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SUMMARY

In this paper we perform multifractal analyses of "ve daily Foreign Exchange (FX) rates. These techniques
are currently used in turbulence to characterize scaling and intermittency. We show the multifractal nature
of FX returns, and estimate the three parameters in the universal multifactal framework, which characterize
all small and medium intensity #uctuations, at all scales. For large #uctuations, we address the question of
hyperbolic (fat) tails of the distributions which are characterized by a fourth parameter, the tail index. We
studied both the prices #uctuations and the returns, "nding no systematic di!erence in the scaling exponents
in the two cases.

We discuss and compare our results with several recent studies, and show how the additive models are not
compatible with data: Brownian, fractional Brownian, LeH vy, Truncated LeH vy and fractional LeH vy models.
We analyse in this framework the ARCH(1), GARCH(1, 1) and HARCH (7) models, and show that their
structure functions scaling exponents are undistinguishable from that of Brownian motion, which means
that these models do not adequately describe the scaling properties of the statistics of the data.

Our results indicate that there might exist a multiplicative &#ux of "nancial information', which conditions
small-scale statistics to large-scale values, as an analogy with the energy #ux in turbulence. Copyright
( 1999 John Wiley & Sons, Ltd.

KEY WORDS: "nance; scaling; foreign exchange; multifractals; LeH vy distributions

1. INTRODUCTION

Until the 1960s, the only stochastic and scaling model in "nance was Brownian motion, originally
proposed by Bachelier in 1900,1 and developed several decades later.2 Some generalisations were
then made by Mandelbrot and his followers involving either fractional Brownian motions,3,4 or
LeH vy motion5}9 (see also Reference 10 for a recent review). Closely related additive scaling models
have also been developed [11}19]: Brownian, fractional Brownian, LeH vy, truncated LeH vy and
fractional LeH vy processes. Recently several publications have proposed new scaling models or
empirical analyses, partially inspired by turbulence and statistical physics.11}22 Indeed, as



underlined by Stanley et al.,16 in statistical physics when a large number of microscopic elements
interact without characteristic scale, universal macroscopic scaling laws may be obtained inde-
pendently of the microscopic details. The justi"cation for this approach is that economic and
"nancial systems consist of a large number of non-linearly interacting elements; it is also observed
that scaling and volatility clustering is a general characteristic of "nancial systems.

The above approaches have generally involved additive monofractal processes and analyses; in
contrast scaling systems are now known to be generally multifractal. In this paper we therefore
adopt another approach, considering scaling multiplicative processes, which are the generic
multifractal processes. We perform a multifractal data analysis on "ve daily foreign exchange
(FX) data. Such an analysis characterizes in a scale invariant way (hence at all scales) the
clustering of the volatility of FX returns, for all intensities. We perform this analysis on the
statistical moments of the volatility. In the case of additive processes, the estimate of a few (i.e. 1st
and 2nd) moments (q) is generally su$cient to characterize the entire distribution. But a priori
"nancial processes are not restricted to this very special monofractal case, and the use of a wider
range of moments (e.g. q from 0 to 4 with a 0)1 increment) is a way to explore all the intensities of
the #uctuations and allows us to test of the monofractal hypothesis. In the case of multifractality
the resulting scaling exponents f (q) are non-linear, showing that the estimate of two moments is
by no means adequate for describing the entire distribution. This underlines the necessity of using
multifractal analyses and models on "nancial data.

In Section 2, we precisely analyse our data series in the universal multifractal framework, which
are stable, attractive multifractal processes, and which yield a full characterization of all small and
medium #uctuation intensities with only three parameters: we demonstrate the multifractal
nature of the returns, and estimate all the relevant parameters in our theoretical framework. The
non-linear f(q ) which is obtained shows that the additive scaling models are not compatible with
the data: we argue that they were accepted following insu$cient and overly restrictive tests. We
"nally consider another important empirical property of most "nancial time series: hyperbolic
tails of the distributions, &Pareto' tails.6 Such extremes are in fact predicted as the result of
a multifractal phase transition; we estimate the tail exponents: the fourth parameter in our
approach. Unlike additive LeH vy processes, where the value of the latter is restricted to be (2, in
multifractal processes, it can be any positive value '1.

2. MULTIFRACTAL ANALYSIS OF THE DATA

2.1. The data series and the power spectra

The data we analyse are the daily Foreign Exchange rates in French Francs: Swiss Francs
(CHF), German Mark (DEM), US Dollar (USD), Great Britain Pound (GBP), Japanese Yen
(JPY). Each data series goes from 1 January 1979 to 30 November 1993: taking into account only
the active days, we have 3680 data points for each series. In Figures 1(a) and 1(b) we represent two
data series, CHF and USD series, which show quite large #ucctuations at all scales. We
characterize below the statistics of these #uctuations.

We performed two types of analysis: we studied directly the #uctuations of the price data; we
also tested the transformation Z,log X, which is commonly used in order to study the
proportional returns r"*X/X, which are non-dimensional and "nancially more relevant.
Indeed let us recall that *Z"Z(t#q)!Z(t)"log(X(t#q)/X(t) )"log(1#*X/X). Because
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Figure 1. Two of the FX time series which are analysed here: CHF (a) and USD (b)

the #uctuations are usually small compared to the amplitude of the price itself (*X;X) this
gives

*ZK

*X

X
"r (1)

where &K' expresses equality, up to "rst order. When the time increment q is not too large, the
factor 1/X can be considered as a constant (compared to the highly #uctuating quantity *X).
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Figure 2. Power spectra of the time series, in log}log plot; from bottom to top: DEM, CHF, JPY, GBP,
USD. For comparison, a dotted line of slope of !2 is also shown

Therefore, up to "rst order, one can predict that the #uctuations of the price and the returns have
the same statistical scaling exponents. These exponents are certainly very close for small
#uctuations, and less similar for larger #uctuations. Nevertheless, we did all the analysis for the
returns and the price #uctuations and compared the results.

First we performed a Fourier (spectral) analysis: this is a sensitive way to estimate the limits of
the scaling regime of the returns; the corresponding exponent quanti"es the scaling of the
variance. As is usually obtained, we "nd the following scaling spectrum:

E ( f )&f~b (2)

where f is the frequency, &&' means proportionality and b, the scaling exponent of the power
spectrum, is not far from 2. This is shown in Figure 2 for all the spectra, with a straight line of
slope !2 for comparison. We also computed the power spectra of the #uctuations of the prices
directly: there is only a shift in the log}log representation (corresponding to a multiplicative
constant), but no change in the scaling trend.

