the papers in the book Nonlinear Variability
in Geophysics; Scaling and Fractals, (Schertzer & Lovejoy, 1991).

* This expression was coined somewhat later by Parisi & Frisch (1985). Ina
paper devoted in considerable part to defending the ‘unicity’ of fractal
dimensions, Mandelbrot (1984), for the first time admitted the possibility
of multiple fractal dimensions.:
Rain data provided the first determination of multifractal dimensions in
any empirically measured field. Furthermore, the original analysis was
done in one, two, three, four (x, y, z, ) and 1.5 dimensions (a simulated
measuring network, see Fig. 5), showing the utility of radar rain reflectivi-
ties (Schertzer & Lovejoy, 1985b). Later, when similar analysis techniques
were applied to other turbulent fields (the turbulent velocity field, Mene-
veau & Sreenivasan, 1987, Schmitt et al., 1991), the data were only one
dimensional (time series at a single point).
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understanding was the result of many years of research
during which simpler (geometric monofractal) scaling
analyses and models were developed and criticized. In order
to understand these developments, we briefly review some
early results,

The simplest scaling of relevance to rain is the following
‘simple scaling” or ‘scaling of the increments’; before the
discovery of multifractals, it was thought to be quite gener-
ally associated with fractal fields. For the rainrate R, it can be
defined as follows:

ARG Ax)= 2" AR(4x) )

where the small scale difference is AR(A™'4x)=R(x,+ 1"
4x)—R(x;) and the large scale difference is AR(dx)
=R(x,+4x)— R(x,) where x,, x, are arbitrary, 1 is a
reduction ratio, and H is the (unique) scaling parameter. The

equality ‘=" means equality in probability distributions viz.

a<bif and only if Pr(a>g)=Pr(b> g) for all ¢, where ‘Pr’
indicates ‘probability’. The special case of equation 1 where
the probability distributions are Gaussian is Brownian
motion (H= %, increments are independent), and fractional
Brownian motion (K + {, Kolmogorov, 1940; Mandelbrot &
Van Ness 1968). Fractional Brownian motion was proposed
as a streamflow model by Mandelbrot & Wallis (1969); the
nontrivial exponent A was to account for the ‘Hurst pheno-
menon’ of long range dependence in streamflow (Hurst, 1951
empirically found H=0.7 in many streamflow records over
scales up to millenia).

In rain, Lovejoy (1981) hypothesized that simple scaling
holds — although due to the extreme variability of rain — the
probability distributions were expected to have algebraic
(‘fat’) tails instead of (‘thin’) Gaussian tails®. Below, we show
that such hyperbolic tails (associated with the divergence of
the corresponding statistical moments) can be considered as
multifractal phase transitions. Since then, Bak er al. (1987)
have considered the combination of scaling with hyperbolic
tails as the basic features of ‘self-organized criticality’
(5.0.C.) and Schertzer & Lovejoy (1994) have shown how
multifractals generically lead to S.0.C. Probability distribu-
tions were used to test empirically both the simple scaling and
the ‘fatness’ of the tails in space using Montreal radar rain
data (with 4x=0.25, 0.5, | km). Equation 1 was reasonably
well followed (see Fig. 1), especially for the extreme tails, and

" This type of scaling was first introduced by Lamperti (1962) under the
name ‘semistable’. It was called ‘self-similarity” by Mandelbrot & Van
Ness (1968). However, this name turned out to be a misnomer since the
actual functions were not self-similar but self-affine, and self similarity is a
much wider concept anyway. We use the expression ‘simple scaling’, which
contrasts it with the more general and interesting multiple scaling dis-
cussed later. For more on rain applications, see Waymire (1985).

This terminology was introduced by Waymire (1985). Schertzer & Love-
Jjoy (1985a) use the expression ‘hyperbolic intermittency’ for the ‘fat’
algebraic tails.
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Fig. 1 The first direct empirical test of simple scaling. The prob-
ability (Pr(d4r > 4R) of a random (absolute) rain rate difference
Ar, exceeding a fixed 4R for spatial increments in 0.25 x 0.25x1
km averaged rain rates. The curves shown are for Ax= 0.25,0.5,1
km respectively. Data are from the tropical Atlantic (GATE
experiment, phase ITT) radar reflectivities from a single radar scan
converted to rainrates using standard reflectivity/rain rate rela-
tions. The straight reference lines correspond to g, =0.75, 2
respectively, and indicates that the variance (the moment ¢ =2)
barely converges. The roughly linear left-right shift between the
curves indicates — at least for the extreme gredients — that simple
scaling roughly holds with H~0.5. From Lovejoy (1981).

the value® of H was estimated as &0.5. In time, instead of
using Eulerian differences, isolated storms were tracked,
their total rain flux was determined every five minutes for 100
minutes. Here, simple scaling was again found to hold
reasonably well (Montreal, Spain and tropical Atlantic data
yielded similar results with value H ~(0.7); in addition, the
extreme tail of the distribution was roughly hyperbolic:
Pr(dr>AR)= AR~ (AR>>1) for the probability of a
random rainfall fluctuation Ar exceeding a fixed value AR.
The subscript D is necessary since the value of the exponent is
expected to depend on the dimension of space over which
averages are performed"’. It was found'" that gp~ 1.7, (with
D=2; the integration is over areas). For comparison, Fig.2a
(from Ladoy et al., 1991) shows the probability distributions
for daily rainfall accumulations from a station at Nimes from
1949-88, with g,~3.5 (see Ladoy et al. (1993) for an

* In the same paper, a similar value of H was obtained via another method
(R/S analysis) over the range 0.25-13 km.

" Note that in the original paper, the symbol « rather than ¢, was used since
wis the corresponding divergence exponent for Levy variables (the rain
process was thought to be an additive, simple scaling Levy process).

U InFig.1, ¢ ~ 2. although the evidence for this asymptotic behaviour is not
conclusive. To our knowledge, other strictly comparable analyses do not
exist. A related result was obtained by Zawadzki (1987) who found some
some evidence for hyperbolic behaviour (with ¢,72) in tipping bucket
Tain rain measurements rain with roughly the same exponent, although (as
expected ) the sample sized required to empirically see it was quite large.
Table 1 summarizes related results.
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Fig. 2a The probability (Pr(4r> AR) of a random (absolute) rain
rate difference Ar, exceeding a fixed AR for daily differences in
daily rain accumulations at Nimes-Courbessac (France) from
1949-88 (14245 days). The tail is nearly straight with exponent
gp=3.5. From Ladoy et al. (1991).

interpretation in terms of multifractal phase transitions).
Similarly, Fig. 2b shows g, 1.1 and Fig. 2c shows qp=3.0
for radar rain reflectivities of rain, 2.4 for snow, and 3.9 for
melting snow (‘bright band’)'2. A related result is Fig. 2d, the
probability distribution of raindrops with volumes in various
Hawaiian rains (replotted from Blanchard, 1953). The tails
are nearly hyperbolic with'? g,~1.9£0.5. The long tails on
these distributions point to the extremely variable, highly
intermittent non-Gaussian nature of rain.

Perhaps the most systematic and voluminous study of high
resolution (tipping bucket) raingage data to date s described
in Segal (1979). He digitized 90000 tipping bucket records
from 47 recording stations across Canada, each 5-15 yearsin
length, seeking to obtain statistics on rare, high rain rate
events that effect microwave transmission. After comparing
regressions of a variety of functional forms (including the
log-normal, see Fig. 2e and discussion in the next section) for
one minute averaged rain rates greater than 3 mm/h he
concluded that ‘a power law relationship ... provided the
best fit except in the low-intensity (drizzle) region’, with (for
seven of the stations for which the parameters were given),
¢p~2.5+0.5. Table 1 compares all the values cited above. It
is still not clear whether the dispersion in values of g, is due to
the difficulty in obtaining accurate estimates (very large
samples are needed ), differences in the effective D of averag-

12 Further, we show that these fat tails cannot arise due to fluctuations in the
reflectivities due to drop ‘rearrangement’; the latter is a thin tailed
(exponential ) effect.

13 This is significant for radar measurements of rain, since (among other
things) standard theory requires g, > 2 so that the variance converges.
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Fig. 2b The probability Pr(Z’> Z) of a random radar rain reflec-
tivity Z’ exceeding a fixed threshold Z for 10 CAZLORs (Con-
stant Altitude Z LOg Range maps), taken at the McGill weather
radar, Montreal (data from 1984). The resolution varies over the
map from 0.25 to 2.5 km at ranges 20 to 200 km. Each value is
determined from the maximum of several consecutive pulses (the
‘peak detection’ method — necessary at the time ( 1984) due to
limitations on the speed of digitizers). The reference line corres-
ponds to g, =1.06. From Schertzer & Lovejoy (1987a).
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ing, or due to true variations for different locations, climato-
logical regimes'* etc.

Other evidence for scaling was the area-perimeter'* rela-
tion for radar rain and satellite cloud areas over the range 1

" These issues are discussed in the section on basic properties of multifractal
fields; according to multifractal theory, a finite gpis not necessary, indeed,
there is evidence based on estimates of universality parameters that it may
be very large (or even infinite) in time. It may well be that the dispersion of
estimates for g, are simply the result of undersampling a distribution with
amuch larger g,,; if we have an insufficient number of independent samples
we really estimate the ‘sampling moment” g, see equation 15a.

** Seealso Lovejoy (1982, 1983), Lovejoy et al, (1983), Lovejoy & Schertzer
(1985b), Rhys & Waldvogel (1986), Come ( 1988) for more rain analyses of
this type. For more recent empirical area-perimeter results, (for clouds) see
Welch er al. (1988), Seze & Smith (1990), Cahalan (1991) and Yano &
Takeuchi (1991). Other highly geometric (and, compared to statistical
methods, indirect) type analyses are possible including analyses of fractal
sets associated with graphs of rain series (Boucquillon & Moussa, 1991).
Originally, area-perimeter exponents were interpreted as fractal dimen-
sions of the perimeters. Since rain and clouds are in fact multifractals, a
correction is necessary: for this as well as a detailed eriticism of these
geometric approaches to multifractals, see Lovejoy & Schertzer (1990a,
Appendix A).
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Fig. 2c The same as Fig. 2b except for a vertically pointing
(nonscanning) radar at a pulse repetition rate of 1300 Hz, with
each pulse return digitized, for a single Montreal storm (October
15, 1991) for 1380 seconds (1.8 x 10° points per histogram). The
curves from top to bottom are bright band (melting snow and ice,
2.3 km altitude), rain (2.0, 2.15 km) and snow (2.45 km). The
differences in reflectivities are largely explained by the low dielec-
tric constant of ice compared to water, and by the large size of the
water coated ice/snow particles. The asymptotic slopes yield esti-
mates of g, ~2.4 for snow, = 3.9 for the bright band, and ~3.0
for rain. The reference line corresponds to g,=2. From Duncan
et al. (1992), Duncan, (1993).

km? to 1.2 x 10° km?, and the distribution of radar deter-
mined rain areas that was argued to be hyperbolic not
log-normal'®: Pr(4>a)~a~? (with B~0.8 over the range
a1 to 10 km), for the probability of large areas A exceedinga
fixed threshold a. A related result is the finding by Cahalan
(1991) that over the range ~80 m to ~1 km, B~0.75 for
stratocumulus and intertropical convergence zone clouds.
The evidence suggesting that radar rain data could be
approximated by simple scaling — although with highly non-
Gaussian (hyperbolic) probability distributions!” — was
reviewed by Lovejoy & Mandelbrot (1985), where the ‘Frac-
tal Sums of Pulses’ (FSP) process (an additive compound
Poisson process involving pulses) was developed as a model.
Although it had features common with other existing sto-
chastic rain models such as those proposed by Waymire &

* The log-normal phenomenology of rain and cloud areas goes back to at
least Lopez (1976, 1977a, b), Since lognormal distributions are long tailed
— and except for the problem of ‘dressing’, correspond to universal
multifractals — they are close to the theoretically expected distributions. In
any event, they can only be distinguished empirically from hyperbolic
distributions by carefully examining their tails corresponding to extremely
rare large areas. The lognormal fits to rain area histograms could be
profitably re-examined in this light.

" Such models exhibit what Mandelbrot & Wallis (1968) called the ‘Noah’
effect i.e. stochastic realizations of the corresponding processes involve
extreme fluctuations the largest of which dominate the others. In multi-
fractals, the effect is generalized to moments of fluctuations higher than
the first. These authors also introduced the term ‘Joseph' effect to denote
the phenomenon of long range correlations; all multifractals exhibit this
effect.
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Table 1. A comparison of various empirical estimates of the divergence of moments exponent qp

Radar rain Radar rain Vertical Tipping
differences differences Radar pointing radar ~ Daily rain gauge bucket Rain drop
Data Type (space) (time) reflectivity  reflectivity accumulations  gauges volumes
Location  Tropical  Tropical Montreal Montreal Nimes Montreal Western Hawaii
Atlantic Atlantic Canada
4n 2 1.7 1.1 3.0 (rain) 35 2 2505 1.9+0.5
2.4 (snow)
3.9 (bright band)
References Lovejoy, Lovejoy, Schertzer Duncanetal., Ladoyetal, Zawadzki, Segal, 1979 Blanchard
1981 1981; & Lovejoy, 1992; Duncan, 1991, 1993 1987 1953
Lovejoy &  1987a 1993
Mandelbrot,
1985
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Fig. 2d Three rain drop distributions replotted from original data 1075 Log—normal
published in Blanchard (1953) from three different Hawaiian oro- o
graphic rain events showing that the extreme tails have from top o
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Gupta (1984) and Rodriguez-Iturbe ef al. (1984), both its
philosophy and properties are different. Instead of basing
itself on an ad hoc division of the atmosphere into a hierarchy
of qualitatively different regimes, each occuring at different
scales, and each requiring a different set of modelling
parameters'®, the FSP involved the linear superposition of
structures whose relative size and frequency of occurence
were related so that the resulting process lacked characteris-

% The better known of these scale dependent models the *Waymire-Gupta—~
Rodriguez-Tturbe’ (WGR) model involved over 10 empirically adjustable
parameters; and even then only provided plausible statistical properties
over a relatively narrow range of scales (see Rodriguez-Iturbe ez al., 1987,
Eagleson et al., 1987). Another ‘nearly’ scaling model (Bell, 1987) had
similar problems.

Rainfall rate (mm/h)

Fig. 2¢ An example (from 10 years of tipping bucket raingauge
data at St. John, New Brunswick) of the extreme rainrate end of
one minute resolution rainrate probability distributions from
Segal (1979). The straight reference line corresponds to g5=1.9,
the curved reference line is the best fit lognormal for comparison.
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Fig. 3a-3c A single space-time FSP simulation of rain on an 800 x 800 grid showing three simulated fields seperated by 80 time units.
The space/time transformation used was a statistical (and isotropic) version of Taylor’s hypothesis of frozen turbulence. As expected,
small structures live the shortest time, large ones longer, here (on average) linearly increasing with duration. The grey scale is
proportional to the logarithm of the rain. From Lovejoy & Mandelbrot (1985).

tic scale®. It yielded simple scaling® with g,=H "' (with
1<g,<2,3<H<1). Two dimensional models on large grids
were produced, and time series were modelled by making

¥ Similar models were discussed in Rosso & Burlando (1990).

