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Multifractal objective analysis: conditioning
and interpolation

G. Salvadori, D. Schertzer, S. Lovejoy
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Abstract. We investigate various ways of statistically estimating multifractal
fields from sparse data. First, the problem is set in the general framework of
conditional expectations, and the effect of (multi) fractal sampling on the
statistics of the measured process is investigated, showing how analytical
expressions describing the statistical properties of the phenomenon should be
modified by the sampling. Then, several techniques are introduced, our goal
being to estimate the intensity of a field at resolution A, given samples of the
process collected by networks at higher resolutions A > A. The general strategy
underlying all the estimating techniques presented is to approximate the
unknown field values at resolution A by means of most likely estimates
conditional to the available information at resolution A > /. Finally, the
procedures are tested on simulated lognormal multifractal fields sampled by
means of fractal networks, and the propagation of the errors in a scaling
framework is also discussed. These techniques are necessary for estimating
geophysical processes in regions where no monitoring stations are present, a
scenario often encountered in practice, and may also be of great help in studying
natural hazards and risk assessment.
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1

Introduction

The practical analysis of natural processes poses severe difficulties. A major
problem that plagues the geoscientists is the typically inhomogenous nature of
measuring networks. Indeed, contrary to the traditional view of networks as being
essentially homogeneous with occasional holes, many networks have been shown
to be sparse over various scales with fractal and multifractal characteristics, i.e.
the holes occur in a hierarchical scaling way at all scales. Examples where this has
been demonstrated in detail include rain-gauges (Lovejoy et al., 1986; Korvin,
1992; Nicolis, 1993; Tessier et al., 1994) to environmental pollution monitoring
(Salvadori et al., 1994, 1997; Belli et al., 1995).

In addition to the relevance of this question to making maps from in situ data,
it is also important in risk assessment. Actually, the fractal nature of the networks
introduces - in addition to that of spatial resolution - the new notion of di-
mensional resolution of real networks (Lovejoy et al., 1986), which quantifies the
sparsest phenomenon that can be detected by a sparse network. Roughly, “hot
spots”, even if large, are often missed due to the gaps of the network. Thus, the
problem arises of how to estimate the local intensity of a phenomenon in the
unsampled locations when analysing a single realization of a process whose en-
semble statistics are known.

A common goal of objective analysis techniques is to obtain information on a
field sensed by in situ measuring networks. Historically, quite a few methods have
been devised to deal with such a problem. To recall a few, Thiessen polygons
technique dates back to the beginning of the Century (Thiessen, 1911) and is still
used in hydrology. More refined methods, based on polynomial least square fits,
were proposed by Panofsky (1949) and improved by Gilchrist and Cressman
(1954); however, polynomials had the disadvantage of generating uncontrolled
oscillations. Another class of techniques, known as weighted interpolation
methods (see Goodin et al. (1979) for a survey), provide estimates of the un-
known field in a given location roughly by means of weighted averages of the
surrounding available measurements. Another well known and used method,
performing statistical linear interpolation, is Kriging (Matheron, 1970). Objective
comparisons of mapping techniques can be found in Creutin and Obled (1982);
more on conventional spatial geostatistics methods can be found, e.g., in Ripley
(1981) and Cressie (1992).

A common shortcoming of these standard techniques is that they generally
assume a fairly regular behaviour of the quantities involved. For example, in a
recent paper discussing the mathematical requirements to be satisfied by re-
motely sensed fields (Raffy, 1994), the author rightly criticizes the imposition
of differentiability assumptions as too restrictive, but then goes on without
comment to assume that remotely sensed fields are regular with respect to
Lebesgue measure, even though scaling (multifractal) measures will generally be
singular with respect to the latter. Other restrictive assumptions include finite
decorrelation lengths, means, variances and high order moments.

The possibility of using fractals for modelling and the possibility of interpo-
lating geometrical fractal sets (including those used to model natural objects such
as clouds, mountains, landscapes, ...) has been investigated particularly by
Barnsley (1988) - see also, e.g., Mandelbrot (1983), Feder (1989), Kaye (1989),
Becker and Diirfler (1990), Crilly et al. (1991), Korvin (1992). For example,
through the application of the Iterated Function System (IFS) technique, Barnsley
(1988) showed how to generate interpolations of fractal sets “close” (in the



Hausdorff metric sense) to empirical sets having the same fractal dimension over
an appropriate range of scales. However, the theoretical framework of geometric
sets (monofractal functions supporting the IFS technique) is inadequate for
analysing stochastic multifractal fields such as those playing a fundamental role in
modelling scaling geophysical phenomena. This is because multifractals are res-
olution-dependent singular measures (Schertzer and Lovejoy, 1987, 1992), and
not just resolution-independent sets of points.

In this work we outline several new possible approaches to tackling the
problem of modelling and interpolating multifractal fields sensed by in situ
measuring networks; the generic multifractal process is the multiplicative cas-
cade. In the following we therefore make use of many of the properties of mul-
tiplicative processes and multifractals. We anticipate that our approach is valid
even if the actual support of the observed phenomenon is fractal.

