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The Dimension and Intermittency of Atmospheric Dynamics

D. Schertzer and S. Lovejoy
EERM/CRMD, Météorologic Nationale, 2, Avenue Rapp, 75007 Paris, France

Abstract

We question the existence of a dimensional transition separating quasi-two dimensional and quasi-three
dimensional atmospheric motions, i.c. large- and small-scale dynamics. We insist upon the fact that no
matter how this transition should occur, it would have drastic consequences for atmospheric dynamics,
consequences which have not been observed in spite of many recent experiments.

An alternative simpler hypothesis is proposed: that small scale structures arc continuously de-
formed — flattened — at larger and larger scales by a scale invariant process. This continuous deformation
may be characterised by defining an intermediate fractal dimension D,, that we call an clliptical
dimension. We show both theoretically and empirically that D,, = 23/9 ~ 2.56. Atmospheric structures
are therefore never “flat” (D,, = 2), nor isotropic (D, = 3), but always display aspects of both. Larger
structures are on the average, more stratified as a result of a well-defined stochastic process.

In this scheme, the intermittency must be quite strong in order to produce the well-known meteoro-
logical “animals” such as storms, fronts, etc. We propose that intermittency is characterised by hyper-
bolic probability distributions with exponents o. This possibility was first suggested by Mandelbrot
(1974 a) for the rate of turbulent energy transfer (g). We investigate intermittency for the wind (v) the
potential temperature (0), and & in terms of this hyperbolic intermittency. In particular, we find o, = 5,
&, = 5/3, o5 = 10/3, which show that the fifth moment of v, the second moment of &, and the fourth
moment of In (! diverge.

We re-examine Mandelbrot’s model of intermittency and generalize it for anisotropic turbulence.
We stress that it cannot be characterised by a single parameter, the dimension of the support of
turbulence: we show that, except in a trivial case, several fractal dimensions intervene. We exhibit, for
instance, a two-parameter model depending on the fractal dimension of the very active regions.

Finally, we sketch a direction for future work to assess this 23/9 dimensional scheme of atmospheric
dynamics with hyperbolic intermittency.

1. Introduction

The classical approach to the analysis of atmospheric motions (e.g. Monin 1972), considers
the large scale as two-dimensional, and the small scale as three-dimensional. In this view, a
transition, which for obvious reasons we call a “dimensional transition”, is expected to occur
in the meso-scale, possibly in association with a “meso-scale gap™ (Van der Hoven 1957).
This scheme favours the simplistic idea that at planetary scales the atmosphere looks like a
thin envelope, whereas at human scales, it looks more like an isotropic volume.

A dimensional transition, if it were to occur, would be likely to have fairly drastic
consequences because of the significant qualitative difference of turbulence in two and three
dimensions (Fjortoft 1953; Kraichnan 1967; Batchelor 1969). Two-dimensional turbulence
is very special since in the vorticity equation, there is no source term, and it is therefore
conserved. Mathematically, it introduces a second quadratic invariant (the enstrophy, or
mean square vorticity), and physically, the all important stretching and folding of vortex
tubes cannot occur. Since the 50’s, there has been a wide debate over the effective dimension
of atmospheric turbulence, due in particular to the extension of two-dimensional results to
the case of quasi-geostrophy (Charney 1971; Herring 1980).



Although, a dimensional transition should be readily observable, experiments over the
last 15 years have failed to detect it (see Table 1 for a summary). Attempts to explain this
fact without abandoning the idea of a transition (e.g. Gage 1979), require a series of ad hoc
hypotheses about the distribution of energy sources and sinks, hypotheses which are proba-
bly no longer tenable.

At the same time, Vinnechenko (1969), Endlich et al. (1969) questioned the existence of
a break in the spectrum and the relevance of the notion of the meso-scale. Lovejoy (1982)
turned this argument around by suggesting that the failure of experiments to find clear
evidence of a length scale characterising a transition, was in itself positive evidence of the
scaling (fractal) nature of the atmosphere — at least up to distances of ~ 1000 km. The
primary purpose of this paper is to extend this idea considerably: based on radiosonde,
aircraft, and other data, we propose that the atmosphere is never isotropic (three dimen-
sional), nor completely “flat” (two dimensional), but is anisotropic and scaling ! throughout,
a fact that can be characterised by the intermediate “elliptical” dimension D, = 23/9 ~ 2.56.
The expression “elliptical” may be understood by the fact that vertical cross-sections of large
eddies appear as flattened ellipses.

This dimension is greater than the dimension of the support of turbulence (D) which
must take into account the effects of intermittency. This question will also be investigated.

In Section 2, we examine in some detail the theoretical and cmpirica'l reasons for doubt-
ing the existence of a dimensional transition, and for suspecting that the atmosphere is
characterised by uniform scaling laws. In Section 3, the special role of the vertical structure
is examined: in particular the significance of the buoyancy force and the vertical shear.
Section 4 is devoted to a review of the empirical data used to establish the vertical scaling
and intermittency of the wind, potential temperature and rate of turbulent energy transfer
ficlds. The vertical scaling is found to be quite different from that known to hold in the
horizontal, (and in the case of the velocity field, can be obtained by a dimensional argument
similar to that advanced by Obukhov (1959) and Bogliano (1959)). Another significant result
is the very large tails of these probability distributions, a feature associated with intermittency.

An important result is that the fifth (and higher) moments of the velocity field diverge.
In Section 5, we present a preliminary discussion, and finally, in Section 6 we develope a
central idea of the paper: that the anisotropic scaling nature of the atmosphere may be
characterised by an elliptical dimension. Section 7 examines an immediate consequence:
stochastic stratification. Section 8 is devoted to a preliminary analysis of hyperbolic
intermittency: extreme fluctuations are ruled by algebraic fall-off of the probability distribu-
tions (a precise definition is provided in Section 3). Such a behaviour has been proposed for
the rate of turbulent energy transfer by Mandelbrot (1974 a) and observed for the flux of rain
by Lovejoy (1981). As pointed out by Mandelbrot (1974 a) this is connected with the question
of the dimension of the support of turbulence, but (as we stress) is not fully characterised by
it. Indeed we show that, except in a trivial case, several dimensions intervene. For instance,
a two-parameter model is discussed, which depends mainly on the fractal dimension of the
very active regions.

Section 9 contains some theoretical developments of anisotropic scaling and hyperbolic
intermittency and combines them in order to study relations between various fields, pheno-
menology and renormalisation procedures. Section 10 summarizes our results and indicates
a prognosis for the future.