* Lovejoy & Schertzer ( 1985a) proposed a variant on this model called the
Scaling Sums of Pulses process (SCP) in which g,, H could be varied
separately. Another related model is (Wilson er al., 1986), the Wave
Intermittent Packet (WIP) model; in current parlance, the packets are
essentially ‘wavelets’.

simulations in three dimensional (x, y, 7) space?". By varying
the shape of the ‘pulses’ from circles to annuli, more or less
‘fragmented’ or ‘lacunar’ rain fields could be produced.
Using the same scaling parameters to model the concent-
ration of liquid water, surprizin gly realistic cloud fields were
produced (see e.g. Figs. 3a, b, ¢ for a temporal sequence).

* This relies on a generalization of Taylor’s hypothesis of ‘frozen tur-
bulence’.
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Fig. 3d, e Non self-similar (anisotropic scaling) FSP rain models on a 400 x 400 point grid, using linear Generalized Scale Invariance
with generators with off-diagonal elements to yield differential rotation. This results in differences in orientation of structures as

functions of scale which is clearly perceived as cloud ‘texture’. From Lovejoy & Schertzer (1985a).

Realistic textures/cloud types also can be obtained by using
‘Generalized Scale Invariance’ — see Figs. 3d, e, as can
vertical cross-sections with appropriate ‘elliptical dimen-
sions’ (Figs. 3 f, g, h, 1).

Another analysis method that can be used to investigate
scaling is the energy spectrum E (k). For statistically isotropic
scaling fields™ E (k) will be of the power law form k ~f where k
is a wave vector modulus, and f§ is the spectral exponent. In
time, the spectrum as a function of frequency w will be of the
same form but not necessarily with the same exponent. The
most impressive single analysis of this sort to date is found in
Duncan et al. (1992). These authors used a high resolution
vertically pointing radar to perform a time series of 7 x 10°
pulses at 1.3 kHz from a single pulse volume 30 x 37 x 37m in
size. For computational reasons, the total range ~ 10~ -10%s
was split up into two regions, with average spectra calculated
in each (Fig. 4a, 4b). One notices two scaling regimes with
f=1.66 (roughly the same in each) corresponding to time
periods 2 x 10™*s <2< 10 and #> 3 s. Duncan et al. (1992)
and Duncan (1993) argue (with the help of multifractal
models) that the breaks at 1077 s, 3 s separating the flat
‘spectral plateau’ are both due to instrumental effects; they
are simply the time scales associated with the spatial scales of
the radar wavelength (3 cm), and the pulse volume® size

2 Self-similar fields — see section on generalized scale invariance.

3 The corresponding velocities are 3cm/10™*s=3m/s, and 30 m/3s~ 10 m/s
respectively which are quite plausible fall speeds for rain. Further below
we see that the velocity is expected to be a function of scale, so that the
small difference in the two velocity values is not surprising.

(=30 m). The rain itself is apparently scaling over almost the
entire regime: only the high frequency (r<2 x 10™") regime s
believed to be a real break associated with dissipation®.
Other relevant temporal spectra are found in Ladoy et al.
(1991) who examined daily raingauge accumulations, finding
B~0.3 (Fig. 4c) for periods of 1 day to 4 years at a station in
Nimes (France). Fraedrich & Larnder (1993) find (Fig. 4d)
the corresponding spectrum for a 45 year period for an
average of 13 stations in Germany, showing roughly similar
behaviour although for frequencies lower than ~ (3 years) ™'
the spectrum rises more quickly”. The only relevant spatial
spectra of which we are aware are shown in Figs. 4e and 4f
from Tessier et al. (1993) using radar reflectivities, show
B~0.3 over the range 2-256 km in the tropical Atlantic but
f~1.45 in Montreal (over the range 150 m to 19.2 km;
indicating the possibility of significant climatological
differences®). Other relevant power law spectral analyses

3 Asexpected, the exact breakpoint depends on the meteorological situation
and precipitation type, although contrary to the standard theory of radar
measurements, for all the cases studied, it is apparently smaller than the
radar wavelength (3 cm here).

Fig. 4d actually seems to have low and high frequency scaling regimes
separated by a ‘spectral plateau’ of the sort found in temperature series by
Lovejoy & Schertzer (1986b), Ladoy et al. (1986) and Ladoy et al. (1991).
In this case, the difference with Fig. 4c could be due to differences in
climatological regimes, and breaks delimiting the plateau might be time
scales corresponding to structures of global spatial extent (see Lovejoy &
Schertzer, 1986b for more discussion on this possibility).

Another source of variation is the possibility of significant scatter of the
estimated f§ from one scan to the next — this is expected since the
asymptotic logarithmic probability distribution slopes (g, or g5) are
frequently ~2, and the spectrum is a second order statistic.

5
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Fig. 3f~i FSP models of vertical cross sections of rain fields on 400 x 400 point grids. Going from f to i the isotropic (‘sphero’) scale
increases from one pixel to 10, 100, 1000 (equivalent to ‘zooming’ in at random positions). In Fig. 3f, stratification dominates
completely, as we zoom in, more and more vertical structure is visible, finally, at highest resolution (Fig. 3i), structures are vertically
aligned, simulating convective rain ‘shafts’. The elliptical dimension used for these cross-sections was 1.5. From Lovejoy & Schertzer
(1985a).

are, Crane, 1990 (log radar reflectivity in space”’), and With the development of multifractals, it was realized that
Rodriguez-ITturbe et al., 1989 (15 second averaged rain gage the apparent visual success of the FSP process masked a basic
rain rates®). shortcoming: Lovejoy & Schertzer (1985a) criticized its
¥ He obtains B ~5/3 over the range 1 minute to | hour. The scaling of the log moncrdimensi.ona] fharacter, (‘:alﬁng for the d.evelopment of

reflectivities is not related ina simple way to the scaling of the reflectivities. ‘multidimensional’ alternatives. Nearly simultaneously,
* From their Fig. 4, we estimate f~1.3 over periods of ~ 1 minute to 2 the first empirical multifractal analyses were performed using

hours. It is worth noting that gauge rain rates are frequently estimated . i 5b. Fig. §

i s ' '€10Y. 12. 2). ¢
from tipping buckets which mark equal accumulation times; this leads to a radar rain data (Schertzer & Lov €joy,. 1883b, B:-5). A
nontrivial biasin rainrate statistics, especially for the (very frequent) lower
rain rates. * This cumbersome expression was a forerunner of the term *multifractal’.




2 MULTIFRACTALS AND RAIN

69

6
55+
- 5
3
g
o 45
=
L2 at
35+
3 i . i
2 1 0 1 2 3 4

log'® o

Fig. 4a Average power spectra E(w) from 896 consecutive 8192
point sections of a time series from a vertically pointing, 3 cm
wavelength radar at McGill taken from a single (30 x 37 x 37 m)
pulse volume at 1 km altitude on Sept. 19, 1990 as a function of
frequency w (in units of rad/s, from Duncan et al. (1992). The
data was sampled at 1.3 kHz, so the entire =7 x 10° point data set
spanned the range ~ 107> to 10* 5. The straight reference line
shows an exponent f=1.66.

log'? E(w)
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Fig. 4b Same as Fig. 4a except that the series was averaged over
512 consecutive points before the spectrum was taken. Here we
obtain scaling over the entire range shown here (with the f=1.66
line, same as in Fig. 4a, the beginning of this regime is =3 s, and
is seen on Fig. 4a) shown for reference.

entire codimension function was necessary to specify the
scaling of the reflectivities, not just the small number of
exponents™ (g,, H) involved in simple scaling. The ad hoc,
geometric FSP construction had to be replaced by a physi-
cally based multiscaling/multifractal model. There were two
main obstacles to doing this. The first was the establishment
of a sound connection between passive scalar concentrations
and multifractal energy fluxes (via fractional integration, see
below), and the second, was that then, multifractal cascades
were discrete, i.e. they involved horrible artificial straight line
structures; continuous cascades were needed. While the
situation was apparently better as far as data analysis was
concerned, it was soon to become evident that it too,

¥ 1n the multifractal models, we shall see that g, A are independent.
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Fig. 4c The average of six consecutive 4 year spectra of the daily
rainfall accumulations at Nimes-Courbessac. The annual peak is
fairly weak, the scaling holds over most of the regime with slope
(= — B)=~ —0.3. There is no clear evidence for the ‘synoptic maxi-
mum’ (i.e. a break at periods of a few weeks). From Ladoy et al.
(1991).
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Fig. 4d Energy spectrum of daily rainfall accumulations over a 45
year period in Germany. The spectrum is an average of that
obtained from 13 stations. The annual peak is much more pro-
nounced than Fig. 4c, with evidence for a ‘spectral plateau’ from
220 days to a3 years. The overall spectral shape, including the
low frequency rise (f=0.5) is very similar to the temperature
spectra analyzed in Lovejoy & Schertzer (1986b). The high fre-
quency fall-off (also with f~0.5) may be due to smoothing intro-
duced by the spatial averaging (the 13 stations had correlated
temperatures). At high frequencies, the power was averaged over
logarithmically spaced frequency bins to decrease statistical
scatter (Fraedrich & Larnder, 1993).
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Fig. 4e Horizontal spectrum of tropical Atlantic (GATE experi-
ment) radar reflectivities for 14 radar scans at 15 minute intervals,
each scan with 360 radials (1°), 1 km downrange resolution. The
(one dimensional ) spectra were taken downrange (over 256 pulse
volumes) and averaged over all the radials and scans. The refer-
ence line has f=0.3. From Tessier et af. (1993).

12

117

10

logig E(K)

8 T ! i
(10km) ! (Tkm) =1 (100m)~"
k

Fig. 4f Horizontal spectrum of McGill radar reflectivities for a
2.2° elevation radar scan with reflectivities averaged over 75 x 75
m grids (PPI). The isotropic two dimensional spectrum was taken
over 256 x 256 grid points. The reference line has f=1.45, (quite
different from GATE). From Tessier et al. (1993).

14 -
104
=
o
=
a
54
-
14 a
[ ]
6 [+}
8] + + + —t
o¥ f" 2 3 a h 5
.‘-_ -

Fig. 5 The function p(h, D,) (= K(g), h=gq) for dressed radar
reflectivities from 5 sets of radar CAZLORSs at altitudes of 3, 4, 5
km, each set involving 14 scans taken at thirty minute intervals.
There were 200 downrange elements, 375 azimuthal elements; the
total data set involved 5 x 3 x 14 x 200 x 375~ 1.5 x 107 points.
The data was dressed (averaged ) over sets with various dimen-
sions D ;: over the downrange only (bottom curve), downrange
and cross range (third from bottom), downrange, cross-range and
in altitude (second from top), space/time (top), as well as over a
simulated measuring network, dimension 1.5 (second from the
bottom). This curvature clearly shows the multiscaling, multifrac-
tal nature of rain. From Schertzer & Lovejoy (1985b).

involved nontrivial difficulties.... The remainder of this
paper will concentrate on these developments.

PROPERTIES AND CLASSIFICATION OF
MULTIFRACTALS

An explicit multifractal process, the o model

Multifractals arise when cascade processes concentrate
energy, water, or other fluxes into smaller and smaller
regions. To understand cascades intuitively and to see their
relevance to rain, consider the daily rainfall accumulations
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Fig. 6 The ‘inverse cascade’ produced by averaging daily rainfall
from Nimes over longer and longer periods. Accumulation/aver-
aging periods from top to bottom: 1, 4, 16, 64, 256, 1024, 4096
days, 1] years. From Ladoy er al. (1993).

for Nice shown in Fig. 6. Over the 11 year period (1978-88),
we can see that several extreme events stand out; in particu-
lar, notice the record holder in October 1988 that had a 24
hour accumulation of 228 mm (compared to a mean of ~1.5
mm)*'. This extreme rainfall event is sufficiently violent that
it stands out as the temporal resolution is degraded by
averaging the series over four days (second row), 16 days
(third row), 64 days (fourth row); even at 256 days (fifth row)
its effect is still noticeable (see even =~ 35 months (sixth row)
or the entire 11 year period (bottom row)). We can see that
the same type of behaviour is true (although to a lesser
degree) of the less extreme ‘spikes’. If the analysis sequence
high resolution=-low resolution is inverted, we have a
cascade that can be thought of as a dynamical production
process by which rain water is concentrated from a low
resolution ‘climatological’ average value into wet/dry years,
wet/dry seasons, months, weeks, days etc. Since the lifetime
of atmospheric structures including storms depends on their

3 This extreme behavior is quite typical; using tipping bucket gages, Hubert
& Carbonnel (1989) have even determined in the Sahel that half of the
yearly rainfall occurs in less than three hours!
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Fig. 7 A schematic diagram showing a two dimensional cascade
process at different levels of its construction to smaller scales.
Each eddy is broken up into four subeddies, transferring a part or
all its energy flux to the sub-eddies. The left hand side shows a
homogeneous cascade as originally proposed by Kolmogorov
(1941); the nonlinearities simply redistribute energy flux density to
smaller scales of motion, the overall density stays uniform. On the
right hand side, the § model involving occasional dead eddies
(here one in four) is shown, simulating intermittency; it already
leads to a monofractal support. From Lovejoy & Schertzer
(1986a).

spatial scale’?, the actual cascade is a space/time process with
analogous mechanisms concentrating water fluxes into
smaller and smaller regions of space, yielding the observed
high spatial variability.

Asan example of the inverse low = high resolution process
that corresponds to the actual dynamics, consider a cascade
produced by dividing the 11 year period with initial rainrate
R, =1 into sub-periods each of scale A ™' where 1 (=2 here) is
the scale ratio (see the schematic diagram Fig. 7, and
simulation Fig. 8). The fraction of the rain flux concentrated
from a long period (large interval) into one of its sub-
intervalsis given by independent random factors™ (4R) given
by the Bernoulli law shown in equation 2.

32 The time scale of structures of global extent seems to be of the order of two
to three weeks; in temperature series, it is associated with a spectral break
called the ‘synoptic maximum’; see Koleshnikova & Monin (1965),
Lovejoy & Schertzer (1986b). There is some evidence of this in Figs. 4d, see
also Fig. 23¢.d.

* These multiplicative ‘increments’ are denoted ‘g’ in analogy with the ‘4
used for the usual increments in additive processes.
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Fig. 8 A discrete (x model) cascade in one dimension. The con-
struction of the ‘bare’ cascade is shown on the left (top to bot-
tom), at each step, the unit interval is broken up into intervals
half the size of the previous step and the energy flux density
(vertical axis) is multiplied by a random factor. In the o model,
there are only two possibilities — a boost or a decrease with
probabilities chosen to respect ensemble conservation {g>=1. As
the scale ratio increases, the flux density is increasingly dominated
by a few large spikes, the singularities. The right hand side shows
the corresponding ‘dressed’ cascade obtained by averaging over
the corresponding scale. The dressed cascade is more variable due
to the high resolution modulations. From Schertzer & Lovejoy
(1989a).

