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S!"# $!"%&'() is an important hydrologic state variable 
critical to successful hydroclimatic and environmental pre-

dictions. Soil moisture varies in both space and time because of 
spatiotemporal variations in precipitation, soil properties, topo-
graphic features, and vegetation characteristics (Corwin et al., 
2006). Monitoring all these processes across multiple scales is 
a fundamental component of many environmental and natural 
resource issues and remote sensing has long been identifi ed as a 
technology capable of supporting such development (Viña et al., 
2004; Vereecken et al., 2007).

! e geophysical and biological processes that determine 
vegetation, soil moisture, and other surface characteristics are 

highly nonlinear; they involve interacting structures from plan-
etary down to millimeter scales. A consequence is that the surface 
radiance fi elds are statistically interrelated across comparable 
ranges. Such statistical interrelations (correlations) are the basis 
of most remote sensing algorithms. A typical approach identifi es 
wavebands that are particularly sensitive to the surface features of 
interest—such as the vegetation or soil moisture; then semiem-
pirical algorithms are developed to relate them to the radiances. 
Typically, the algorithms assume that satellite data are homog-
enous or roughly homogenous at scales below the resolution.

! e problem with this approach is that it ignores systematic 
scale or resolution dependencies due to strong subpixel variabil-
ity and singles out a single scale for the calibration. ! is scale is 
essentially subjective; it is primarily determined by the available 
technology. A symptom of this scale problem is that when new, 
higher resolution satellite data are used in algorithms calibrated 
at earlier, lower resolutions, the algorithm typically must be 
recalibrated.

In the last 25 yr, an understanding of these strong resolution 
dependencies has started to emerge, and systematic techniques 
are now available for analyzing and modeling such behavior. 
Motivated by the fractal geometry of sets (Mandelbrot, 1983) 
and the development of (multifractal) cascade models in turbu-
lence, the origin of this behavior has been traced to nonlinear 
dynamic mechanisms that repeat scale after scale from large to 
small scales. Paralleling this revolution in our understanding of 
the consequences of wide-range scaling is the generalization of 
the notion of scale itself to encompass systems that are scaling 
but highly anisotropic (generalized scale invariance, Schertzer and 
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Scaling processes are increasingly understood to be the result of nonlinear dynamic mechanisms repea* ng scale a1 er 
scale from large to small scales leading to nonclassical resolu* on dependencies. This means that the sta* s* cal prop-
er* es systema* cally vary in strong, power-law ways with the resolu* on. When present in geophysical and remotely 
sensed  elds, it implies that when classical (single-scale) remote sensing algorithms are used to determine surrogates 
of various geophysical  elds, they can at most be correct at the unique (and subjec* ve) calibra* on resolu* on. Scaling 
analysis and modeling techniques were applied to MODIS TERRA Bands 1 through 7 and to the standard derived vegeta-
* on and soil moisture indices in order to quan* ta* vely characterize the wide range of scaling of these  elds. The scaling 
exponents we found are not so large; however, they act across wide scale ranges and imply large e2 ects. For example, 
for the sta* s* cs near the mean, the MODIS (500-m) resolu* on would be biased by a factor of !1.52 when compared 
with similar results from an “ideal” sensor at 1-mm resolu* on. Applying the standard index algorithms on lower and 
lower resolu* on satellite data, we obtained indices with signi cantly di2 erent sta* s* cal proper* es than if the same 
algorithm was used at the  nest resolu* on and then degraded to an intermediate value (a di2 erence of a factor !1.54). 
This shows that the algorithms can, at best, be accurate at the unique calibra* on scale and this points to the need to 
develop resolu* on-independent algorithms based on the scaling exponents.
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Lovejoy, 1985b; Pecknold et al., 1997; Lilley et al., 2004; Lovejoy 
and Schertzer, 2007). We illustrate some of these ideas using 
MODIS data and vegetation and soil moisture surrogates derived 
from them. Although we briefl y review the basic multifractal 
notions, our aim is to perform systematic scale-by-scale analyses 
on the MODIS data and surrogates.

Spectral Analysis
! e data we used are calibrated MODIS TERRA radiances 

(product level B1), with wavelengths indicated in Table 1; some 
of the images are shown in Fig. 1. ! e vegetation and soil surface 
moisture indices are standard products described in Rouse et al. 
(1973) and Lampkin and Yool (2004):
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where #VI and #SM are the vegetation and soil surface moisture 
indices (for a complete list of symbols and defi nitions, see the 
appendix) and the Is are the radiances (the band number is indi-
cated in the subscript); Eq. [1] is usually stated without reference 
to any particular scale. We may immediately note that, although 
the MODIS TERRA data have a resolution of 500 m (Bands 
1 and 2 were degraded from 250 m) and the variability of the 
radiances and surface features continues to much smaller scales, 
the surrogates are defi ned at a single (subjective) resolution equal 
to that of the sensor. One of the applications of our analyses is 
to investigate how the relations between the surrogates and the 
bands used to defi ne them change with scale: we anticipated that 
since the scaling properties are diff erent, making the surrogates 
with data at diff erent resolutions would produce fi elds with dif-
ferent properties.

Before using more sophisticated (multifractal) scale-by-scale 
analysis techniques, we fi rst used one that is fairly familiar to geo-
scientists: spectral analysis. In addition to its familiarity, spectral 
analysis has the advantage of being very sensitive to scale breaks; 
it is also useful for studying anisotropy. For an intensity fi eld I, 
we may defi ne the spectral densities P(k):

( ) ( ) ( )exp dI i I= $k k r r ri  [2a]

( ) ( ) 2P I=k k  [2b]

where r is a position vector and k is a wave vector. Since P is qua-
dratic in I, it is a second-order statistic. In the defi nition, we have 
included the theoretically motivated ensemble average (denoted % 
&) although, in fact, below we estimate P from a single realization 
using a fast Fourier algorithm and a standard Hanning window.