2

Universal multifractals

In this section we briefly outline the relevant mathematical background. This
short introduction includes only the material strictly necessary to understand the
remaining part of the work; more details can be found, e.g., in Schertzer and
Lovejoy (1987, 1992). In addition, we discuss the effect of (multi) fractal sampling
on the statistics of the measured process, settling the question in terms of con-
ditional expectations, and we show how the analytical expressions describing the
statistical properties of the phenomenon should be modified (Salvadori, 1993).
Finally, we discuss the particular case of a fractal sampling network.

2.1

Mathematical background

For a stochastic multifractal field ¢; at resolution A > 0 (the ratio between the
largest scale considered L and the scale of observation [, i.e. 2 = L/I) the prob-
ability distribution function has the following multiscaling expression (Schertzer
and Lovejoy, 1987):

P{e; > '}~ 470 (2.1)
where y € R is called order of singularity, and ¢(y) is called codimension function.

Considering the statistical moments of ¢; of order g > 0, an equivalent multi-
scaling expression can be written:

E(e]) ~ 5@ (2.2)

where K(q) represents the scaling function of the moments. The functions ¢(y)
and K(q) form a Legendre transformation pair:

K(q) = max,{qy — ¢(7)}
{ c(y) = max,{qy — K(q)} (2.3)

which establishes a one-to-one correspondence between moments and singular-
ities:

Ukl -
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The statistical description of multifractal processes may be greatly simplified
considering (conservative) universal multifractals. In this case the functions K(q)
and c(y) are given by:

Ciod [ o
K@) =1 % @ —q, 271 2.5
(9) {Cl q In(q), a=1 (2:52)
and (via a Legendre transform):
G +h7, a#1
1 g 1 2.5b
<) { Cle(*//Cl)fl’ a=1 ( )

where 1/a+1/0/ =1,0 < o < 2 and g > 0 for a # 2. The parameter o is called
Lévy index (or degree of multifractality) and determines the probability class
of the process. The parameter C; > 0 is the codimension of the average field and
measures its sparseness and inhomogeneity. Universal multifractals are natural
models for scaling geophysical processes since they are stable and attractive, and
insensitive to the exact (non-linear) scale invariant dynamical mechanisms at
work.

As a last point of interest we note that, independently of the specific value of a,
there exists a characteristic order of singularity y, given by:

/

o
=—-C— 2.6
Yo 1 (2.6)

In fact, y, is either (for 1 < « < 2) the lower bound of non space-filling singu-
larities (for y < y,, ¢(y) = 0, i.e. space-filling singularities) or (for 0 < o < 1) the
upper bound of singularities (c(y) = oo for y > y,, i.e. unreachable singularities).

2.2

Conditional expectations and estimates

The estimating techniques presented later assume knowledge of the parameters o
and C; that identify the statistics of the multifractal process investigated. If these are
unknown, then they need to be estimated on the basis of the available data (see, e.g.,
Lavallée, 1991; Lavallée et al., 1991). However, geophysical monitoring networks
often show a (multi) fractal structure, which may affect the estimation of such
parameters (see, e.g., Tessier et al., 1994; Salvadori et al., 1994; Belli et al., 1995).

A very general way to understand the effects of (multi) fractal sampling is
to put the question in terms of the estimate of a (multifractal) field ¢ given a
(multifractal) field p. This leads naturally to consider the conditional expectation
of ¢ with respect to p (see, e.g., Shiryaev, 1996).

It is essential here to put on a firm theoretical ground the bases of conditional
estimate in a multifractal framework, deriving general relations between the
statistics of the relevant processes. As we shall see, despite the complexity,
straightforward relations will be derived for both the codimension functions and
the scaling functions of the moments of the interacting processes. Thus, multi-
fractal estimates are possible in a even more general framework than that of
discrete processes outlined later.

First of all, let us recall that random fields having equivalent ¢-algebras are
almost surely functionally related, and vice versa. In other words, the set &, of the
random fields equivalent to p can be defined as:



&, ={0:3f, o(p)-measurable, ¢ =f(p)as.} (2.7)
This has a major consequence for multiplicative processes: in fact, random fields
and their generators (Schertzer and Lovejoy, 1987) have equivalent g-algebras, as
it suffices to take f as the exponential function in Eq. (2.7).

The rather general definition of conditional expectation E(¢ | p) of ¢ with re-
spect to p corresponds to an orthogonal projection of & on &,. More formally:

E((E(e | p) — £)o) = 0 (2.8)

for all ¢ € &,. This shows that the “error” done approximating ¢ by means of its
conditional expectation E(s | p) € &, is orthogonal to &,. When the processes ¢
and p are independent, Eq. (2.8) reduces to E(¢ | p) = E(¢).

From the notion of conditional expectation E(e | p) it is possible to derive
(implicitly) that of conditional probability P{¢ | p}. A standard result states that:

P{c| p}P{p} = P{e, p} (2.9)
and if the processes ¢ and p are independent, Eq. (2.9) reduces to
P{e | p} = P{e}.