Pr(uR=1"")=2"°, Pr(uR=A"")=1-1"¢ 2)

The parameters y+, y—, ¢ are usually constrained so that
the ensemble average (uR>=1,2"" > 1 (3 * > 0) corresponds
to strong (wet) intervals, 17<1 (y ~ <0) to weak (dry) subin-
tervals. This pedagogical model (Schertzer & Lovejoy, 1983,
1984; Levich & Tzvetkov, 1985; Bialas & Peschansky, 1986;
Meneveau & Sreenivasan®, 1991) was introduced and called
the ‘@ model’ because of the divergence of moment
exponent™ « it introduced (in the notation used here, the
corresponding divergence parameter is g,,). The dead/alive B
model™® is recovered with y~=—0c0, 3" =¢, ¢ being the
codimension of the support (= D — Dy, D is the dimension of
space in which the cascade occurs). As the cascade proceeds,
the pure orders of singularities 7, ¥y~ yield an infinite

* Although it was never intended to be more than pedagogical, these authors
attempt a detailed comparison with turbulence data.

* The choice « for this exponent seemed natural at the time since it
generalized the Lévy exponent «.

* This monofractal model was studied in various slightly different forms at
different times (Novikov & Stewart, 1964; Mandelbrot, 1974; Frischer al.,
1978), the parameter f= A" in the notation used here.

hierarchy of mixed orders of singularities (y ~ <y <y *), after
steps these singularities are given by a binomial law:

y=(@*y"+n7y7)m  nT+n"=n

: k
Pr(n’=k)=( )l”"‘(l—i“}""‘
n
Pr(R;= (A")) & N,(7)/N, = (A7) A3)
N, & (2")~Pis the total number of intervals at scale ™", D
k
the dimension of space and ( ) indicates the number of
n

combinations of n objects taken k at a time. In the large n
limit, c,(y)=c(y), and we are lead (Schertzer & Lovejoy,
1987a, b) to the multiple scaling probability distribution law:

Pr(Rp»> (A")")~ (A") ~) io

Multifractal processes

The multifractal processes discussed here were first deve-
loped as phenomenological models of turbulent cascades, the
amodel being the simplest. They are designed to respect basic
properties of the governing nonlinear dynamical (‘Navier—
Stokes’) equations. The following three properties lead to a
cascade phenomenology®”: a) a scaling symmetry (invariance
under dilations, ‘zooms’), b) a quantity conserved by the
cascade (energy fluxes from large to small scale), ¢) localness
in Fourier space (the dynamics are most effective between
neighbouring scales: direct transfer of energy from large to
small scale structures is inefficient). Cascade models are
relevant in the atmosphere in general and in rain and
hydrology in particular since (as argued in Schertzer &
Lovejoy, 1987a), although the full nonlinear partial differen-
tial equations governing the atmosphere will be more com-
plex than those of hydrodynamic turbulence, they are
nonetheless still likely to respect properties a,b,c. In other
words we expect the complete dynamics to involve coupled
cascades. There are now a whole series of phenomenological
models: the ‘pulse in pulse’ model (Novikov & Stewart,
1964), the ‘lognormal’ model (Kolmogorov, 1962; Obukhov,
1962; Yaglom, 1966), ‘weighted curdling’ (Mandelbrot,
1974), the ‘B model’ (Frisch et al., 1978), ‘the « model’
(Schertzer & Lovejoy, 1983b, 1985a), the ‘random B model’
(Benzi er al., 1984), the ‘p model'*® (Meneveau & Sreeniva-
san, 1987) and the ‘continuous’ and ‘universal’ cascade
models (Schertzer & Lovejoy, 1987a,b). It is now clear that
scale invariant multiplicative processes generically yield mul-
tifractals and — due to the existence of stable and attractive
multifractal generators — to universal multifractals in which
many details of the dynamics are unimportant. These results
are important in hydrology and geophysics since they show

¥ First proposed by Richardson (1922) in his now celebrated poem.
* This is a microcanonical version of the « model.
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that while geometrical fractals are sufficient to study many
aspects of scaling sets, that multifractals (with their statistical
exponents) provide the general framework for scaling fields
(measures). In models of hydrodynamic turbulence, the
energy flux ¢ from large to small scales is conserved (i.e. its
ensemble average (&) is independent of scale), therefore it is
the basic cascade quantity. Directly observable fields such as
the velocity shear (4v,) for two points separated by distance /
are related to the energy flux via dimensional arguments:*

&)

This equation should be understood statistically. A
straightforward interpretation useful in modelling is to view
the scaling /' as a power law filter (k ~'?, fractional integral )
of ¢/ (Schertzer & Lovejoy, 1987a; Wilson, 1991; Wilson ez
al., 1991).

In contrast to the well studied case of hydrodynamic
turbulence, the dynamical equations responsible for the
distribution of rain and cloud radiances are not known;* the
best we can do now is to speculate on the appropriate
fundamental dynamical quantities analogous® to . Since a
priori, there is no obvious reason the rainrate or cloud
radiance fields themselves should be conservative, in analogy
with turbulence, we introduce a fundamental field ¢, that has
the conservation property {,> =constant (independent of
scale). The observable (nonconserved) rainfall (or cloud
radiance) fluctuations (4R,) is then given by:

AvyzglPPB

AR, = o1" (6)

Since we have yet no proper dynamical theory for rain, we
do not know the appropriate fields @, nor the corresponding
values of a. We shall see that changing a essentially corres-
ponds to changing C, defined below. Therefore, the scaling
parameter H has a straightforward interpretation: it specifies
how far the measured field R is from the conserved field
o:(|dR|>=~1". H therefore specifies the exponent of the
power law filter (the order of fractional integration) required
to obtain R from ¢.

Basic properties of multifractal fields

We now focus our attention on the conserved quantity ¢,
Early scaling ideas were associated with additive (linear)
processes, and unique scaling exponents H (which — only in
these special cases) were related to unique fractal dimensions
by simple formulae. The properties of ¢, were more straight-

* Equation 5 is the physical space expression of the famous Kolmogorov
k~ 3" velocity spectrum.

# We exclude here the essentially ad hoc parametrizations employed in
numerical cloud and weather models.

*! These will be various conserved fluxes such as the humidity variance flux
and bouyancy force variance flux.

R

Fig. 9 A schematic diagram showing a multifractal energy flux
density with smallest resolution 1™, and indicating the exceed-
ance sets corresponding to two orders of singularities, y,, y,. From
Tessier et al. (1993).

forward, and were usually understood implicitly. We have
already discussed ‘simple scaling’. This is a special case of
equation 6 in which ¢, is simply a scale invariant noise ({¢/>
are all constants, independent of scale).

Turning our attention to (nonlinear) multiplicative pro-
cesses we can consider some properties of @ that will generi-
cally result from cascades. We have already discussed the
example of the « model, including the form of the probability
distribution after n cascade steps. In fact, denoting the entire
range of scales from the largest to smallest by /A, and
considering the cascade of ¢ (rather than of R directly), we
obtain the following general multifractal relation:

Pr(p; A7)~ A =0 ™

(equality is to within slowly varying functions of 4 such as
logs). c(y) is therefore the (statistical ) scaling exponent of the
probability distribution (see Fig. 9 for an illustration). How-
ever, when the process is observed on a low dimensional cut
of dimension D (such as the D=2 dimensional simulation
shown in Fig. 10) it can often be given a simple geometric
interpretation. When D> ¢(y), we may introduce the ( posit-
ive) dimension function D(y) = D — ¢(y) which is the set with
singularities y.

This geometric interpretation can be useful in data analy-
sis. For example, consider a data set consisting of N, radar
scans (assumed to be statistically independent realizations
from the same statistical ensemble). A single D dimensional
scan (D=2 in this example) will enable us to explore struc-
tures with dimension D= D(y)=0; structures with ¢(y)> D
(which would correspond to impossible negative®” values of

2 Mandelbrot (1984) introduced the expression ‘latent’ for these nonstan-
dard dimensions. If the (intrinsic) codimensions are used, this artificial
problem is entirely avoided.
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Fig. 10 Successive stages in the construction of a universal multifractal temperature field shown with resolution increasing by factors of
four, counterclockwise from the upper left corner. The temperature is represented as a surface with false colours, incipient singularities
(the high valued spikes) and associated ‘Levy holes’ are particularly evident in the low resolution image in the design. The parameters
used for the simulation were those estimated from atmospheric measurements analysed in Schmitt ez al. (1992), i.e. ¢=1.3, C,=0.5,

H=1. From Lovejoy & Schertzer (1991c).

D(y)) will be too sparse to be observed (they will almost
surely not be present on a given realization). This restriction
on the accessible values of c(y) is shown in Fig. 11; to explore
more of the probability space, we will require many scans.
With N scans, the accessible range of singularities can
readily be estimated. If each scan has a range of scales A
(= the ratio of the size of the picture to the smallest resolu-

tion = the number of *pixels’ on a side), then we can introduce
the ‘sampling dimension’ (Schertzer & Lovejoy, 1989a;
Lavallée, 1991; Lavallée et al., 1991a): D,= logN Jloga. It is
not hard to see (Fig. 12) that the accessible range will be
y<7y, with e(y.)=4+ 4, (see Fig. 30 for a concrete illus-
tration in rain).

¢(y) has many other properties that are illustrated graphi-
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Fig. 11 A schematic diagram showing a typical codimension func-
tion for a conserved process (H=0). The lines ¢(y)=D, y

= C~ (D) indicate the limits of the accessible range of singulari-
ties for a single realization, dimension D. The corresponding lines
for D+ D,, where D, is the sampling dimension, are also shown.
As we analyse more and more samples, we explore a larger and
larger fraction of the probability space of the process, hence
finding more and more extreme (are rare) singularities. From
Tessier et al. (1993).
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Fig. 12 Same as previous, but showing the fixed point C,=¢(C,),
(with 0< C, < D) the singularity corresponding to the mean of the
process. The diagonal line is the bisectrix (y = ¢(y)). From Tessier
et al. (1993).

cally. A fundamental property which is readily derived by
considering statistical moments (below), is that it must be
convex. It must also satisfy the fixed point relation C, =¢(C,)
asindicated in Fig. 12. C, is thus the codimension of the mean
process; if the process is observed on a space of dimension D,
it must satisfy D> C,, otherwise, following the above, the

Fig. 13 Same as 11, but for a nonconserved process. All the
singularities are shifted by — H. From Tessier et al. (1993).

mean will be so sparse that the process will (almost surely) be
zero everywhere; it will be ‘degenerate’. We can also consider
the (nonconserved ) AR; itis obtained from ¢; by multiplica-
tion by A ™%, since ¢;=A1", we have AR,=1"""; ie. by the
translation of singularities by — H (see Fig. 13).

Rather than specifying the statistical properties via the
scaling of probabilities ¢(y) can (equivalently) be specified by
the scaling of the statistical moments®. Consider the gth
order statistical moments {¢{)>. We can now define the
multiple scaling exponent™ K (g):

(ef)=1@ ®)

K(q), ¢(y) are related by the following Legendre transfor-
mations (Parisi & Frisch, 1985):

©)

which relate points on the ¢(y) function to tangencies on the
K(g) function and visa versa; y=K’(gq). g=c'(y). For ex-
ample, a quantity which will be useful below in estimating
the multifractal parameters of radiances and reflectivities is
the sampling moment g, which is the maximum order mo-
ment that can be accurately estimated with a finite sample.

K(g)=max, (g7 —c()); c(y)=max, (g7~ K(g))

# Gupta & Waymire (1990) have introduced the idea of multiple scaling of
random variables rather than fields/measures (‘GW multiscaling’): in
other words a multiple scaling without the notion of scales. In GW
multiscaling there are no multifractals and there is no *hard’ behavior (see
below).

* The turbulent codimension notation ¢(y) and K(g) is related to the *f(a)’
dimension notation (Halsey ef al., 1986) by the following: a=(D—1y),
S(@)=D—=ely), t(g)=(g—1)D—K(g). Because the dimension notation
fundamentally depends on the dimension of the observing space D; it
cannot be used in stochastic processes such as those of interest here where
we deal with infinite dimensional probability spaces, D = co. The dimen-
sion notation is useful for multifractal probability measures; in turbu-
lence, we deal with spatial measures £ which do not reduce to probability
measures.



76

IIT NOVEL APPROACHES TO UNCERTAINTY

Table 2. Classification of multifractals according to their extreme singularities

Type of Types of singularities Conservation Convergence of
multifractal present Localized? per realization? all moments?
Geometric calm yes yes yes
Microcanonical calm no yes yes

Canonical calm, wild, hard no no usually no

Recalling that the maximum accessible order of singularity
was y,=c~' (D+D,), we obtain: ¢,=c’(y,). The functions
for the corresponding nonconserved fields (H+0) are
obtained by y=-y— H, K(q)=K(q)— Hy.

The classification of multifractals: nonlocal, wild and
hard multifractals, multifractal phase transitions

We now discuss various different types of multifractals. To
this end, we must first make a distinction between the ‘bare’
and ‘dressed’ multifractal properties (Schertzer & Lovejoy,
1987a,b). The ‘bare’ properties are those which have been
discussed above, they correspond to the construction of the
process over a finite range of scales i. In contrast, the
‘dressed’ quantities (see the right hand side of Fig. 8) are
obtained by integrating (averaging) a completed cascade
over the corresponding scale. Experimentally measured
quantities are generally ‘dressed’ since geophysical sensors
typically have resolutions which are much lower than the
smallest structures in the fields they are measuring (which in
the atmosphere, is typically of the order of | mm or less). The
dressed quantities will generally display an extreme, ‘hard’
behavior involving divergence of high order statistical
moments. Specifically, for spatial averages over observing
sets with dimension D there is a critical order moment g,
(and corresponding order of singularity y,= K'(g,,)) such
that:

{pi>=w  g=gq, (10)

where g, is given by the following equation:

K(gp)=(3p—1D D (11)

The associated qualitative change of behaviour at g, (or y,)
can be considered a multifractal phase transition (Schertzer
et al., 1993). Unfortunately, these general multiplicative
processes with their corresponding hard behaviour have
received relatively little attention in the literature; it is much
more usual to introduce various constraints which have the
effect of severely limiting the occurence of extreme events.
While these restrictions lead to simplifications in the theoreti-
cal treatment which are justified when studying strange
attractors, they are too restrictive to be appropriate in

geophysics; one must be wary of the simplistic data analysis
techniques they have spawned. Since this underestimation of
the diversity of multifractal behaviour persists in the litera-
ture, we now briefly summarize the properties of both
‘geometrical’ and ‘microcanonical’ multifractals.

To understand the corresponding different types of multi-
fractal process, recall that we have considered ‘canonical’
multifractals subject only to the weak constraint of conser-
vation of ¢ only over the entire statistical ensemble, indivi-
dual realizations will not be conserved. If on the contrary, we
impose the much stronger constraint of conservation on each
realization, then large fluctuations are suppressed and we
obtain a ‘microcanonical’ process. Specifically, we find that
‘wild” singularities with 7> D are supressed. Both canonical
and microcanonical multifractals are stochastic processes,
they are defined on (infinite dimensional) probability spaces:
each realization in a space of dimension D must be viewed as
low-dimensional cuts,

Just as microcanonical processes are calmer than canoni-
cal processes, another type of multifractal; ‘geometric’ multi-
fractals (Parisi & Frisch, 1985) can be defined which are even
calmer. Geometric multifractals involve no probability
space, nor stochastic process; they are defined purely geo-
metrically as a superposition of completely localized (point)
singularities each distributed over fractal sets. As mentioned
earlier, since such sets must have positive dimensions, their
singularities are restricted so that ¢(y)<D. Schertzer er al.
(1991) and Schertzer & Lovejoy (1992) discuss this classifica-
tion of multifractals in much more detail; their properties are
summarized in Table 2.