In Fig. 2, we show P estimated for the vegetation and soil 
moisture indices. ! e indices were estimated from Eq. [1] at the 
highest resolution, i.e., they are single-scale surrogates (we discuss 
multiple-scale surrogates below). To make the contours clearer, 
we smoothed log10P with a four-point Gaussian smoother. In the 
fi gure, we see that the contours are fairly roundish, indicating that, 
to some approximation, the second-order statistics are isotropic. 
Careful scale-by-scale analyses of the anisotropy would be reward-
ing (see, e.g., Pfl ug et al., 1993; Lewis et al., 1999; Beaulieu et al., 
2007), but is outside our present scope. Analysis of the individual 
radiance bands revealed a degree of isotropy similar to the indices 
shown in Fig. 2.

! e roundness of the P contours justifi es the use of the “iso-
tropic” spectrum E(k) obtained by angle integrating P:

( ) ( )d
k

E k P
=
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k

k k  [3]

T.3#) 1. Characteris* cs of the MODIS data, taken over Guadala-
jara (central Spain) over 512 by 512 pixels, each 500 by 500 m 
(!250 by 250 km2), on 29 July 2006.

Band Wavelength

nm
1 620–670 
2 841–876
3 459–479
4 545–565
5 1230–1250
6 1628–1652
7 2105–2155

F"0. 1. Grey-shade images of Guadalajara (central Spain) cor-
responding to an area of 250 by 250 km. Le1  column: (top) 
vegeta* on index, (middle) Band 1, (bo+ om) Band 2; right col-
umn: (top) soil moisture index, (middle) Band 6, (bo+ om) Band 7.
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where k is the modulus of the wave vector (the notation indicates 
angle integration in Fourier space). In Fig. 3a, we see E on a log–
log plot showing that, with the exception of the single lowest wave 
number k = 1, E is quite accurately of the power-law form:

( )E k k"'(  [4]

where ' is the spectral exponent. Note that sometimes angle 
averaging (rather than integration) is performed so that in two 
dimensions, the corresponding exponent is ' − 1. ! e advantage 
of using the present (turbulence-based) defi nition is that if the 
process is isotropic, then ' is independent of the dimension of 
space (e.g., one-dimensional sections of two-dimensional data 
will have the same exponent). We can also see from the fi gure 
that Band 5 (with strong artifacts, “banding”), indicated by blue 
in Fig. 3a nevertheless has good scaling except at harmonics of 
the basic banding wave number. In Table 2, we indicate the ' 
values (estimated for k ) 2), fi nding for all the bands ' ! 1.17 

± 0.08, where the uncertainty indicates the band-to-band spread 
in exponents.

! e power-law form Eq. [4] is called scaling because it is 
invariant under isotropic “zooms” (E * +−1E, k * +k), and 
the exponent ' is “scale invariant.” To better judge the quality 
of the scaling, we can “compensate” the spectrum by dividing 
by the mean behavior; this is shown in Fig. 3b and 3c (where we 
have removed the single k = 1 values to magnify the ordinate). 
Deviations from fl atness indicate deviations from k = 1.17 scaling. 
In this way, we can easily see that the extreme high wave-number 

F"0. 2. A gray shade rendi* on of the (log) spectral densi* es (P) of  
(a) the vegeta* on index, and (b) the soil moisture index. F"0. 3. (a) Spectra of all  ve bands [E(k)] as a func* on of the modu-

lus of the wave vector k (and using a Hanning window). In order 
from top to bo+ om at the point log10k = 0.7, the curves are: purple 
= Band 6, black = Band 1, magenta = Band 7, blue (with spikes) = 
Band 5, light green = Band 2, cyan = Band 4, dark green = Band 3; 
(b) log spectra compensated by k1.17 [i.e., log10 k1.17 E(k)] vegeta-
* on index (red, middle le1 ) with Band 1 (black, top le1 ) and Band 
2 (green, bo+ om le1 ) so that  at curves indicate k-1.17 spectra 
(note the greatly expanded scale, the  uctua* ons are small); and 
(c) spectrum compensated by k1.17 soil moisture (blue, bo+ om le1 ) 
with Band 6 (purple, top le1 ) and Band 7 (magenta, middle le1 ).
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factor of roughly 2 in scale has some extra power, presumably 
because of noise. Also, the single-scale surrogates (vegetation 
index, in red in the middle of Fig. 3b, and the soil moisture index, 
in blue on the bottom of Fig. 3c) are both more strongly aff ected 
at the highest wave numbers, and their ' values are also lower, 
indicating that they also have greater variability at the lower wave 
numbers. Presumably, the extra high wave-number variability is 
because they are the results of a nonlinear operation ([Eq. 1]) at 
the pixel scale, which breaks the scaling. Note that variability is 
still present, although it is reduced by Fourier angle integration; 
the resulting spectrum is typical of multifractal processes. In any 
case, the largest (log10) deviations from power law (log–log linear-
ity) are <0.1 across the entire range k = 2 to 128 cycles per image; 
since the corresponding variation of log10E is !2.5, the spectral 
scaling holds to better than 4% of this range. Also note that the 
angle integration smoothes more eff ectively at the higher wave 
numbers since there are many more small-scale structures than 
large ones. Finally, note that the low wave-number break in the 
scaling (for k = 1) is probably caused by post-processing, which 
attempts to correct for atmospheric attenuation. In eff ect, the 
algorithm works as a low-pass fi lter, ensuring that the overall 
intensity across the scene is roughly constant.