Since for multiplicative processes the probabilities scale as 2=, it is possible
to write (using shorthand notation):

A_Ce\p/"tl_cﬂ — A_Cli-ﬂ (210)

where c,, is the conditional codimension function of ¢ given p, and c; , is the joint
codimension function of ¢ and p. Then the following result for the codimension
functions holds:

Celp + Cp = Cep (2.11)
For independent processes, c,, = ¢; and hence (Intersection Theorem):
Cep = C:+Cp (2.12)

This states that the codimension functions of interacting independent fields simply
add - for instance, this could be the case of a multifractal phenomenon ¢ (e.g.,
rainfall or pollution) sampled by means of an independent multifractal network p.

Exploiting the above results, via a Legendre transform it is possible to derive a
corresponding formula for the scaling function of the moments:

Kijp(q) = max{qy, — cup(7::75) +€(7,)} (2.13)

where K, is the conditional scaling function of the moments of ¢ given p. Then,
as before, for independent processes Ky, = K, and by the same token:

Ke,p =K;+ Kp (214)

showing how the scaling functions of the moments of interacting independent
fields simply add.

Let us investigate in more detail the case of a fractal monitoring network.
Assuming independence between the phenomenon ¢ and the network p sampling
it, the moment scaling function K,(q) of the process p actually measured
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(conditionally to the presence of a sparse independent network) and that of the
“true” unknown process ¢, K;(q), are related by (See Eq. (2.14)):

K.(q) = K:(q) + K, (q) (2.15)

where K,(q) is the moment scaling function of the network density. Therefore,
proper corrections should be applied when estimating the multifractal parameters
(see, e.g., Tessier et al., 1994; Salvadori et al., 1994). In case of a fractal network
(i.e., taking the limit o« — 0" in Eq. (2.5a)):

Ky(q) = Cip(q —1) (2.16)

where C; , is the codimension of the network. Note that introducing a simple
scaling network is equivalent to multiplication by a monofractal field. The co-
dimension C; , of the network is easy to estimate: for instance, considering data
distributed on a regular mesh (e.g., analysing satellite pictures) the box-counting
algorithm may be used (see, e.g., Mandelbrot, 1983; Falconer, 1988, 1990; Feder,
1989). Then, the empirical data may be properly filtered before being used.

3
Multifractal estimate
In this section we present some techniques to provide estimates of a multifractal
field both at resolution 4 and at resolution A > A, given some samples at reso-
lution A. The underlying idea is to first calculate the probability structure of the
field of interest, and then to try and approximate the field itself by means of the
most likely value of the process. For the sake of clarity, in Table 1 we summarize
the notation used throughout the paper; see also Fig. 1 for a graphical illustration.
The basic assumption is that the parent field ¢; = 2’ at resolution / is gener-
ated by means of a sequence of k cascade steps from resolution 1 to 4 (each
smgle step hav1ng a scale ratio /, for a total scale ratio 4 = 4 ). Then, the off-
spring field ey = A" at resolution A is obtained by means of a single cascade step
(scale ratio A) from resolution A to A. In Figs. 1 and 2 we illustrate the cascade
algorithm and the purposes of the estimating techniques introduced below.
Given the stated assumptions, we may write the following relations:

k J k .
p=1]" = PRy (3.1a)
i=1

r__ M i Z:ﬁf Vi 4y 3Tkn
=[["" =~ = (3.1b)
i1

Table 1. Illustration of the notation used throughout the paper

Explanation

Resolution of the parent field (scale 1/4)
Parent order of singularity

Resolution of the offspring field (scale 1/A)
Offspring order of singularity

Scale ratio (A = A/1)

Order of singularity of multiplicative factors
Number of cascade steps (k = In(4)/1In(4))

2N > N
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Fig. 1. Graphical illustration of the purposes of the estimating techniques explained in the
text. First, it is supposed that an offspring field ¢4 at resolution A (scale 1/A) is generated
starting from a parent field ¢, at resolution A (scale 1/1) by a single step of a multiplicative
cascade mechanism (here with scale ratio A = 3): the downwards continuous arrows rep-

resent the i.i.d. factors A'. Then, a portion of the offspring field is missed in some locations
due to the sampling by a network with gaps, here indicated by empty boxes. Finally,
estimates of the parent field or of the offspring field are provided (thick dashed lines), using
only the available offspring data (upwards dashed arrows for the parent estimate, down-
wards dashed arrows for the offspring one)
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Fig. 2a-d. Graphical illustration of the simulation procedure. a First a parent field (7,
i=1,...,4, at resolution 4 = 16 is simulated (“for\p(rard” direction). b Then, for each
parent value /', 1 = 4 i.i.d. multiplicative factors A" *,j=1,..., ], are generated, and an

offspring field AT — /f"“‘)f’y(w), m=1,...,A, at resolution A = )/ = 64 is obtained
(“forward” direction). ¢ Finally, a network at resolution A covering only 25% of the off-
spring field is simulated, being equal to one when the local value A" can be used by any
estimating technique, zero otherwise. d The resulting spotty field (markers) provides only
partial information about the original field (dashed line): for each parent box, a random
number of offspring values (varying from zero to 1) is available to run some procedure for
estimating either the parent field (“backward” direction) or the offspring field itself



where the random variables {/1 "} - equivalently, via the invertible transformation
5 < /', the random singularities {};} - are 1 1 d., and have (w1th1nknon exponential

prefactors) a probability density given byA .Inturn,since A = 1 ,wemaydeduce:
1 k
=, Z 7 (3.2a)
14+ =ky+ 9 (3.2b)

From Eq. (3.2) we see that the parent singularity 7y at step k is simply the average
of the singularities {};} corresponding to the i.i.d. multiplicative factors. Also:

T=0+kIT —ky (3.3)

which expresses the order of singularity 7 of the last multiplicative factor as a
linear function of both the corresponding parent order of singularity y and the
offspring order of singularity I'.