1 Wherever it appears, the term “scaling” (or scale invariance) is used in the sense commonly accepted
in physics, the phenomenon does not depend on the scale of observation. The most familiar conse-
quence of scaling is undoubtedly the power law spectra of scaling objects (i.c. E(k) ~ k', where k is
the wavenumber, E the energy, f§ the spectral exponent). A precise definition of scaling is provided in
Section 3



Table 1. Empirical evidence for horizontal scaling

Investigators

Type of data

Analysis technique

Range of scales studied

Richardson (1926)

A
Stewarl and
Townsend (1951)
Vinnichencko (1969)

Morel and
Larchevéque (1974)

MacPherson and
[saac (1977)

Gage (1979)

Brown and
Robinson (1979)

Gilet et al. (1980)

Lovejoy (1982)

Lilly and Peterson
(1983)

Nostrum and Gage
(1983)

Boer and
Shepherd (1983)

Smoke, motes,
volcanic ash,
balloons

hot-wire
anemomelry

Records of wind
data from 1 sec

to 5 years con-
verted to equivalent
distances

Constant altitude
balloons

Wind data from
flights through
clouds

VHF Doppler radar
wind data (with
time to space
conversion)

radiosonde

Doppler radar
wind data in rain

Satellite cloud
and radar rain
pictures
Aircraft wind
data

Aircraft wind
data

radiosonde

Atmospheric
diffusion

Energy spectra

Energy spectra

Atmospheric
diffusion

Energy spectra

Structure function

correlation
function
Energy spectra

Area-perimeter
relation

Energy spectra
Energy spectra

Energy spectra

1 cm to 1000 km

10cm to 10m

10 m to 1500 km

100 km to 1000 km

10m to 2.5 km

4 km to 400 km

5002500 km
1.6 km to 25 km

1 km to 1000 km

1 km to 250 km
1 km to 700 km

1000-4000 km

2. Why a Dimensional Transition is Unlikely

2.1 Empirical Reasons

There is a growing body of evidence, going back to Richardson’s (1926) famous atmospheric
diffusion experiment, which is consistent with a uniform scaling from at least several centi-
metres (the dissipation length) to perhaps 4000 km. (Boer and Sheperd (1983) find this for
planetary wavenumbers greater than 8—10). Table 1 summarizes different experimental
results. Note that in recent years, all the results over this range are consistent with a k3"
energy spectrum- with the possible exception of Morel and Larchevéque (1974). They
analysed the dispersion of constant altitude balloons over length scales in the region of
100 km to 1000 km. Although they found no evidence of a characteristic length scale in this
region, their data was compatible with the existence of an exponential diffusion law which

is normally associated with two-dimensional turbulence (and by implication a k3 spec-
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trum). A question outside the scope of the present paper, is to show whether or not this
diffusion law is compatible with the 2.56 dimensional model proposed here.

The failure of so many investigators to find a characteristic length characterising a
transition is significant because most of these experiments were designed to detect such a
length scale.

2.2 Theoretical Reasons

Scaling is now a widespread notion in physics. It is a basic tool in the theory of the
Renormalization Group (e.g. Wilson 1975) and in the construction of fractal objects (Man-
delbrot 1975, 1982). The prevalence of scaling is directly connected with the fact that many

- non-linear equations do not introduce a characteristic length, and thus admit scaling, hence
fractal, solutions. In the case of gravitation, Mandelbrot (1982) has traced this idea back to
Laplace.

The prototypical example of such an equation is the Navier-Stokes equation — which is
also the basic equation of fluid dynamics, and hence of meteorology. In detail it is far from
understood and is still the object of numerous investigations, both theoretical and numerical.
Recently the existence of scaling solutions has been verified by direct numerical simulation
even in three-dimensional turbulence: Brachet et al. (1983) have succeeded in exhibiting an
inertial range in pseudo-256° simulations of the Taylor-Green vortex. Chorin (1981) has even
given strong evidence of the scaling behaviour of the set of singularities, i.e. that the intermit-
tency is also scaling, this is necessary if the solution is to be truly scaling. This will be
discussed in Section 8 devoted to intermittency.

The scaling is expected to hold down from some large “outer” scale — the exact value of
which depends on the energy injection and other details - to a small dissipation scale. This
dissipation length is necessary to prevent divergence of the enstrophy. In the atmosphere,
there is general agreement that this occurs on centimeter scales. As for the “outer” length,
Richardson (1926) doubted it “occurred” within the atmosphere, and as Table 1 indicates,
it may be at least 4000 km.

The dissipation length and the “outer” scale are the basic length scales. Others length
scales are based on various statistics of the flow, e.g. the “mean” velocity, and are therefore
not fundamental in the same sense.

In principle, this scaling could be broken by the boundary conditions if they had a
well-defined length scale. One kind of boundary condition often used by modelers to break
the scaling is orographic forcing or topography. However, Mandelbrot (1977, 1982) has
found evidence that the topography is scaling up to planetary scales. (The recent theoretical
studies by Holloway and Hendershot (1974) and Herring (1977) of the possible effects of a
spectral peak in a random topography does not address the question of whether or not the
topography does in fact have such a peak.)

Another way in which the scaling could be broken is if the “forcing” of the atmosphere
(the sources and sinks of diabatic heating) had characteristic lengths. In the case of diabatic
heating via solar radiation, Gautier (1982, personal communication) has analysed satellite
data and found a scaling behaviour for distances of up to at least hundreds of kilometers.
Diabatic heating via the release of latent heat, is also unlikely to create structures with well
defined size. as was shown by an analysis by Lovejoy (1982) of rain and cloud areas from
{ km? to 1.2 x 10° kmZ Finally, Schertzer and Simonin (1982) and especially Simonin (1982)
have shown that diabatic cooling due to radiative dissipation is likely to be scaling — at least
up to hundreds of kilometers.

Because of the non-linear couplings between the different meteorological fields, the
existence of a length scale in one, is likely to manifest itself in the others. It is therefore likely
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that over a given range, that all fields are either scaling or not scaling. The results above are
all consistent with this.

In the light of these results, we consider as unlikely, the idea proposed by Gage (1979)
that severe storms with well defined sizes could account for the observed scaling by provid-
ing an energy source for a reverse two-dimensional energy cascade. In fact, the existence of
a reverse cascade of this sort for the energy, is unlikely to be accompanied by a reverse
cascade of a passive scalar. Indeed, contrary to earlier conjectures (e.g. Lesieur et al. 1981),
we believe that such a cascade could not exist at all. This may best be understood by recalling
that Kraichnan’s (1967) theoretical derivation of the reverse energy cascade in two dimen-
sions relies on the existence of two quadratic invariants for the velocity, (see also Fox and
Orszag (1973), Basdevant and Sadourny (1975), Carnevale et al. 1981).

This is convincingly established by the use of statistical mechanical arguments for non-
dissipative systems. The situation is entirely different in the case of passive scalars, since in
any dimension there exists only one quadratic invariant quantity. In this case, the same
arguments show that an inverse cascade is impossible, a conclusion supported by numerical
calculations on the test field model (Lesieur and Herring 1984). On this basis, we
would expect a reverse energy cascade to be accompanied by a peak in the spectrum
of passive scalar quantities at a wavenumber corresponding to the scale of the energy
injection, a phenomenon which is not observed anywhere near the ~ 100 km scale proposed
by Gage (1979) (the clearest evidence for this is the Morel and Larchevéque (1974) experi-
ment).

We feel that the effort to locate sources and sinks at specific length scales is often
misplaced, because the Kolmogorov scaling may be expected to hold under quite general
conditions, not only for a true inertial range (ie. a range without a source). The only
necessary assumption is that of a constant flux of energy through the range. This could be
obtained either by the usual hypothesis which locates the forcing at large scales, or by forcing
which is the same at all scales. Indeed, the only theoretical derivation (based on renormali-
sation group techniques) of the Kolmogorov scaling, has been obtained under the latter
hypothesis (De Dominicis and Martin 1979 and Martin and De Dominicis 1978).

Another theoretical reason which makes it unlikely that the atmosphere has a well
defined dimensional transition, lies in our current understanding of the nature of intermit-
tency (for example Batchelor 1969 or Curry et al. 1982). Intermittency is now viewed as the
frequent switch from quiesence to chaos, and this makes the existence of a well-defined
transition doubtful.

