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Abstract Models of coalescence-decompressive expan-
sion of the later stages of bubble growth predict that for
diverse types of volcanic products the vesicle number
densities (n(V)) are of the scaling form n Vð Þ / V�B3�1

where V is the volume of the vesicles and B3 the 3-
dimensional scaling (power law) exponent. We analyze
cross sections of 9 pumice samples showing that over the
range of bubble sizes from �10 mm to 3 cm, they are well
fit with B3�0.85. We show that to within experimental
error, this exponent is the same as that reported in the
literature for basaltic lavas, and other volcanic products.
The importance of the scaling of vesicle distributions is
highlighted by the observation that they are particular-
ly effective at “packing” bubbles allowing very high
vesicularities to be reached before the critical percolation
threshold, a process which—for highly stressed mag-
mas—would trigger explosion. In this way the scaling of
the bubble distributions allows them to be key actors in
determining the rheological properties and in eruption
dynamics.

Keywords Gas vesicles · Scaling · Explosive volcanism ·
Vesiculation · Fragmentation · Plinian pumices ·
Coalescence.

Introduction

Vesiculation and fragmentation of magmas greatly in-
fluence the magnitude of volcanic explosive energies and
contribute significantly to total atmospheric gas emis-
sions; their understanding has long challenged geologists
(e.g., Sparks 1978; Papale and Dobran 1993; Thomas et
al. 1994; Gardner et al. 1996; Kaminski and Jaupart 1998;
Papale 1999). At depth magma is mostly dominated by a
bubble-free liquid phase; as the magma ascends it reaches
a saturated or supersaturated level where bubble nucle-
ation occurs (Mangan and Sisson 2000). These small
bubbles grow at first by diffusion and decompression (e.g.
Sparks 1978) and then, as increasingly recognized, by
coalescence (Herd and Pinkerton 1997; Klug et al. 2002;
Polacci et al. 2003) and even binary (Lovejoy et al. 2004)
and multibubble coalescence decompressive expansion
(Gaonac’h et al. 2003). Finally the highly vesicular
magma undergoes fragmentation (Kaminski and Jaupart
1998). Although in classical fragmentation processes
bubbles play only a passive role, in new percolation
models (Gaonac’h et al. 2003) they play a fundamental
active role. At a critical vesicularity, the bubbles join
together to form infinite networks catastrophically weak-
ening the magma. In this way bubbles are central at each
phase of the eruption and its aftermath.

Many studies have examined the small to medium
vesicles present in silicic magmas and interpreted their
vesicle size distributions (VSD’s) purely in terms of
nucleation, diffusion and decompression, hypothesizing
them to be from a narrow range of size distributions
(often exponential; Cashman and Mangan 1994; Klug and
Cashman 1994; 1996). In these frameworks, the largest
vesicles are not adequately treated even though they can
easily dominate the total vesicularities. In contrast Gao-
nac’h et al. (1996b) showed that in basaltic lavas, power
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law (scaling) VSD’s better represent the overall size
distribution of vesicles, with the cumulative number size
distribution per unit volume a power law of V where V is
the vesicle volume. The 3-dimensional scale invariant
exponent, B3, has a value of �0.85 from 500 mm to a few
cm. An obvious and important characteristic of power
laws is that they relate the gas vesicles from one scale or
size to another in a way that does not involve a charac-
teristic size. They can be represented by a linear trend in a
log10-log10 diagram between all the measured sizes.