Mul! fractal Analysis

Generalized Structure Func* ons

As indicated in Eq. [2], the spectrum is a second-order 
statistic; if we assume statistical horizontal translational invari-
ance (statistical homogeneity; this is the spatial counterpart of 
statistical stationarity, which refers to statistical translational 
invariance in time), then the Wiener–Khintchin theorem shows 

that the spectrum is the Fourier transform of the autocorrela-
tion function. Before the advent of multifractals, it was believed 
that many turbulent and turbulent-like processes could be well 
modeled by Gaussian processes in which the statistics are com-
pletely determined by P(k) [indeed, isotropic Gaussian processes 
are completely determined by E(k)]. However, to explain the 
extreme variability associated with the phenomenon of inter-
mittency, cascade models were developed in which a simple 
mechanism repeats scale after scale in a multiplicative manner 
while conserving the mean of the process. ! e resulting statisti-
cal behavior is given by

( );K q L l,
+, = + +=  [5]

where ,+ is the conserved fl ux associated with an observable, such 
as an intensity, at resolution +, which is the scale ratio across 
which the process has been developed, L is the outer scale, l is 
the inner scale, and K,(q) is the (convex) moment scaling expo-
nent (Kolmogorov, 1962; Mandelbrot, 1974). In remote sensing 
terms, Eq. [5] quantifi es the rate at which spatial averaging (i.e., 
lower and lower resolution pixels, smaller +) smoothes the various 
powers of the fi eld ,.

! e symbol , is used for the cascade process since the proto-
typical cascade quantity is the turbulent energy fl ux, denoted ,, 
which is conserved from one scale to another in hydrodynamic 
turbulence. Note that we are discussing systems far from equi-
librium and it is not the energy that is conserved but rather the 
ensemble mean fl ux of energy from large scales to smaller scales 
(in fact, , is only a true fl ux in Fourier space, i.e., a fl ux from 
low to high wave numbers). In terms of the moments in Eq. [5], 
this conservation implies that the (appropriately normalized) 
process respects %,+& = 1 so that K,(1) = 0. Actually, although 
this ensemble “canonical” conservation is the most general one, 
it is not the only one possible. Indeed, more restrictive “micro-
canonical” conservation principles are quite popular—in spite 
of the fact that the variability of the corresponding multifractal 
processes is much lower and that such processes do not have 
simplifying universal behaviors (see Schertzer and Lovejoy, 
1992, and below).

! e typical inner scales of turbulent processes in the atmo-
sphere are the viscous dissipation scales, which are typically on 
the order of millimeters or less. In remote sensing applications, 
while the actual inner scale of the radiances may be of the same 
order, the satellite averages them to the larger scale l (here 500 
m) so that the relevant resolution scale in Eq. [5] is the reso-
lution of the images. In this case, the small subsensor scales 
average out most of the small-scale variability. In general, how-
ever, they will not completely smooth it out; this is the origin 
of the interesting strong variability of the extremes, which goes 
variously under the names multifractal butterfl y eff ect, non-
classical self-organized criticality, fi rst-order multifractal phase 
transitions, and divergence of statistical moments, which are 
discussed below (for a review of this and other multifractal 
properties, see Schertzer et al., 1997).

! e behavior described by Eq. [5] is called multiscaling 
because each statistical moment is scaling but with a diff erent 
exponent. Continuing with the turbulence example, the famous 
Kolmogorov law for isotropic turbulence relates the energy fl ux 
to velocity fl uctuations (-v) across a distance -x as follows:

T.3#) 2. A comparison of the di2 erent exponents es* mated in 
this study: ' is the spectral exponent, H the basic  uctua* on 
(“conserva* on”) exponent, C1 the codimension characterizing the 
pure resolu* on dependence near the mean, . is the Levy index, 
which determines how quickly the resolu* on exponents vary 
with sta* s* cal moment (intensity) of the  elds. TM indicates that 
es* mates are based on the trace moments, Struc indicates that 
they are based on the  uctua* ons via the structure func* ons, qD 
is the exponent of the probability distribu* on characterizing the 
extremes, VI is vegeta* on index, SM is soil moisture index, mss 
indicates sta* s* cs for the mul* ple-scale surrogate de ni* on of 
index (all the other sta* s* cs are for single-scale surrogates [sss]). 
For all except . (which is  t in q space),  ts are across the smallest 
spa* al scale to a factor of 4 from the lowest (except TM, which 
also excludes a small scale factor of 2).

Band no.
of index ' Struc H TM H Struc C1 TM C1 . TM . qD

1 1.15 0.186 0.109 0.031 0.036 1.86 1.88 7.2
2 1.09 0.144 0.078 0.024 0.034 1.89 1.87 5.8
3 1.24 0.226 0.160 0.031 0.039 1.88 2.02 4.0
4 1.26 0.218 0.166 0.030 0.037 1.92 1.96 5.7
5 1.05 0.141 0.064 0.054 0.039 1.95 2.00 8.5
6 1.25 0.207 0.159 0.026 0.035 1.93 1.95 6.9
7 1.18 0.199 0.130 0.026 0.037 1.95 2.14 6.6
VI sss 1.03 0.162 0.074 0.033 0.064 2.02 1.78 5.9

VI mss 0.231 0.049

SM sss 1.03 0.144 0.073 0.010 0.053 2.23 2.29 5.5

SM mss 0.213 0.059

Mean 1.17 ±
0.08

0.189 ±
0.034

0.124 ±
0.04

0.032 ±
0.010

0.037 ±
0.001

1.91 ±
0.03

1.97 ±
0.09

6.4† ±
1.4

† The qD mean becomes 6.64 only for Bands 1, 2, 6, and 7.
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/ ; 1/3; 1/3
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- = + = =  
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where H is the scaling exponent of the fl uctuations with respect 
to the fl ux and a is the exponent of the fl ux. ! e usual interpreta-
tion of this equation is that the equality is in the sense of scaling 
laws so that, taking the qth powers of both sides and ensemble 
averaging, we obtain:
obtain:

( )

( ) ( ); ( ) ( )

q aq qH qv

q Hq K q K q K aq

" "/
+ +

,

- ( , + = +

/ = " =
 [7]

We can see that the fl uctuations of typical observables have an extra 
linear scaling term Hq and we have introduced the (generalized) 
structure function exponent /(q) (the usual structure function is for 
q = 2, for a single realization—no ensemble averaging—the latter 
is called a variogram). From Eq. [6], we can see that the statistics 
of the fl uctuations across distances -x has two components, the 
fi rst because it depends of the fl ux , at low resolution + = L/-x, 
the second because of the scaling relation between the fl uctuations 
and the fl ux (-xH); H thus characterizes the distance from the 
(conserved) pure multiplicative process ,; it is the degree of non- 
(scale-by-scale) conservation of the process.