3. The Vertical Structure

Perhaps the most serious objection to the hypothesis of a scaling behaviour of atmospheric
motions arises from the special role of the vertical axis. Indeed, there has been a deluge of
papers based on non-scaling techniques which implicitly reject a priori any possibility of
vertical scaling (for example, the “second order models™ and “one point closures™). In what
follows, it will be apparent that this rejection has had unfortunate consequences.

The vertical direction plays a key role for the following reasons:

i) The gravity field defines a direction at every point.
i) The atmosphere is globally stratified.
iii) It has a well defined thickness (exponential decrease of the mean pressure).
iv)  The fundamental sources of disturbances are the vertical shear and the buoyancy force
(c.g. the Kelvin-Helmotz instability).
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In the following, we examine the possibility that the atmosphere is in fact scaling in the
vertical as well as in the horizontal direction. To do so, we examine empirically the wind and
temperature fields, attempting to capture two basic and conceptually distinct properties of
these fields.

Scaling: The scaling provides the relationship between fluctuations of a field
X (AX(Az)= X(zo+ Az) — X(z0), is the fluctuation between z, and z, + Az), for large
scales AAz (41 » 1) to the small scales (Az) by:

AX(GAz) £ HAX(Az)

where H is the scaling parameter and «4% means equality in probability distributions
(X £ Y means Pr(X > g) = Pr(Y > g) for all g and Pr denotes probability). Note that the
exponent of the corresponding power spectrum (— f) is related to H by f=2H + 1,in the
case of finite variance.

Hyperbolic Intermittency

Intermittency is directly connected with the probability law. One is particularly interested
in the tail of this law, since it controls the relative frequency of extreme (intermittent)
behaviour. For example, if the distribution has an algebraic fall-off at large fluctuations
(A X). then the degree of intermittency can be characterised by the exponent « (the hyper-
bolicity) defined as follows:

PriAX' > AX)oaAX *

Random variables are distinguished [rom non-random ones by primes or by the use of upper
case symbols for random, and lower case for non-random variables. The above equation
therefore reads “the probability of a random fluctuation A X" exceeding a fixed AX is
proportional to AX ™*".

Behaviour of this sort was first predicted by Mandelbrot (1974 a), who also showed that
it was related to the problem of the dimension of the support of turbulence Dy, a question,
we pursue in Section 8 in the context of anisotropy. Hyperbolic distributions have been
invoked in other fields of physics (the “Holtsmark distribution™, Feller (1971), or see Mandel-
brot (1982) for other examples). Note that all moments of order o or higher diverge, a fact
that has important consequences *. Levy (1937) and Feller (1971) are standard texts, in the
case o < 2, (the Levy-stable laws which form a convolution semi-group). We term this kind
of intermittency “hyperbolic intermittency”. In Section 9 we will discuss the connec-
tion with previous experimental results of this kind obtained for the rain field (Lovejoy
1981).

We shall primarily be interested in the vertical fluctuations of the horizontal velocity field
(Av) and in the buoyancy force per unit mass acting across a layer of thickness dz:
df = gd ln 0, where 0 is the potential temperature, and g the acceleration of gravity. These
quantities are related to two fundamental frequencies: that of the vertical shear (s) and the
Brunt-Vaisala frequency (n):

s=dv/dz and n*=gdIn0/ldz=dffdz.
The ratio of their squares defines the dimensionless Richardson number:
Ri = n?/s%

2 E.g. the experimental estimation increases without limit with the sample size (cf. Schertzer and
Lovejoy 1983 b}
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The shear frequency characterises the dynamical processes, and the Brunt-Vaisala fre-
quency, the stability (and gravity waves). The dominant process has the highest frequency.
Note that the above are defined locally (in time and space) and hence are often called
“turbulent” quantities. Unfortunately, one is used to considering them in averaged forms.

To determine their scaling regime, Fourier analysis could be used. Here, we analyse
directly the scaling of the probability law by measuring quantities across atmospheric layers
of thickness Az. This has the advantage that it enables the scaling parameters (H’s) and the
hyperbolicities («’s) to be obtained simultaneously. We therefore define:

2 (Az) = Avi(Az)/Az?;, nP(Az)=gA In|0//Az
Ri(Az) = n?(Az)/s?(Az).

4. Data Analysis

4.1 Radiosonde Analysis

s, n, Ri were evaluated from the high resolution radiosonde data obtained in the 1975
experiment in Landes, France. The quantities #, v and the humidity were obtained every
second (~ 3 m in the vertical) and processed to yield low noise data every 5s (~ 15-20 m)
(see Tardieu (1979) for more details). The velocity values were somewhat noisier than the ¢
values and were therefore smoothed, yielding low noise estimates every 50 m. All estimates
of n, s, Ri were thus made over layers at least 50 m thick, and from the ground up to a
somewhat arbitrary height of 6 km. Since the number of points in each layer varied some-
what (averaging ~ 3 for each 50 m layer), mean 0, v were computed and A In 0, Av* were
then determined. These are required to calculate s and n. The data examined are from 80
consecutive soundings taken at 3-hour intervals at Landes.

From the log-log plots shown in Figs. 1, 2, 3 it can easily be verified that the probability
distributions of Az, Af and Ri exhibit both scaling and hyperbolic behaviour. Perhaps the
easiest way to see this is to recall that for hyperbolic distributions:

Pr(AX'> AX)=(AX/AX®™® for large AX

A X* is the “width” of the distribution, or the amplitude of the fluctuations. Scaling implies
then that the width grows with the separation as:

AX*(Az) = (Az/Azy)" AX*(Az,) Az, is a constant.
This is shown on the graph by the constant shift H log 2 for each doubling of the

separation Az. The value (— o) is the slope of the straight line asymptote.
We obtain:

H[.‘ el 3."IIS 'xl: = 5
Hyo=9/10 oy, =10/3
Hpi =1 ofy=1z

The H’s and s are given rational expressions, since, as explained below, they can often
be deduced by dimensional considerations.

In a humid atmosphere, the buoyancy is determined by the wet bulb potential tempera-
ture (vielding n,). We also plotted the distribution of n,, and found it to be virtually
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indistiguishable from that of n. This is probably because Landes was quite dry — the relative
humidity rarely exceeded 50 %.

These exponents are quite robust ie. the difference between the individual sounding is
the width of the distributions, not the exponents, this is supported by the comparison of four
subsamples of 20 soundings each. Although the most unstable samples had a width of the
Ri distribution twice as small as the most stable sample, the exponents were unaffected (this
was also true of s and n). These results are fully consistent with the pooled results shown in
Figs. 1, 2, 3 if it is remembered that pooling data from hyperbolic distributions with similar
exponents only changes the width of the distribution. Furthermore, comparisons of data
from above and below 2 km show that the hyperbolic form is not due to the pooling of data
from different altitudes.