More recently, empirical power law VSD’s in explo-
sive (Gaonac’h et al. 1997; Simakin et al. 1999; Klug et al.
2002) volcanic products as well as in laboratory experi-
ments (Simakin et al. 1999; Blower et al. 2001) have been
found, with B3 values not far from 0.85 (see below). To
explain this behavior, mechanisms that repeat themselves
from scale to scale are required; several have been pro-
posed, the basic one being binary coalescence (an effec-
tive collision between two bubbles) which under relatively
general conditions leads to power law VSD’s (Gaonac’h
et al. 1996a, Lovejoy et al. 2004). Recently, Gaonac’h
et al. (2003) have suggested that in high vesicularity
magmas ternary and higher order multibubble coalescence
could give rise to a slightly larger B3 (the theoretical value
is B3,per=1.186) for magma near the critical percolation
point. In such a scenario bubbles join into an infinite
network possibly causing the fragmentation of the magma.
However, empirical values are invariably from 2-D cross-
sections; the corresponding values are extrapolated to 3-D
by assuming convex bubbles leading to a theoretical value
B2–3,per=1.037. The difference between B3,per and B2–3,per
is due to the nonconvexity of the bubbles. This is very
close to the scale invariant exponent of 1.1€0.1 found by
Klug et al. (2002). Finally, Blower et al. (2001) suggested
a noncoalescence mechanism based on a nucleation-dif-
fusion process occurring in a fractal hierarchy leading to
a B3~0.82. In addition on purely empirical grounds,
Gaonac’h et al. (1996a) suggested that the very small
bubbles dominated by diffusion-decompression growth
also have a power law regime, although with a lower B3
value of �0 (Gaonac’h et al.1996a).

The scaling of vesicle size distributions is a central
notion in theories of bubble growth and magma frag-
mentation (Gaonac’h et al. 1996a; Lovejoy et al. 2004). In
spite of the emerging consensus about power law VSD’s,
even for a single type of volcanic product, there is no
consensus on the unicity of the exponents (e.g. two basic
values, one for the binary coalescence, another one for the
multibubble coalescence), nor the corresponding range of
scales over which the scaling holds. The resolution of
these issues has immediate bearing on the debate about
the bubble growth mechanisms, and hence on the impli-
cations on the possible fragmentation of the magma. In
this paper we present additional empirical evidence in
favor of power law distributions of vesicle size distribu-
tions in Plinian fallout products and propose a unifying
explanation for the different observed exponents includ-
ing those from Plinian and effusive samples. Because the
basic value (0.85) allows particularly efficient packing of

small bubbles between larger ones, the creation of infinite
bubble networks (percolation) is postponed until quite
large vesicularities are reached (�70%), thus potentially
explaining the eruption as a critical percolation process
(Gaonac’h et al. 2003).

Scale invariant distributions

In a scaling regime, the number density n(V) of the ves-
icles (mm�6) in each sample is a power law as a function
of V, the volume of the gas vesicle (Gaonac’h et al.
1996b):

n Vð Þ / V
V�

� ��B3�1

ð1aÞ

where B3 is the 3-D scale invariant exponent. When B3<1,
the scaling must have an upper bound which we will take
as V*. For B3<1, The total vesicularity P of the sample is
given by:

P ¼ P�
V

V�

� �1�B3
V < V� ð1bÞ

It is much easier to study vesicle area distributions
from sample cross-sections rather than vesicle volume
distributions. In Gaonac’h et al. (1996b) we developed a
method for such 2-D analyses. It is convenient to use
cumulative number distributions which provide a more
regular trend than number densities. We therefore intro-
duced in Gaonac’h et al. (1996b) for 2-D measurements:

N2 A0 > Að Þ � N�2
A

A�

� ��B2
A� A� 0 < B2 < 1

ð2aÞ

N2 A0 > Að Þ � N�2
A

A�

� ��B2
A < A� B2 < 0 ð2bÞ

where N2(A0<A) and N2(A0>A) are the increasing and
decreasing cumulative numbers of vesicles per unit
area, respectively smaller and larger than A (referred to
N2(mm�2) in the figures). A* and N2* correspond to the
characteristic areas and characteristic cumulative number
densities of the distributions; the subscript indicates the
dimension of space. The notation is borrowed from
probability theory where Pr(A0>A) denotes the probability
of a random vesicle A0 exceeding a fixed A.