To check this behavior on the MODIS data and surrogates, 
we need only estimate the gradients using:

( ) ( ) ;I I I L+- = +- " += -x x x x  [8]

where we have assumed statistical translational invariance and 
isotropy. It is worth noting that this defi nition of the fl uctuation 
-I+ is sometimes called the “poor man’s wavelet”; other choices of 
defi nition are possible. Wavelets provide a systematic framework 
for this (see, e.g., Holschneider, 1995); in practice, however, the 
defi nition of Eq. [8] is usually adequate, the main restriction 
being that it is only appropriate when 0 0 H 0 1, a condition 
that is usually (although not always) satisfi ed in geophysical appli-
cations (here we will see that H ! 0.18). For example, when H 
> 1, one must measure fl uctuations with respect to a local linear 
trend; this can be done either by fractionally diff erentiating the 
process (power-law fi ltering, Schertzer and Lovejoy, 1987), using 
appropriate wavelets (Bacry et al., 1989), or using the multi-
fractal detrended fl uctuation analysis technique (Kantelhardt et 
al., 2002). Note that by using the Wiener–Khintchin theorem, 
we obtain a simple relation between the second-order structure 
function exponent and the spectral exponent: ' = 1 + /(2); this 
is indeed approximately verifi ed (see Table 2).

Using Eq. [8] to estimate the fl uctuation -I+, we obtain the 
generalized structure functions shown in Fig. 4a for Bands 1, 2, 6, 
and 7 and in Fig. 4b for the vegetation and soil moisture indices. 
We can see that, except for the smallest factor of 4 to 8, the (mul-
tiple) scaling is excellent. To quantify the diff erences in the scaling, 
in Fig. 5a and 5b we show the slopes that are our estimates of 
/(q). We can see that (as expected) /(q) is concave downward. It 
is interesting to note that while the vegetation index has a /(q) 
value intermediate between its defi ning band /(q) values, the 
soil moisture /(q) is somewhat lower, outside the range. It is 

clear from the fi gures that a direct quantitative intercomparison 
of these continuous concave curves /(q) is not possible; we fi rst 
need to reduce the problem to a fi nite number of manageable 
parameters. Although we discuss this in much more detail below, 
we may already make a fi rst quantifi cation using the exponent H. 
If we assume that, due to the scale-by-scale conservation of the 
underlying nonlinear cascade, K(1) = 0, we see from Eq. [6] that 
H = /(1) [actually, according to Eq. [7], H = /(1) + K,(a), and, in 
general, we don’t know a; however, the correction K,(a) is gener-
ally small and will be ignored below]. In Table 2, we compare 
these estimates, fi nding that across all seven bands, H = 0.189 ± 
0.034 while HVI = 0.162 and HSM = 0.144, so that the surrogates 
have H values that are a little lower than those of the individual 
bands. To gauge the signifi cance of this eff ect across the range of 
scales in the MODIS images (a factor of 512), we see that in the 
mean [/(q = 1) = H], the largest and smallest fl uctuations diff er 
by a factor 5120.162 = 2.74.

F"0. 4. (a) Structure func* ons for Bands 1, 2, 6, and 7 (M = %-I+
q& 

= %|-I(-x)|q&, where -x is the number of pixels of the “lag”; see 
Eq. [8]) with moments of order q = 0.1, 0.3, …, 1.7, and 1.9 shown 
bo+ om to top, along with  ts across the scaling range (eight pixels 
up to 256); (b) le1 , vegeta* on index and right, soil moisture index 
single-scale surrogate (sss) with moments of order q = 0.1, 0.3, …, 
1.7, and 1.9 shown bo+ om to top; and (c) le1 , vegeta* on index 
and right, soil moisture index scale by scale surrogate structure 
func* ons (mss) with moments of order q = 0.1, 0.3, …, 1.7, and 1.9 
shown bo+ om to top.
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It is helpful to compare these H values with those of other 
geophysical fi elds. We have already mentioned that the classical 
Kolmogorov turbulent result is H = ⅓. Another classical theoreti-
cal H is for passive scalars in turbulence; the Corrsin–Obhukhov 
law also has H = ⅓. Empirically, the topography has H = 0.4 to 
0.7 (oceans and continents, respectively; Gagnon et al., 2006), 
whereas many infrared and visible signals from volcanic and 
other surfaces give H values quite close to those found here (e.g., 
Laferrière and Gaonac’h, 1999; Harvey et al., 2002; Gaonac’h et 
al., 2003; see also Lovejoy and Schertzer, 2006, for cloud radi-
ances). In addition, Lovejoy et al (2008 and unpublished data) 
analyzed 10 radiance bands spanning the visible, near infrared, 

thermal infrared, and passive microwave wavelengths across the 
range !8 to 20,000 km and showed that, to within !1%, the 
latter respects the predictions of cascade models (Eq. [5]) with 
outer scales in the range 5000 to 18,000 km (depending on the 
wavelength). Also depending on the wavelength, the correspond-
ing H values were found to be in the range 0.2 to 0.5.

It remains to characterize the nonlinear K(q). Although we 
do this more fully below, we can nevertheless go a step further by 
characterizing the slope of the /(q) curve near the mean, i.e., /1(1) 
= H − K1(1). Defi ning C1 = K1(1) as the codimension of the mean 
(see below for the justifi cation of this terminology), we obtained the 
mean for all seven bands: C1 = 0.032 ± 0.010 while C1VI = 0.033 
and C1SM = 0.010. Although these values appear small, typical 
values in turbulence are only a bit larger, e.g., C1 ! 0.07 for hori-
zontal wind (Schmitt et al., 1992, 1994) and C1 ! 0.04 for passive 
scalars in the horizontal (Lilley et al., 2004). ! e corresponding 
values in the vertical are about 1.8 times larger; this is as predicted 
by the 23/9D model of scaling stratifi cation (Schertzer and Lovejoy, 
1985a). Finally, the topography has C1 ! 0.12 (pretty much the 
same for both continents and oceans). For an early review of these 
and other results, see Lovejoy and Schertzer (1995).