4.2 Merceret’s (1976) Aircraft Data

Another quantily of interest is the rate of turbulent energy transfer (£). This is the fun-
damental dynamical quantity in the turbulent cascade of energy from large to small
scales. In this case, we obtained only a probability distribution by replotting Merceret’s
aircraft data. The result, which is shown in Fig.4 can be represented by the following
formula:

Pr(¢Z > &) ~& *; o, ~5/3

Merceret obtained his value of £ by calculating the spectrum of horizontal wind fluctuations
every second (~ 100 m — actually the 1 s spectrum is the average of literally thousands of
spectra taken on millisecond time scales), from a research aircraft. Note that this 5/3
exponent is conceptually quite different from the famous Kolmogorov 5/3 exponent. Man-
delbrot (1974 a) points out that the value of o, depends on the dimension of the region over
which it is averaged. We assume this average to have been taken over a straight line of
dimension 1. In the following, we use the bar notation to indicate a spatial average and
angular brackets {.> for ensemble averages.

1

E)

Pr{E=>

Fig. 4. The probability distribution of £ as replotted
1021 ° from Merceret (1976) Fig. 14. (These values are av-
erages over 100 m in the horizontal, which are taken
" to be made over a line, thus D, = 1. Linear regres-
10-3 102 sion yielded a correlation coefficient of 0.998, and a
£ (m?s™) slope of — 1.691, which implies x = 1.691 ~ 5/3)
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5. Preliminary Discussion

5.1 Obukhov (1959) and Bogliano (1959) Predict H, = 3/5

One of the most significant implications of the present study is that H, = 3/5. A very similar
result was predicted almost 25 years ago for the directionally averaged spectrum in the
so-called “buoyancy subrange”, by Obukhov (1959), and independently by Bogliano (1959).
To our knowledge, Endlich et al. (1969) were the first to test this prediction empirically by
performing spectral analyses of Jimsphere vertical soundings of the horizontal wind field.
After considerable interpolation of the data, and smoothing of the power spectrum (both of
which increase the spectral exponent B), they found = 5/2 and no evidence of a character-
istic vertical length scales up to distances of at least 10 km. However, Adelfang (1971) applied
a structure function analysis to raw data obtained from another Jimsphere experiment (up
to 16 km) and obtained H, = 0.60, implying f =2H, + 1 = 2.2, in agreement with our
results. He also found no evidence for a vertical length scale.

We therefore believe that non-linear data processing may account for the discrepancy
between the result of Endlich et al. (1969) and that found here. The same comment applies
to Van Zandt's (1982) analysis of the Adelfang data (he found p = 2.4). It may be noted that
the method of analysis adopted here is statistically quite robust since it depends only on the
scaling of the asymptotic part of the probability distribution which is relatively noise free.

To derive H,= 3/5 Obukhov and Bogliano considered the fundamental parameter
determining the vertical structure to be the flux of temperature variance (in analogy with the
flux of kinetic energy & in Kolmogorov’s derivation of H, = 1/3). The only other quantity of
interest is the “buoyancy parameter” g/T (where T is the average temperature), a quantity
that characterises the strength of the coupling between the temperature fluctuations and the
dynamics in the Boussinesq approximation. The result H, = 3/5 follows immediately from
dimensional considerations.

Instead of applying this derivation to fluctuations averaged over all directions, we
suppose that it applies to {luctuations along the vertical. This derivation can even be slightly
improved by considering directly the physically meaningful quantity ¢ the flux of buoyancy
force variance (this has the advantage that it does not depend on the Boussinesq approxima-
tion):

FAz) =1 "(Az) Af?(A2)

where t(Az) is a characteristic time for the transfer process. Dimensional analysis yields:

Av(Az) £ F(Az)'® AZP. (1)

While this scaling holds in the vertical, the quite different Kolmogorov scaling holds in
the horizontal:

Av(Ax) £ E(Ax)1? AxE. )

These formulae show that characteristic lengths arise neither in the horizontal, nor in the
vertical directions. .

The fact that the H’s can be deduced from dimensional considerations justifies the use
of rational approximations to the exponents.

See Section 9 for similar arguments in the case of the «’s.
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5.2 Persistence and Coherence of Vertical Structures

H, and H, are separated by the value 1/2 which is the value of H that would obtain if
fluctuations were uncorrelated (cf. the coordinate of a Brownian particle). H < 1/2 therefore
implies that the fluctuations cancel more quickly than in the independent case, a phenome-
non called “antipersistence” by Mandelbrot and Wallis (1968). Similarly, H > 1/2 implies
that fluctuations tend to add together in the same direction, “persistent” behaviour,

We therefore interpret H, = 3/5 as reflecting the fact that v tends to behave in a coherent
way over atmospheric layers, whereas, it tends to be anti-coherent in the horizontal.

5.3 The Turbulent Richardson Number

From Fig. 3 we obtained Pr(Ri’ > Ri)aRi~ ' Az. This distribution has such large fluctua-
tions (og; = 1) that even the mean may not converge (if og; < 1). The large fluctuations in this
quantity have long been recognised, and a series of modified Richardson numbers (based on
the ratio of two statistics) have been introduced to reduce the fluctuations to manageable
proportions (e.g. the flux Richardson number Rj).

Distributions of this type (e.g. Cauchy distributions) arise naturally when the ratio of two
independent random variables is taken (on condition that the denominator has a non-zero
probability density at the origin) — e.g. the Student distribution. In this case, the correlation
between s and n was found to be 0.048 + 0.018, suggesting that s, n are weakly dependent,
thus explaining ag; ~ 1 (note that both Ri and 1/Ri were found to have o’s approximately
equal to one). This hypothesis was confirmed by randomising the experimental pairs s, n and
calculating the new distribution of the ratio n?/s*. The resulting distribution was indeed the
same as the unrandomised one, supporting the hypothesis. The value of Ri is expected to be
related to the onset of turbulence, and therefore its erratic nature is directly related to the
phenomenon of intermittency.

This fact calls for cautious use of methods for solving the equations via limited ex-
pansions in Ri ! (= /Fr?, Fr being the Froude number). In particular, the proposal in Riley
et al. (1981) to use this sort of expansion to establish a separation between a 2-D horizontal
turbulent regime and a wave dominated regime must be placed in a stochastic context. The
same applies to the idea proposed by Lilly (1983), of “wave collapse”. There is no doubt
that some meteorological events correspond to Ri~!' < 1, so that limited expansions
should shed some light on the mechanisms involved. However, the statistics of Ri™*
indicated here imply that these events occur in a very erratic manner. More work is therefore
needed to understand this dual nature of Ri™', but the present results show that there is no
way to separate waves and turbulence in the atmosphere, except perhaps in special situati-
ons.

5.4 The Divergence of the Fifth Moment of the Velocity

Assigning the value o, = 5 which implies the divergence of the fifth and higher moments of
the velocity field, requires some justification.

Assuming Egs. (1) and (2), and assuming that &, = 5 holds i in both vertical and horizontal
directions leads to two conclusions. First, o, = 1 (since J Av®(Az)/Az%) and second
o, = 5/3 (since & = L Av® (Ax)/AX).

Although a4 = 1 has not been independently verified (it would require an understanding
of the correct t(Az)), Fig. 4 independently shows that o, ~ 5/3.

The fact that radiosonde data of velocity fluctuations in the vertical, and aircraft obser-
vations of horizontal energy transfer give such close agreement is strong evidence in favour
of the correctness of both exponents. Other evidence for divergence of high moments of the
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velocity come from the wind tunnel experiments of Anselmet et al. (1983). Schertzer and
Lovejoy (1983 b) argue that these results are consistent with the universality of o, ~ 5in fully
developed turbulence.