We may note that an exact value of 2 is not always accepted: while Brownian motion gives
exactly 2, fractional Brownian motion would give di!erent values, and the LeH vy models would
give a slope depending on the number of realizations studied (see below and Appendix). For
example, in a recent study of other data (a New York Stock Exchange Index), Mantegna and
Stanley12 obtain spectra with slopes in the range 1)8}2)1. Concerning studies of Foreign
Exchange data, we note that Ghashghaie et al.20 did a scaling analysis of Foreign Exchange
USD-DEM data, but without providing the slope of their spectrum.

In any case, the power spectrum is only a second-order statistic and its slope is not enough to
validate a particular scaling model: it gives only partial information about the statistics of the
process. One would need the knowledge of the probability distribution of the process or,
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equivalently, of all its statistical moments other than second order. An important application
of multifractal analysis is precisely to characterize all order moments for the validation of
a scaling model. This is done in next section using structure function scaling exponents. In the
following analysis, we will take as the guiding approach the analysis we performed in turbu-
lence.23}26

2.2. Scaling of the structure functions, and multifractality

We denote here the value of exchange rate at time t as X(t). The structure function analysis
consists in studying the scaling behaviour of the non-overlapping #uctuations *Zq (t)"
DZ(t#q)!Z(t) D for di!erent time increments q. We estimate the statistical moments of these
#uctuations, which (assuming both scaling and statistical translational invariance in time) depend
only on the time increment in a scaling way:27

S(*Zq (t) )qT&S (*Z
T
)qTA

q
¹B

f(q)
(3)

where ¹ is the "xed largest time scale of the system (and hence S (*Z
T
)qT is a constant), S .T

denotes statistical average, q is the order of the moment (we take here q'0), and f(q ) is the scale
invariant structure function exponent. Equation (3) has already been tested for "nancial data for
q"1 and q"2 by Muller et al.28 The structure function analysis corresponds in fact to studying
&generalized' average volatilities at scale q, since moments of order 1 or 2 are usually used to de"ne
the volatility. Furthermore, the present analysis consists in analysing this generalized volatility
for all time scales.

The average of the #uctuations corresponds to q"1, and H"f(1) is the parameter character-
izing the non-conservation of the mean. For Brownian motion, H"1/2, and for other models in
"nance, one can easily obtain HO1/2, see below. The second moment is linked to the slope b of
the power spectrum: b"1#f (2). In Figures 3(a) and 3(b), we show this scaling for di!erent
orders of moments for the series CHF and USD, in log}log plots. The straight lines in these
"gures indicate that the scaling of (3) is very well respected; we did this for all moments between
0)1 and 4)0, with a 0)1 increment: for all these values, the scaling of the 5 series is very good, and
only for moments larger than about 4)0, it begins to be broken because of the insu$cient amount
of data analyzed (the statistical become dominated by the extreme gradients present in the
sample).

We then estimated f(q ) from the slopes of these straight lines, with a least squares regression.
The resulting curves f(q) for the "ve data series are presented in Figure 4. For comparison, we
also plotted the curve f(q )"q/2, which corresponds to Brownian motion (see below). The
corresponding curves obtained directly for the price #uctuations are very close to those corres-
ponding to the prices themselves (this is also shown below in Figures 8(a)}8(e). A "rst remark
which can be made concerning these di!erent curves is that the FRF/DEM and FRF/JPY scaling
exponents seem peculiar compared to the others: the relatively liquid exchange rates (FRF/CHF,
FRF/GBP, FRF/USD) yield scaling exponents quite close to each other, whereas the rarely
traded FRF/JPY rate has a more linear f (q), and FRF/DEM seem to possess a qualitatively
di!erent f (q), a behaviour which is likely due to the cap on #uctuations imposed by the European
Change Mechanism between these two currencies. Recall that the nonlinear shape of the
empirical curves is a signature of multifractality and is incompatible with the additive processes
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Figure 3. The scaling of the structure functions for CHF (a) for q"0)5, 1 and 1)5 and USD (b) for q"1, 2
and 3, in log}log plot. A straight line indicates a perfect scaling. The slopes of these straight lines are estimate

of f(q )

which are linear (or at most bilinear for "nite sample size). Indeed, in the multifractal framework,
every order of moment is associated with an order of singularity which depends on the scales in
the following way (see Reference 29):

*Zq&S*Z
T
T A

¹

q B
c

(4)
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Figure 4. The functions f(a) obtained for the "ve times series. Their nonlinearity indicates multifractality.
The continuous straight line corresponds to f (q)"q/2, obtained for Brownian motion

where ¹ is the ("xed) larger time scale of the system, and c are the orders of singularity, which are
usually negative. For monofractal models there is only one singularity, whereas for multifractal
models, there is a whole range of singularities, associated to the statistical moments via a Leg-
endre transform:30

c (c)"f (q)#qc (5)

c"!f@(q) (6)

where c (c) is the codimension of the singularity c, de"ned using the singularity probability
distribution29

Pr (c@'c)&A
¹

q B
~c(c)

(7)

Note that the equality sign &&' is within slowly varying functions. The Legendre transform
equations (5) and (6) expresses a one-to-one relation between statistical moments q and singular-
ity exponents c; it also shows that for multifractal processes, f (q) is non-linear: there is a whole
range of di!erent singularities, to that the slope of f (q) is changing. Furthermore, it shows that,
when a maximum singularity c

4
is reached for a "nite sample size, the function f (q) becomes linear

for moments of order q'q
4
"c@(c

4
):

f(q )"c(c
4
)!qc

4
, q'q

4
(8)

MULTIVARIATE ANALYSIS OF FOREIGN EXCHANGE DATA 35

Appl. Stochastic Models Data Anal. 15, 29}53 (1999)Copyright ( 1999 John Wiley & Sons, Ltd.



For additive models, the f (q) function has a di!erent shape. First, there is a very simple linear
form for the Brownian motion:

f
B308

(q)"
q

2
(9)

and for a fractional Brownian motion (the fractional integration of order h of a Gaussian noise,
see Reference 4):

f
F3!#

(q)"q(h!1
2
) (10)

The Brownian motion corresponds to h"1 (i.e. an ordinary integral of Gaussian white noise,
which gives, as we saw above, H"1/2).

When Z is a LeH vy motion (the integral of a LeH vy noise), the behaviour of f(q) is a bit more
involved. In this case, there is a LeH vy index a (0)a)2), which characterizes the divergence of the
moments of the LeH vy noise. For an in"nite sample, f(q ) diverges for q'a, but for a "nite samples
(e.g. one realization) we obtain the following f (q) function for a LeH vy motion of index a (see the
appendix for the derivation of the corresponding expression for N examples):

f (q)"
q

a
, q(a (11)

f (q)"1, q*a (12)

To check this expression, we simulated a LeH vy walk: Figure 5(a) shows a portion of it (for a"1)7),
Figure 5(b) shows the scaling obtained for several orders of moments, and Fig. 5(c) shows the
resulting f (q) function which is obtained (for 32 000 data points): the result "ts perfectly the
theoretical formula.