Since C1 characterizes the statistics of , near its mean, it 
(partially) quantifi es the eff ect of pure changes in satellite (pixel) 
resolution. For example, using the mean band value C1 = 0.032, 
we see that for MODIS we may expect that the bias due to a 
500-m resolution with respect to an “ideal” 1-mm-resolution 
satellite (i.e., assuming that the smallest scale of variability in the 
radiance fi eld is 1 mm) is (500/0.001)0.032 = 1.52. ! is bias will 
be important when trying to calibrate satellite-derived quantities 
from in situ measurements.

Mul* scale vs. Single-Scale Surrogates

We have already mentioned above that the vegetation and 
soil moisture surrogates are defi ned in an ad hoc way using the 
(subjective, fi nest available) resolution. ! e fact that the surro-
gates have diff erent scaling [/(q)s] implies that if the surrogates 
are defi ned at diff erent resolutions, their statistical properties will 
be diff erent; in other words, the single-scale surrogate can be (at 
most) correct at a single resolution. To see this more clearly, these 
single-scale surrogates [sss, at scale +, #+(s)] can be contrasted 
with the corresponding multiscale surrogates [mss, at scale +, 
#+

(m)]. Mathematically, the diff erence can be expressed as
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where the maximum scale ratio (satellite image scale/single pixel 
scale) L/l = 2 and the notation (Ii,2)+ and [#2(s)]+ denotes averag-
ing from this fi nest resolution 2 up to the intermediate resolution 
+ < 2. ! e mss is the surrogate that would be obtained by apply-
ing an identical algorithm (Eq. [1]) to satellite data at the lower 
resolution +, whereas the sss is the surrogate at the same resolution 
+ but based on the 2 scale calibration. In Fig. 4c, we show that 
the resulting /mss(q) obtained across the same range of scales as 
the single-scale surrogate /sss (Fig. 4b) is quite diff erent (it is sta-
tistically signifi cantly larger; see below). To partially quantify this 

F"0. 5. Single-scale structure func* on exponents [/(q)] for (a) the 
vegeta* on index (blue, middle) with Bands 1 (black, top) and 2 
(green, bo+ om), and (b) the soil moisture index (purple, top) with 
Bands 6 and 7 (pink, bo+ om and middle, respec* vely); and (c) 
mul* scale /(q) for the vegeta* on index (blue, top) and the soil 
moisture index (red, bo+ om).
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diff erence, we see from Table 2 that HVImss = 0.231 and HSMmss = 
0.213, which are larger than the sss estimates above: HVIsss = 0.162 
and HSMsss = 0.144. Similarly, determining the corresponding C1 
values we fi nd the mss values C1VImss = 0.049 and C1SMmss = 0.059 
(c.f., the sss values C1VIsss = 0.033 and C1SMsss = 0.010, which 
are substantially smaller, especially the soil moisture values). Note 
that whenever an exponent is quoted without the indication of sss 
or mss, the sss value is understood; we add it explicitly here only 
to contrast it with the mss estimates. ! ese statistical diff erences 
imply that if the indices are calculated at the MODIS resolution 
2 and then degraded to an intermediate resolution +, that the 
results would be quite diff erent than if the same algorithms were 
used but directly on data at a lower resolution. ! e problem gets 
worse as the range of scales increases because the scaling expo-
nents are diff erent. For example, the exponent diff erence HSMmss 

− HSMsss = 0.213 − 0.144 = 0.069 so that the diff erence in the mean 
index fl uctuations across the range of scales of the MODIS image 
is about a factor 5000.069 ! 1.54. Alternatively, considering the 
eff ect of the inadequate MODIS resolution [500 m rather than, say, 
a scale of !1 mm, where “ideal” indices might be defi ned, i.e., + = 
(500/0.001)], then the ratio between the bias due to pixel size in the 
soil moisture statistics near the mean is 1SMmss 1SMsssC C"+  = 1.90 (with 
C1SMmss − C1SMsss = 0.059 − 0.01 = 0.049). We therefore conclude 
that due to the scale dependence of the data, the surrogate indices 
cannot be valid across a very signifi cant range of scales. ! is scale 
dependence must at the very least be taken into account during 
calibration with in situ data, which are typically at much smaller 
resolutions. ! is underscores the need to develop scale-invariant 
algorithms based on the scale-invariant exponents; see Lovejoy et 
al. (2001) for a discussion.

Trace Moment Analysis

We have seen that the generic statistical properties of nonlin-
ear processes that are repeated scale after scale are characterized by 
a nonlinear exponent K(q), and that the observables will generally 
have an extra linear scaling term Hq. Since at least for low q the 
linear term Hq is often larger than the nonlinear K(q), in analyses 
it can mask the nonlinear term. It is therefore advantageous to fi rst 
estimate the conserved fl ux , from the observed v and then estimate 
K(q) directly. From Eq. [6], we see that, in principle, this can be done 
by removing the +−H scaling. To do this, note that if we start with a 
fi eld ,a and fractionally integrate it by H (a power-law fi lter k−H), the 
resulting fi eld will have the fl uctuation statistics indicated by Eq. [6] 
(see Marsan et al., 1996). ! is suggests that, to obtain a fl ux from v 
(i.e., a conserved fi eld with H = 0), it suffi  ces to invert the power-law 
fi lter, i.e., to fractionally diff erentiate by an order H. It turns out that 
a fi nite diff erence approximation to this is obtained by an integer 
order diff erentiation H1 > H followed by taking the absolute value 
of the result (the absolute value is necessary since the multiplicative 
cascade , > 0; see, however, complex and vector cascades [Schertzer 
and Lovejoy, 1995]). Since, usually, 0 0 H 0 1, a fi rst-order fi nite 
diff erence is suffi  cient. One simply takes the absolute diff erences at 
the fi nest available resolution ,2 and degrades them:

( ) ; ; 0 1I H+ 2 2 2+, = , , ( - < <  [10]

where again the notation (,2)+ indicates the average of the fi nest 
resolution data ,2 across the intermediate resolution +. ! e 

proportionality constant (l−H) is unimportant (see [Eq. 6] with 
v replaced by I and with a = 1, -x = l ). In one dimension (e.g., 
series), one can simply use -I2(x) = I(x + l) − I(x) where the 
inner scale is l = L/2, where L is again the outer scale. In higher 
dimensions on data on regular grids (as here), if the data are 
fairly isotropic, then we can simply treat each line separately and 
then use the one-dimensional method; however, there are more 
possibilities. For example, we may use fi nite diff erence moduli of 
gradient vectors, or fi nite diff erence Laplacians (the latter being 
an isotropic order 2 derivative). In two dimensions, this yields, 
respectively,
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(l = L/2 is the interpixel distance). ! ese and other variants have 
been extensively tested on numerical simulations and on data (see, 
e.g., Tessier et al., 1993; Lavallée et al., 1993); there is generally 
not much diff erence between the various choices (or between 
direct fractional diff erentiation using Fourier techniques). Due to 
analogies with quantum statistical mechanics, the methods based 
on degrading the resolution of the fl uxes and averaging across the 
available samples is called the trace moment technique (Schertzer 
and Lovejoy, 1987). It is distinguished from similar partition 
function methods (Halsey et al., 1986) in that, in addition to 
spatial averaging, it also involves ensemble averaging. Since here 
we apply the method to individual realizations (images), the two 
are equivalent.

In Fig. 6a and 6b, we show the results on the sss indices. ! e 
plot shows various statistical moments of ,+ at various intermedi-
ate resolutions obtained by spatially averaging ,2 obtained from 
the modulus of the gradient vector across larger scales (smaller 
scale ratios) +. Since the intermediate scales -x are inversely 
proportional to the scale ratio (+ = L/-x), the smallest scales are 
on the right, the largest scales are on the left. As a fi rst remark, we 
see that the overall range of variability is quite a bit smaller than 
for the corresponding structure functions; this is because for the 
moments shown (q < 2), the Hq term is larger than the nonlinear 
K(q) term. Notice that for q > 1, the eff ect of spatial averaging 
is to decrease the values (K > 0), whereas for q < 1, it increases 
them (K < 0). Next, we can see that, due to the nonlinear opera-
tions at the smallest scales (the defi nition in terms of the various 
bands, the modulus of the gradient operator), the scaling is not 
so good at the fi nest resolutions; the exponents K(q) (the slopes 
on the log–log fi gure) were estimated across the intermediate 
range shown. At the very largest scales, the scaling is also poor 
partly because of poor statistics (there aren’t very many large-scale 
structures), but also because of the low wave-number atmospheric 
corrections mentioned above.

To quantify the scale-by-scale statistical diff erences between 
the bands and the indices, we can use the scaling of the moments 
(the slopes in Fig. 6) to estimate K(q) and compare the various 
moment scaling exponents; this is done in Fig. 7a, 7b, and 7c. 
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Again, we can quantify the diff erences by the behavior near q = 1; 
numerically evaluating the slope C1 = K1(1), we obtain a second 
series of estimates shown in Table 2. For the bands, these are very 
close to the previous estimates (for the seven bands: C1 = 0.0367 
± 0.001, c.f. the previous value 0.032 ± 0.010), but for the sur-
rogates, the values are somewhat diff erent: C1VI = 0.064 and 
C1SM = 0.053, compared with the structure function estimates 
of 0.033 and 0.010, respectively. ! e fact that the two methods 
agree so well for the bands but not so well for the surrogates is 
due to the poorer scaling of the latter, itself due to their scale-
dependent defi nitions.

Mul* scaling the Probabili* es and the Probability
Distribu* on Mul* ple Scaling Technique

We have concentrated on the statistical moments as a simple 
method of characterizing scale-invariant fi elds; however, the 
moments are integrals of the probability densities, and the mul-
tiscaling of the former implies the multiscaling of the latter. In 
addition, under fairly general conditions, the relationship can be 
inverted so that knowledge of the scaling of the moments deter-
mines the scaling of the probabilities. In particular, we obtain

( ) ( )Pr ~ c9 " 9
+, > + +  [12]

which states that the probability (Pr) that a (resolution +) value ,+ 
exceeds the threshold +9 is a power of the resolution with expo-
nent −c(9) (Schertzer and Lovejoy, 1987). ! e approximation 
sign is to within constant or slowly varying factors (e.g., including 
subexponential factors such as log+). Note that although, in the 
above, we used the expression probability distribution, it is not 
strictly appropriate since it represents the integral of the prob-
ability density from +9 to : rather than the usual −: to +9 (the 

latter would correspond to a true cumulative distribution func-
tion). ! e exponent 9 is called a singularity since it quantifi es 
the rate at which the fi eld values ,+ diverge in the small-scale 
limit +*: (if 9 < 0, it is in fact a regularity). ! e function c(9) 
defi ned via Eq. [12] is called the (statistical) codimension function 
(Schertzer and Lovejoy, 1987) or sometimes the Cramer function 
(Mandelbrot, 1989). If it is low enough [c(9) < d, where d is the 
dimension of the embedding space; d = 2 for single images], then 
d(9) = d − c(9) is the (geometrical) fractal dimension of the set of 
points (at resolution +) with ,+ > +9. While the geometrical d(9) 
must satisfy 0 0 d(9) 0 d, the only restriction on c(9) is that it 
is nonnegative.