For convex bubbles, the relation between the 2-D and
3-D exponents is particularly simple (Gaonac’h et al.,
1996b):

B3 ¼
2
3

B2 þ
1
3

ð3Þ

N�3 ¼
N�2ffiffiffiffiffi
A�
p ð4Þ

Strictly speaking these results are only valid for con-
vex bubbles such as those commonly found in basalts.
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However, at high vesicularities, bubbles can be extremely
complex and non convex, and a single such bubble when
viewed in cross section may appear as several. Thus,
equations (3,4) must be used with caution. This is why for
the pumice analyzed below we do not attempt to extrap-
olate our distributions from areas to volumes (see Gao-
nac’h et al. 2003 for discussion).

Plinian pumice vesicles

There is a growing need to characterize the very large
range of vesicle sizes observed in Plinian samples, as well
as in other types of volcanic products. Here we present
some new analyses and then compare them with pub-
lished vesicle size distributions. The samples analyzed
have been produced by the Plinian Minoan and Middle
Pumice eruptions at Santorini volcano (see Gardner et al.
1996 for more details). The Plinian pumices were pre-
pared and analyzed on a cm-scale using the method de-

veloped by Gaonac’h et al. (1996b). Some samples were
sawn in two perpendicular sections to display the effect of
crosscutting, elongated vesicles on the size distribution.
The same samples were analyzed using back-scattered
electron microscopic images at the micron-scale. Fig. 1
shows examples at various scales. In each case, vesicles
of very different sizes are heterogeneously spatially dis-
tributed. Their shapes are very irregular and suggest in-
tense coalescence of smaller bubbles. In some samples,
vesicles appear elongated in variable directions, presum-
ably due to strain forces (e.g., Fig. 1e). While some au-
thors have proposed that bubbles continue to expand after
fragmentation (Gardner et al. 1996), their deformation is
more commonly thought to occur during pre-fragmenta-
tion processes where shear stresses in the magmatic con-
duit could be locally very strong (Klug et al. 2002;
Polacci et al. 2001, 2003). Moreover, Gardner et al.
(1996) suggested that the expansion of the bubbles should
be limited when magmas are viscous, as is the case for the
Minoan volcanic pumices. We therefore assume that our

Fig. 1 Digitized sections of a
Minoan eruption sample at
various resolutions: a, b and c;
digitized sections of a Middle
Pumice eruption sample at var-
ious resolutions: d, e, and f. The
viscosities of the degassed
magma were 5�106Pas,
4�105Pas and the eruption
temperatures were 870�C,
890�C respectively (Gardner et
al. 1996)
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Plinian samples mostly reflect the pre-fragmentation state
of bubble distributions. Finally, we note that deformation
of the bubbles does not necessarily modify the scaling
behavior of the vesicle size distributions.

By first considering the cm-scale Plinian pumice, we
observe a common scaling (power law) behavior of their
vesicle distributions with a scale invariant exponent
B2�0.75 (B3�0.85) indicated by a reference line (Fig. 2).
The outer limit of the scaling corresponds to the largest
cm-scale vesicle present in each sample (see Table 1,
Amax values); the inner limit corresponds to the smallest
observable vesicles at this cm-scale resolution (0.085 mm
corresponding to the digitized image resolution of
300 dpi). The empirical vesicle size distributions (Fig. 2)
are biased by two effects. First, the largest cm-scale
vesicles, with areas comparable to the image area, are
often truncated so that their areas are artificially low.
Second, the smallest vesicle number densities are biased
due to insufficient resolution with this method. These two
effects cause artificial decreases at both ends of the dis-

tributions. With these caveats, we consider that power
law fits in Fig. 2 are quite reasonable. We may expect the
scaling to continue beyond these two external limits since
larger bubbles are present in larger samples and smaller
bubbles are evident on magnified images.

Eq. 1b shows that for B3<1 the variability of the
vesicularity P of a pumice largely may be explained by
the presence or absence of large vesicles. This theoretical
result (Gaonac’h et al. 1996a) is also confirmed in the
Santorini pumice samples. The contribution of the
vesicularity (Pmax in Table 1) of the largest vesicle (for
example 1132.1 mm2, see Table 1) to the total vesicu-
larity (P in Table 1) in the samples studied varies from
10% (3.3/32.1 for a Minoan sample) to 73% (39.5/54.4
for a Middle Pumice sample). Such domination by the
few largest vesicles to the total vesicularity of a sample
has important consequences for estimates of the amount
of degassing and for bubble growth dynamics.