One may note that the same f(q) was obtained by Bouchaud et al.13 for a truncated LeH vy
model:31 the resulting f(q ) function is the same as that obtained for a single sample, but the
underlying model is di!erent: in the case of a truncated LeH vy model, the behaviour f(q )"1 for
q*a is due to the ad hoc introduction of an exponential tail of a LeH vy law; for the LeH vy model we
presented here, this is purely due to "nite sampling.

There is another additive fractal model which can be introduced, even if it has not yet (to our
knowledge) been proposed in a "nancial context: a fractional LeH vy motion,29,32 obtained as
a fractional integration of order h of a LeH vy noise. Similar to the LeH vy motion case we presented
above, this gives the following f (q) function (see the appendix for the derivation of this result, in
the general case of N

r
di!erent realizations) for one realization:

f(q )"qAh!1#
1

aB , q(a (13)

f(q)"q (h!1)#1, q*a (14)

Usual LeH vy motion corresponds to h"1. This gives a bilinear behaviour, with a change of slope
of 1/a, occurring at q"a(2. Even if in order to test this model the empirical nonlinear f(q ) in
Figure 4 are (poorly) approximated by two lines, the change of slope generally occurs at moments
larger than 2, and the empirical changes in slope ("1/a*1/2 for fractional LeH vy motion) are
smaller than 1/2, therefore invalidating this model (see also Figures 8(a)} (e)).
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Figure 5. (a) The simulation of a LeH vy motion obtained with a"1)7; (b) the corresponding scaling of the
structure functions for various values of q; (c) the resulting f (q) function: its shape is in excellent agreement
with the theoretical expression derived in the text, for one realization. A thick straight line of equation q/a is

shown for comparison

We thus see that the non-linearity of all the empirical f(q) functions is a solid argument against
Brownian, fractional Brownian, LeH vy, truncated LeH vy, and fractional LeH vy models, all additive
models giving straight lines or two portions of straight lines.

Because of these implications, we performed a direct test on the data: we display in Figures 6(a)
and (b) S(*Zq)qT/S*ZqTq vs. q in a log}log plot: in the case of linear f(q) (a special case of which is
the statistical independence of the #uctuations), this plot should be #at for all q1s, whereas if the
non-linearity is real we should see a trend (because of the concavity of the f(q) curve, the trend
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Figure 5. Continued.

-Multiplicative models have for a long time been invoked via the &law of proportional e!ects'. In the case of stable models,
this proportional e!ect conserves the underlying law, the corresponding probability can therefore be received as a (stable)
"xed point insensitive to the details.

should be positive for q(1 and negative otherwise). We show this in Figures 6(a) and (b) for
q"0)5, 1)5, 2, 2)5, and q"2, 3, 4 respectively, for the series CHF and USD. There is clearly
a non-trivial scaling regime over a large range: at large scales we observe noise which is
presesumably a "nite-size e!ect. Nevertheless, for more than two decades in time-scale, the trend
is clear, and in order to better capture the nonlinearity in computing the slopes for f (q) we took
into account only this scale range.

We now turn to a "t of these curves, using the universal multifractal model.

2.3. Universal multifractal parameters

The generic multifractal processes are the (nonlinear, non-additive) multiplicative cascade
models. If one densi"es (in scales) the cascade, one reaches &continuous cascade' models29;
recently the term &in"nitely divisible cascades' (referring to the in"nitely divisible probability
distributions) has been used.33 Using the &canonical representation' (also termed LeH vy}Khinchine
representation) for in"nitely divisible random variables (see Reference 34), the following models
were obtained in the turbulence litterature: log-normal,35}37 log-LeH vy,29,38,39,23 log-Gamma,40
log-Poisson.33,41. Among these, we consider here only the stable (and attractive) models: because
of the multiplicative framework, these are the only models which are stable under raising to
arbitrary powers, or convolution of di!erent realizations.-This gives the log-LeH vy model, and the
log-normal model (which is also a special case of the log-LeH vy family).
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Figure 6. A direct test of the nonlinearity of f (q): S(*Xq)qT/S*XqTq vs. q in a log}log plot; the straight lines
which are observed have a slope of f(q )!qf(1), which should be 0 in case of linearity. In (a), this test is
performed on the CHF data, from bottom to top for q"0)5, 1)5, 2, 2)5, and in (b), it is applied on USD data,

from bottom to top for q"2, 3, 4

The following universal form is obtained for f (q):23,29,38,39

f(q )"qH!

C
1

a!1
(qa!q ) (15)
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Figure 7. f (q )"qf@(0)!f (q) vs. q in log}log plot. For the universal multifractal model, the straight lines
obtained have a slope of a. In (a) this is performed for CHF, USD and JPY data series (from bottom to top),
and in (b) for DEM (squares) and GBP (dots). The values of C

1
are given by the intercepts of these straight

lines

where H"f(1) has the same de"nition as before; C
1

is the fractal codimension of the mean of the
process (0)C

1
)d"1 for a 1!D data set), and a is the LeH vy index (of the generator, which is

the log of the multiplicative process): 0)a)2. The log-normal model corresponds to a"2. We
may emphaseze here the di!erence of this model with addition LeH vy models: for universal
multifractals, the LeH vy distribution is not assumed for the di!erence of the price, but for its
generator, the log of the absolute value of the di!erence.
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Table I. The empirical estimates of H, a and C
1

obtained for the "ve di!erent
foreign exchange time series

Series H"f(1) f (2) a C
1

CHF 0)56$0)03 1)07$0)05 1)8$0)2 0)03$0)01
DEM 0)63$0)03 1)05$0)05 1)6$0)2 0)08$0)02
GBP 0)60$0)03 1)13$0)05 1)3$0)2 0)04$0)01
JPY 0)60$0)03 1)15$0)05 1)2$0)1 0)05$0)02
USD 0)58$0)03 1)06$0)05 1)9$0)2 0)05$0)02

?We may note that R. Mellen (private communication, 1992) estimated aK1)8 for another "nancial time series, the Dow
Jones Index, using a nonlinear "t of f (q).

A consequence of universal multifractals is that f(q) and other related quantities such as
f (q)"qf@ (0)!f(q ) (when a'1) are non-analytical at q"0. Using Equation (15), we see that
f (q) is precisely a non-integer power law, proportional to qa. Therefore, in a plot of log f (q ) vs.
log q we should obtain a slope of a.25,42 In Figures 7(a) and 7(b), we show this for all the data
series, using for f@(0) an extrapolation of the slope at the origin: this gives very good straight lines,
whose slopes are estimates of a; the values of C

1
are given by the intercepts.