3.1

Estimating at the parent resolution

The first technique presented is called Most Likely Parent (MLP). The goal of this
method is to estlmate the 1nten31ty /7 of a field ¢, at resolution A given some

samples {ep , = = A"}, n=1,...,N, at resolution A. For a schematic illustration,
see Fig. 1.

Suppose that N offspring values are measured (the non-empty cells in Fig. 1).
Let us denote by 7 the vector j = (7, ..., Jy) of singularities corresponding to the

N multiplicative factors, and by I the vector I = (I';,...,'y) of the offspring
singularities actually observed, all sharing the same parent singularity y (see
Fig. 1). Since the multiplicative factors {j,} are i.i.d. and independent of the
(common) parent singularity 7, the joint density p(y,7) of {y,7} is easily com-
puted. Considering the (linear) invertible N-dimensional transformation § < T,
i.e. the N-dimensional version of Eq. (3.3), the joint density p(y, ) of {y,I'} is:

p(: D) = 7lp(», 7(», 1)) = (1 + k)"p(3,5(», ) (3.4)

where ] is the Jacobian of the N-dimensional transformation matrix.
Now, the conditional density p(y | I') of the parent singularity y given I can be
written as:

p(y,I)
p(D)

where the marginal density p(I') of I does not depend upon y. Mimicking the
Maximum Likelihood strategy, we may think of estimating the (common) parent
singularity y by means of that value § which maximizes the probability p(y,I) -
and hence also p(y | I') - of observing the offspring singularities I', viewed as a
function of y. In a few cases, this can be done analytically (e.g., when o = 2 - see
Sect. 4), otherwise it can be carried out using numerical routines.

The MLP method is rather interesting from a computational point of view: in
fact, only a one dimensional maximization (with respect to the single variable y)
is required. Although the approximation provided by the MLP technique might

p(y| L) = (3.5)
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look somewhat crude, it has the advantage of being easy to compute and it
suffices for many practical purposes.

Let us consider the codimension function c(y, I, k) = ¢(I'y, + k(I', — y)) of
the multiplicative factor §, rewritten in terms of {y,I',} by means of Eq. (3.3).
Then, from Eq. (3.1) we may deduce:

N
(1. o 10 ST

)Y AT k(T ) (3.6)

which shows that p(y,I') can be split into two components, one corresponding to
a positive sign of 7, and the other to a negative sign. Therefore, while one com-
ponent of the exponent is increasing with 7, the other is decreasing. Note that the
maximization of the function p(y,I’) is equivalent to a minimization of the
exponent in Eq. (3.6).

Let us define the characteristic order of singularity y, ,, # =1,..., N - see also
Eq. (2.6) - associated with the codimension function c(y, T, k):
1 o
Yo =DIn+ % (Cn+C ;) (3.7)

Using Eq. (2.5b) we may easily derive the following result.

Theorem 1 (Behaviour of p(y,I)).
As o ranges in (0, 2], the function p(y,I') behaves as follows.

e 0 < a < 1: over the interval
I= (m’fx{yo,n}a yO)

the function p(y, ) is positive and well behaved; hence, provided that I # (), a
maximum exists in I;

e o = 1: the function p(y,I') is defined over the entire y-axis, where it is positive
and well behaved, and it vanishes for y — +o00; hence a maximum exists;

e 1 < a < 2: over the interval

I = (5, min{y, , })

the function p(y,I) is positive and well behaved; hence, provided that I # (), a
maximum exists in I. O

Then, the quantity &, = 4’ will represent the MLP estimate of the field ¢, at
resolution A given the singularities I" at resolution A.

3.2
Estimating at the offspring resolution
The same reasoning underlying the previous technique, designed to work at the
parent resolution 4, can be exploited to provide estimates of the field at the
offspring resolution A. Clearly, this might be of interest in some specific situation,
e.g. for the local guess of the intensity of a natural process. For a schematic
illustration, see Fig. 1.

Let I indicate the offspring singularity corresponding to some unknown field
value 4 at resolution A. Recalling Eq. (3.4), and using the notation already in-
troduced, we may write:



p(7,T) < p(7,5(,T)) (3.8)

Now, substituting the MLP estimate j = (I’ ) for y in Eq. (3.8), we may provide
an estimate of I" looking for that value r maximizing p(I", T'), which is an implicit
function of the offspring singularities I" actually observed. In other words, we
look for the offspring singularity I' maximizing the probability of observing I.

The above technique is called Most Likely Offspring-Parent (MLOP). The ap-
proximation provided by the MLOP algorithm is based on the MLP value }, which
is not too difficult to be computed. However, the “error” committed calculating j
may be amplified, and the eventual estimate of I' may turn out to be somewhat
spoiled.