Universal multifractals

The above discussion is quite general and at this level, it has
the unpleasant consequence that an infinite number of
scaling parameters (the entire c(y), K(g) functions) will be
required to fully specify the multiple scaling of our field.
Fortunately, real physical processes will typically involve
both nonlinear ‘mixing’ (Schertzer et al., 1991) of different
multifractal processes, as well as a ‘densification’ (Schertzer
& Lovejoy, 1987a, b) of the process leading to the dynamical
excitation of intermediate scales. Rather than just the dis-
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crete scales (factors of 2) indicated in Figs. 7 and 8, there is
the continuum indicated in 10. Either mixing or densification
are sufficient® so that we obtain the following (bare*)
universal*’ multifractal functions*:

cy—H)=C,[y/(Ce )+ lfa'le’; a#1 (12)
c(y—H)=C,exp[(y/C,)—1] a=1
——(q"~9) a1
K(q)—qH= a=1 (for x<2,¢=0)
C, qlog(g) a=1
11
=l (13)
o o

The multifractality parameter « is the Lévy index and
indicates the class to which the probability distribution
belongs®. There are actually 5 qualitatively different cases.
The case @ =2 corresponds to multifractals with Gaussian
generators™, the case 1<a<2 corresponds to multifractal
processes with Lévy generators and unbounded singularities,
a=1 corresponds to multifractals with Cauchy generators.
These three cases are all ‘unconditionally hard’ multifractals,
since for any D, divergence of moments will occur for large
enough g (g, is always finite). When 0<a<1 we have
multifractal processes with Lévy generators and bounded
singularities. By integrating (smoothing) such multifractals
over an observing set with large enough dimension D it is
possible to tame all the divergences yielding ‘soft’ behavior,
these multifractals are only conditionally ‘hard’. Finally™

“ This applies only to canonical multifractals; there seems to be no corres-
ponding universality for geometric or microcanonical multifractals.

“ The corresponding dressed functions are the same only for ¥ <7, and

g<gp; for finite sample sizes, they becoming linear for larger 7, g.

The problem of universality was for some time obscured by the exclusive

study of (nonuniversal) discrete cascades in which the limits of more and

more random variables and smaller and smaller scale structures were
confounded (both limits occured simultaneously as the number of discrete
steps approached infinity). On the contrary, universality results when
more and more random variables are involved within a fixed and finite
range of scales. The limit of the range of scales approaching infinity (the
small scale limit) is taken only later. An example of the widespread anti-
universality predjudice is the recent statement by Mandelbrot (1989): *....
in the strict sense there is no universality whatsoever ... this fact about
multifractals is very significant in their theory and must be recognized ...

(op cit, p. 16).

% These formulae (with H=0) first appeared in Schertzer & Lovejoy (1987a,

Appendix C). Recently, in the special case H=0, Kida (1991), Brax &

Peschanski (1991) have obtained equivalent formulae using different

notations. They use the expressions ‘log stable’ and ‘log Lévy’ multifrac-

tals respectively. These terms are somewhat inaccurate since due to the
dressing problem, the distributions will only be approximately log stable
or log Lévy.

Similar looking formulae (but for random variables, not multifractal

measures) can be obtained in GW multiple scaling, Gupta & Waymire

(1990).

% This is nearly the same as the lognormal multiscaling model of turbulence
proposed by Kolmogorov (1962), Obhukhov (1962), except that the latter
missed the essential point about the divergence of high order moments,
thinking in terms of pointwise processes.

5 A more detailed discussion about these fives cases and in particular about
the generators of the Lévy variables can be found in Schertzer et al., 1988;
Fan 1989; and Schertzer & Lovejoy 1989a; see also Lovejoy & Schertzer
(1990a, b, 1991a,b) for some applications and review.
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a=0 corresponds to the monofractal ‘f model’. Universal
multifractals have been empirically found in both turbulent
temperature and wind data (Schertzer et al., 1991a; Schmitt
et al., 1992; Kida, 1991). They have also have recently found
applications in high energy physics (Brax & Pechanski, 1991;
Ratti, 1991; Ratti et al., 1994), oceanography (Lavallée ez al.,
1991b), topography (Lavallée et al., 1993), as well as the low
frequency component of the human voice (Larnder ef al.,
1992). The first empirical estimates” of C,. o in cloud
radiances™ are discussed in Lovejoy & Schertzer, 1990 (see
also Gabriel ez al., 1988 for the first test of universality in an
empirical data set**).

It is interesting to note here that the probability distribu-
tions associated with the various (bare) universality classes
are respectively lognormal (2= 2), and log-Lévy (z<2). The
latter are in turn approximately log-normal since, with the
exception of their extreme tails, Lévy distributions are them-
selves nearly normal (this ‘tail’ is pushed to lower and lower
probability levels as & — 2). The multifractal nature of rainis
therefore quite in accord with the widespread hydrological,
meteorological (and generally geophysical ) lognormal phe-
nomenology. Of particular relevance here are numerous
studies that have claimed that rainrates, cloud and radar
echo sizes, heights and lifetimes, as well as total rain output
from storms over their lifetimes are either log-normal or
‘truncated log-normal’ distributions (Biondini, 1976; Lopez,
1976, 1977a; Drufuca, 1977; Houze & Cheng, 1977; Konrad,
1978; Warner & Austin, 1978 etc.). Furthermore, the cascade
models that generate them are actually just concrete imple-
mentations of vague laws of ‘proportionate effects’ (see
Lopez, 1977a,b for an invocation of this law in the rain
context). Shifting our attention to the dressed quantites, the
above statement still holds for (nonextreme) fluctuations (up
to 7p, Gp), but will (drastically) underestimate the frequency
of occurence of extreme events (y>7,, §>gp)-

Using the universal multifractal formulae above, some of
the results discussed earlier may be expressed in simpler
form. Formulae which will prove useful below are for the
sampling order moment g, (the maximum order moment that
can be reliably estimated with a finite sample), and g, the
critical order for divergence:

g,=[(D+D,)/C,1'"
(@—1)/C\[(¢5—4p)/(gp— DI=D

Forg>¢g,=min(g, ¢p), K(g) will be linear, fory >y, c(y) will
also be linear:

(14a)
(14b)

%2 Recent (greatly improved ) analyses indicate that the original estimates of
« were not too accurate. See Tessier et al., 1992, and below,

3 For theoretical discussion of multifractal clouds and their associated
radiance fields, see Lovejoy et al. (1990), Gabriel et al. (1990), Davis e al.
(1990, 1991a,b).

* Only the hypothesis a=2 was tested.
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(15a)
(15b)

K(g)= @Va:—c(¥qs)
c(M=y9p—K(gqp)

a>q,
7>V

where y,, is the highest order dressed singularity present in
the sample.

MULTIFRACTAL ANALYSES OF RAIN —
Trace moment analyses

Soon after the discovery of multifractals, it was realized that
radar rain data would provide ideal testing grounds for
multifractal theories as well as data analysis techniques®™. A
whole series of new multifractal analysis techniques (trace
moments, functional box-counting, elliptical dimensional
sampling), were developed and tested for the first time on
rain data. In this section we first discuss what might be
viewed as first generation multifractal analysis techniques:
methods that can be applied (with various limitations) to
general multifractals. These methods are the multifractal
analogues of the nonparametric methods of standard statis-
tics. Further we indicate how a second generation of tech-
niques can be be developed which explicitly exploit the
existence of universality classes. These are the analogues of
parametric statistics, and just as parametric statistical meth-
ods have more statistical power than nonparametric meth-
ods, the specific (universal) multifractal analysis techniques
(when applicable) will lead to much more accurate multifrac-
tal characterizations. All these techniques are essentially
experimental in the sense that no proper goodness of fit
statistics are known; at the moment, confidence in the results
of analyses can be obtained primarily by comparing the
results of different and complementary methods as well as by
extensively testing the analysis on numerical simulations.
The first multifractal rain analyses were performed on
radar volume scans of rain from the McGill radar weather
observatory™ (Schertzer & Lovejoy, 1985b, 1987a, see Figs.
5, 15). Volume scans are made every 5 minutes, at 200 ranges
(r)and 375 azimuthal (6) and 13 elevation angles. In the trace
moment analysis described here, data were resampled in the
vertical onto constant altitude projections (‘CAZLORs’) at 3
levels (3, 4, 5 km altitudes, z) at 30 minute intervals in time.
The analysis was performed using the data to estimate the

trace moments. In this technique, the data are systematically ;

degraded in resolution, average reflectivities being calculated
over grids whose resolution is successively doubled, the
resulting spatial averages are then raised to a series of powers
g and the result averaged over each image, and then over
many realizations.

To give a formal definition, consider the conserved (H=0)
* Schertzer & Lovejoy (1989b) and Lovejoy & Schertzer (1990b) develop

this idea and argue that it is true of many other geophysical fields.

** For an analogous analysis of tropical Atlantic radar data see Gupta &
Waymire (1990).

N2

Double Trace Moment Technique

Fig. 14 A schematic diagram illustrating the different averaging
scales used in the double trace moment technique, the single trace
moment is obtained by taking n=1. The idea is straightforward;
at the highest available resolution (1) various powers (1) are
taken. They are then degraded to an intermediate resolution (4)
by averaging, finally the gth power of the result is averaged over
all the data sets. From Tessier et al., 1993,

multifractal flux density at (fine) resolution A’ (the ratio of
the outer (largest) scale of interest to the smallest scale of
homogeneity). The (dressed) flux over an observin g set (B;,
this corresponds to the j-th low resolution ‘pixel’) with
dimension D, (lower) resolution A (A1<A’) is simply an
integral over the density:

I,(B;,)= J. 51 d’x (16)

By

We may now define the gth order ‘Trace moments’ (Schertzer
& Lovejoy™, 1987a) by summing IT, (B;.;) over each indivi-
dual realization™ (each satellite picture, covering the region
A has 2” disjoint covering sets B; which are summed over in
equation 16, see the schematic illustration, Fig. 14), and then
ensemble averaging over all the realizations:

Tr, ()= <z ni(BM)> ~ K@= 00 ()

i

This formula will break down for moments g>4qp, and
(when finite samples are used to estimate the ensemble
average) when g> g .. Although it allows the determination of
K(g) (at least for small enough g), and hence in principle the
7 Although the formalism above was developed here, essentially the same

method was empirically applied to rain in Schertzer & Lovejoy (1985b).

* Without the ensemble averaging, we have a partition function, appropri-
ate for analyzing strange attractors.
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Fig. 15a The hth trace moments (in the notation in the text, g=h)
estimated from 70 CAZLOR:s in the horizontal, averaging over a
straight line (A is the set of downrange elements used in the
averaging), the data is the 3 km altitude subset of that used in Fig.
5. The resolution is A=2". Lines from top to bottom are for the
following values of : 5, 3,2.5,2, 1.5, 1.2, 1, 0.8, 0.6, 0.3. Note
that the scaling is extremely accurately followed. From Schertzer
& Lovejoy (1987a).

determination of C;, « (via equation 14) this method will
involve ill-conditioned nonlinear regressions (K(g) vs. g).
Fig. 15 shows the result using 70 realizations, clearly
showing that the multiple scaling is very well respected. The
resolution can be degraded along ranges (D=1), (r,@)
simultaneously (D =2), (r,@,z) or (r,©,z,1) simultaneously
(D= 3,4 respectively). Fig. 5 shows the resulting exponents
including a 1.5 dimensional case obtained by using simulated
fractal measuring networks®”. The exponents are nearly
independent of dimension for low order moments (g), but for
g>1.1 become increasingly separated, asymptotically tend-

“ This was close to the dimension estimated for typical gage networks, a
better estimate (Lovejoy et al., 1986) is 1.75.
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Fig. 15b Same as 15a but for averaging in the horizontal, 4 is a
plane. From Schertzer & Lovejoy (1987a).

ing to straight lines with slopes = D for large g. It was argued
(Schertzer & Lovejoy, 1987a) that this behaviour could be
simply explained since for that data set g~ 1.1 (Fig. 2b).
Some recent results on the ‘pseudo-scaling’ (Schertzer &
Lovejoy 1983a, 1984) obtained when ¢> g, and the relation
of this to multifractal ‘phase transitions’ is discussed in
Schertzer er al. (1991b).

More recently (Lovejoy & Schertzer, 1991a) trace
moments were used to investigate the multiple scaling of rain
at scales much smaller than the minimum (=1 km) of the
above radar analysis. One of the analyses (Pham & Miville,
1986) was performed on data obtained by rapidly (=1 s)
exposing large pieces (128 x 128 cm) of chemically treated
blotting paper to rain, estimating the position and size of the
drops. Fig. 16a shows the result of one such exposure, and
Fig. 17 shows the resulting trace moment analysis and Fig. 18
the scaling exponent estimates for scales >8 cm. This
analysis indicates that at least down to this scale, rain is
multiscaling. The break observed at =8 cm could be due to
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Fig. 16a Each point represents the centre of a raindrop for the
128 x 128 cm piece of chemically treated blotting paper discussed
in the text. There are 452 points, the exposure was about | s.

From Lovejoy & Schertzer (1990c).
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Fig. 16b Plot showing k ~ times the integrated energy spectrum
of the radar reflectivity of the distribution in Fig. 16a plotted
against A=k/k, where k is the wave number, k, corresponds to the
largest scale (k,= |k, =2x/128. The straight line (slope —0.12)
indicates a scaling power law spectrum (Gaussian white noise
yields a slope 0) up to /230 which corresponds to ~4 cm. From
Lovejoy & Schertzer (1991a).

finite sample effects (a single exposure was used with only 452
drops), or the break could be more fundamental; related to
the inner scale at which rain can no longer be treated as a
field™, where its particulate nature must be considered®'. Fig.
16b shows the Fourier energy density integrated over circles,
confirming the breakdown by the flattening of the spectrum

“ However, the spectrum in Fig. 4a suggests an inner dissipation scale of the
order of millimeters.