The divergence of the higher moments of & was first proposed by Mandelbrot (1974 a)
who suggested x, ~ 4 on the basis of the evidence then available.

6. Dimension and Scaling Laws

6.1 Anisotropic Scaling and the Elliptical Dimension D, = 23/9

We have examined the theoretical and empirical evidence in favour of the horizontal and
vertical scaling of meteorological quantities. We now turn to examining some of the conse-
quences of these findings.

Objects which scale in the same way in all directions are called self-similar fractals
because the large scale can be simply viewed as a magnification of the small scale. In the
atmosphere, we have argued that scaling, although present in all directions, and over a wide
range of lengths, is quite different in the vertical and horizontal. Large-scale structures can
no longer be simply regarded as large-scale copies of smaller ones. In order to transform
from small to large scales, in addition to magnification, we must also stretch.

To make this magnification and stretching procedure precise, we express the horizontal
and vertical scaling of the horizontal velocity fluctuation Av as follows:

Av(AAx) £ M Av(AX)

Il

Av(iAy) = ATmAp(Ay)

Av(AAz) = M Ap(Az).

These equations describe how Av varies with different scales of ratio . In order to
examine how actual structures vary, we rewrite these equations in the following form:

Av(T,Ar) £ JFh Av(Ar).

where T, is written as:

A 0 0
T,=(0 4 0} with H.= H,/H,.
0 0 AH-

The action of this matrix may be seen to consist of an overall magnification by 4 coupled
with a stretching in the z direction. Note that T transforms the statistical properties of the
atmosphere, [rom one scale to another because the equalities in the above apply to probabil-
ity distributions. The existence of T permits the introduction of an elliptical geometry (see
Schertzer et al. (1984)), necessary because of the different horizontal and vertical scaling.

Figure 5 shows how a small vertically oriented average eddy is transformed at larger
scales. The magnification and stretching process transforms the vertically oriented “convec-
tive” type eddy into a large horizontally oriented “Hadley” type eddy. The transformation
increases the volume of the eddy by the factor A-A-A"== 1P with Dy=2+ H.=
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“Hadley" cell

T et ey Fig. 5. This figure shows the shape of the

" ¥ o T PRI vertical cross-section of averaged eddies
/ / / ‘X_.sph_-\aro-sc\gle at different scales. Note that at small
{ \ Ii:co__nveqtive" geil | scales, the eddies are vertically oriented
: %, S 4 (“‘convective” type), al intermediate
Ny R SR g scales, they are circular (the “sphero-

Sy i T scale™), and at very large scales, they are
= FTRAS e again elliptical, but elongated in the hori-
i e zontal rather than the vertical (“Hadley™
Lype)

23/9 ~ 2.56. In an isotropic three-dimensional atmosphere, H, = 1= D, = 3, and in the
isotropic two-dimensional case, H, = 0= D,, = 2. It is therefore natural to regard D, as the
fractal dimension of this anisotropic space.

Writing the above relationship in the form: Det T = A", we are led to the following
definition of D,:

Dy =Tr(dT/dJ),_,

which is the elementary mapping between averaged eddies of different scales d /.
The number n(l) of eddies of horizontal scale / may now be written:

N(Dol P,

D,, is not the same as the oft cited dimension of the support of turbulence (D) which
expresses the fact that because of intermittency, eddies do not fill all the space available to
them. This point will be discussed further in Section 8.

An example of an anisotropic fractal is the graph of the coordinate of a particle sub-
jected to Brownian motion (X (¢) as a function of time (t)). Applying the above definition, it
is easy to see that D, = 1.5 which is the same as the fractal dimension suggested by
Mandelbrot (recall that in this case X is scaling, with H = 0.5). Mandelbrot calls this kind
of fractal “self-affine”. In Schertzer et al. (1984), the term “elliptical” fractals is used, to stress
the elliptic metric involved. In any case, this dimension does not correspond to a isotropic
Hausdorff dimension, as fractal dimensions usually do.

6.2. The “Sphero-Scale”

The distinction between isotropy and anisotropy is profound. Consider a stretched and
folded vortex tube of scale ! in the anisotropic case. A horizontal cross-section will have an
area proportional to [> whereas a vertical cross-section will have an area proportional to
[*"H8= and thus their ratio, which gives a quantitative measure of the “verticalness” of the
vortex is proportional to [! ~#=, There therefore exists a scale at which the ratio is 1, and the
vortex appears isotropic. The nature of the sphero-scale may be understood by considering
it to be defined as the scale for which the amplitude of Av (as measured by <Av*>? for
example), is the same in both horizontal and vertical directions, (for the same length
Az = Ax). This scale will depend on the relative amplitudes of & and ¢ both of which show
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large fluctuations. The size of the sphero-scale may therefore vary in an exiremely cridtic
manmer.

Another feature of the sphero-scale is that its effect is very gentle in as much as it may
be viewed as the point beyond which one power law (/) dominates over another (I7=). This
is quite unlike the usual case in which the behaviour suddenly changes at the scale in
question. The sphero-scale is therefore quite unlike an ordinary length scale.

7. Stochastic Stratification

When T, acts on a small vertically oriented eddy, it clearly tends to flatten it out in the
horizontal. At sufficiently large scales, any structure will be quite flat Le. stratified. Figurc 6a
shows an isotropic gaussian field with H = 1/2and D, = 2, Fig. 6b shows the corresponding
field for D,, = 3/2 (the same white noise field was used in both cases to generate via Fourier
transforms, the random fields). Figure 6b yields a clear stratification, Fig. 6a does not since
the resulting field is isotropic. Stratification may be seen as resulting from the anisotropic
scaling law, thus as a result of a stochastic process. See Section 9.3 and Fig. 11 for an example
of stratification in a hyperbolic context.

The notion of stochastic stratification is a necessary consequence of our anisotropic
fractal space, and needs considerable development. It may be that it is even compatible with
the exponentially decreasing mean pressure field, in this case, the physically significant
quantity is log p, and the hydrostatic relation is recovered by assuming that the vertical
scaling of log p has the parameter H,g,, , =1, a fact that was verified here using the
radiosonde data described in Section 4. This implies that the horizontal scaling has the
value: Hyop = 1+ H, = 5/9 ~ 0.56. [sotropic homogeneous turbulence in an incompres-
sible medium can be shown theoretically to have the value H,,,, = 2/3 since in an incompres-
sible fluid, fluctuations in pressure are proportional to the square of velocity fluctuations (see
also Batchelor (1953), Monin and Yaglom (1975). In a compressible fluid this relation-
ship no longer holds, and presumably the effect of compressibility is to lower the scaling
exponent - possibly to the value 5/9. In any case, to our knowledge, this value has never been
adequately determined empirically. A prediction of the stochastic stratification, is that the
horizontal scaling of the potential temperature is H,, ¢y = 9/10 - H. = 1/2. The value of 1/2,
if true. would mean that the inhomogeneities in the horizontal potential temperature field
could be regarded as independent (cf. Section 5.2).

8. Hyperbolic Intermittency

8.1 Introduction

Intermittency expresses the fact, that, roughly speaking, the turbulence doesn’t fill all the
volume of the space available to it. This is a fundamental aspect of turbulent flows, which,
in spite of much work, is still far from completely understood. The first theoretical work on
the subject, seems to be Leray’s (1933) conjecture on the existence of a set of singularities of
the Euler and Navier-Stokes-Equations. Von Neumann (1949) was aware of this work and
stressed that the characterisation of these singularities is a fundamental task.