Following a more rigorous approach, we may consider the conditional prob-
ability p(T' | ) of T given L. In principle, its calculation requires the knowledge
of the joint density p(I',I') of {I', '}, which is not known, I being unknown.
However, recalling Eq. (3.4), we may first consider the joint density p(T,y, L) of
{T,y,T}, and then derive the desired function as a marginal probability by
“integrating out” y. In fact, introducing and then eliminating the variable y, we
may eventually obtain the following expression:

p(T'|L) = /p(f,v | D)dy zﬁ/p(i%DdV (3.9)

where p(T,y,I) is the joint density of {T',y,I'}, which is a function of the un-_
known I'. Thus, we may think of estimating I' by means of the most likely value I'
maximizing p(I" | [), i.e. just the integral in Eq. (3.9); clearly, the marginal
density p(I') of I can be factored out. As before, the domain of integration is the
interval I discussed in Theorem 1. This technique is called Most Likely Offspring
(MLO); it generally requires the repeated evaluation of the integral in Eq. (3.9),
which may represent a heavy numerical task.

Overall considering either the MLOP or the MLO technique, the quantity
én = Al will represent an estimate of the field ¢4 at resolution A given the
singularities I at resolution A.

4

Results and discussion

In this section we test some of the estimating techniques outlined in Sect. 3 on
simulated fields, and we discuss their usefulness in practical applications. More
particularly, we illustrate both multifractal interpolation over a single cascade
step and over multiple cascade steps, and we also discuss the propagation of the
errors in a scaling framework.

Although the estimating procedures proposed are valid for any admissible
value of o € (0, 2], here we only use simulated lognormal fields (i.e., & = 2), which
are easy to generate and whose statistical features are simple to handle from a
theoretical point of view: in fact, in this particular case, we may write explicitly
the analytical expressions of both the MLP and the MLOP estimators (see The-
orem 2), thus limiting the use of numerical approximations. We believe this may
suffice for the illustrative purposes of the paper. The offspring fields are then
sampled by means of fractal networks of known codimension, so that only a small
percentage of the fields is used as input source for the interpolation: this imitates
the sampling procedures involving real networks. Finally, the estimating tech-
niques are run, and the results compared to the simulated fields. In the following
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we shall use the terms “forward” to indicate the direction in which the simulation
(i.e., the multiplicative cascade) develops - from small to large resolutions, and
“backward” for the direction in which the estimating procedures work - from
small to large scales.

In Fig. 2 we sketch the whole procedure. (a) First a parent field
X"(”, i=1,...,4, at resolution / = 16, is simulated (“forward” direg;(io)n). (b)
Then, for each parent value 2/, 1 = 4 i.i.d. multiplicative factors "~ ,
j=1,...,J,are generated, and an offspring field A" = }f/(i)/fy(m, m=1,..., A,
at resolution A = A1 = 64, is obtained (“forward” direction). (¢) Then, a network
at resolution A covering only 25% of the offspring field is simulated, being equal
to one when the local value A™™ can be used by any estimating technique, zero
otherwise. (d) Finally, for each parent box, a random number of offspring values
(varying from zero to A) is available to run some procedure for estimating either
the parent field (“backward” direction) or the offspring field itself.

As already mentioned above, the use of lognormal fields gives us the possibility
of providing analytical solutions (instead of numerical approximations) to the
estimation problem, since the codimension functions ¢(-) involved in the prob-
ability densities p(-) of interest are quadratic forms (see Eq. (2.5b)). The proof of
the results shown below is elementary, though lengthy and tedious, and will not
be shown here: after all, it is just a matter of minimizing the quadratic in the
exponent of Eq. (3.6), obtained from a quadratic ¢(y), and then taking expecta-
tions of the resulting expressions as presented in Theorem 2. Overall, we may
state the following result; the notation is the same as in Sect. 3.

Theorem 2 (MLP and MLOP estimators).
For a lognormal multifractal field, the following estimators are unbiased and
consistent:

e MLP: considering the MLP technique (see Sect. 3.1), the value ) maximizing
the function p(- | ) is given by:
(N-1DC+(1+K)> Ty
1 + Nk
e MLOP: considering the MLOP technique (see Sec. 3.2), the value r maximizing
the function p(- | 7(I')) is given by:
—Ci+ k> T
1 + Nk

7=

= ]

The two estimators are similar: essentially, they are averages of the known
singularities, the major difference being an additive constant (i.e., a multiplicative
factor within the cascade formalism) accounting for the different resolutions

of the parent and the offspring fields. It is worth pointing out that, if I" is used
to provide further estimates of the offspring field, the new values will not differ
from &,.

To check whether or not the estimating procedures are able to reproduce the
statistical features of the simulated fields, we use the two-sample Kolmogorov-
Smirnov test (KS) - see, e.g., Rohatgi (1976), Kottegoda and Rosso (1997). Ac-
cordingly, we calculate the value of the test statistics:

Dgs = I)I(lealgiﬂFs(x) — Fg(x)[}



where Fs and Fg represent the distribution functions of, respectively, the Simu-
lated and the Estimated fields. In turn, we compute the significance level p of the
test. These parameters provide a quantitative indication about the possibility that
two fields are drawn from the same population or, more precisely, that they have
the same distribution function: practically, the closer p is to 1, the higher is the
probability that the two fields have the same distribution. A

In the examples below, we always compare the MLP estimate &, = A" to the
actual value of the parent field. Also, since for lognormal fields the most likely
value corresponds to the median, the MLOP estimate éy = A" is always compared
to the sample median calculated using all the offspring singularities sharing the
same parent box (the one corresponding to the MLP estimate ¢, used by the
MLOP technique). Hereafter “PF” and “MOF” will indicate, respectively, the
Parent Field and the Median of the Offspring Field.