We indicative in Table I the di!erent values we obtained, which show that H"0)60$0)03 is
quite stable for the di!erent series, as well as f (2)"1)10$0)05 (hence b"2)10$0)05). The error
bars given here correspond to the range of values shown in Table I for the di!erent times series.
Generally speaking, it is not easy to estimate the errors in scaling exponents for a given times
series: the method we therefore use is quite direct and consists in estimating several scaling
exponents for di!erent portions of the time series, in order to obtain a mean value and
a dispersion. The value of H"f(1) we obtained here is quite close to other estimates for Foreign
Exchange time series: Muller et al.28 obtain H"0)59 for the following currencies against the
USD: DEM, JPY, CHF, GBP, for scales between 2 hs and 3 months; Evertsz14 obtains H"0)56
for USD/DEM time series for scales between 3 hs and 2 days.

On the other hand, the values of a and C
1

obtained for the di!erent time series present more
variability, in the range 1)2}1)9 and 0)03}0)08 respectively.?The procedure used to estimate these
latter empirical values being less direct, it may be that much more data are needed in order to
have good con"dence in the precision of these estimates.

Nevertheless, the "ts provided by these values is not so bad: in Figures 8(a)}8(c) we show
the empirical functions f(q ), compared with the theoretical "t coming from equation (15) with the
values of H, a, C

1
given in Table I; the values obtained directly for the #uctuations of the price are

also shown in the same plots. They are very close to those obtained for the returns, for weak and
medium moments: there is only a slight discrepancy for larger moments. This clearly shows that
the processing corresponding to taking the log of the price has no important in#uence on the
statistical scaling exponents.

It is also clear from these "gures that the "ts we obtain are of di!erent statistical signi"cance.
First, the "t for the USD series is excellent until moment of order 4. The empirical curves as well
as the theoretical "t are clearly nonlinear, with a clear departure from two possible straight lines:
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Figure 8. The functions f(q ) vs. q: empirical estimates (opened and "lled dots) compared to the universal
multifractal "ts (continuous lines). In (a), CHF; in (b), DEM; in (c), GBP; in (d), JPY; in e), USD. Two dotted
straight lines are also shown: the Brownian case f (q)"q/2 and the fractional Brownian case f (q)"qf (1)

f(q )"q/2 and f(q )"qH
USD

"0)58H (see Figure 8(e)). The JPY series is also well "t (see
Figure 8(d)), but the nonlinearity of the curves is not so clear, and a departure from
f(q )"qH"0)60q is visible only for moments of order larger than 2. Next, the CHF and GBP
curves (Figures 8(a) and 8(c)) are also clearly nonlinear, with good "ts until moments of order
about 2)5}3)0. Then, there are departures from the "t, which we consider below in the framework
of divergence of moments of observables. The last "gure concerns DEM data (Figure (8b)), which
has a theoretical "t in good agreement with the data until moment of order about 1)8, and then
there is a very clear departure, with empirical estimates being linear, with a slope nearly #at. This
is the only case where the f(q) function could be said to be not far from that of a (additive) LeH vy
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Fig. 8. Continued

AA more precise analysis of the GBP between October 1990 and October 1992, when it went inside the European Change
Mechanism with #uctuation margins of 12%, was done in Reference 43.

walk (or fractional LeH vy model); we may note here that this peculiar behaviour may be
a manifestation of the imposed currency area allowing a maximum of 4)5% #uctuations between
FRF and DEM inside the European Monetary System since 1979 (there is 15% since August,
1993).ANevertheless, we see below that the order of divergence of moments is also smaller for this
series (q

D
K1)8; see next section for details) which gives an explanation of this peculiar behaviour

in the multifractal framework.
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Figure 8. Continued

BNote that due to the use of highly restrictive microcanonical49 or geometric30 multifractals, which present no divergence
of moments, this has not been adequately appreciated in the multifractal turbulence literature.

2.4. About the fat tails of the distributions

One of the most important properties of economic and "nancial time series is the so-called
&&Pareto distributions''44 of extreme events (see Reference 6), fat tailed (or hyperbolic) probability
distributions:

Pr (*X'x)&x~p, x<1 (16)

This behaviour has been frequently noticed on "nancial data series,6}9,45,46 and indicates
a divergence of moments of order p. This divergence of moments can be obtained through several
scaling models. First, it was one of the main agruments used by Mandelbrot to propose in 1963
LeH vy distributions for "nancial #uctuations, with p being the LeH vy index, subject to the limitation
0)p)2. But it is not the only scaling model compatible with equation (16). Indeed, in cascade
models in turbulence,47,48,29 the small scale limit is singular; a measurement at larger scale is
then only an integration of this singular "eld, leading to tails following equation (16). In this case,
the critical order of divergence of moments is denoted p"q

D
, and has the only constraint q

D
'1,

with no upper limit.B
We can therefore obtain, in the multifractal framework29 nonlinear behaviour of f(q) for

q)q
D

and divergence of moments of order q
D
. This is a "rst-order multifractal phase

transition;50,51 because the empirical estimates are always "nite, the function f (q), which should
be theoretically !R for q'q

D
(because of the divergence of moments), follows (see Reference

52 for an empirical estimate in turbulence) for a "nite sample size:

f (q)"c (c
4,D

)!q
D
c
4,D

, q'q
D

(17)
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Figure 9. The tails of the probability distributions of the #uctuations X(t#5)!X(t) in log}log plot. In (a):
from left to right, for CHF, JPY, USD; in (b) from left to right DEM and GBP. The straight lines indicate

hyperbolic distributions, and their slope correspond to q
D

where c
4,D

is the largest singularity present in the "nite sample size. This singularity increases with
the number of samples considered in the statistics, with no bound, but is, of course, always "nite
for a "nite sample.