In the case of turbulence, the basic singularities are related to the distribution of the
density of “active” or turbulent regions, that do not fill all of the volume. Other authors, such
as Batchelor (1951) related this to the growing experimental evidence of the “spottiness” of
turbulence (see also Batchelor and Townsend (1949)).
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Fig. 6a. A random isotropic field
with 7 = 1/2, the intensity of the
field is proportional to the shade of
the grey

Fig. 6b. An example ol stochastic
stratification. This figure is the
same as Fig. 6a, cxcept that
D,, = 1.5 instead of 2. In one direc-
tion, H# =1, and in the direction
perpendicular, H = 1/2. This strati-
fication is strong since H_ = 1/2.
Note that the “*sphero-scale™ has a
value of ~ 1% of the length of one
side of the figure

Landau and Lifshitz (1959) also questioned the universality of Kolmogorov’s spectrum,
since it had been derived under the assumption that the active regions were uniformly
distributed in space. Kolmogorov (1962) and Yaglom (1966) presented a corrected spectrum
that took into account intermittency, by assuming a log-normal distribution of Z. Since then,
Orsag (1970) and Mandelbrot (1974a) have pointed out several theoretical and physical
difficulties with this hypothesis. In particular, Mandelbrot, building upon an earlier, explicit
model for the “spottiness™ (Novikov and Stewart 1964), showed that log-normality may only
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be expected to hold under rather special conditions, whereas hyperbolic behaviour was more
likely. This latter possibility, which involves the divergence of higher moments of & was
unfortunately dropped in Kraichnan (1 974) and Frisch et al. (1978), and subsequent works.

Mandelbrot’s model is in fact fairly general; however, the basic features may be under-
stood by considering two special cases. The first is “curdling”; it divides all eddies strictly into
either completely “dead” or uniformly “active” regions, and is often referred to in the
literature as the “f model”. This model is fully characterised by the dimension of the support
of turbulence, D,. This is the only case where no divergence of moments occurs. The second
model is “weighted curdling”, it divides eddies into either “weak™ or “very active’, and
permits in addition to the study of D,, that of the divergence of the moments, characterised

(TTTY

Fig. 7. This shows an example of deterministic curdling on an anisotropic grid
(“clliptical Sierpinsky carpet™). At each stage (generation) of the process, the
horizontal is divided into 9 parts, and the vertical into 3, yielding
D, =log 27/log 9 = 1.5. The curdling is deterministic because there is a fixed
“generator’” whose outlines can still be fairly discerned (i.e. the edges). In this case,
D, =log 20/log 9 = 1.36...

Fig. 8. A random curdling on an anisotropic grid, with D, = log 20/log 5 = 1.86... All eddies are cither
“dead” or “active”, such that the dimension of the support is: D, = 1.70
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by the exponent «. This latter subcase of the Mandelbrot model, could be called the “u
model”, because of the hyperbolic exponent it introduces.

Figure 7 presents the result of deterministic curdling, ie. with a fixed “generator” but
anisotropic (it could be called an “elliptical Sierpinsky carpet” according to Mandelbrot’s
terminology). Figure 8 presents the result of a random “curdling” (“f model”) and Fig. 9 the
one of a “weighted curdling” (“a model™), in the latter case the resulting active “eddies” are
of very different intensities as indicates by the grey.

In the following, we re-examine Mandelbrot’s model, placing particular emphasis on the
importance of o, and the dimension over which the spatial average of ¢ is taken. More details,
in the isotropic case, may be found in Mandelbrot (1974 a, b), Peyriere (1974) and Kahane
(1974). We also demonstrate the utility of D,, by generalising Mandelbrot’s model to the

g

Fig. 9. A “weighted curdling”, D, = log 20/log 5 = 1.86, D, = 1.83 and D, = 1.5. The log of the in-
tensities of the eddies is denoted by the intensity of grey

anisotropic case. By counting the number of eddies of a given size, we establish that this
generalisation may be accomplished by simply replacing different isotropic dimensions by
“elliptical” ones.

The rest of Section § is somewhat technical. Readers who are willing to accept that
weighted curdling generally leads to the divergence of moments may skip to the next section.

8.2 A Summary of the Mandelbrot Model

The basic ingredient of this model is the random variable W which distributes the rate of
turbulent energy transfer & from an eddy of size I, to its sub-eddies of size /,, along a
cascade of typical length scales: I, = I, ™" 4 being the constant ratio of cascade sizes.
Specifically,

£ (x;) = M’?ﬁ;“_l

where x; is the center of the i*" sub-eddy. The different realisations W of W are all indepen-
dent. In what is called a “canonical” cascade, W is subject only to the condition of conserva-
tion of the average flux, i.e.:

Wy =1.



The spatially averaged flux &, , which is the flux of eddies of typical scales /,, averaged
over a subspace A of dimension D, (e.g. a line or a plane), can be defined as follows:

g = Y g

1 n—t
(N (™!

where N, (1,) is the number of eddies (empty or not) which intersect A:
N, () = (1, /lg) ™04 = 204,
A straightforward calculation, (Mandelbrot 1974 a), shows that to the leading term:

Gy~ X (W KE DN

Nalln)

~ NI H W) e D
Thus, the of divergence of the A'"™ moment of & occurs when:
<Wk> = ’;'U:— 1y 14

because, if this inequality holds, then the moments increase at each level of the cascade
process, and therefore diverge in the limit n — oc. The two functions appearing in this
inequality are convex functions of 4. This is also true of their logarithms (a stronger prop-
erty), so that the equality has at most one root other than the trivial h = 1 (see Fig. 10).
Note that at least locally, around h = 1, the behaviour of (W" may be written as:
=1 (=D which defines a new dimension D,, which as shown below, is the dimension of
the support of turbulence. D is the dimension of the space in which the cascade occurs, which
Mandelbrot took to be 3. In the case of anisotropic cascades, D should be replaced by D,,.
This leads to:

(D — D)) = d(log, <W"))/dh| =,
or
(D — D) =< Wlog, W) > (W) log, (W) =0.

-

(D-Doollh=-hgy)

IogL<Wh>

(D-Dg){h-1}

Fig. 10, An illustration of the Mandel-
; brot model of turbulent intermittency
} >  showing the functions discussed in the
1 by Oy h text
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If D, > D — D, then we have a non-divergent behaviour of " for h — 1. We therefore
must average over a space of at least dimension D, > D — D, in order for (&) to be finite.
This gives a simple interpretation of D, as the dimension of the support of turbulence.

8.3 The Simplest Case of the Mandelbrot Model

The simplest case is obtained when the local behaviour of (W") near h = 1, holds for all &
(the slope in Fig. 10 is constant). In this case, we have:

<Wﬁ> e 1]..“:_ 1 (D — 1)

which corresponds to the Bernouilli process: Pr(W=0)=1—4 %" and
Pr(W = AP~ Ps) = 2~ P9 Clearly, the only parameter is D, which uniquely determines the
number of “active” eddies at each generation: N, (f,) = A% all other eddies are considered
“dead”. This model gives convergence of all the moments of & since {W") < 2%~V 4 for all
hif D, > D — D,. This model has been studied in detail in Frisch et al. (1978), who refer to
it as the “# model”.