4.1

Interpolating over a single cascade step

As a first application, we use here a lognormal offspring field (« = 2, C; = 0.5) at
resolution A = 2'¢ (not shown) and a fractal network sampling only &~ 25% of the
offspring field; the parent field considered is at resolution 2 = 2%, corresponding
to a scale ratio A = 256. Such a large scale ratio may be illustrative of a practical
situation when, e.g., starting from a few sparse daily measurements of rainfall, an
estimate of the annual precipitation is sought, i.e. at a (temporal) scale much
larger than that of the observations. The visual inspection of Fig. 3 shows that the
estimates provide a good reproduction of the “true” fields (wherever possible),
including the fluctuating behaviour, the trend of the field, and the values of the
extrema: this is noteworthy, since both the PF and the MOF range over about six
orders of magnitude; in addition, the estimates are based only on the knowledge
of about 25% of an offspring field spanning about 13 orders of magnitude (from
~1078 to ~#10°). Therefore, given such an extreme variability and the “spotty”
nature of the network, the results should indeed be considered reasonable. Also,
according to the KS test, the statistical features of both the PF and the MOF are
matched: in fact we find, respectively, Dxs =~ 0.034 and Dgs ~ 0.042, with a sig-
nificance level p always greater that 99%. Thus, even the KS test indicates an
overall ability to reproduce the statistics of both the PF and the MOF.

As a further application, we use a lognormal offspring field (¢« = 2, C; = 0.5) at
resolution A = 2'° (not shown) and a fractal network sampling only 25% of the
offspring field; the parent field considered is at resolution 4 = 28, corresponding
to a scale ratio 4 = 4. Such a small scale ratio may be illustrative of a practical
situation when, e.g., starting from sparse daily measurements of rainfall, an es-
timate of the weekly precipitation is sought, i.e. at a (temporal) scale comparable
to that of the observations; it should be noted that, if small scale ratios are used,
then only a very limited amount of offspring information can be used to run any
estimating technique. Once again, the visual inspection of Fig. 4 shows that the
estimate of the “true” fields (wherever possible) is empirically acceptable: the
fluctuating behaviour is fairly well reproduced, as well as the trend of the field.
The estimate of the extreme values is more difficult, especially in the case of the
MLOP technique: however, this was expected, since both the PF and the MOF
range over about six orders of magnitude, and at most four offspring samples
(4 = 4) are available in each parent box to provide an estimate of the field of
interest. Therefore, we may consider the results as valuable. The KS test returns,
respectively, Dgs =~ 0.078 and p ~ 85% for the MLP technique, and Dgs ~ 0.125
and p ~ 32% for the MLOP technique. While in the former case the result looks
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Fig. 3. a Example of application of the Most Likely Parent technique. Here PF indicates the
Parent Field (line) and MLP the Most Likely Parent estimate (marker). The parent reso-
lution is 4 = 2% and the offspring resolution is A = 2!°. b Example of application of the
Most Likely Offspring-Parent technique. Here MOF indicates the sample median of the
Offspring Field (line) and MLOP the Most Likely Offspring-Parent estimate (marker). The
parent resolution is 4 = 2% and the offspring resolution is A = 21¢

acceptable, in the latter case it should not be considered as a failure of the
algorithm, since the test itself is not quite meaningful given the actual sampling
conditions: in fact, the estimator of the offspring sample median is based on only
A = 4 values, and hence its reliability is questionable (but these are the actual
sampling conditions); thus, most of the “uncertainty” is hidden in the estimate
of the sample median and not in the MLOP method itself.

4.2

Interpolating over multiple cascade steps

A further point that is worth investigating is the behaviour of the estimating
techniques when the scale ratio is as small as possible (i.e., A = 2 in the present
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Fig. 4. a Example of application of the Most Likely Parent technique. Here PF indicates the
Parent Field (line) and MLP the Most Likely Parent estimate (marker). The parent reso-
lution is 4 = 2% and the offspring resolution is A = 2!°. b Example of application of the
Most Likely Offspring-Parent technique. Here MOF indicates the sample median of the
Offspring Field (line) and MLOP the Most Likely Offspring-Parent estimate (marker).
The parent resolution is 4 = 2% and the offspring resolution is A = 2

discrete case) and the algorithms are systematically run backwards to provide
estimates at larger and larger scales. Such a test is needed in order to understand
the actual performance of the procedures when using continuous cascades
(Schertzer and Lovejoy, 1987), which represent the closest multifractal “ap-
proximation” to natural phenomena. By the same token, it is also possible to
check what happens when large scale estimates (necessarily based on smaller scale
estimates) are calculated, a situation which may frequently arise in practical
applications. This example may be illustrative of a practical situation when, e.g.,
starting from sparse daily measurements of rainfall: (a) first an estimate of the
weekly precipitation &y is sought; (b) then, using the field &y as input data, an
estimate of the monthly precipitation &y is sought; (c) further, using the field &y
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as input data, an estimate of the seasonal precipitation & is sought; (d) finally,
using the field & as input data, an estimate of the annual precipitation &, is
sought. It should be noted that such a scheme involves a small scale ratio of the
order of about four, and then only a very limited amount of input information can
be used at any step to run the backward algorithm; in addition, only at the first
step the actual direct observations of the offspring field are used to provide
estimates at a larger scale.