For investigation at higher resolutions, we have ana-
lyzed Plinian micron scale images. While data from the
different scale ranges (e.g., Fig. 1a,b,c for a Minoan sam-
ple) are grouped in a single diagram (Fig. 3), we note the
same decreases at large and small volumes of each data
set as in Fig. 2. In addition, there is another more subtle
bias which must be taken into account when comparing
enlarged microscopic sections with macroscopic centi-
meter sized samples. This arises because each micron
scale sample (e.g., Fig. 1c, where the size of the image is
millimetric) is deliberately selected from a plain region of
a larger sample area (e.g., Fig. 1a) situated between
millimeter or centimeter sized vesicles; if we had ran-
domly chosen the micro-scale data sets, we would have
often selected void vesicle sections of micron or larger
dimensions. In other words our microscopic sampling is
conditioned on the absence of large vesicles. Such biases

Fig. 2 The cumulative vesicle
size distributions N2(A0>A) of
Middle Pumice and Minoan
cm-scale samples show a com-
mon scaling behavior described
by a reference line with a slope
(scale invariant exponent)
B2�0.75 (B3�0.85). For clarity,
starting at the bottom, the nth
curve has been offset vertically
by (n-1) orders of magnitude.
The two top plots are from a
single Minoan sample cut along
two perpendicular directions (to
study possible effects of an-
isotropy); the others are Middle
pumice

Table 1 Estimates of the largest vesicle size (Amax) are based on
the macroscopic sample; the vesicularity (Pmax) is based on the
largest vesicle (Amax) and the total vesicularity (Ptotal) of the
pumice sample

Sample Amax (mm2) Pmax(%) Ptotal (%)

Middle Pumice 611.5 18.3 47.8
Middle Pumice 125.8 5.7 41.3
Middle Pumice 492.7 19.9 55.2
Middle Pumice 558.0 18.5 47.5
Middle Pumice 392.9 16.6 47.8
Middle Pumice 1132.1 39.5 54.4
Middle Pumice 248.0 20.4 49.5
Minoan 57.9 3.3 32.1
Minoan 60.4 4.7 31.6
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lead to micron-scale vesicle cumulative numbers which
are artificially too high when considering the whole cm-
range of scales (e.g., Fig. 1a). This multiplicative bias,
which grows with “zooming”, has been removed by
translating log10N2 (mm�2) downwards by an appropriate
amount (by �0.8, �1.4, �0.7, �1.0 for Fig. 1b, c, e, f,
respectively; see below for discussion). The translation is
performed so that the cumulative numbers of medium to
large vesicles of the micron scale image of a pumice
sample overlap vesicles of similar area from the cm-scale
image. Such processing effectively renormalizes the mi-
cro-scale count over the whole sample surface.

In Fig. 3 the B2�0.75 reference line for Middle Pumice
and Minoan samples indicates that this power law be-
havior may extend from the largest observable vesicle
down to the characteristic size A** (10�4.3 mm2 equiv-
alent to

ffiffiffiffiffiffiffi
A��
p

� 10 mm for Middle Pumice) and charac-
teristic number N2** (N2**=101.8 mm�2 equivalent to
N3**�1013 m�3 for Middle Pumice). As can be seen from
the figure in several instances, the lower limits of the
B2�0.75 regime roughly coincide with the upper limits of
a small bubble B2<0 (N2(A0<A)) regime, hence the double
star notation A** and N2**. Analyses of additional micro-

scale samples confirm the same exponent and show
ffiffiffiffiffiffiffi
A��
p

to be between 3 mm and 10 mm. Etnean lava vesicle dis-
tributions shown for comparison confirm that the exponent
B2�0.75 closely fits the distributions for all the products.
However, the Plinian pumice has much higher cumulative
numbers of much smaller bubbles. For example, the lower
bounds on the B2�0.75 regime, A**, is 3�10�11 m2 in
pumice (log10A(mm2)=�4.5) compared to 3�10�7 m2