! e use of c in place of d is necessary in stochastic processes 
since events with c > d [i.e., those that would have an impossible 
negative geometrical dimension d(9) < 0] correspond to events 
that are almost surely absent in a d-dimensional space but on 
the contrary are almost surely present in a large enough sample. 
Indeed, if we have Ns independent realizations of the process, 
each across a range of scales +, then the eff ective or sampling 
dimension of the sample is Ds = logNs/log+, and one would 

F"0. 7. Trace moment determina* on of the scaling exponent of the 
qth order moment of the  eld [K(q)] for: (a) vegeta* on index (purple, 
top right) and soil moisture index (green, bo+ om right); (b) vegeta-
* on index (purple, top right) and Band 1 (orange, middle right) and 
Band 2 (green, bo+ om right); and (c) soil moisture index (green) and 
Band 6 (blue, bo+ om right) and Band 7 (purple, middle right).

F"0. 6. Log–log plot of trace moments (%,+
q&) using 20 values of scale 

ra* o + per order of magnitude in scale: (a) vegeta* on index; (b) soil 
moisture index. From bo+ om to top, q = 0.2,0.4, …, 1.6, and 1.8.
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expect to fi nd all levels of activity up to extreme events such 
that c(9s) = d + Ds, where 9s is the sampling singularity (Schertzer 
and Lovejoy, 1989). In particular, there will be a largest moment 
qs = c1(9s) that can be estimated from a fi nite sample of Ns realiza-
tions; for q > qs, the K(q) becomes (spuriously) linear following 
the tangent K1(qs).

As mentioned above, knowledge of K(q) is equivalent to 
knowledge of c(9) and visa versa; indeed, the two are conveniently 
related via Legendre transformations (Parisi and Frisch, 1985):

( ) ( )

( ) ( )

min

min
q

K q q c

c q K q
9
3 4= 9" 97 8

3 49 = 9"7 8
 [13]

! is establishes a one-to-one correspondence between orders of 
singularity 9 and statistical moments q: 9 = K1(q) and q = c1(9). 
We can now see the justifi cation for the term C1 = K1(1) intro-
duced above; in a precise sense, it corresponds to the singularity 
that gives the dominant contribution to the mean; in addition, 
since K(1) = 0, we fi nd C1 = c(C1) is also the codimension of the 
9 = C1 singularities.

Before using Eq. [12] to directly estimate c(9), we recall 
that the approximation sign in Eq. [12] means that using the 
approximation c(9) ! −logPr/log+ is not so accurate. It is there-
fore better to calculate the histograms at a series of resolutions + 
and then, for a fi xed 9 = log,+/log+, regress logPr against log+; 
the slope is −c(9). ! is is the probability distribution multiple 
scaling technique (Lavallée et al., 1991). We show the result in 
Fig. 8a, 8b, and 8c. As can be seen at the larger 9 (the extremes), 
the statistics become poor so that even though, in principle, there 
is information up until c = d = 2, it is very noisy. ! e extremes 
can be examined by determining the histograms directly at the 
highest resolution. ! is is especially important since, in general, 
as mentioned above, in general “canonical” cascade processes 
there is a fundamental distinction that must be made between the 

“bare” cascade, quantities ,+,b, i.e., that developed from the outer 
scale L down to a smaller (but fi nite) scale l, and the “dressed” 
process, ,+,d, obtained by averaging (“dressing”) a bare process 
down to the small-scale limit (this is a good approximation to 
measured fi elds, which typically have variability much below that 
of their averaging resolution). While the former has all its positive 
moments converge [the corresponding bare Kb(q) is always fi nite], 
the dressed process is more variable; it generally has diverging 
moments for all moments q > qD where qD is a critical exponent 
dependent on the dimension D across which the process is aver-
aged (Mandelbrot, 1974; Schertzer and Lovejoy, 1987) (Kd(q) = 
Kb(q) for q < qD). In general,
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In practice, the moments of a fi nite data set are always fi nite; 
nevertheless, the divergence of moments implies that the K(q) 
estimated for q > qD will be dominated by a single (largest) 
singularity, the corresponding scaling will be spurious,  and 
there will be discontinuity in the slope of K(q) at q = qD. Since 
there is a mathematical analogy between classical thermody-
namics and multifractals, the discontinuity K1(q) at q = qD is 

called a fi rst-order multifractal phase transition. Another term for 
the phenomenon is the multifractal butterfl y eff ect (Lovejoy and 
Schertzer, 1998), a term that is justifi ed because—just as for the 
classical deterministic chaos “butterfl y eff ect”—the large-scale 
moments for q > qD are in fact determined by the small-scale 
details. Finally, the divergence of moments occurs in combina-
tion with scaling fractal structures (indeed, it is the because 
of the buildup of such strong variability from large to small 
scales that the spatial averaging across fi nite sets cannot suffi  -
ciently “calm” the higher order statistical moments). Elsewhere 
in statistical physics, the combination of fractal structures with 
algebraic extreme probabilities has been called self-organized 
criticality (SOC; Bak et al., 1987); hence, we see that multi-
fractals provide a “nonclassical” route to SOC (Schertzer and 

F"0. 8. The codimension func* on [c(9)] of the set of points with 
singulari* es 9 for: (a) the seven bands, in order from top to bot-
tom at the point 9 = 0.23 (below the large spike in the blue curve): 
blue (with spikes) = Band 5, purple = Band 6, dark green = Band 3, 
cyan = Band 4, orange = Band 1, magenta = Band 7, and light green 
= Band 2; (b) the vegeta* on index (red) and Bands 1 and 3 (yellow 
and green, respec* vely); and (c) the soil moisture index (orange, 
bo+ om line) and Band 6 (purple, top) and Band 7 (magenta, mid-
dle). The straight reference lines (black) have slopes of 6.6.
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Lovejoy, 1994). Actually, this nonclassical SOC may be more 
generally physically relevant since it based on a (quasi-) constant 
fl ux, whereas the classical SOC is in fact only strictly valid in 
the (often unrealistic) zero-fl ux limit.