* The proper mathematical framework is mathematical measures, associat-
ing with each drop a position r,, and volume ¥,
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Fig. 17 A log-log plot of (Tr, f7)=1~ K,(g) vs. A where f, is the
number of drops per unit area at resolution 4 (= the scale ratio).
(The h in the figure is the same as the g used here — this is also true
for Figs. 18, 19). Note that the largest scale (A= 1) was 128 em
and that convergence to power laws occurs only for lengths >4
cm. The curves, top to bottom, are for g=35, 3, 2.5, 2, 1.5, 1.2, 0.8,
0.6, 0.3. From Lovejoy & Schertzer (1991a).
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Fig. 18 - K, ,(g)=K(g)—(g—1)D estimated from (top to bot-
tom) a manually analysed 1293 drop case (¢> 0 only; g=h), the
452 drop (digital ) case, and a 339 drop manually analysed case
(g>0). The straight lines are asymptotic fits to the negative and
positive large (absolute) g regions for the 452 drop case. The large
q slope gives y,,=0.44 (the largest singularity present). From
Lovejoy & Schertzer (1991a).

for scales less than about 4 cm. To our knowledge, this is the
first attempt to study spatial heterogeneity at the individual
drop level; existing empirical studies of the distribution of the
drops are numerous, but consider only their relative sizes:
spatial homogeneity is simply assumed on faith. Much more
research at the individual drop level will be necessary to
properly understand the multifractal structure of rain. We
may anticipate that the results will be important in appli-
cations: Lovejoy & Schertzer (1990a) already indicate how
even monofractal approximations lead to important correc-
tions to standard radar estimates. Two low budget feasibility
studies at McGill* point to the difficulty in accurately

* The blotting paper, lidar and other feasibility studies were all performed as
third year physics lab projects from 1986 to present.
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Fig. 19a Trace moment analysis for the time domain (5000 pulses
1= 500 s) for those range corrected returns that exceeded the
average (this is an estimate of the drop number density f; it
assumes either zero or one drop per pulse volume). Curves from
top to bottom are for ¢=10,9,8, 7,6, 5,4,3,2 respectively. Note
that the scaling is extremely accurately followed. From Lovejoy &
Schertzer (1991a).

obtaining spatial information about large numbers of drops:
stereophotography of a ~ 1 m® region (Bochi Kebe & Howes,
1990), and photography of rain illuminated by sheets of laser
light (to obtain horizontal rain intersections with rain, Harris
& Lewis, 1991) both indicate that the relevant measurements
will be quite difficult, primarily due to the very small cross-
sections (at visible wavelengths) of the rain drops which
makes their detection quite difficult®.

To extend these results to slightly larger scales, high
powered lidars (Weisnagel & Powell, 1987) were used to
detect the optical backscattering from very small volumes®
the sensitivity was such that individual drops | mm in
diameter could be detected at ~ 10 km distances. The YAG
laser used had a pulse repetition frequency of 10 Hz, data
were logged over 180 downrange bins, several thousand in
time. Often, especially in light rain, pulse volumes were
empty, and they rarely contained a large number of drops.
Shorter pulse length lasers should be able to probe down to
the individual drop level (this may indeed be the most
promising approach for further studies). Fig. 19a,b, ¢ shows
the resulting trace moment analyses (space, time, space/
time), showing not only the surprising accuracy with which
the (multiple) scaling is respected, but also the possibility of
using this approach for studying the space/time transforma-
tions associated with rain. A different approach currently

& The cross-section is however significantly enhanced for both forward and
back scattering.

# The pulse lengths were 3 m and the widths varied from 0.3 mm to 30cm at
distances of 10 and 1000 m respectively. The associated pulse volumes
were thus in the range 107 to 107 m% 10" to 10! times smaller than
typical radar volumes.

Fig. 19b Trace moment analysis for downrange domain (each
pulse return is divided into 180 pulselength sections, 3 m apart,
hence the largest scale is L,= 540) for those range corrected
returns that exceeded the average. Curves from top to bottom
same as for Fig. 19a. Note that the scaling is extremely accurately
followed. From Lovejoy & Schertzer (1991a).

0.5

log ie A 1.5
Fig. 19¢ Trace moment analysis for the (x, 1) domain (180 pulses,
0.1s apart in time, space resolution 3 m) for those range corrected
returns that exceeded the average. Curves from top to bottom
same as for Fig. 19a. Note that the scaling is extremely accurately
followed. This data set is the same as that shown in Fig. 19b
except that analysis was performed on ‘squares’ in (x, 1) space
rather than by intervals (downrange) only. By comparing the
slopes in 192, b, ¢, the elliptical dimension of (x, ) space can be
estimated. From Lovejoy & Schertzer (1991a).

being studied at McGill is to use stereo photography with
high powered flash lamps.

Functional box-counting

Since the discovery of multifractal universality classes in
1986-7, a primary goal has been to test the (multi )scaling and
to estimate the basic parameters H, C,, « in rain over wide
ranges of scale. While the trace moment analyses discussed
above clearly established the multiple scaling nature of rain,
they suffer from a number of limitations which make them
difficult to use to estimate the universal parameters. These



IIT NOVEL APPROACHES TO UNCERTAINTY

oy

D>

B

-,
> &

c
E F G

Fig. 20 Functional box-counting analysis of the field f(r).In A
the field is shown with two isolines that have threshold values

T,> T; the box size is unity. In B, C, and D, we cover areas
whose value exceeds T, by boxes that decrease in size by factors of
2.InE, F and G the same degradation in resolution is applied to
the set exceeding threshold 7.

limitations are summarized and studied in detail in Lavallée
et al., 1991a, Lavallée, 1991; they are a) the divergence of
moments which leads to ‘spurious’ or ‘pseudo-scaling’, b)
finite sample size. Both effects will lead to asymptotically
straightline exponents (as observed in both Figs. 1 and 18);
corresponding to multifractal phase transitions. In order to
overcome these difficulties, other methods which avoid the
use of statistical moments were developed. The first of these
was ‘functional box counting’ (Lovejoy et al., 1987). This
method is straightforward: the empirical fields are first
converted into finite resolution sets by using a series of
thresholds; the sets of interest being defined by the regions
exceeding the threshold (7), see the schematic illustration
Fig. 20. In the second step, the resolution of these sets is
degraded systematically by covering the sets with boxes of
increasing size (the standard ‘box-counting’ procedure for
analysing strange attractors). The dimension as a function of
threshold is then obtained as the (negative) logarithmic slope
of the number of boxes N(L) as a function of the log of the
box size (L). Fig. 21a, b shows the result when this method is
applied to radar rain data, Fig. 22 when it is applied to the
associated cloud fields (from satellite data). Again, the
(multiple) scaling is well respected.

Hubert & Carbonel (1988, 1989, 1991) have used func-
tional box-counting to study rainfall time series from Bur-
kina Faso raingauges, finding that the multiscaling extends
from one day to at least a year. For example they found that

20 22

Fig. 21a A plot of N(L) versus L fora single radar scan with nine
radar reflectivity thresholds increasing (top to bottom) by factors
of ~2.5, analyzed with horizontal boxes increasing by factors of 2
in linear scale. The negative slope (dimension) decreased from
1.24 t0 0.40. From Lovejoy et al. (1987).
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Fig. 21b Same volume scan as Fig. 21a except that the boxes used

are cubical and yielded values of dimension that decreased from

2.18 to 0.81 for the same thresholds. Only eight vertical levels

were available. See text for discussion of the vertical anisotropy,

and ‘elliptical box counting’. From Lovejoy e al. ( 1987).

the fractal dimension of wet days was ~ 0.8 which meant that
local rule of thumb knowledge of the climate (7 wet months/
year) could be extended down to at least a day since
log7/logl2~0.8.

Other related applications of functional box counting in
rain can be found in Olsson er al. (1990), satellite cloud
pictures in (Gabriel et al., 1988; Baryshnikova ez al.. 1989;
Detwiller, 1990), and in situ measurements of cloud liquid
water (Duroure & Guillemet, 1990). Although functional
box-counting has the advantage of avoiding the use of
statistical moments, it has the basic problem thatitis not easy
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Fig. 22a A plot of the fraction F(L) of cloud pictures exceeding
a threshold T, for six radiance thresholds with L increasing for 8
to 512 km, at visible wavelengths. From a GOES (geostationary)
satellite picture over the Montreal region (summer with mostly
cloud cover). The minimum digital count is 24 (ground ), maxi-
mum is 52 (bright cloud ) corresponding to a brightness ratio of
(52/24)*~4.7. The fraction is estimated by using box counting to
degrade the resolution of exceedance sets, and then calculating the
fraction of all the boxes available at resolution L: Fr(L)

= N,(L)/L "> The straight lines indicate that over the range
(which includes most of the meso-scale), that the scaling is accu-
rately followed. From Gabriel et al. (1988).
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Fig. 22b Same as Fig. 22a except for the corresponding infrared
image. The straight lines correspond to effective black body tem-
peratures of (top to bottom) 17,9, 2, —5, —23 °C respectively.
Here the lowest radiances (proportional to the fourth power of
the temperature) comes from the sparsest (highest) cloud tops.

to relate the threshold to the order of singularity® y. Another
related problem is its tendency to ‘saturate’ in certain situa-
tions because all the boxes larger than a given scale can be
filled, a problem likely associated with statistical nonconser-

 This can be done approximately via the relation T~ L ™7, but the normali-
zation (which is required to nondimensionalize this relation and determine
the proportionality constant), is nontrivial, and cannot be completely
determined at a single averaging resolution.

vation (H#0). Finally, the method does not take into
account whether a given box is filled by more than one pixel
(it is an all or nothing estimator). For a critique of this
method, see Lovejoy & Schertzer, 1990a (Appendix A), and
Lavallée (1991).

Direct application of functional box-counting requires
gridded data. We now describe a variant which is useful for
highly inhomogeneous raingage network data (indeed, as
shown in Lovejoy et al. (1986), they are more nearly uniform
over a fractal than over a surface®). Define the ‘exceedance
stations’ as all the stations whose rain rate exceed a given
threshold, and then calculate the number of pairs of exceed-
ance stations that are closer than a distance®” / (this is
proportional to the average number of exceedance stationsin
a circle radius /). The resulting scaling exponent is called the
‘correlation dimension’; it will less than or equal to® the
corresponding fractal (box-counting) dimension. Fig. 23a
shows® the result when the method is applied to daily rain
accumulations for 1983 (roughly 8000 stations were used),
for various exceedances levels up to 150 mm/day. Although
the statistics become poor at the high thresholds, the lines are
fairly straight indicating that the scaling is well respected
(over the range ~3 km-5000 km). Note that the zero level
exceedance line is also included; this has a nontrivial fractal
dimension (a1.78 here) due to the fractal nature of the
network.

This method of improving statistics by examining pairs of
points can also be applied to time series. Tessier (1993) has
used this method to effectively study the scaling of increas-
ingly wet stations using the same global daily rainfall data
set. Fig. 23b shows that the value 0.8 for wet/dry days (using
a threshold of 0.1 mm/day) seems to be global (rather than
specific to the Sahel, Hubert & Carbonnel 1988). However,
Fig. 23c,d indicate that a definite scale break occurs at ~3
weeks for higher thresholds, consistent with the existence ofa
‘synoptic maximum’ (see Fig. 4d; i.e. a break whose duration
corresponds to the lifetime of global sized rain events).

The probability distribution/multiple scaling technique
(pdms)

A more successful way of estimating c(y) is to directly exploit
the scaling of the probability distributions of the multifrac-
tals as indicated in equation 7. Methods which directly
exploit this equation were developed and baptized ‘prob-

 1n fact it is even better to treat the density of stations as a multifractal.
¢ To account for the curvature of the earth, the following measure of
distance should be used:

1=r/(8(1 —cosb|2)),

where r is the radius of the earth, 6 is the angle subtended at the centre of
the earth by the two stations (Lovejoy er al., 1986).

% In practice, the difference is usually small.

% We thank C. Hooge for help with this analysis.
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Fig. 23a The correlation function (the average number of exceed-
ance stations in a circle) n(L) as a function of radius (L), for
various thresholds. From top to bottom, the thresholds (in mm
for daily accumulations) are 0, 0.1, 0.2, 0.4, 0.8, 1.6, 2.5, 3.2, 5.0,
6.4, 10.0, 12.8, 17.5, 20.0, 25.0, 40.0, 52.5, 76.0, 150.0. Note that
at least some of the deviations from straight line (scaling) are due
to the imperfect scaling of the network itself (top line).

ability distribution/multiple scaling’ techniques (PDMS) in
Lavallée er al. (1991a), Lavallée (1991). They are dis-
tinguished from other histogram based techniques (e.g.
Paladin & Vulpiani, 1987; Atmanspacher et al., 1989) in that
they overcome the nontrivial problem of the (slowly varying)
proportionality constants in equation 7 by examining the
histograms over a range of scales rather than ata single scale.
The drawback of these methods is that they are quite
sensitive to the correct normalization of the field: the ensem-
ble average of the large scale spatial average must satisfy
{R;»>=1(i.e.in rain, the large scale, climatological rate must
be used). An early implementation in rain is given in Seed
(1989) (see e.g. Fig. 24) who studied radar reflectivities of
four separate convective storms in Montreal. However, the
statistical estimation of H, C 1» a from ¢(y) is a poorly
conditioned nonlinear regressions and leads to low accura-
cies in the estimates. Nonetheless, Seed found « in the range
0.3-0.6 and C, in the range 0.6-1.0. Although he averaged in

logio n(t)

logm T

Fig. 23b The number n(z) of exceedance pairs for daily accumu-
lations in time t (for a year), accumulated over all 8000 stations.
Since many stations frequently had missing data, it was first
confirmed (top curve) that the pattern of missing data was not
itself fractal (the slope is consistent with a dimension 1 on the time
axis, hence nonfractal data outages). The line below is only for
those stations whose accumulation was above the minimum detec-
table level 0.1 mm/day. From Tessier (1993).
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Fig. 23c Same as Fig. 23b except for a threshold of 1.28 cm/day,
showing a clear break at about three weeks (the ‘synoptic maxi-
mum’). From Tessier (1993).

space, he pooled statistics into histograms involving many
(~ 144) consecutive 5 minute PPIs. His estimates are in fact
close to the more accurately estimated temporal parameters
found here.

Another application of PDMS to rain is described in
Tessier er al. (1994), where it is applied to the global
meteorological network (Fig. 25) used to estimate global
rain.
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Fig. 23d Same as 23c except for a (very high) threshold of 10.24
cm/day, showing the same break at about three weeks and much
lower dimensions. From Tessier (1993).

3

Direct estimates of universality parameters: double trace
moments

Above, we reviewed the results of multifractal analysis
techniques which in principle could be applied to arbitrary
multifractals. They enjoyed the apparent advantage of
making no assumptions about the type of multifractal being
analyzed. In practice however, the techniques are overly
ambitious: for a finite (and usually small ) number of samples
of a process, they attempt to deduce an entire exponent
function, with the result that there is considerable uncer-
tainty in the resulting estimates of ¢(y) or K(g). With the
realization that physically observable multifractals are likely
to belong to universality classes, it is natural to develop
specific methods to directly estimate the universality para-
meters (H, C,, «). These parameters can then be used to
determine c(y), K(g) from equations 12-13.