(log10A(mm2)=�0.5) in Etnean basalt (Gaonac’h et al.
1996b), corresponding to 100 times smaller linear sizes
of pumice bubbles. To compare the pumice and basalt
values, the parameter N2** as presented in Fig. 3 is not so
useful since it is estimated at very different A**. If in both
cases we consider the number which exceeds the fixed
reference value 1 mm2, we find N2(>1mm2)�5�104 m�2

(log10N2(/mm2)=�1.3), 3�104 m�2 (log10N2(/mm2)=�1.5)
for the mean pumice and mean basalt, respectively, cor-
responding to a small decrease in the amplitude of the
basalt cumulative number.

It is also of interest to estimate the total bubble number
density of each pumice sample. We first remark that the
combination of macroscopic/microscopic distributions in
Fig. 3 has allowed us to eliminate the bias that would be

Fig. 3 A comparison of a Middle pumice distribution (top, shifted
upwards by a factor of 10 for clarity), a Minoan Pumice (middle)
and the mean of over a dozen Etnean basaltic lavas (bottom, shifted
downwards by a factor of 10, from Gaonac’h et al. 1996b). The
symbols for N2(A0>A) are: empty triangles (from Fig. 1a), empty
circles (from Fig. 1b), empty reversed triangles (from Fig. 1c),
filled triangles (from Fig. 1d), filled dots (from Fig. 1e), filled
reverse triangles (from Fig. 1f). The symbols for N2(A0<A) are

“x’s” (from Fig. 1c) and the filled squares (from Fig 1f). Crosses
are for Etnean N2(A0>A) distributions. The reference slopes (��B2)
are �0.75 for N2(A0>A) and 0.45 for the Middle Pumice N2(A0<A)
distribution (the best theoretical fit for Minoan is 0.20). The sym-
bols A**2 and N**2, presented for the Middle Pumice sample,
represent the upper end of the small vesicle range and the beginning
of the medium to large vesicle regime. Note that for the lavas,
B2�0.8 provides a slightly better fit
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introduced by normal use of SEM imagery. With this
adjustment, the total number per unit area larger than
the minimum resolution (0.3 mm, 1.26 mm for Figs. 1c,
1f, respectively) estimated over the observed range
is N2,tot�108 m�2 corresponding to N3,tot�3�1014 m�3

which is comparable to other published pumice data
(Klug and Cashman 1994; Polacci et al. 2001; Klug et al.
2002). However, before using these values as estimates of
the absolute total number density, we must verify that we
have not missed too many sub-micron bubbles. To do this,
we formulate a hypothesis regarding the small bubble
distribution. If it also is considered as a power law, Fig. 3
indicates that below A**, the pumice vesicles have
B2��0.20 (B3=0.20) for the Minoan samples and
B2��0.45 (B3=0.03) for the Middle Pumice samples.
Unfortunately, exponents B3>0 (N3 / V�B3) imply a di-
vergence in Ntot due to small bubbles; since this B3 is so
close to the critical value of 0, we conclude that we need
higher magnification SEM images in order to obtain
correct estimates. The cited values for Ntot are simply
lower bounds.

Discussion

Simakin et al. (1999), Blower et al. (2001) and Klug et al.
(2002) also obtained power law bubble distributions in
various samples but the authors claimed a range of ex-
ponents. Since a priori, a binary coalescence-decom-
pression mechanism would tend to generate distributions
with the same scale invariant exponent, even if many
details of the process were different (Gaonac’h et al.

1996a), it is important to test the hypothesis of one or two
exponents (one for binary, one for multibubble coales-
cence) with as many data sets as possible. We therefore
reanalyzed the several accessible published power law
distributions. The distributions were obtained by extrap-
olating from 2-D to 3-D using the equivalent of eq. 3 i.e.,
by implicitly assuming bubble convexity.