We performed this analysis on the data. Figures 9(a) and 9(b) shows the probability distribu-
tion of the #uctuations, on log}log plot. In both cases, a straight line for the most extreme events
indicates the range of values for which equation (16) is valid. Because of the relatively small
sample we analysed, straight lines are only formed over a limited range of intensities. The "ts we
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Table II. Empirical estimates of q
D

for *¹"5q and *¹"15q and the
value of q

4
as given by the estimates of a and C

1
shown in Table I

Series q
D
(*¹"5q) q

D
(*¹"15q) q

4
"A

1

C
1
B
1@a

CHF 3)0$0)3 3)1$0)3 7)7
DEM 1)7$0)2 1)8$0)2 4)8
GBP 3)4$0)4 3)6$0)4 12)9
JPY 4)8$0)4 5)2$0)4 14)5
USD 3)0$0)3 3)5$0)3 4)9

show are simply obtained from a least-squares straight line "t for the tail portion which is roughly
linear. More involved and precise methods to estimate the tail index exist, as discussed e.g. in
Reference 46, where a subsample bootstrap method is applied, but they necessitate about at least
one order of magnitude more data to be implemented. We estimate q

D
for time increments of the

returns of 5 days and 15 days. As before, we see three di!erent behaviours: CHF, USD and GBP
show tail indexes in the range 3}3)6, JPY has a tail index closer to 5 and DEM smaller than 2 (see
Table II). We notice that all these values, except the case of DEM (giving q

D
K1)8), are larger than

2, therefore once again contradicting the additive LeH vy walk model. This was also noted by
Dacorogna et al.,46 who termed them &hyperbolic non-stable distributions': they obtained for
several foreign exchange series some values of q

D
from about 3}4: using a very large dataset, they

showed that the second moment was converging, whereas the fourth moment was not. It can also
be seen in their Table 7 that currencies belonging both to the European Change Mechanism (as
in our case DEM and FRF) have a smaller q

D
than other currencies. Muller et al. (the same

group)28 argued with reason that &a valid model must explain both the unstable distribution and
the empirical scaling law'. This is what we propose here.

We "nally consider the linear behaviour of f (q) for large order moments: we saw that it can
have two di!erent origins: in case of "nite sampling (see equation (8)) the critical moment is given
by q

4
"c@(c

4
)"(1/C

1
)1@a for 1 realization of a universal multifractal;51 in case of divergence of

moments the critical moment is simply q
D
, as shown by equation (17). Table II shows the values of

q
4
obtained from the estimates of a and C

1
for the di!erent times series, as compared to the values

of q
D

estimated above. This shows that the sampling critical moment q
4
is always larger than q

D
,

con"rming that the linear behaviour of f(q) for large order moments is a consequence of
divergence of moments, as con"rmed visually by the curves in Figures 8(a)}8(e).

The H value, and the two universal multifractal values a and C
1

therefore contain statistical
descriptions of the small and medium intensity #uctuations corresponding to the nonlinear part
of f(q), whereas the value of q

D
corresponds to the most extreme events. These four parameters

are argued to provide all the information of the statistics of the amplitude of the #uctuations of
the data series, at all scales. They do not contain information of the signs of the #uctuations,
which is the subject of further studies, and would need vectorial ( &Lie') cascades, see Reference 53.

3. FURTHER COMPARISONS WITH OTHER MODELS

In order to provide a critical comparison to our approach, we will now discuss the scaling models
and empirical results contained in several recent proposals. First, we already noticed that the
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di!erent additive models provide at best bilinear f(q) functions. The truncated LeH vy
model11,12,17}19 is a curious proposal, because what is most speci"c to LeH vy distributions is the
hyperbolic tail of their distributions; a truncated LeH vy distribution is no longer stable, and
therefore this model loses its main justi"cation (indeed, except asymptotically where it would be
Brownian motion,31 it would not even be scaling). The good superposition of di!erent scales they
observe is nothing more than the scaling hypothesis, with the usual value H being the inverse of
their a. We can also add concerning their restriction to a "nite variance, that there is
nothing special about the variance, and that the &practical' (empirical) variance is always
"nite. However, what can be observed is the non-convergence of this variance as the sample
size increases, which corresponds to hyperbolic distributions with q

D
(2. Furthermore, the

empirical "ts of the probability distribution of the increments of the data, proposed by
the authors in a log-linear plot, is only good for medium events: for large #uctuations, they invoke
rather imprecise &exponential or stretched exponential' behaviour. In fact, it is likely that
a log}log plot of their density would show a hyperbolic tail, with a tail exponent larger than their
LeH vy index.

Bouchaud et al.13 used some empirical results of Muller et al.28 to justify a truncated LeH vy
model: they used the two values f(1)"0)59 and f(2)"1)02 to argue the validity of a truncated
LeH vy model with a"1/f(1)K1)7. These two values are obviously not su$cient to justify one
particular model, because several curves could "t into these two empirical values. As we argue in
this paper, a whole range of f (q) values should also be considered.

Considering the results of Ghashghaie et al.,20 one may note that their empirical f(q ) is
nonlinear, but it is not concave: indeed for concave curves the tangency at any point is &outside'
the curve, which is clearly not the case for n"4, 5 and 9 in Figure 2(b) of their paper. This is
impossible in the multifractal framework (because f(q) is a second Laplace characteristic func-
tion.34,47 Their empirical estimates, which were obtained without absolute values, are therefore
subject to caution. Furthermore, they claim to obtain}and it can be seen on their "gure*that
the empirical values of f(q) for turbulence and "nancial data are close to each other. This cannot
be the case, because of the di!erent values of H (in our notation): HK0)4 in turbulence, and
H"0)6 for "nancial data: this discrepancy is important because the linear drift of f (q) is
contained in the value of H, and due to the relative smallness of C

1
, for small q this term

dominates.
This last point has been justi"ably critized by Arneodo et al.21 and Mantegna and Stanley,17

but these authors argue that the #uctuations are not correlated because of a exactly !2 slope of
their power spectrum. First, their slope is probably not exactly !2, as empirically shown in
several studies.11,12,14 Secondly, in any case even if the slope is exactly !2 (which means
f(2)"1) this would indicate that there is no correlation for the "rst moment, but it wouldn't
necessarily generalize to other moments. In short, f(2)"1 does not imply that the process has
independent increments. Independence necessitates an analogous behaviour for other moments,
leading to f (q)"qf(1)"qH. Because the other moments are nonlinear in q, we conclude that the
data are incompatible with process with independent increments.

We must mention also the AutoRegressive Conditional Heteroskedastic (ARCH) family,54
which are discrete processes for which we have

X (t)"
t
+
i/1

e
i

(18)

e
t
"p

t
u
t

(19)
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where u
t
is a random variable with zero mean and unit variance, which is typically taken as

Gaussian, and p
t
depends on the information of the system at time t!1. For the ARCH(q) model

proposed by Engle54 we have simply

(p
t
)2"u#

q
+
i/1

a
i
e2
t~i

(20)

where u'0 and a
i
*0. This model was designed mainly to obtain volatility clustering. It was

later generalized in the following way, giving GARCH (p, q ) models:55

(p
t
)2"u#

q
+
i/1

a
i
32

t~i
#

p
+
i/1

b
i
p2
t~i

(21)

where the di!erent parameters must obbey some conditions to have a well-de"ned process (see
Reference 56 for a review). The model GARCH (1, 1) is often considered to give a good
approximation to data, with values verifying a#b(1, but close to 1. For some parameters,
GARCH models can also display fat-tails and be linked to stable processes.57}59 These properties
are close to the data, but despite this, some other properties of these models do not seem realistic;
"rst, the models are built for discrete times; a continuous limit has been described only for
GARCH (1, 1).60 Second, the GARCH models possess a "xed and "nite regression range, giving
a "nite memory. As shown recently in Muller et al.61 this "nite memory is in contradiction with
long memory of volatility.62,63 A HARCH model (heterogeneous interval, autoregressive, condi-
tional heteroskedasticity) was then proposed by these authors,61 containing a long memory
through a recursive regression linking di!erent scales to each other. This gives the following
expression for the HARCH(p) model:

(p
f
)2"u#

p
+
j/1

c
jA

j
+
i/1

e
t~iB

2
(22)

We have here a linear combination of the squares of aggregated returns.
In order to test these models, we simulated several of them belonging to these three classes

(ARCH, GARCH and HARCH), and tested the result using the structure function scaling
analysis. We simulated for each test 105 datapoints, tested the scaling of the moments, and then
plotted the resulting f (q) functions. We did this for ARCH(1) with u"10~3 and a"0)5;
GARCH (1, 1) with u"10~3, a"0)1 and b"0)8; and "nally HARCH (7) with the values of the
parameters proposed in Reference 61. In all these cases the scaling of equation (3) is excellent for
all orders of moments (from q"0)1 to 4). The resulting f (q) functions are all linear, and very close
to q/2 which corresponds to Brownian motion; see Figure 10 for the functions corresponding to
GARCH (1, 1) and HARCH (7). This means that, even if they are built to reproduce a clustering of
volatility and interrelations between scales, these models quickly do not di!er signi"cantly from
the Brownian motion case for their scaling properties. Furthermore, these models fail to
reproduce the nonlinear shape of the f(q) functions which is empirically observed. We may note
that Mantegna and Stanley64 also recently compared some scaling properties of ARCH(1) and
GARCH(1, 1) models to empirical data, concluding that they fail for short time horizons. These
considerations and criticisms explain why we consider that our proposal is the closest to the data.

As shown by Muller et al.,61 large-scale volatility predicts small-scale volatility much better
than the other way around; they have interpreted this as an in#uence of long-term traders on
short-term traders. Their HARCH model already discussed above was inspired by this fact. As
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Figure 10. The f (q) function for GARCH(1, 1) model (broken line) with parameters u"10~3, a"0)1 and
b"0)8 and for HARCH(7) model (continuous line) with the parameters proposed by Muller et al. [61].
These curves are linear, with slopes respectively 0)46 and 0)49, very close to the Brownian motion case

(dotted line) for which the slope is 1/2

discussed by Ghashghaie et al.,20 this behaviour can be compared to the energy #ux in
hydrodynamic turbulence, which cascade from large scales to smaller ones, until viscosity at small
transforms mechanical energy into heat. This cascade of energy #ux is often modelled with
multiplicative cascades, which give rise to multifractal "elds. This means that the "ndings of
Muller et al.,61 as well as the nonlinear multifractal shape of f (q) give a coherent picture of the
"nancial process. The usual comparison between "nance and hydrodynamic turbulence would
then well be more than a qualitative comparison (it is quantitative in term of H, C

1
, a). For

practical considerations, a multiplicative cascade with the parameters we have estimated here can
easily be simulated using multifractal simulation techniques.65 The predictability of such pro-
cesses has also been explored in the turbulent framework;66 to what extent it can be adapted to
the "nancial frame is an interesting question.

4. CONCLUSION

We have shown that the nonlinearity of the moment scaling function f (q) is not compatible with
the additive scaling models proposed to date for "nancial #uctuations: Brownian, fractional
Brownian, LeH vy, truncated LeH vy and fractional LeH vy models. It is neither compatible with several
popular models belonging to the ARCH family. As an alternative, we proposed a univer-
sal multifractal framework to characterize the #uctuations of "ve foreign exchange data series, at
all scales, and for all intensities. Universal multifractals are appealing because they are believed to
be the generic outcome of high numbers of degrees of freedom nonlinear processes which respect
scaling symmetries. The statistics of the data are fully described with four parameters, taking into
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account two complementary aspects of "nancial time series: the multiple scaling and the
hyperbolic (Pareto) probability distributions, which is a generic feature of multifractal processes.
This model is, we believe, the closest available to the data. We have shown that analysing directly
the price or the log of the price, makes no signi"cant di!erence for the scaling exponents of the
#uctuations.

Some implications of our "ndings should be underlined: as already noticed by Belkacem et al.15
and Bouchaud and Sornette,67 many "nancial models are developed in a Gaussian framework,
assuming that the price #uctuations follow Brownian motion; but these studies su!er from the
same #aw, because they propose, without a strong empirical basis, an alternative but restricted
model using LeH vy (or truncated LeH vy) motions. To be compatible with our results, models should
be multiplicative rather than additive. The &multifractal corrections' which arise are certainly
much more important than second order, because quasi-Gaussian #uctuations are not intermit-
tent whereas the multifractal #uctuations are so intermittent that they give rise to divergence of
moments. We hope to stimulate new theoretical developments to explain this multifractal
behaviour and to explore their consequences.
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APPENDIX
STRUCTURE FUNCTIONS FOR LED VY MOTION AND FRACTIONNAL LED VY

MOTION FOR N
R

REALIZATIONS

We establish the structure function exponents f(q) "rst for LeH vy motion for one realization, then
for fractional LeH vy motion in the general case of N

r
independent realizations (each of them of

length N datapoints). We denote > the LeH vy noise of index a (0)a)2) and h the order of
fractional integration of this noise (h"1 for the standard integration giving LeH vy motion).

Because of the stability property of the LeH vy-stable random variables, which can be written34

n
+
i/1

>
i
"$ n1@a> (23)

where "$ means equality of probability distributions, and >
i

and > belong to the same
LeH vy-stable distribution, of index a, we have the following result for the structure functions of the
LeH vy motion:

S (*Xq (t) )qT"(A
t`q
+
i/t

>
iB

q
'&qq@aS>qTq (24)

where S>qTq indicates that the moment is estimated for non-overlapping intervals of amplitude q.
This shows that, for low order of moments (q(a), the expression S>qTq converges, and the
process X has the same exponent as a fractional Brownian motion of order H"1/a: f(q)"q/a.
For moments of order q*a, there is a divergence of S>qTq which depends on the number of
points taken into account: for an in"nite sampling, this expression diverges; but for a "nite
sampling (N data points), the ensemble average is estimated for N/q di!erent realizations of the
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variable. Let us recall68 how to quantify this divergence for a given number of independent
realizations (N/q here):

S>qTq&A
N

q B
(q~a)@a

&q1~q@a (25)

This gives "nally the following f(q ) function in case of a LeH vy walk (for one realization):

f (q)"
q

a
, q(a (26)

f (q)"1, q*a (27)

In the more general case of fractional LeH vy motion for N
r
independent realizations, we have the

following decomposition:32

S (*Xq (t) )qT&qq(h~1`1@a)S>qTq (28)

As is done for equation (23), we have for N
r
realizations (NN

r
data points):

S>qTq&A
NN

r
q B

(q~a)@a
&(q~1~Ds)(q~a)@a (29)

where N is still a constant, and we denote N
r
"q~D4 : D

4
is then called a &sampling dimension'.