The double trace moment (DTM) technique (Lavallée,
1991; Lavallée et al., 1991d) directly exploits universality by
generalizing the trace moment; it introduces a second
moment n by transforming the high resolution field
@ 4= @J.. This transforms the flux IT into an ‘n flux’

I'[f,"’(B;)=J.qa: d’x, see (16) (18)
B,
The double trace moment can then be defined as:
To o) = (S MBI )ik (9

where we have introduced the (double) exponent K(gq,n),
which reduces to the usual exponent when n=1:
K(g,1)= K(g) (the sum is over all disjoint boxes indexed by
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Fig. 24 An early implementation of the PDMS technique on
radar reflectivities during a summer storm in Montreal (August
14th, 1988), using 144 consecutive CAPPIs (Constant Altitude
Plan Position Indicators, i.e. constant altitude reflectivity maps),
at five minute intervals. The codimension function was estimated
at scales of 2, 4, 8, 16, 32 and 64 km from the corresponding
probability distributions (of spatially degraded reflectivities) using
the following approximation: ¢(y) = —log(Z;)/logi (i.e. setting
the proportionality coefficient in equation 7 equal to unity). The
resulting estimates for each of 6 resolutions is shown, along with a
smooth curve obtained by nonlinear regression using the theoreti-
cal (universal) formula equation 12. The universal parameters can
be graphically estimated using the construction line (the bisectrix
x=y) shown, which exploits the fact that for a conserved multi-
fractal (H=0), ¢(C,)=C,, ¢'(C,)=1, i.e. the bisectrix will be
tangent to ¢(y) at the point C, (see Figs. 12, 13). From the graph
we immediately deduce that /=0, (from equation 12, H#0 leads
to a left/right shift of c(y) with respect to the bisectrix), C,~0.9,
and from some other point on the curve (e.g. the value of ¢(0)) we
deduce x~0.55. From Seed (1989).

-0

i). Note that the basic implementation of the DTM is quite
straightforward™; the field at the highest available resolution
is raised to the power g, the result is iteratively degraded in
resolution and the gth moment averaged over the field and
the ensemble of samples available — see Fig. 14 for a
schematic illustration.

The entire transformation from single to double trace
moments (i.e. taking n powers and then integrating) can be
summarized in the following formulae (where the prime
indicates transformed, double trace quantities, not
differentiation):

™ Note that, if H>0 the data will require some ‘prewhitening’ before the
application of the DTM, i.e. power law filtering to yield a conserved field.
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Fig. 25 Probability Distribution/Multiple Scaling analysis of the
NMC network (Fig. 26), log,, Pr(p;> A7) vs. log,,/ for y increas-
ing in 0.1 intervals from 0 (top) to 0.8 (bottom line), the absolute
slopes give c(y), p; is the station density at resolution 4. log,oi =0
corresponds to the largest scale (here 2~ 15000 km), the (multiple)
scaling is well followed up to log;,d =2 (= 150 km); for smaller
scales, the finite number of stations leads to a break in the scaling.
Using nonlinear regressions, the universal parameters were esti-
mates as a = 0.8, C, ~0.5. From Tessier er al. (1994).

y=y"=ny-K(n) (20a)
c()=c'(?)=cy) (20b)
9=q'=gq/n (20¢c)
K(g)=K'(g")=K(g.m)=K(ng")—q'K(n) (20d)

Note the subtlety in the above: due to the integration in
equations 18-19, we are dealing with dressed rather than
bare quantities, hence the dressed singularities (equation
20a) transform with an extra term (— K (n)); necessary since
the dressing operation enforces conservation of the # flux.

The real advantage of the DTM technique becomes appar-
ent when it is applied to universal multifractals (Laval-
lee,1991) since we obtain the following transformations of
Ca

,_dK'
I_dq'

= = @1

q:x'[ q':]_

Therefore, K'(g")= K(g,n) has a particularly simple depen-
dence on n:

K(g,m)=nK(q)

xcan therefore be estimated on a simple plot of log K (g, ) vs.
log n for fixed g. By varying g, we improve our statistical
accuracy. Finally, note that since equation 20d is only valid
when the relevant statistical moments converge, and the
sample size is sufficiently large to accurately estimate the

(22

scaling exponents, whenever max(gn,q)>min(g,,q,) the
above relation will break down; K(g, ) will become indepen-
dent of 7. We shall see that effective exploitation of the above
involves a ‘bootstrap’ procedure in which the well estimated
low g, n exponents are used to estimate «, C,, and then
equations 14a,b can be used to predict the range of reliable
estimates.

In comparison with existing multifractal analysis meth-
ods, the DTM technique has two advantages. First, the
estimated scaling exponent K (g, n) is independent not only of
the normalization at the largest scales, but also of the change
y=7+b corresponding to a translation in y space — in the
bare quantities’". The second is that when a multiplicative
change of 3 is made (y=ay) then relation for
K(g,n) = K(g9.a—n)=a"K(g,n) (when a corresponds to a
contraction in the y space, but is also equivalent to the
integration of the fields ¢, at an unknown power a by the
experimental apparatus). This implies that the determination
of & will also be independent of the power a to which the
process is raised. In other words the universality has been
exploited to give a method to determine a which is invariant
under the general transformation y == ay + b’

Estimating H

We have seen that in multiplicative processes, it is convenient
to isolate an underlying conserved quantity which has basic
physical significance; in turbulence it was the energy flux to
smaller scales, in rainfall we denoted it by @, and related it to
the rain fluctuations via equation 3. In terms of the scaling,
conservation means {@;>=constant (independent of i),
hence K(1)=0. If we consider the energy spectrum of ¢, it is
of the form k™7 with” f=1-K(2), i.e. the spectrum is
always less steep than a 1/f noise™.

The reason for dwelling on this is that it illustrates a basic
point common to most geophysical fields viz, their spectra
often have f> 1, hence they cannot be conservative pro-
cesses, they must be™ (fractionally) differentiated by order
— H (the spectra must be power law filtered by £ ) to become
conservative. Lavallée (1991) analyzed simulations of con-
served processes fractionally integrated and differentiated by
varying amounts. As long as he differentiated (filtered by k*
with H > 0) using the DTM technique, he obtained stable and
accurate estimates of both C, and a«; however when he
fractionally integrated (H<0), he only recovered «. C, was

" Thisis also true of single trace moments or partition function approaches.

™ This formula is a consequence of the fact that the energy spectrum is the
Fourier transform of the autocorrelation function which is a second order
moment.

" The difference is often not great since K(2) is usually small: =C,(2*

. ~2)/(z—1),and 0=a<2.

™ See Schertzer & Lovejoy (1991, Appendix B.2) for more discussion of
fractional derivatives and integrals.
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not accurately determined”. From the C,, « estimated this
way, we can determine K(2) from equation 11 and hence™,
writing f for the spectral slope of the observed process, the
order of fractional integration required to go from the
conserved process to the nonconserved (observed ) process is
given by:

g B 1HKQ)_p-1 C@-2)
2 2 2-1)

(23)

In many data analyses, it is possible to avoid the use of
Fourier space. In 1 — D we have already recalled that replac-
ing the time series by its differences is approximately the same
as multiplying by k in Fourier space”. To generalize this to
two (or more) dimensions, one possibility is to use a finite
difference Laplacian. This multiplies by |k|* in Fourier space,
hence the spectrum by |k|*; although this is quite drastic we
have found that it apparently works fairly well. A method
involving less smoothing which also works well, is to replace
the field by the modulus of the local finite difference gradient
operator.

As a final comment, it is possible to directly estimate H via
(first order) structure functions (the scaling of absolute
differences). However, current direct methods are designed
for time series analysis, the optimum extension for fields in
two or higher dimensions is not clear. Other methods such as
the probability distribution and R/S analysis methods used
in Lovejoy (1981) when applied to multifractals yield results
which are not directly related to the multifractal parameters;
the value H~0.5 quoted earlier (which assumed simple
scaling) needs careful reconsideration.

ESTIMATES OF UNIVERSAL
MULTIFRACTAL EXPONENTS IN RAIN —

Analyses of rain gage network in space and multifractal
objective analysis

A basic problem with in situ geophysical measurements —
such as those from rain networks - is that the networks are
typically sparse, they have ‘holes’ at all scales. An early
method for dealing with this problem involved characteriz-
ing the sparseness by fractal dimensions, for example, Love-
joy et al. (1986) found a fractal dimension of ~1.75 in the
~ 10000 station network reporting to the World Meteoro-

* This indicates that as long as the spectrum is less steep than the underlying
conserved process (f < | — K(2)), that we can recover C,.

" In the case of turbulence, it is not necessary to infer the relation since it is
given by dimensional analysis from known dynamical quantities. In rain,
we don't know the corresponding dynamical ( parual differential ) equa-
tions, nor their conserved quantities, so that this type of empirical
inference is unavoidable.

7 Because of the finite differencing, this will not be exactly true at the highest
frequencies corresponding to the resolution the series.

Fig. 26 Position of the stations reporting daily rainfall accumu-
lations in 1983 that have been used in our analysis.

logical Organization indicating that ‘holes’ do indeed occur
over a wide range of scales. Using (generalized) intersection
theorems and ordinary trace moments, Montariol & Giraud
(1986), Giraud et al. (1986), Marquet & Piriou (1987) and
Ladoy et al. (1987) showed how corrections to network
infered rain statistics could be made by subtracting appropri-
ate network codimensions from the corresponding measured
rain codimensions. Below, we examine the daily rainfall
accumulations observed by raingages at synoptic weather
stations™ covering the earth for the year 1983 (Fig. 26).

Actually, it is better to treat the density of stations as a
multifractal measure (rather than the stations themselves as a
fractal set, see Fig. 25), and then to statistically correct for the
multifractal nature of the network density. In what follows
we summarize the results of Tessier et al. (1994). Consider
that the measuring stations have a multifractal density p,
when measured at resolution A. This is found (see Fig. 25) to
be a reasonable approximation to the density field over the
range ~ 5.0 x 10°km to ~ 1.5 x 10> km (the lower limit arises
because there were only ~ 8000 stations which is quite small
for this type of analysis).

Over the multifractal range, the station density may be
estimated in a variety of ways, for example by counting the
number N, of stations in a circle of radius 4~ ! (taking the size
of the earth=1), and then™ p,~N,i’. Consider now the
product measure M;=p,R,. In the i*" circle B, , it can be
estimated as follows:

1Y RziN R, =M, ;=p; Ry

JjeBy,

(24)

where the sum is over the measured rain rates (indexed by j)
of the stations in the ith circle. If we now suppose statistical
independence of p, R, by taking gth powers and ensemble
averaging we immediately obtain:

Ke(@)=Ky(@)—K,(9) (25)

™ This data set was archived at the National Meteorological Center (NMC)
of NOAA,; it is not exactly the same as the WMO set.
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Fig. 27 log(/K(g,n)|) versus log(n) for daily rainfall accumu-
lations on a global network after the corrections explained in the
text. The regression lines (for g=0.5, 1.5, 2, bottom to top respec-
tively) give a value of x=1.35+0.1 and C,=0.16£0.05. From
Tessier er al. (1993).

Tessier et al. (1993) indicate how to generalize this result to
double trace moments (K(g,n)); the principle is the same,
subtract the measured K, from the network® K,:Ky(q,n)
=Ky (g,n)— K,(g,1). From such an analysis we obtain «
=1.35%=0.i and C,=0.16=0.5 as may be seen on Fig. 27
where we have plotted log|K (g, n)| vs logn for g=0.5, 1.5, 2.
We see that for large values of # the curve K (g,n) becomes
flat, here due to limited sample size, whereas at low values of
7, it also becomes flat due to the sensitivity of the low order
moments to noise and/or the presence of a minimum order of
singularity.

The classical radar observer’s problem for multifractal
reflectivity fields and estimates of C;, a from radar

Up to now, we have discussed various fractal and multifrac-
tal analyses of radar rain reflectivity data, carefully dis-
tinguishing this from the rain rate. The exact relationship
between the radar reflectivity and the rain rate (R) is an
unsolved problem going back to the 1940s. Standard (non-
scaling) theory already leads to power law relations between
the two and we have already mentioned the monofractal
(Lovejoy & Schertzer, 1990c) corrections that can be used to
improve the latter. In this section we summarize some recent
theoretical results (Lovejoy & Schertzer, 1990a) on this
‘classical’®’ multifractal ‘observer’s problem’.

™ Ignoring factors of x; this will be a good approximation when N, >> 1.

¥ The double trace moment is with respect to the measure pd®x, rather than
the usual d°r; hence the K 5(4.1) rather than K, (g,7). K,(g,1) is easy to
estimate since K, (g,1)= K,,(g,0).

* *Classical’ because we assume subresolution homogeneity; the multifrac-
tals are (unrealistically) assumed to be cutoff at this scale.

In its classical form (Marshall & Hitschfeld, 1953, Wal-
lace, 1953), the observer’s problem makes assumptions of
subsensor homogeneity (specifically that the rain drops have
uniform (Poisson) statistics over scales smaller than the
radar ‘pulse volume: typically about | km®). The variability
in observed ‘effective™ radar reflectivity factor Z,q is then
considered to arise from two sources. The first is the natural
variability of interest characterized by the ‘reflectivity factor’
Z (proportional to the variance of the drop volumes). The
second arises as a result of the random positions of each of
the drops within the pulse volume. Under certain assump-
tions about the homogeneity of the field and on the form of
the drop size distribution (finite variance, ¢,>2), Z can be
related to the rain rate, total volume of liquid water, or other
parameters of interest®’,

Figs. 2a, b, c, d, Fig. 4a, b and Figs. 16a, b already point to
the inadequacy of the assumptions of homogeneity (even at
subwavelength scales); even the assumption of finite variance
is not trivially respected. In spite of this, based on these
assumptions, much work has been done to devise sampling
and averaging strategies to obtain Z from Z_g. In this section,
we indicate that even with these subsensor homogeneity
assumptions, that correction can still arise if we allow for a
multifractal Z field from the largest scales down to the radar
scale; hence even in the standard theory, we must still
account for multifractal effects. Introducing the natural log
of the range in scales* ({ =1InJ) and the measured codimen-
sion function c4(y) (for Z4) we seek to relate this to the
underlying c(y) (for Z). The basic result of Lovejoy &
Schertzer (1990a) is:

' (-1 1
40(7)=¢(?)-c=a{?)=£—(?}—[m—;(—")—]+ ) (;—) (26)

hence for / large enough, cq4(y) = ¢(7): in the limit where the
natural variability builds up over a sufficiently wide range of
scales (i.e. that the radar resolution is much smaller than the
outer scale of the rain producing processes), the two are
equal®®. In other words, in this limit the natural variability is
so strong that it completely dominates that arising from
random fluctuations due to drop phases. This answers the

* In this subsection we denote the ‘effective reflectivity factor’ by Z4,and the
‘refiectivity factor’ by Z; in the rest of the paper, for convenience, we drop
the subscript ‘eff’; Z denotes the measured ‘effective’ quantity, we do not
require the (unobserved, theoretical) ‘reflectivity factor'.

** The fact that individual radar echoes have long tails (e.g. Figs. 2b,c) and
that the drops are highly non uniformly distributed means that in reality, Z
can only be statistically estimated from Z_;~ ultimately it will probably be
simpler to statistically relate the Z,, directly to the rain rate: use of the
unmeasureable Z will be unnecessary.

* Takinga typical radar resolution of I km, and an external scale for the rain
processes at 1000 to 10000 km, we find { in the range In(1000) to
In(10000) ~ 7-9.