Fig. 4 shows natural data from Simakin et al. (1999)
with a scale invariant exponent compatible with B3�0.85
(hence B2�0.75). However, on the same figure, we also
show the distributions of their high vesicularity laboratory
samples that displayed coalescence. The low volume re-
gime of these data is reasonably fit by B3�0.85, but the
large volume part is a bit steeper. It may be a reflection of
the presence of another exponent. This is possible because
Gaonac’h et al. (2003) show that when nearing the
percolation threshold (numerically estimated as 70€5%
vesicularity for B2=0.75), the percolation can become
dominant with a theoretical value of B2–3,per�1.037, close
to the 1.1€0.1 value found in Klug et al. (2002). The
B3=0.85 value is only appropriate for binary coalescence.
Alternatively, the higher value compared to B3=0.85 may
be an artifact resulting from attempts to “decoalesce”
bubbles. Since the larger bubbles are likely to be prefer-
entially decoalesced, this could systematically decrease
the number of large bubbles with respect to small bubbles
and hence raising B2 and B3 values.

Gaonac’h et al. (2003) show that power law bubble
distributions with exponent near the observed value are
particularly efficient in “packing” bubbles. This is im-
portant since percolation theory shows that otherwise
monodisperse distributions with a vesicularity of only
29% would already yield overlapping bubbles, the largest

Fig. 4 Replotted from Simakin
et al. (1999), this figure
demonstrates scaling behavior
of pumice (sample GS91.42c,
filled squares), scoria (sample
19.05.92, triangles) as well as
laboratory samples (those ex-
hibiting coalescence: ET8
squares, ET9, circles). The
B3�0.85 reference line fits
most of the data; the B3�1.037
reference line (the theoretical
percolation exponent) gives a
slightly better fit to the largest
laboratory vesicles
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of which would almost surely span an infinite system
implying fragmentation at unrealistically low vesiculari-
ties. In highly stressed conditions, this would imply ex-
plosions at these unrealistically low vesicularities. Gao-
nac’h et al. (2003) quantitatively show how the observed
power law distributions delay such explosive “percola-
tion” until the observed high vesicularities (�70%) are
reached.

In this picture, the similarities and differences between
effusive and explosive products are relatively straight-
forward to explain. At small scales, nucleation, diffusion
and decompressive expansion create a population of
bubbles from sub micron scales up. As the magma vio-
lently ascends during a Plinian eruption, acceleration of
the magma and rapid expansion of the bubbles induce
shear stresses causing locally intense deformation of the
bubbles which in turn favour coalescence, especially
for the largest bubbles. Observations of Plinian pumice
samples confirm the common occurrence of deformed and
coalesced vesicles, such as in Fig. 1. The complex an-
isotropic texture of pumice directly reflects the shear
stresses present in the magma (Polacci et al. 2001; Polacci
et al. 2003; Klug et al. 2002). Extensive local shearing
may eventually lead to the formation of pumice tubes
(Polacci et al. 2003; Marti et al. 1999). On a particularly
anisotropic sample, we were able to confirm that defor-
mation of bubbles still respects scale invariant properties
(Lovejoy et al. 2004).

Because of the generality of the coalescence mecha-
nism and its robustness in yielding power law distribu-
tions, this basic model can apply to both explosive and
effusive eruptions. In the case of an explosive eruption, the
vesicularity is high while great stresses combined with
bubble expansion produce shear, bubble overlap and co-
alescence. At first the vesicularity is low enough so that
only two bubble (binary) interactions occur, while at
higher vesicularities overlap/coalescence becomes exten-
sive. In multibubble processes, a new exponent charac-
terizes the distributions of the largest bubbles. Finally, as
the critical percolation threshold is approached, coales-
cence is so extensive that the magma begins to fragment.
At the 3D percolation point a single bubble spagghetti-like
effectively spans an arbitrarily large section of magma; at
the slightly higher 2D percolation point, any planar cross-
section is almost certainly cleaved by an infinite bubble.
Presumably, the stressed magma will explode somewhat
before this point is reached. In effusive eruptions, the
initial steps (nucleation, diffusive growth, then binary and
multibody coalescence decompressive -expansion) may
occur in rather similar ways, although at different rates,
and with perhaps different causes of shearing. The key
difference is that in effusive eruptions, the existence of an
infinite bubble network would have little rheological sig-
nificance, although it would presumably favour degassing.
The basic processes can then continue quite a bit longer
than in the explosive stressed case. This would give suf-
ficient time for the nucleation/diffusion processes to ex-
haust the source of dissolved gas, and the bubbles would
have the time to reach near atmospheric pressures. In these