8.4 The Next Simplest Case and the Divergence of Moments of &

It suffices to make a slight change in the above so as to yield divergent moments of & Indeed,
if rather than classifying eddies as “active” or “dead”, we classify them “very active” and
“weak”, then, in general, as we show below, high order moments of £ no longer converge.
Consider the following slightly modified Bernouilli model defined by the dimension D, of
the “very active regions™:

Pr(W = }:b{D-Da.)] = );v-fD—D.g)fﬁm, h,>1

Pr(W=a,)=1— ) @ Pols

(note this reduces to the preceding case for h, = 1).
Due to the linear asymptotic behaviour of log, {(W*") for large h, higher moments of &,
averaged over A, diverge when:

D—-D,<D,<(D-D_).

In concluding of this section, we point out that, in the general case, as h is increased the
dimension of the support of ", D, (h), decreases. In the case of the “a model” studied above,
these dimensions were bounded below by D_, which is the dimension of the more extreme
active regions (D = D,(00)). The fact that intermittency is characterised by many fractal
dimensions has been already discussed in Schertzer and Lovejoy (1983 a)°. Recently, Parisi
and Frisch (1984) have developed the idea of many fractal dimensions in the context of a
somewhat different model that they call “multifractals”.

9. The Phenomenology of Scaling, Hyperbolically Intermittent Fields

9.1 Introduction

If the scaling and intermittency described here hold under quite general conditions, then they
must be compatible with the rich diversity of meteorological fields. Below we examine two

3 The exact formula is: D, (h) = D — log, (W"j(h — 1)
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aspects of phenomenology and explain why we believe they can be better Understout Ly
using the scaling and intermittency described here.

9.2 Algebraic Formulae Relating Various Fields

One goal of phenomenology is to relate different meteorological fields. If scaling laws hold,
and intermittency is expressed via hyperbolic distributions, then we may expect the form of
the probability distributions (in particular the hyperbolic exponents) of different fields to be
related by fairly simple algebraic equations. For example, if we define an “eddy” as a region
surrounded by lines of constant horizontal velocity, then for a given & and ¢, the horizontal
and vertical extents (Ax, Az) of the eddy may be obtained by equating the Av's in Eqgs. (1),
(2):

.
FAx £ §35 AP

hence «, = S0,/3 as required by dimensional analysis (from Fig. 4 o, ~ 5/3, oy~ 1). Note
that although & and ¢ are related in this way, they may or may not be dependent on each
other. The sphero-scale, which can be defined by Ax = Az will therefore be a random
variable unless # and & are completely dependent.

One area where the investigation of algebraic relations is perhaps particularly urgent is
in the case of the rainfield. This is a case where numerical modeling is notoriously difficult,
but in which simple algebraic relations may exist. In particular, Lovejoy (1981) showed that
o, ~ 5/3 in diverse arcas of the world. (Note that this result applies to changes in the flux
of rain (R) from isolated storms which is a 2-D lagrangian statistic. It is therefore unlikely
to be trivially connected to the & ficld whose value o, ~ 5/3 is a 1-D eulerian statistic.)

9.3 Shapes, Structure and “Animals”

Another goal of phenomenology is the classification and understanding of the shapes and
structures of individual meteorological fields. In fluid mechanics, the shapes and structures
are so diverse that popular jargon refers to the different morphologies as fluid “animals”,
with the phenomenologist playing the role of a zoologist. In percolation theory the shapes
encountered are so bizarre that the expression “lattice animals” has gained official accep-
tance. Below, we argue that the use of scaling and hyperbolic distributions may be important
in taming the different meteorological animals including “fronts”, “cells” and others. In this
case, the animals are clearly fractals because of the scaling.

In appreciation of the significance of hyperbolic distributions (particularly for o < 2),
Mandelbrot and Wallis (1968) pointed out that they would have the effect of causing the
largest of a set of such fluctuations to dominate over the others. In reference to the extreme
meteorological fluctuation responsible for The Flood, they coined the expression “Noah
effect” to describe this phenomenon. It is ironic that it has only recently been applied to
actual meteorology (Lovejoy 1981).

Figure 11 shows a “hyperbolic fractal animal” obtained by Monte Carlo simulations in
an anisotropic space. In contrast to the example of stochastic stratification with gaussian
fluctuations (Fig. 6), here, the elementary fluctuations are hyperbolically distributed, hence
the field is dominated by one main “ynimal” although other smaller ones are visible. In the
extreme gaussian case, the morphology is entirely determined by the scaling because no
matter what elementary fluctuations are used, they all have approximately the same intensity
and thus their details tend to cancel.

In the case of hyperbolic fluctuations, on the contrary, the largest dominates and imposes
its geometry, although it does so in an indirect fashion. Here, specifying H, 2 is insufficient
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Fig. 11. An example of a hyperbolic
fractal animal on an anisotropic
space, with D, = 1.80. The log inten-
sities are indicated by the intensity of
the grey. Note that in distinction to
the gaussian case (Fig. 6b), one large
“animal” dominates image, although
others are visible, a manifestation of
the ““Noah™ effect. (This model is on
an 800 x 800 point grid, and the
sphero-scale has the value 30 pixels.
The fine structure is therefore ori-
ented perpendicularly to the overall
shape)

to determine the morphology — changes in the underlying metric (Section 6), or of the
geometry of the elementary fluctuations strongly influence the observed shapes and struc-
tures.

Figure 11 is an anisotropic version of the fractal rain model discussed in (Lovejoy and
Schertzer (1984); Lovejoy and Mandelbrot (1984)) which uses annuli (with intensities distri-
buted with « ~ 5/3) as a basic shapes. There it is argued that the existence of hyperbolic
distributions is directly related to a hierarchy of straight-line structures, and hence to rain
“fronts”.

9.4 Hyperbolic Renormalisation

The phenomenological model of intermittency discussed in Section 8.2 may be placed in a
dynamical context since it results from the fact that the characteristic time t of transfer of
energy from one scale [, is:

(1) = WAs()/,.

Hence, due to the presence of the random variable W, t is far from having a characteristic
value as in usual phenomenological models (W = 1). This can be understood as a phenome-
nological “renormalisation” of the vertex for the following reasons.

Renormalisation of the Navier-Stokes-Equations — as described for instance in Forster
et al. (1978) — consists of systematically taking into account the direct interactions in a
“decimation” process from high to low wave numbers. The basic problem encountered is the
calculation of the effect of the indirect interactions of the low wavenumbers via the eliminat-
ed ones, which modify the interaction of the conserved wavenumbers. Renormalisation has
therefore only been applied successfully in the case of low wavenumbers, where indirect
interactions do not need to be taken into account (due to Gallilean invariance De Dominicis
and Martin 1979). The indirect interactions seem however to be extremely important in the
inertial range, as evidenced for example in the failure of the Direct Interaction Approxima-
tion in the inertial range (Kraichnan 1958). Until now, this failure has only been curred by
ad hoc procedures (e.g. Herring et al. 1983).
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We propose that repeated application of the decimation process, proceeding from low to
high wave numbers in the inertial range, will create a renormalisation of the intensity of the
vertex converging to the random variable W. Thus, the whole process of the application of
the renormalisation group (with rescaling) can be described symbolically as:

[— 2l
U—b;‘.”"

P-WitP with (W) =1

where P is the vertex intensity. W is thus the “fixed point” of the vertex renormalisation, and
the flux conserving condition is analogous to the condition W =1 obtained if W was
deterministic. We may therefore expect many aspects of the phenomenological model to
follow from the dynamics (e.g. hyperbolic distributions, Dj, and perhaps D).