* Using data from Seed (1989), Lovejoy & Schertzer (1990a) estimated that
the largest correction to (y) is ~0.14.
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Fig. 28a log(/K(g,n)!) versus log(n) for the gradient of vertically
pointing radar reflectivities in the vertical direction (128 elevations
at 21 m intervals), for g=2, statistics accumulated over 8192
consecutive pulses at 2 second intervals. The straight line indicates
a=1.35, C,=0.11. From Tessier et al. (1993).

question raised by Zawadzki (1987) as to which variability is
strongest.

We now seek to explore the relation between the reflecti-
vity factors and rain rates. Limiting ourselves to studying the
implications of the usual semi-empirical relations, (based
again on subresolution homogeneity) we find the simplest
statistical relation between Z and Ris a power lawi.e. Zoc R®.
Such power laws are frequently invoked in rain (e.g. the well
known semi-empirical Marshall-Palmer (1948) law has
exponent a= 1.6). Writing Z= /" and R= A" this is equiva-
lent to the linear transformation of singularities: y.=ayg
where 7, is the singularity in Z and y is the corresponding
singularity in R. We have already seen (equation 20 with
n=a) that under such transformations, a=«, C, = C\a".

Fig. 28a shows the results for vertical pointing radar
reflectivities yielding o, 1.35 and C,,x0.11 (vertical direc-
tion) and Fig. 28b for a horizontal pointing radar yielding
2,2~1.40 and C,.,~0.12 (horizontal direction) showing
remarkable agreement with « for network rain, and between
the vertical and horizontal directions. To estimate H, we may
use the horizontal estimate of f (= 1.45, Fig. 4f), to yield
H.,,~0.32, and in the vertical, using the estimate f=2.3
(Tessier er al., 1991a), we obtain H,,,~0.73. The agreement
between the values of a is particularly significant considering
the apparently very different natures of the data sets
involved. The C, estimates are comparable, although

Apha = 14 Cl =012
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Fig. 28b log(|K(g.n)) versus log(n) for the gradient of the hori-
zontal radar reflectivities (same data as in Fig. 4f ) at 75 m
resolution. The bottom curve is for g=0.5 and the top for g=2.0.
The straight line indicate «= 1.40, C; =0.12. From Tessier et al.
(1993).
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Fig. 28¢ log(|K(g,n)|) versus log(n) for the gradient of vertically
pointing radar reflectivities in time (8192 consecutive pulses at 2
second intervals) and statistics accumulated for 128 elevations at
21 m intervals (same data set as Fig. 28a). The straight line
indicates a =0.50, C,=0.60. From Tessier et al. (1993).
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Table 3. A comparison of various gauge and radar estimates of «, C 1» H over various space scales and directions. Particularly
significant is the agreement between the a estimates from such disparate sources. The errors in « are estimated to be about
£0.1,in C,, +0.05. The value of H is poorly estimated. The value a~ 1.35, C 1=0.15 is the same as that obtained by Tessier
etal. (1991a) for visible and infra red cloud radiances. It is also very near that found by Schmitt et al. (1991 ) for turbulent
temperatures

Data type Radar reflectivity, Montreal Gauge, daily accumulations Radar reflectivity, Montreal
Domain horizontal space horizontal space vertical space

Data type radar reflectivity daily gauge accumulations radar reflectivity

Range of scales 75mto 19.2 km 2150 km to global 21 m-2.5km

o 1.40 1.35 1.35

C, 0.12 0.16 0.11

H 0.32 02+0.3 0.73

References: Tessier er al. 1993 Tessier 1993 Tessier et al. 1993

Table 4. A comparison of various gauge and radar estimates of «, C, over various time and space scales. All parameters were
estimated from the DTM technique with the exception of the Seed (1989) study. Note that the C, value for reflectivities are

not expected to be the same as for the gauge rain rates

Data type Gauge, daily Gauge, daily  Gauge, daily  Gauges, daily Radar reflectivity Radar reflectivity
accumulations accumulations accumulations accumulations
Location Global network Reunion island Nimes Germany Montreal Montreal
Sample characteristics 1000 stations, | station, 30 1 station, 30 1 station, 45 4 storms, 144 1 storm,
1-64 days years, scales years, scales  years, scales PPIseach 1 km  vertically
1-64 days 1-64 days 1-32 days resolution every  pointing radar 20
5 minutes m resolution,
every 2 s for 5%
hours
o 0.5 0.5 0.5 0.6 0.3-0.6 0.5
C, 0.6 0.2 0.6 0.5 0.6-1.2 0.6
References Tessier et al. Huberteral. Ladoyeral. Larnder & Seed 1989 Tessier et al. 1993
1993 1993 1993 Fraedrich*
Note:

* =Private communication.

differences® are to be expected if only because of the Z-R
relation, and the horizontal/vertical anisotropy®’. This is the
first empirical agreement between any fundamental statisti-
cal rain gauge and reflectivity parameters and gives us
confidence in the value obtained. Table 3 shows an overall
comparison of these spatial estimates.

Double Trace Moments and the statistics of rain in time

The scaling of rain in space coupled with the scaling of the
dynamic (wind) field leads to temporal scaling. Theoretically,

* Differences could also arise because of the limited sample sizes used in the
var-ious.l studies, and because C, may in fact vary climatologically: the
theoretical arguments for the universality of C, are less convincing than
for a.

¥ From the values quoted above, it seems that the most obvious effect of
anisotropy is to modify the values of H.

the appropriate framework for treating the problem is via
scaling space/time transformations and Generalized Scale
Invariance; this is discussed in the next section. here we
summarize various recent empirical results. Table 4 is a
summary of six independent analyses from four different
locations, different data types, ranges of scale and analysis
methods, studies indicating a remarkable consistency®® in
estimates of «, C,, especially «. Considering only the gauge
estimates, we obtain ¢~ 0.5+0.1, C,~0.5%0.1. Unfortuna-
tely, at present the temporal value of H is not well known. A
rough estimate can be obtained from the high frequency end
of Fig. 4d: f~0.5. If we use the corresponding values of «, C,
we obtain® (using equation 23), Hx0.1+0.1, ie. it is

* The theoretical arguments leading to the expectation of a universal C, are
much weaker than those for a universal «.
* Using the mean of the individual H values also yields Hx0.10.1.
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Fig. 29 The world’s record point rainfall values, 1 — Cherrapunji, India; 2 - Silver Hill Plantation, Jamaica; 3 — Funkiko, Taiwan; 4 -
Baguio, Philippine Is.; 5 — Thrall, Texas; 6 — Smethport, Pa; 7 - D'Hani, Texas; 8 — Rockport, W.Va; 9 — Holt, Mo; 10 - Cutea de
Arges, Romania; 11 — Plumb Point, Jamaica; 12 - Fussen, Bavaria; 13 — Unionville, Md.; values from Jennings (1950). (+) La

Reunion, France; (x) Paishih, Taiwan; values from Paulhus (1965).

possible that in time, rain is a conserved process (H=0). In
comparison, we may apply the double trace moment tech-
nique to time series from the vertical pointing radar data
discussed in the previous sub-section (Fig. 28c), finding
ax0.50, C,~0.60. The spectral slope yielded f~1.1, hence
we obtain H=~0.4 for the effective reflectivity.

EXTREME RAINFALL EVENTS

One of the attractive features of multifractal models of rain is
that they naturally generate violent extreme events. In this
subsection, we show that they are apparently of the same
type as those which actually occur. The following is a
summary of recent work by Hubert et al. (1993).

To begin with, consider a multifractal rainfall time series
with maximum order of singularity y,.,.. This maximum may
arise through a variety of mechanisms: it could be due to
geometrical or microcanonical constraint, the result of a
cascade with bounded singularities, or — of relevance here
(Table 3) — associated with universal multifractals with
0<a<1 (see equation 12). In any case even if the process
itself has unbounded orders of singularity (as in the universal

multifractals with 1 <z<2), in any finite sample there will
always be a maximum order of singularity present y,. Which-
ever way it arises, for any fixed averaging period (resolution),
this maximum order of singularity places an upper bound on
the extreme values that will be observed. To see this, consider
the maximum rain accumulation A4, (=1R,) over time 7

(=7

Azt Ten

27

We therefore will expect log-log plots of maximum accumu-
lations A, versus duration t to be straight, Fig. 29 (from
Rémémeras & Hubert, 1990) shows a typical result showing
the maximum recorded point rainfall depths for different
durations going from minutes to several years. These mea-
surements easily fit straight line with slope equal to about 0.5
(hence y,,,, = 0.5).

If we consider the empirically observed C, and « values for
the temporal rain process we can readily explain this remark-
able alignment. Recall from Table 3, (gauge results only) that
220.5+£0.1, C,~0.4+0.1 from series of quite disparate
origins. Since 0<x<1, the following maximum order of
singularity y, of the process is obtained (equaton 12):

Cl

Yo=7__+H

(28)
l=e
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c(y)
2
l+Ds
1
I—
-1 -0.5 y 0.5
A 70

Fig. 30 The c(y) curve corresponding to the estimated parameters
xx0.51£0.05, C,~0.44£0.16, with y, for N,= ;% samples, and
7o (=7, for an infinite number of samples; D, = N,= ). From
Hubert er al. (1993).

Using the above estimate of a, C,, (with H=0) we obtain
70~ 0.8 £0.2. This maximum corresponds to the stochastic
generating process, for any finite sample, the actual limit will
be determined by y,=y,,,,=c~'(D+D,), see Fig. 30 for the
corresponding illustration). However, when a < 1, the differ-
ence y,— ¥, is typically small:

C\ -+
Yol 1—2 D =%:=%

with the upper limit (implying y,—7,) occuring when
D, — co (an infinite number of samples), and the lower limit
applying for single samples (D,=0). Using the above gauge
values in Table 3 for C,, a, we obtain with D,=0, y~0.7
+0.2, whereas for an infinite number of independent rain
series, y~0.9+0.3. In both cases, the predicted slopes
(1—y=~0.3=0.2, 0.1 £0.3 respectively) are close to those
observed in Fig. 29 (~0.5).

These results help to reconcile two opposing views on
extreme precipitation, the ‘extreme maximum precipitation’
(PMP) and probability approaches (based on frequency
analyses) since it simultaneously clarifies the role of the
accumulation period and sample size in determining the
observed maxima. It also provides a solid theoretical ground
for the derivation of rate-duration-frequency curves.

(29)

GENERALIZED SCALE INVARIANCE,
STRATIFICATION AND SPACE TIME
TRANSFORMATIONS

Vertical stratification of rain
We have considered the simplest scaling system involving no
prefered orientation; isotropic (self-similar) scaling whose

GENERALISED SCALE INVARIANCE

1SOTROPY: T
O
}’ O./-?:: S,
Sx

]

TA = J,l =1
enlargement ” T
ratic A

S,

Unit spheroid
identity

Unit ellipsaid

ANISOTROPY: I
A
Eq T1| ﬁ) TA; EJ‘Z
Ex,

Fig. 31 A schematic diagram illustrating Generalized Scale Invar-
iance. The top box indicates the familiar self-similar scale invar-
iance involving ordinary ‘zooms’, with scale changing operator
T,=4"° with G the identity. The bottom box illustrates the more
general case, the main requirement on T, is that it satisfy group
properties. From Schertzer & Lovejoy (1989b).

theory has been developed over a considerable period of
time, particularly in fluid turbulence. However, the atmos-
phere is not a simple fluid system, nor is it isotropic; gravity
leads to differential stratification, the Coriolis force to differ-
ential rotation and radiative and microphysical processes
lead to further complications. However even when the exact
dynamical equations are unknown it can still be argued that
at least over certain ranges, these phenomena are likely to be
symmetric with respect to scale changing operations. This
view is all the more plausible when it is realized that the
requisite scale changes to transform the large scale to the
small scale can be very general.

To see this, introduce a scale changing operator T, defined
by: T,B, = B,, where B, will be a large scale averaging set, B,
the corresponding set ‘reduced’ by factor i. For example,
considering multifractals, ‘self-similar’ measures will satisfy
equations 7 or 9 with T,=4""= 1" where I is the identity
matrix ie. T, is a simple reduction by factor i. However,
much more general scaling transformations are possible;
detailed analysis shows that practically the only restriction
on T is that it has group properties, viz.: T, = 1~ € where G is
the generator of the group of scale changing operations (this
formalism is called ‘generalized scale invariance’ or GSI,
(Schertzer & Lovejoy 1983b, 1985a,b, 1987a,b, 1989a,
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Fig. 32 A schematic diagram analogous to Fig. 7, but showing an
anisotropic cascade, here with
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G= :
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At large scales eddies are flattened in the horizontal (like Hadley
and Ferrel cells), whereas at small scales, they are more vertically
aligned (like convective cells). The cross-sectional area clearly
decreases with the 3/2 power of the horizontal scale; the elliptical
dimension is 3/2. Left and right hand sides again show (stratified )
homogeneous and (stratified) § model turbulence. From Lovejoy
& Schertzer (1986a).

1991b), see Fig. 31 for a schematic illustration). For example
‘self-affine’ measures involve reductions coupled with com-
pression along one (or more) axes; G is again a diagonal
matrix but with not all diagonal elements equal to one (see
Fig. 32 for a schematic of such a cascade, Fig. 33a for the
corresponding balls). If G is still a matrix (‘linear GSI’) but
has off-diagonal elements, then T, might compress an initial
circle B, into an ellipsoid as well as rotate the result (see Fig.
33b). Linear and nonlinear GSI has already been used to
model galaxies, clouds and rain (for examples of the corres-
ponding balls B, see Fig. 33c, d for examples with rotation
(also Fig. 37), see Fig. 3d,e, for stratification only, see Fig.
3f,g,h,i). Empirically, the trace of G (called the ‘elliptical
dimension’ d,, of the system) has been estimated in both rain
and wind fields to have the values 2.22 and 2.55 respectively,
indicating that the fields are neither isotropic (d,=3), nor
completely stratified (d,=2), but are rather in between,
becoming more and more stratified at larger and larger
scales.

iiil

Fig. 33a The series of balls B, for a example of linear GSI with
only diagonal elements (a ‘self-affine’ transformation) showing the
stratification of structures that result. From Schertzer & Lovejoy
(1989b).

Fig. 33b Same as Fig. 33a, but with off diagonal elements show-
ing the rotation and stratification of structures that result. From
Schertzer & Lovejoy (1989b).

Fig. 33c Same as Fig. 33a, but for a nonlinear but deterministic
generator G. From Schertzer & Lovejoy (1989b).
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Fig. 33d Same as Fig. 33a, but for a nonlinear but stochastic
generator G. From Schertzer & Lovejoy (1991a).

The method that was used to estimate d,, in rain was
‘elliptical dimensional sampling’ (Lovejoy et al., 1987), the
basic idea is shown in Fig, 34: the corresponding functional
box-counting indicates quite different dimensions in (x, y, z)
and (x,y) space, (Figs. 21a,b). There now exists a much
improved Fourier space based method for studying scaling
anisotropy and estimating linear approximations to G called
the ‘Monte Carlo Differential Rotation’ technique (Pflug er
al.,1991a,b, see Figs. 35a, b and 37 for examples). It has now
been successfully tested on satellite cloud radiances; tests on
radar rain data are in progress.

