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Wind Extremes and Scales: Multifractal
Insights and Empirical Evidence

I. Tchiguirinskaia, D. Schertzer, S. Lovejoy, J.M. Veysseire

Summary. An accurate assessment of wind extremes at various space-time scales
(e.g. gusts, tempests, etc.) is of prime importance for a safe and efficient wind energy
management. This is particularly true for turbine design and operation, as well as
estimates of wind potential estimates and wind farm implementation. We discuss
the consequences of the multifractal behaviour of the wind field over a wide range
of space-time scales, in particular the fact that its probability tail is apparently a
power-law and hence much “fatter” than usually assumed. Extremes are therefore
much more frequent than predicted from classical thin tailed probabilities. Storm
data at various time scales are used to examine the relevance and limits of the
classical theory of extreme values, as well as the prevalence of power-law probability
tails.

17.1 Atmospheric Dynamics, Cascades and Statistics

Further to his “poem” [1] presenting a turbulent cascade as the fundamen-
tal mechanism of atmospheric dynamics, Richardson [2] showed empirical
evidence that a unique scaling regime for atmospheric diffusion holds from
centimeters to thousands of kilometers. It took some time to realize that a
consequence of a cascade over such a wide range of scale is that the probability
tails of velocity and temperature fluctuations are expected to be power-
laws [3, 4]. Indeed, this is a rather general outcome of cascade models, inde-
pendently of their details [5]: the mere repetition of nonlinear interactions all
along the cascade yields the probability distributions with the slowest possible
fall-offs, i.e. power-laws, often called Pareto laws. The critical and practical
importance of the power law exponent qD of the probability tail, defined by
the probability to exceed a given large threshold s, could be understood by
the fact that all statistical moments of order q≥ qD are divergent, i.e. the
theoretical moments – denoted by angle brackets <.> – are infinite:

for large s : Pr(|∆v| > s) ≈ s−qD ⇔ anyq > qD : 〈|∆v|q〉 = ∞ (17.1)
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Hayange (February - December, 1999)
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Fig. 17.1a. Daily wind from February
to December 1999 at Hayange station
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Fig. 17.1b. Mean (red) and maximal
(black) wind (both at 15 min resolu-
tion) at Saint Médard d’Aunis (16:00-
20:00 (top); 20:00-24:00 (bottom))

and their empirical estimates diverge with the sample size. The probability of
having an extreme 10 times larger decreases only by the factor 10qD , κg1/qD

is often called the form parameter.
However, by the end of 1950’s Richardson’s cascade was split [6, 7] into

a quasi-2D macro turbulence cascade, a quasi-3D micro turbulence cascade,
separated by a meso-scale (energy) gap necessary to avoid contamination of
the former by the latter. This gap got some initial empirical support [8],
but was more and more questioned [e.g. [9]]. Starting in the 1980’s through
to the present, this atmospheric model has became untenable thanks to
various empirical analyses [10–15] which showed that a new type of strongly
anisotropic cascade operates from planetary to dissipation scales. This cascade
is neither quasi-2D, nor quasi-3D, but has rather an “elliptical” dimension
Del = 23/9≈ 2.555 (in space-time, 29/9 = 3.222).

Indeed, a scaling anisotropy could be induced by the (vertical) gravity
and the resulting buoyancy forces that generate two distinct scaling expo-
nents for horizontal and vertical shears (Hh, respectively, Hv) of the velocity
field and the elliptical dimension value is defined by Del = 2+ Hh/Hv, the
theoretical values Hh = 1/3, Hv = 3/5 being obtained by a reasoning “à la
Kolmogorov” [16] and, respectively, “à la Bolgiano–Obukhov” [17, 18]. The
theoretical possibility of having power-law pdf tail got also some empirical
support with qD ≈ 7 for the velocity field [12,13].

17.2 Extremes

If wind correlations had only short ranges, then the statistical law of the ex-
tremes over a given a period would be determined by the classical extreme
value theory [19, 20]: the power-law probability tail of the wind series would
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5/3 corrected spectra
for Hayange data

5/3 corrected spectra
for St. Médard d'Aunis data
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Fig. 17.2. Compensated spectra of the two horizontal components of the data of
Fig. 17.1a and of Fig. 17.1b, respectively. The horizontal plateau correspond to the
Kolmogorov scaling
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Fig. 17.3. Probability tails of the wind increments of the two horizontal components
of the data of Fig. 17.1a and of Fig. 17.1b, respectively

imply that the wind maxima distribution is a Frechet law [21], often called
Generalized Extreme Value distribution of type 2 (GEV2), instead of the
more classical Gumbel law (GEV1). GEV1 and GEV2 are quite distinct, since
GEV1 has the same power law exponent qDas the original series, whereas
GEV2 has a very thin tail corresponding to a double (negative) exponential.
This sharp contrast results from the fact that a Frechet variable corresponds
to the exponential of a Gumbel variable, therefore its distribution is often
called “Log-Gumbel.” We will illustrate this with the help of Météo-France
wind data, in particular those collected during the two “inland hurricanes”
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Fig. 17.4. Yearly wind maxima at Montsouris station during the period of 1970–
1999
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Fig. 17.5. GEV1 (red straight asymptote) and GEV2 (green convex curve) distrib-
utions fitted to the data of Fig. 4

that swept across France by the end of the last century (25-26/12/1999 and
27-28/12/1999). They correspond to sharp spikes in daily wind time series
at various meteorological stations (Fig. 17.1a). However, intermittent fluctua-
tions are also present at scales of 1 min (Fig 17.1b) and all these fluctuations
respect the Kolmogorov scaling (Fig. 17.2 a-b). Furthermore, their probability
distributions (Fig. 17.3 a-b) display a rather clear power-law fall-off with an
exponent qD ≈ 7, in agreement with previous studies.

Looking to larger time scales, let us consider the yearly wind maxima in
Paris area during the period of 1970–1999 (Fig. 17.4), as well as the fitted
GEV1 and GEV2 distributions (Fig. 17.5) in the so-called Gumbel paper (i.e.
wind speed vs. double logarithm of the empirical probability distribution) in
which the asymptote of GEV1 is a straight line, whereas GEV2 curve remains
convex. It is rather obvious, that both fits are rather equivalent up to the year
1998, whereas the latter can be only captured by the convexity of GEV2.
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17.3 Discussion and conclusion

The hypothesis of short range correlations, which is necessary to derive the
classical extreme value theory, is not satisfied by cascade processes. Indeed,
the latter introduce power law dependencies. It is therefore indispensable to
look for a generalization of extreme value theory in a multifractal framework.
This task might be not as difficult as it looks at first glance, since for instance
cascade processes may have (statistical) ‘mixing’ properties [22, 23], which
have been used to extend the extreme value theory from uncorrelated time
series to those having short range correlations. This may partially explain why
GEV2 fits rather well the empirical extremes, although one may expect that
its asymptotic power-law exponent might differs from that of the probability
tail of the original time series. Larger data bases and numerical cascade simu-
lations are currently being analysed to clarify these issues. However, it may be
already timely to use multifractal wind generators in numerical simulations
for the design and management of wind turbines.
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