As an example, we simulate a lognormal offspring field (¢ =2, C; = 0.1) at
resolution A = 2!° (not shown) and a fractal network sampling only & 25% of the
offspring field. Then, a sequence of backward parent estimates is performed: in
Fig. 5 we show a set of six successive backward estimates using a scale ratio 1 = 2,
with a parent resolution 4 decreasing from 2° to 2%. The results presented are
somewhat typical, as observed in many other tests. The visual inspection of Fig. 5
shows that, in general, the backward estimates provide a fairly good reproduction
of the “true” fields (wherever possible), including both the fluctuating behaviour
and the trend. The agreement between simulated and estimated fields is measured
by the significance level p of the KS test. As a general rule, p may fluctuate
(especially considering the very first steps of the backward procedure), whereas it
seems to converge to one in the successive steps: such a typical behaviour may be
explained noting that, on the one hand, at larger and larger scales the fields
become less and less extreme, and consequently the magnitude of the errors
decreases and the agreement between simulated and estimated fields improves; on
the other hand, it should be pointed out that using a scale ratio as small as 4 = 2
means that at most two small-scale values can be used to provide a large-scale
estimate (i.e., only a minimum amount of information is available for each
estimate). Thus, the results shown in Fig. 5 are interesting.

4.3

Error propagation

A final point that is worth developing is the analysis of the error occurring in the
backward estimate procedure. A natural way to define it and to study its statistics
is to introduce an error function ¥ as follows:

9:.2.(q) = E(lers, — €1,1%) (4.1)

where g > 0 is the order of moment, ¢; ,, and &, ;, are, respectively, the “true”
field and the estimated field at resolution 4, and 4, is the extrapolation scale ratio:
for instance, starting with an offspring field at resolution A and estimating at the
parent resolution 4 yields /1, = A/ A

The function ¥, ;,(q) depends upon both 4 and Z.: in a way, we may think of
the backward estimated field ¢, ;, at resolution /, starting with an offspring field at
resolution A, as being the product of the “true” field ¢ times an intermediate
independent (multiplicative) “cascade of errors” ¢, which develops from reso-
lution A up to resolution A, i.e. spanning from 1 to A, in resolution. This fac-
torization is taken into account as follows:

0;.4,(q) ~= K@ ;K@) (4.2)

where K(q) is the standard moment scaling function of ¢, and K,(q) is a function
tuning the (scaling of the) error. On the one hand, the term 7X@ regults from the
fact that, introducing more and more cascade steps while keeping 4, fixed - i.e.
taking larger and larger 4 and A - forces both ¢; and ¢, to be multiplied by
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Fig. 5a-f. Example of iteration of the Most Likely Parent technique to calculate backwards
estimates. The continuous line indicates the simulated values, and the markers the esti-
mated ones; also reported is the significance level p of the two-sample Kolmogorov-
Smirnov test. From a to f, the parent resolution / is systematically reduced from 2° to 2*
using a scale ratio 4 = 2. The estimates in (a) are calculated using the actual offspring
values at resolution A = 2! (not shown), whereas all the others are based on parent
estimates obtained at the previous step

additional random factors, which can be factored out in Eq. (4.1); on the other
hand, the term )tff(q) rules the (scaling) dynamics of the error as a function of
the extrapolation scale ratio. Thus, we may define a new error function 0 as
follows:

E(leis, — &2l 9iaa) _ ik
0,(q) = e “htel ) it d) o oK) 43
ve(q) E(SZ) E(g?) e ( )

which depends only upon 4, and gives the possibility to study K.(q) directly.
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Fig. 5a-f. (Continued)

A further way to get information about the relationship between “true” and
estimated fields is to calculate the double-indices generalized correlation coeffi-
cients given by:

E(Sql éqz)

E(g‘h'*“lz) (4'4)

Clq1,92) =

where the dependence upon A and /. is momentarily dropped. In our case, we
find it easier to work with the single-index correlation function defined as:

E(&987)

C(q) =C(q,9) = B(4) (4.5)



Since ¢ is supposed to be given by ¢ times an independent “cascade of errors”
from resolution A up to resolution A, we may infer that:

Ci.(q) ~ 2,7 (4.6)

where the function K.(q) rules the correlation dynamics and should be non-
negative and should equal zero for g = 0, so that C;,(0) = 1. Clearly, if the two
fields ¢ and & are (almost surely) identical then K.(q) = 0. Otherwise, if they are
statistically independent, we obtain:

Cs,(q) ~ AP0 7K@ (4.7)

to within a constant factor, which represents an upper bound. In the lognormal
case (i.e. o = 2), we may thus establish the theoretical bounds:

0 < Ke(q) <2Ciq° (4.8)

Below we present an empirical analysis of the error. The study is based on 200
independent simulations of an offspring field at resolution A = 2'°, with pa-
rameters o = 2 and C; = 0.4; in fact, since the scaling is only an “ensemble”
property which can be badly broken on any single realization (this is why the
operator E(-) is used), we need to check it on a large data base. The extrapolation
scale ratio A, ranges from 2 to 1024.