Space-time transformations in rain and the prediction
problem

In both geophysical and laboratory flows, it is generally far
easier to obtain high temporal resolution velocity data at one
or only a few points than to obtain detailed spatial infor-
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Fig. 34 The variation on usual (isotropic) box counting that can
be used to estimate del when the direction but not magnitude of
the stratification is known; this method applied to radar reflectivi-
ties (Figs. 13a, b) yielded d,,~2.22+0.07 (Lovejoy er al., 1987).
This figure is from Schertzer & Lovejoy (1989b).

mation at a given instant. It is therefore tempting to relate
time and space properties by assuming that the flow pattern
is frozen and is simply blown past the sensors at a fixed
velocity without appreciable evolution, and to directly use
the time series information to deduce the spatial structure.
This ‘Taylor’s hypothesis of frozen turbulence’ (Taylor,
1938) can often be justified because in many experimental set
ups, the flow pattern is caused by external forcing at a well
defined velocity typically much larger than the fluctuations
under study. However, in geophysical systems (in particular
in the atmosphere and ocean) where no external forcing
velocity exists, the hypothesis has often been Justified by
appeal to a ‘meso-scale’ gap separating large scale motions
(two dimensional turbulence associated with ‘weather’) and
small scale three dimensional turbulence (viewed as a kind of
‘noise’ superposed on the weather®. If such a separation
existed, it might at least justify a statistical version of Taylor’s
hypothesis in which the large scale velocity is considered
statistically constant (i.e. stationary). Various statistical
properties such as spatial and temporal energy spectra would
be similar even though no detailed transformation of a given

% Zawadzki (1973) finds that from 5 to 40 minutes this version of Taylor's

hypothesis is consistent with radar rain data, but that for longer times it is
istent. We that his data may be much more consistent with
the generalizations of Taylor's hypothesis discussed here. Fora discussion
of conventional Taylor hypotheses in rain, see Gupta & Waymire (1987).
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Fig. 35a Illustrations of the Monte Carlo differential rotation technique applied to NOAA satellite infra-red image of a field of Marine
Stratocumulus clouds at 1.1 km resolution (256 x 256 points), the left is a grey scale rendition in real space, the right is the modulus
squared of the fourier transform in Fourier space. The superposed ellipses are the best fits corresponding to a sphero-scale of 3.5 km,

[o.sv —0.40]
G=
0.40 1.43

(in linear GSI, the Fourier space generator is the transpose of the real space generator). From Pflug et al. (1993).

Fig. 35b Same as Fig. 35a except for cloud associated with a midlatitude cyclone, at visible wavelengths, 1.1 km resolution with 512
points on a side. The estimated generator, was

0.68 —0.18
G=
0.16 1.32

the sphero-scale, 3.9 km. From Pflug er al. (1993).
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time series to a particular spatial pattern would be possible.
Only some kind of statistical equivalence would be possible.

However, as argued here, the scaling is likely to continue
over most of the meteorologically significant range of scales.
No large scale forcing velocity can be appealed to in order to
transform from space to time; a turbulent velocity must be
used (equation 5). Due to the multifractal nature of the wind,
the exact scaling will depend on the K(g) of the energy flux®
(¢). For example, <v,> ~/"?~%(/ according to Schmitt er
al. (1992), in wind tunnel wind data, C, ~0.25, «~ 1.3, hence

—K(1/3)~0.07. Denoting this small intermittency correc-
tion by 4, we expect that rather than being scale independent,
the space-time transformation has a scale dependent velocity
(vp=1" with H,=1/3+ 6. The two geophysically relevant
statistical Taylor’s hypotheses therefore correspond to H,
=0or H,=1/3+ 6 depending on the existence (or not) of the
‘gap’.

The theoretical arguments mentioned above make it clear
that the turbulent velocity is likely to be the relevant one for
space-time transformations; this rules out the constant velo-
city (H,=0) hypothesis™. In fact, as discussed in Pflug et al.
(1991, 1993), a good way to directly measure the series of
‘balls’ is to look for lines of constant energy density in
Fourier space; Fig. 36 shows the result using vertically
pointing radar data), the elliptical character of the (vertical )
spatial wavenumber/frequency isolines, with eccentricity
clearly varying with scale; this shows unambiguously that
empirically (z,r) space is anistropic. Theoretically, with the
help of in the formalism of Generalized Scale Invariance, we
can understand this by deriving the space-time transforma-
tion from the (turbulent) value of H,(a1/3). Consider
(x,»,1) space, the space-time transformation can be simply
expressed by statistical invariance with respect to the follow-
ing transformation (generalized reduction in scale by factor
A x=ix, y=iy, t=i"" or, using the notation r
=(x,y,2.1), r;=T,r, with T,= 1" and:

1 0 0
G=[0 1 o
0 0 1-H,

we therefore obtain Trace G=3— H, i.e. by measuring d, or
H, we can determine G (assuming that there are no off-

"' A priori, any of the statistics {vf>"/* could be used in space-time transfor-
mations; all that is required is a parameter with the dimensions of velocity.
It is therefore possible that (due to the multiple scaling of v,) that the
relevant transformation will be different for different orders of rain
singularities y (indeed, in view of the different a values found in time and
space, this is necessary). Here for simplicity, we ignore this possible
complication and consider transformations of the low order singularities
corresponding to g~ 1.

* Using lidar data, Lovejoy & Schertzer (1991a) find the value (H,
=0.50.3) which is not accurate enough to usefully estimate &, A more
accurate radar based estimate H,=0.38+0.05 was announced by Tsonis
et al. (1990).

diagonal elements corresponding to rotation between space
and time, and ignoring differential rotation in the horizon-
tal). The isotropic statistical Taylor’s hypothesis is therefore
expressed by d,,= 3 (H,=0), the anisotropic, turbulent scale-
dependent Taylor’s hypothesis is H,a1/3, d,~8/3. If we
now consider the full (x,y,z,1) space, it has already been
shown (Lovejoy er al., 1987) that in (x,y, z) space dy=2.22
(i.e. the z direction contributes 0.22 to the trace of G ) for the
corresponding transformation in (x, y, z) space for radar rain
data, hence for the (x,y,x,7) process, the corresponding
value is d,~2+0.22+2/3~2.89,

The generator of space/time transformations defines the
operation required to go from large to small space/time
structures. When it is coupled with the multifractal prob-
ability generator (characterized by H, C,, a), it provides a
complete statistical description of the space/time process,
and hence - in principle — all the information necessary to
produce stochastic predictions. Such predictions may be
viewed as systematic generalizations of existing prediction
techniques based on the ‘stochastic memory’ of the system.
Work is currently in progress at McGill and the Météorolo-
gie Nationale to use this approach to improve nowcasting
methods for extrapolating radar echoes and satellite esti-
mated rain areas” (e.g. Bellon et al., 1980). For any given set
of data, they have the potential to provide the theoretically
optimum prediction: all that is required is knowledge of the
multifractal generators (G, H, C,, a).

Dynamical simulations of rainfall

In this section we indicate briefly how to exploit the universa-
lity (and the measured H, C,, « parameters) to perform
multifractal simulations. The first ‘continuous™ multifractal
models of this type were discussed in Schertzer & Lovejoy
(1987a,b), and Wilson (1991). Wilson er al. (1991) gives a
comprehensive discussion including many practical (numeri-
cal) details™. In particular, the latter describes the numerical
simulation of clouds and topography, including how to
iteratively ‘zoom’ in, calculating details to arbitrary resolu-
tion in selected regions. Although we will not repeat these
details here, enough information has been given in the
previous sections to understand how they work. First, for a
conserved (stationary) multifractal process ¢, we define the
generator I'; =log ¢,. To yield a multifractal ¢,, ', must be
exactly a 1/f noise, i.e. its spectrum® is E(k)~k ' (this is

* For rain forecasts for up to six hours, such techniques are already the best
available.

™ *‘Continuous’ since it does not involve integer ratios between eddies and
sub-eddies; it is continuous in scale, avoiding the artificial straight lines of
the (discrete ratio) cascades,

* For a recent illustration, see Fig. 10 from Lovejoy & Schertzer (1991¢).

* For a<2, the generator variance diverges, we use ‘generalized’ spectra -
see Schertzer & Lovejoy (1987a), appendix C.
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Fig. 36 We plot here the contours of the (two dimensional) energy spectrum from the vertically pointing radar reflectivities; 2 second
temporal resolution, 21 m spatial resolution. The figure is the result of averaging the Fourier space energy density (modulus squared of
the Fourier transform) over 20 consecutive (z, 1) planes, each with 256 x 512 points (Fourier conjugate axes are k,w respectively). Note
the clear differential stratification. The rotation of the principle axes with respect to the (Fourier) axes seems not to be differential
(hence due to a mean wind). From Tessier et al. (1993).
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necessary to ensure the multiple scaling of the moments of
@,)- To produce such a generator, we start with a stationary
Gaussian or Lévy ‘subgenerator’. The subgenerator is a noise
consisting of independent random variables with either
Gaussian (x=2) or extremal Lévy distributions (character-
ized by the Levy index «), whose amplitude (e.g. variance in
the Gaussian case) is determined by C,. The subgenerator is
then fractionally integrated (power law filtered in Fourier
space) to give a (generalized) k ~' spectrum. This generator is
then exponentiated to give the conserved ¢ ; which will thus
depend on both C, and «. Finally, to obtain a nonconserved
process with spectral slope §, the result is fractionally inte-
grated by multiplying the Fourier transform by & ~#. The
entire process involves two fractional integrations and hence
four FFTs. 512x 512 fields can easily be modeled on
personal computers (they take about 3 minutes on a Mac11),
and 256 x 256 x 256 fields (e.g. space-time simulations of
dynamically evolving multifractal clouds) have been pro-
duced on a Cray 2 (Brenier’’, 1990, Brenier ez al., 1990). We
used the multifractal parameters estimated by the various
methods described above, taking H~0.3, C,~0.1, ax1.35
in space to produce the simulation shown in Fig. 37.

CONCLUSIONS

For over ten years, scaling ideas have provided an exciting
new perspective for dealing with rain and other dynamical
processes occuring in the atmosphere and other geophysical
systems; in this paper we have attempted to give a brief
review of this mushrooming field. To maintain a focus, as
indicated in the title, we have restricted our attention as much
as possible to an account of the necessary multifractal
formalism and to specific results on rain. Although multi-
fractal notions are also relevant in stream flows, river basins
and other areas of hydrology, we have omitted these from the
discussion. We have only mentioned in passing the now
burgeoning literature concerning scaling analyses and
modeling of clouds and their associated radiative transfer.
Finally we have only given a brief outline of the relation of
our results to turbulence theory and to recent empirical
turbulence results.

During the period covered by this review, scaling ideas
were extended far beyond the restrictive bounds of the fractal
geometry of sets to directly deal with the multifractal statis-
tics (and dynamics) of fields. Multifractals are now increas-
ingly understood as providing the natural framework for
scale-invariant nonlinear dynamics. Furthermore, due to the
existence of stable attractive multifractal generators they

”" This paper describes how such clouds simulations were used to produce a
video called *‘Multifractal Dynamics’.

provide attractive physical models. This implies that many of
the details of the dynamics are irrelevant (universal behav-
iour) and leads to new and powerful multifractal simulation
and analysis techniques (many of which were discussed).

Scaling ideas have also been enriched by extensions in
another quite different direction: scaling anisotropy. Recall
that a scaling system is one in which small and large scale
(statistical) properties are related by a scale changing oper-
ation involving only the scale ratio: there is no characteristic
size. Until recently, this scale change was restricted to
ordinary ‘zooms’ or magnifications. Since the 1950s, this
isotropic self-similar scaling has provided the theoretical
basis of the standard model of atmospheric dynamics: a large
scale two dimensional turbulence and a small scale three
dimensional turbulence. The only generalization of scaling
beyond self-similarity was a slight variation called ‘self-
affinity’ which combined the zoom with a (differential)
‘squashing’ along certain fixed directions (e.g. coordinate
axes). While this extension is necessary to account for the
observed atmospheric stratification (implying a single scal-
ing, anisotropic turbulence), it is still very special. In particu-
lar, geophysical applications generally involve not only
differential stratification but also differential rotation (e.g.
due to the Coriolis force). The formalism developed to deal
with scaling anisotropy is Generalized Scale Invariance
(GSI). GSI goes far beyond self-affinity: not only does it
involve both differential rotation and stratification, it allows
both effects to vary from place to place in either deterministic
or even random manners.

We have argued that due to the enormous quantities of
rain data spanning many orders of magnitude in time and
space, that rain has and will continue to play a leading role in
testing and developing new ideas in scaling and nonlinear
dynamics. The rapid progress of this field makes the task of
reviewing difficult. In the first part, we have attempted to
concentrate on results which most clearly demonstrate the
scaling of rain; by combining many different measurement
techniques although the exact limits are still not clear, we
have seen that it is possible that rain is scaling over most of
the meteorologically significant range of scales. In general,
we did not attempt detailed intercomparisons of different
empirical results, largely because many were derived from
essentially experimental data analysis techniques (such as
functional box-counting, area-perimeter relations etc.),
which are now somewhat outdated and which in any event
were often applied to quite different data sets. Nevertheless,
the measurements presented here cover the entire range from
~ 1 mm (blotting paper analysis of rain drop distributions),
to x10000 km (the global rain network), and give us
considerable confidence that the basic (multi) scaling holds
reasonably well.

Whereas early analysis and modeling techniques were
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Fig. 37 Numerical simulation of a universal continuous cascade multifractal rain field ona 5 12 x 512 point gridwidth a=1.3, C,=0.1,
H=0.3, G the same as empirically estimated in Fig. 35b. We thank S. Pechnold for help with the simulation.

based on ad hoc geometric notions relevant to fractal sets, the
more mature multifractal framework outlined in the main
part of the paper depended on two important breakthroughs.
The first was the connection with the physics of rain pro-
cesses via the problematic of passive scalar clouds, and the
second, the continuous (cascade) modelling of the latter with
the associated discovery of multifractal universality classes.
Universality also provided the framework for the develop-
ment of a new generation of ‘specific’ multifractal analysis
methods that are analogous to parametric methods in

standard statistics and are statistically quite robust. Indeed,
the results of the Double Trace Moment technique are now
providing consistent estimates of multifractal parameters in
rainfall measured over wide ranges of scale in both time and
space, as estimated from both rain gage and radar measure-
ments (see Tables 3 and 4 for summaries). Although these
results are quite recent, they suggest that the field is maturing,
and that it is now the time for developing a variety of
multifractal applications. Some have already been men-
tioned; the multifractal objective analysis problem, the
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multifractal observers problem for radar data, the statistics
of extreme rain events.

Other areas where work is only just beginning were also
mentioned, in particular the problem of multifractal space/
time transformations, scaling anisotropy, and stratification,
as well as their modeling. These are areas where we may soon
expect exciting new developments, especially for multifractal
forecasting methods, and multifractal classification of
storms, morphologies and textures. Finally, given increasing
confidence in our multifractal parameter estimates, all these
ideas can be tested on (dynamical) multifractal models which
are thus likely to play an important role in helping to
understand the larger problem of resolution dependence of
remotely sensed data, including the relation between the
radiance and rain fields (useful for improving satellite rain
estimating algorithms).
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