circumstances, as long as shearing is still present, coa-
lescence will continue until the liquid bubbly magma
reaches the surface. According to the coalescence equa-
tion, its effect will be to increase both the lower and upper
scaling limits V** and V* of coalescence while simulta-
neously decreasing the number densities. By contrast for
B3>1, pure coalescence would increase the number den-
sities (Lovejoy et al. 2004). This picture thus explains the
key similarities and differences of the vesicle size distri-
butions of pumice and basaltic lavas.

Conclusions

Explosive volcanic products commonly display bubbles
with sizes ranging from sub micron to centimeters. There
is now a growing consensus that to adequately charac-
terize distributions with such huge ranges, power law
approaches are required. However, we expect that dif-
ferent exponents correspond to different mechanisms; it is
therefore important to systematically analyze samples of
as many different products as possible, over as wide a
range scale as possible. We have presented systemat-
ic studies of macroscopic analyses of 9 Plinian pumice
samples including two with joint microscopic analyses.
This is the first time that samples have been analyzed over
8 orders of magnitude in bubble areas (12 in volumes)
from micron to centimeter scales. A method has been
developed in order to avoid overestimating the contribu-
tion of small bubbles when comparing microscopic and
macroscopic samples; this permitted a more precise esti-
mate of the total number density of Plinian pumice ves-
icles. We found an overall scaling of over 9 orders
magnitude in bubble volumes, and exponents (B2�0.75,
B3�0.85) which are within statistical uncertainty the
same as those found in basalts in Gaonac’h et al. (1996b).
We also investigated the prediction, arising from the fact
that B3<1, that the largest single vesicle could signifi-
cantly influence the total vesicularity of each sample,
leading to large fluctuations in porosity among samples.

Reanalysis of results by Simakin et al. (1999) also sup-
ports the scale invariance (power law) characteristic of
the vesicle size distributions. The near constancy of the
exponent (B3�0.85) for volcanic products from a wide
range of volcanic conditions was predicted in Gaonac’h et
al. (1996a) via a cascade-like scaling mechanism. Higher
values need to be considered when the pumices exhibit
multicoalescence. On the other hand, such samples are
more difficult to observe before the percolation and
fragmentation of the magma.

While power law distributions have important impli-
cations for modeling ascending magmas, perhaps the
most important consequences of such distributions are for
the fragmentation stage of an eruption. All the contending
theories involve highly stressed magmas evolving past
critical thresholds. In the classical theories the thresholds
are either critical stresses or critical strains. For example,
some authors favor brittle fragmentation through a glass
transition phase when the magma is under a large strain
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rate (e.g., Marti et al. 1999; Papale 1999) or large stresses
within bubbles (Zhang 1999). Other authors propose that
a downward decompressive wave impinges upon brittle or
ductile magma which then exceeds a critical stress for
fragmentation (Alidibirov and Dingwell 1996). In these
classical models the bubbles play essentially passive
roles; they merely prepare the magma rheology which
evolves in a continuous way as the vesicularity increases
and an external dynamical trigger is necessary for an
eruption. We have presented an alternative scenario
(Gaonac’h et al. 2003) in which the bubbles play an active
role in the sense that the rheology evolves discontinuously
with vesicularity; at a critical value of vesicularity, quite
independently of the stresses or strains, the magma frag-
ments. This critical vesicularity corresponds to the per-
colation threshold where bubble overlap is so extensive
that an infinite bubble is essentially produced. Under high
stress forces, the whole vesiculated system breaks down,
and an explosion occurs.

Work in progress involves the analyses and interpre-
tations of vesicle size distributions of explosive products
which have evolved in different volcanic conditions. The
search for the nature of scaling of bubble distributions
represents an important opportunity to better understand
the eruptive dynamics of volcanoes.
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