This "nally gives

f(q )"qAh!1#
1

aB , q(a (30)

f (q)"qAh!1!
D

4
a B#1#Ds, q*a (31)

The change of slope between the two straight lines is (1#D
4
)/a. The single realization corres-

ponds to D
4
"0; for an in"nite sampling, D

4
PR and thus f(q )PR for q*a. The Brownian

and fractional Brownian motions are recovered for a"2 and, respectively, h"1 and hO1 (there
is only one regime in these cases); the LeH vy motion corresponds to h"1.
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LeH vy', C. R. Acad. Sci. (Paris), 254, 3968}3970 (1962).
6. B. Mandelbrot, &The variation of certain speculative prices', J. Business (Chicago), 36, 394}419 (1963).
7. E. F. Fama, &Mandelbrot and the stable Paretian hypothesis', J. Business (Chicago), 36, 420}429 (1963).
8. E. F. Fama, &The behavior of stock-market prices', J. Business (Chicago), 38, 34}105 (1965).
9. B. Mandelbrot, &The variation of some other speculative prices', J. Business (Chicago), 40, 393}413 (1967).

10. P. Mirowski, &Mandelbrot's economics after a quarter century', Fractals, 3, 581}600 (1995).
11. R. Mantegna and H. Stanley, &Ultra-slow convergence to a Gaussian: the truncated LeH vy #ight', in M. Shlesinger et al.

(eds), ¸eH vy Flights and Related ¹opics in Physics, Springer, Berlin, 1995, pp. 300}312.

MULTIVARIATE ANALYSIS OF FOREIGN EXCHANGE DATA 51

Appl. Stochastic Models Data Anal. 15, 29}53 (1999)Copyright ( 1999 John Wiley & Sons, Ltd.



12. R. Mantegna and H. Stanley, &Scaling behaviour in the dynamics of an economic index', Nature, 376, 46}49 (1995).
13. J.-P. Bouchaud, D. Sornette and M. Potters, &Option pricing in the pressence of extreme #uctuations', in M. Dempster

and S. Pliska (eds), Proc. Newton Institute Session on Mathematical Finance, Springer, Berlin, 1996 (in press).
14. C. Evertsz, &Fractal geometry of "nancial time series', Fractals, 3, 609}616 (1995).
15. L. Belkacem, J. LeH vy VeH hel and C. Walter, &Generalized market equilibrium: &stable'' CAPM', AFFI Int. Conf. of

Finance, 1995.
16. M. H. Stanley et al., &Can statistical physics contribute to the science of economics?', Fractals, 4, 415}425 (1996).
17. R. Mantegna and H. Stanley, &Turbulence and "nancial markets', Nature, 383, 587}588 (1996).
18. R. Mantegna and H. Stanley, &Stock market dynamics and turbulence: parallel analysis of #uctuations phenomena',

Physica A, 239, 255}266 (1997).
19. R. Mantegna and H. Stanley, &Physics investigation of "nancial markets', in Proc. of the International School of

Physics E. Fermi, Course CXXXI<, F. Mallamace and H., Stanley (eds), IOS Press, Amsteredam, 1997, pp. 473}489.
20. Ghashghaie, W. Breymann, J. Peinke, P. Talkner and Y. Dodge, &Turbulent cascades in foreign exchange markets',

Nature, 381, 767}770 (1996).
21. Arneodo, J.-P. Bouchaud R. Cont, J.-F. Muzy, M. Potters and D. Sornette, Comment on &turbulent cascades in

foreign exchange markets', preprint.
22. Mandewalle and M. Ausloos, &Coherent and random sequences in "nancial #uctuation, Physica A, in press (1998).
23. D. Schertzer, S. Lovejoy and F. Schmitt, &Structures in turbulence and multifractal universality', in M. Meneguzzi et

al. (eds), Small Scale Structures in 3D Hydro and MHD ¹urbulence, Springer, New York, 1995, pp. 137}144.
24. F. Schmitt, D. Schertzer, S. Lovejoy and Y. Brunet, &Multifractal temperature and #ux of temperature variance in fully

developed turbulence', Europhys. ¸ett., 34, 195}200 (1996).
25. F. Schmitt, D. Schertzer, S. Lovejoy and Y. Brunet, &Multifractal properties of temperature #uctuations in turbulence',

in M. Giona et al. (eds), Fractals and Chaos in Chemical Engineering, World Scienti"c, Singapore, 1997, pp. 464}475.
26. D. Schertzer, S. Lovejoy, F. Schmitt, Y. Chigirinskaya and D. Marsan, &Multifractal cascade dynamics and turbulent

intermittency', Fractals, 5, 427}471 (1997).
27. A. S. Monin and A. M. Yaglom, Stratistical Fluid Mechanics: Mechanics of ¹urbulence, MIT Press, Boston,

1975.
28. U. Muller, M. Dacorogna, R. Olsen, O. Pictet, M. Schwarz and C. Morgenegg, &Statistical study of foreign exchange

rates, empirical evidence of a price change scaling law, and intraday analysis', J. Bank. Finance, 14, 1189}1208
(1990).

29. D. Schertzer and S. Lovejoy, &Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative
processes', J. Geophys. Res., 92, 9693}9721 (1987).

30. G. Parisi and U. Frisch, &A multifractal model of intermittency', in M. Ghil et al. (eds), ¹urbulence and Predictability in
Geophysical Fluid Dynamics and Climate Dynamics, North-Holland, Amsterdam, 1985, pp. 84}92.

31. I. Koponen, &Analytic approach to the problem of convergence of truncated LeH vy #ights towards the Gaussian
stochastic process', Phys. Rev. 52, 1197}1199 (1995).

32. M. Taqqu, &Random processes with long-range dependence and high variability', J. Geophys. Res., 92, 9683}9686
(1987).

33. She and E. Waymire, &Quanticized energy cascade and Log-Poisson statistics in fully developed turbulence', Phys.
Rev. ¸ett., 74, 262}265 (1995).