In our view, specific methods of renormalisation should be developed. These methods
could be called hyperbolic renormalisation.

10. Conclusions

10.1 Summary of Principle Results

The object of this paper has been to elucidate the relationship between small and large scale
structures in the atmosphere. The vertical shear and buoyancy force play a key role in the
genesis of inhomogeneities, and were therefore investigated in detail using high resolution
radiosonde and aircraft data. Two aspects of the data were investigated: the scaling expo-
nents (M), and the hyperbolic exponents which characterise the intermittency (o). These
parameters were analysed over atmospheric layers between 50 m and 3.2 km thick.

The principal results are as follows:

a) H,= 3/5: This empirical value was also deduced by a dimensional argument similar
to that first proposed by Obukhov (1959) and Bogliano (1959). Our derivation is analogous
to the dimensional argument (based on ¢) used to establish the horizontal (Kolmogorov)
scaling (H, = 1/3). It supposes that the fundamental dimensional quantity is ¢, the flux of
buoyancy force variance. Our result agrees with Adelfang (1971).

b) a, = 5: This empirical value was corroborated by a re-analysis of Merceret’s (1976)
measurements of & from which we obtained a, = 5/3. Simple physical arguments confirm
x, = 32,. An immediate consequence is the divergence of the fifth and higher order moments
of the velocity field, and the second and higher moments of & The divergence of high
moments of & was first proposed by Mandelbrot (1974 a).

¢) oy, = 1: This shows that the Richardson number has such extreme fluctuations that
even the mean may not exist. Monte Carlo methods showed that this result could be
explained as the result of dividing two weakly correlated random variables. This points to
the need to re-examine the validity of theories based on limited expansions of the equations
in Ri.

d) H, ,= 9/10, o, , = 10/3: The potential temperature was also found to be scaling in
the vertical and to be extremely intermittent-fourth and higher moments diverge.

¢) D, = 23/9: To account for the different horizontal and vertical scaling, in the
wind field, we introduced a special kind of fractal dimension (D,) called an elliptical
dimension because it expresses the fact that small eddies with circular cross-sections in the
vertical appear as flattened ellipses at larger scales. Our definition of D,, leads to the equation
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D, =2+ H,/H, = 23/9 ~ 2.56 (a convenient mnemonic to remember this result is “two plus
Kolmogorov over Obukhov”).

fy The sphero-scale: The velocity scales differently in the horizontal and vertical direc-
tions, and therefore there will be a distance at which the magnitude of the fluctuations will
be equal. We call this distance the sphero-scale because at this scale, eddies are isotropic, and
therefore, averaged eddies are spherical.

The sphero-scale is quite unlike an ordinary length scale — for example, it may vary in
d vVery erratic manner.

g) Stochastic Stratification: A consequence of our anisotropic scaling space is that any
structure, no matter how vertically oriented at small scales, will appear quite flat (i.e.
stratified) at large scales. Several numerical examples were given. This concept may be
sufficient to explain the observed large-scale stratification of meteorological fields, including
the pressure field.

h) hyperbolic intermittency: The outlines of Mandelbrot’s (1974a) model of fractally
homogeneous turbulence were given, including a discussion of the relation between intermit-
tency, the dimension of the support of turbulence (D), and D,,, and the various observed
hyperbolic distributions. We conclude: atmospheric turbulence is fractally homogeneous
and fractally anisotropic®.

10.2 A New Direction for Meteorology?

The hypothesis that atmospheric motions are qualitatively quite different at small and large
scales can be traced back to at least the 19'" century. At first, this idea could only have had
an ad hoe, phenomenological basis, since the equations of fluid mechanics and thermody-
namics contain no length scales, and our knowledge of motions on scales less than hundreds
of kilometers was inadequate. In recent years, theorists such as Charney (1971) have at-
tempted to use turbulence theory to give this distinction a solid basis by arguing that large
scale motions are “quasi-two dimensional”, and are separated by a dimensional transition
from small scale “quasi-three dimensional” motions. Experimentalists, from Pinus (1968)
onwards, using high resolution satellite, aircraft, radiosonde and other data have searched
for empirical evidence of a transition, apparently, without success in the range 10 cm to
4000 km.

We believe that the hypothesis of a dimensional transition is no longer tenable either
theoretically, or empirically. The observed structure of the atmosphere can be explained by
a simpler hypothesis: that it is anisotropic and scaling throughout, a fact that can be
characterised by the intermediate “elliptical” dimension D,, = 23/9 = 2.56. If this hypothesis
is true, then the atmospheric motions are never “flat” (two-dimensional), nor isotropic
(three-dimensional), but always display aspects of both, according to a well defined fractal
geometry.

In spite of the existence of an entire programme of theoretical and empirical research, the
hypothesis of a dimensional transition is on more tenous ground than ever. The alternative,
anisotropic scaling hypothesis proposed here will undoubtedly also require a large research
program to substantiate, and cannot be said to be definitively established. For instance, the
effects of the Coriolis force have not been considered. It is quite possible that this could be

4 In a celebrated poem, Richardson summarised atmospheric dynamics: “Big whorls have little whorls
that feed on their velocity, and little whorls have smaller whorls and so on to viscosity — in the
molecular sense.” Anisotropic scaling adds a second stanza: “Flatter whorls have rounder whorls that
feed on instability, and roundish whorls have rounder whorls, and so on to spherocity — in the
statistical sense.”
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.ccounted for by a non-diagonal T, but a priori, there is no reason to suppose this to break
he scaling. It is therefore possible that baroclinic instabilities will also be scaling.

This alternative, does offer several advantages, not the least of which is simplicity. If it
s correct, then, small scale structures differ from large scale ones only in a continuous
ransformation in which they are progressively “flattened” or stratified at larger and larger
.cales. This transformation depends mainly on the action of two groups, the scaling group
T, and the convolution group of stable Levy distribution (which characterise both the scaling
and the intermittency respectively). Thus, atmospheric motions can be seen to be aniso-
tropic, but scaling and intermittent at all scales.

One immediate practical consequence of this work is its impact on what we call the
“stochastic coherence” of numerical weather forecasting procedures (see Schertzer et al.
(1983)). This means that we verify that the scaling of the meteorological fields are not
artificially modified through the different stages of the forecast procedure e.g. during the data
assimilation, initialisation and numerical weather-prediction integrations model. This may
prove an invaluable and general way of testing the validity of numerical forecasts because
the capacity of modern computers is sufficient to allow scaling regimes to be obtained.

10.3 Theoretical Implications

The results of this paper may be expected to have an impact on at least two different areas
of theoretical work.

The first is turbulence in anisotropic media, which should be approached in the fractally
anisotropic framework proposed here (i.e. without separating the mean and fluctuating
fields). Indeed, this framework may be essential in overcoming difficulties where so far only
formal manipulations of renormalisation schemes have suceeded (e.g. Kraichnan (19644, b),
Carnevale and Martin (1982)). The second way in which this work may have significant
theoretical implications is in resolving difficulties of isotropic turbulence. In particular, this
paper shows the need to develop methods appropriate for renormalising situations far from
the usual one of “quasi-gaussian” distributions — methods that should perhaps be called
“hyperbolic renormalisation”.
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