In Fig. 6a we show C;,(q) vs. 4, on a log-log scale, for several values of g: a
scaling behaviour is fairly well present over all the investigated scales; then,
Fig. 6b shows the corresponding estimate of K.(g). The function K (g) satisfies,
within the numerical approximation, the requirements previously described: in
particular, the theoretical bounds of Eq. (4.8) hold. In addition, for g < 1 (cor-
responding to weak events giving negligible contribution to the mean), the error
is roughly maximal. This is presumably a consequence of the fact that the
interpolation is mostly sensitive to the larger singularities corresponding to q > 1.

The interpretation of the function 6,,(q) is more involved and delicate, since it
may be given by the superposition of different scaling behaviours. Actually,
Fig. 7a shows 0;,(q) vs. 1, on a log-log scale, for several values of g, and a scaling
regime can be identified roughly for small A.. The corresponding estimate of
K.(q) is plotted in Fig. 7b: as expected, it is positive and increasing, meaning that
the error gets larger as the extrapolation scale ratio 4, grows; apparently the
amplification of 0,,(g) is non-linear, and therefore the quality of the estimate is
also expected to be increasingly worse at larger and larger scales. For the sake of
comparison, in Fig. 7b the function K(q) of the simulated field is also plotted: for
q small K,(q) is comparable (in magnitude) to K(g), and then it grows much
slower than the latter function. Thus, it is true that the quality of the estimate is
increasingly worse, but the rate at which it gets bad is apparently moderate.

5

Conclusions

The present research was motivated by the need to understand and model natural
phenomena showing multifractal features. Several facets were investigated: first,
the problem has been posed in the general framework of conditional expectations,
and the effects of (multi) fractal sampling on the statistics of the measured
process were analysed; then, several techniques were introduced to estimate the
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Fig. 6. a Plot of the function C;,(q) vs. /. on a log-log scale for several values of g.
b The corresponding estimate of the function K.(g) (continuous line); also indicated is
the theoretical bound of Eq. (4.8) (dashed line)

intensity of a multifractal process in locations not sampled by a monitoring
sparse network, all revolving around the idea of approximating the unknown
values by means of statistical most likely estimates of the process.

Numerical tests of the theory look encouraging: the structure of the model is
simple and the basic assumptions are not too strict or as demanding as in some
conventional techniques. Moreover, the proposed techniques seem to provide an
empirically acceptable reproduction of the “true” fields, including their fluc-
tuating behaviour, their trend, and the values of the extrema - even in cases
when the simulated fields range over many orders of magnitude. This is
noteworthy, since the estimates are usually based on the knowledge of only a
small percentage of the input fields. In addition, the KS tests seem to indicate
an overall ability of the estimation techniques to reproduce also the statistics of
the simulated fields.
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Fig. 7. a Plot of the function 6,,(q) vs. /. on a log-log scale for several values of g.
b The corresponding estimate of the function K,(q) (continuous line); also indicated is
the function K(g) of the simulated field (dashed line)

Furthermore, the systematic backward iteration of multifractal interpolation
provides interesting information on the behaviour of the techniques when large
scale estimates (necessarily based on smaller scale estimates) are calculated - a
situation which may frequently arise in practical applications. It is worth stressing
that such tests are also needed in order to understand the actual performance of
the procedures when using continuous (in scale) cascades, the closest multifractal
“approximation” to natural phenomena.

Finally, the scaling analysis of the errors shows how the (rate of the) error
grows and the (rate at which the) quality of the estimate gets worse when in-
creasing the extrapolation scale ratio, and also the way the correlation between
the “true” and the estimated fields fades away.

We are still far from exploiting all the potentialities hidden in the mathematics
of multifractals. Several refinements are still needed, both of a theoretical and of a
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computational nature, in order to improve the techniques introduced and their
performance. For example, stronger tests are needed to evaluate to what extent
the algorithms are able to (locally) reproduce the fields of interest. Furthermore,
an essential point in practical applications is the computational performance of
the algorithms; this might be of interest for, e.g., risk assessment in case of
environmental pollution accidents, when estimates at large scales (i.e. at the
parent resolution) are needed in real-time, relying only on extremely spotty
measurements (see, e.g., Salvadori et al., 1994, 1997; Belli et al., 1995; Schertzer
et al., 1995). In our case the whole estimation procedure is not computationally
too demanding and time consuming. Indeed, since natural phenomena are often
sampled by means of (multi) fractal networks, the above techniques may repre-
sent a useful contribution to the ongoing investigations concerning the estimate
of multifractal fields, and may have fruitful applications in many areas of geo-
physical and environmental sciences.
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