34. W. Feller, An Introduction to Probability ¹heory and its Applications, Wiley, New York, 1971.
35. A. N. Kolmogorov, &A re"nement of previous hypothesis concerning the local structure of turbulence in a viscous

incompressible #uid at high Reynolds number', J. Fluid Mech., 13, 82 (1962).
36. Obhukov, &Some speci"c features of atmospheric turbulence', J. Fluid Mech., 13, 77 (1962).
37. A. Yaglom, &The in#uence of #uctuations in energy dissipation on the shape of turbulent characteristics in the inertial

range', Sov. Phys. Dokl., 2, 26 (1966).
38. D. Schertzer and S. Lovejoy, &Nonlinear variability in geophysics: multifractal simulations and analysis', in

L. Pietronero (ed.), Fractals: Physical Origin and Consequences, Plenum, New York, 1989, pp. 49}77.
39. S. Kida, &Log-stable distribution and intermittency of turbulence', J. Phys. Soc. Japan, 60, 5 (1991).
40. Saito, &Log-Gamma distribution model of intermittency in turbulence', J. Phys. Soc. Jpn., 61, 403 (1992).
41. B. Dubrulle, &Intermittency in fully developed turbulence: log-Poisson statistics and generalized scale covariance',

Phys. Rev. ¸ett., 308, 151}154 (1994).
42. F. Schmitt, S. Lovejoy and D. Schertzer, &Multifractal analysis of the Greenland ice-core climate data', Geophys. Res.

¸ett., 22, 1689}1692 (1995).
43. F. Schmitt, D. Schertzer and S. Lovejoy, &Turbulent #uctuations in "nancial markets: a multifractal approach', in

F. Marsella and G. Selvadori (eds), Chaos, Fractals, Models, Italian University Press di Giovanni Inculano, Paris,
1998, pp. 150}157.

44. V. Pareto, Cours d1eH conomie politique, Lausanne, 1897.
45. E. Peters, Fractal Market Analysis, Wiley, New York, 1994.
46. M. Dacorogna, O. Pictet, U. Muller and de Vries C., &The distribution of extremal foreign exchange rate returns in

extremely large data sets', Internal Document ;AM. 1992-10-22, Olsen and Associates, Zurich, 1994.

52 F. SCHMITT, D. SCHERTZER AND S. LOVEJOY

Appl. Stochastic Models Data Anal. 15, 29}53 (1999)Copyright ( 1999 John Wiley & Sons, Ltd.



47. B. Mandelbrot, &Intermittent turbulence in self-semilar cascades: divergence of high moments and dimension of the
carrier', J. Fluid Mech., 62, 331}358 (1974).

48. D. Schertzer and S. Lovejoy, &The dimension and intermittency of atmospheric dynamics', in L. J. Bradbury et al.
(eds.), ¹urbulent Shear Flows 4, Springer, Berlin, 1985, pp. 7}33.

49. C. Meneveau and K. R. Sreenivasan, &Measurement of f (a) from scaling of histograms, and applications to dynamical
systems and fully developed turbulence', Phys. ¸ett. A., 137, 103 (1989).

50. D. Schertzer and S. Lovejoy, &Hard and soft multifractal processes', Physica A, 185, 187 (1992).
51. D. Schertzer, S. Lovejoy and D. LavalleH e, &Generic multifractal phase transitions and self-organized criticality', in

J. M. Perdang and A. Lejeune (eds.), Cellular Automata: Prospects in Astrophysical Applications, World Scienti"c,
Singapore, 1993, pp. 216}227.

52. F. Schmitt, D. Schertzer, S. Lovejoy and Y. Brunet, &Multifractal phase transition in atmospheric turbulence',
Nonlinear Proc. Geophys., 1, 95}104 (1994).

53. D. Schertzer and S. Lovejoy, &From scalar cascades to Lie cascades: joint multifractal analysis of rain and cloud
processes', in R. Feddes (ed.), Space and ¹ime Scale <ariability and Interdependencies in hydrological processes,
Cambridge University Press, New York, 1995, pp. 153}172.

54. R. F. Engle, &Autoregressive conditional heteroscedasticity and estimates of UK in#ation', Econometrica, 50,
987}1008 (1982).

55. T. Bollerslev, &Generalized autoregressive conditional heteroscedasticity', J. Econ., 31, 307}327 (1986).
56. T. Bollerslev, R. Chou and K. Kramer, &ARCH modelling in "nance', J. Econ., 52, 5}59 (1992).
57. C. de Vries, &On the relation between GARCH and stable processes', J. Econ., 48, 313}324 (1991).
58. D. Ghose and K. Kroner, &The relationship between GARCH and symmetric stable processes: "nding the source of fat

tails in "nancial data', J. Emp. Finance, 2, 225}251 (1995).
59. P. Groenendijk, Lucas and C. G. de Vries, &A note on the relationship between GARCH and symmetric stable

processes', J. Emp. Finance, 2, 253}264 (1995).
60. D. Nelson, &ARCH models as di!usion approximations', J. Econ., 45, 7}38 (1990).
61. U. Muller et al., &Volatilities of di!erent time resolutions*analyzing the dynamics of market components', J. Emp.

Finance, 4, 213}239 (1997).
62. M. M. Dacorogna et al., &A geographical model for the daily and weekly seasonal volatility in the FX market', J. Int.

Money Finance, 12, 413}438 (1993).
63. Z. Ding, C. Granger and R. F. Engle, &A long memory property of stock market returns and a new model', J. Emp.

Finance, 1, 83}106 (1993).
64. R. Mantegna and H. E. Stanley, &Modelling of "nancial data: comparison of the truncated Levy #ight and the

ARCH(1) and GARCH(1, 1) processes', Physica A, in press (1998).
65. S. Pecknold, S. Lovejoy, D. Schertzer, C. Hooge and J. F. Malouin, &The simulation of universal multifractals', in

J. M. Perdang and A. Lejeune (eds), Cellular Automata: Prospects in Astronomy and Astrophysics, World Scienti"c,
Singapore, 1993, pp. 228}267.

66. D. Marsan, D. Schertzer and S. Lovejoy, &Causal space-time multifractal processes: Predictability and forecasting of
rain "elds', J. Geophys. Res., 101, 26333}26350 (1996).

67. J.-P. Bouchaud and D. Sornette, &The Black}Scholes option pricing problem in mathematical "nance: generalization
and extensions for a large class of stochastic processes', J. Phys. I France, 4, 863}881 (1994).

68. D. Schertzer and S. Lovejoy, &On the dimension of atmospheric motions', in T. Tatsumi (ed.), ¹urbulence and Chaotic
Phenomena in Fluids, Elsevier, North-Holland, 1994, pp. 505}512.

MULTIVARIATE ANALYSIS OF FOREIGN EXCHANGE DATA 53

Appl. Stochastic Models Data Anal. 15, 29}53 (1999)Copyright ( 1999 John Wiley & Sons, Ltd.