To check for the divergence of moments, we therefore calcu-
lated the probability distributions of ,+ (see Fig. 9a and 9b). Due 
to the slight excess smoothing at the highest factor of 2 in scale 
(see the spectra, above), we averaged the (gradient-estimated) ,2 
across two by two pixels. We can see that the forms of the extreme 
probability tails are roughly the same for the indices and the 
bands from which they were derived, but it is not obvious that 
any asymptotic linear behavior is followed. ! e problem is that it 
is notoriously diffi  cult to estimate the exponent of a probability 
tail, especially when theoretically we know neither the value of 
the exponent nor where the asymptotic regime begins. To quan-
tify the tail behavior, we estimated the tail slope for the greatest 
factor of 2 in scale (see Table 2); for the Bands 1, 2, 6, and 7, we 
obtained a mean qD ! 6.64 (the mean of all the bands is 6.4 ± 
1.4) and this reference slope is placed on the distributions in Fig. 
9a and 9b. We see that the agreement is quite suggestive (espe-
cially when we consider that various instrumental [smoothing] 
eff ects could be responsible for artifi cially reducing the values of 
the extreme gradients used to estimate ,). ! e evidence for alge-
braic tails is apparently strongest for the soil moisture surrogate 
and the corresponding Bands 6 and 7. Alternatively, we note 
that the absolute logarithmic slope in the tails in Fig. 9 yields 
the maximum moments that can be accurately measured with 
the available sample, qs. It may be that qs < qD so that the data 

set is simply too small to observe qD (recall that as Ns increases, 
so does qs).

A Complete, Manageable, and Physically
Mo* vated Characteriza* on of the Processes:

Universal Mul* fractals

We have argued that a general feature of processes whose 
mechanism repeats across a wide range of scales is that they are 
scaling, characterized by convex moment functions [K(q), c(9)]. 
If this was all that we could deduce, then multifractals would be 
quite unmanageable: theoretically, it would mean that an infi nite 
number of parameters were important [e.g., each value of K(q)] 
or empirically it would require the determination of an infi nite 
number of coeffi  cients (e.g., regression slopes). In physics, how-
ever, it has generally been found that when processes are iterated 
suffi  ciently or if there is a large enough number of interactions, 
then only a few of their characteristics are important in the limit 
of many interactions or iterations. ! is is the idea of “universality.” 
Perhaps the oldest and most familiar example of universality is 
the central limit theorem in probability theory, which is routinely 
invoked to justify assumptions about Gaussianity of measurement 
noises. Although the Gaussian example is well known, the full 
result—the generalized central limit theorem (Levy, 1925) for sums 
of independent identically distributed random variables—is less 
known. It states that if one appropriately centers and normalizes 
sums of a suffi  ciently large number of independent identically dis-
tributed random variables with fi nite variance, the result is indeed 
a Gaussian; however, if the fi nite variance requirement is dropped 
(so that one allows for algebraic distributions with exponents . 
< 2), then one obtains Levy distributions. ! is result is relevant 
to cascade processes because if one considers the “generator” of 
the process, log,, then this is the sum of the logarithms of the 
random cascade factors, hence one expects the generalized cen-
tral limit theorem to apply to the logarithms. ! is would lead to 
logarithmic Gaussian and logarithmic Levy multifractals. Although 
this basic idea turns out to be correct, the nontrivial small-scale 
limit of the cascade process has obscured the issue, even leading to 
strong statements that there are no universal multifractal properties 
(Mandelbrot, 1989). Indeed, to obtain universal properties, one 
must consider the universality issue on cascades developed only 
across a fi nite range of scales, and only then—after central limit 
convergence has been achieved—consider the small-scale limit (see 
Schertzer and Lovejoy, 1997). ! e resulting bare universal multi-
fractals have the following exponent functions:
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! e above Legendre transformation pairs (Schertzer and Lovejoy, 
1987) are valid for 0 0 . < 1 and 1 < . 0 2 [when . = 1, K(q) 
= C1qlogq]. Also, 0 0 C1 0 d, since if C1 > d, the process cannot 
be normalized on the subspace. ! e restriction to q ) 0 is neces-
sary; since generally for . < 2, the q < 0 moments diverge. ! is 
is why we did not plot them in Fig. 5 and 7 (the exception is the 
. = 2 lognormal multifractal). Once again, the results for the 
dressed cascades apply, so that these formulae are only valid for q 
< qD and 9 < 9D = K1(qD). Because of this divergence, the terms 

F"0. 9. Log–log plot of the probability (Pr) that a value ,+ (indicated 
by the threshold s), with resolu* on +, exceeds the threshold +9 
vs. the order of singulari* es (9) (see Eq. [12]): (a) vegeta* on index 
(blue, top right), Band 1 (orange, middle right) and Band 2 (green, 
bo+ om right); and (b) soil moisture index (bo+ om right), Bands 6 
and 7 (middle and top right, respec* vely).
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log-Levy and log-Gaussian are misnomers; the probability tails 
are actually somewhat stronger than those terms would imply. It 
could be mentioned that in the literature, a weaker form of uni-
versality has been proposed leading to log-Poisson multifractals 
(She and Levesque, 1994). While log-Poisson multifractals share 
the infi nite divisibility properties of the universal (Levy-generator) 
multifractals (necessary for cascades continuous in scale), the cor-
responding processes are neither stable nor attractive so that it 
would be surprising for them to emerge from complex real-world 
processes (see Schertzer et al., 1995).

! e universal form of Eq. [15] shows that only two parameters 
are needed to specify the conserved fl ux of universal multifractals 
(,); for the “observables” (v), we need the third parameter (H). 
We have seen above that two of these parameters (H and C1) 
can be estimated from /(1) and /1(1); the above shows that only 
a single additional parameter (.) is needed to characterize the 
entire process. ! is “Levy index” . can be estimated either from 
the radius of curvature of /(q) [or K(q)] at q = 1 (equivalently, 
determined from the second derivative), or—in practice more 
accurately—by considering K(q) or /(q) across a wider range of 
q values and exploiting the dependence on q.. We tested one of 
these methods (Schmitt et al., 1995) on the MODIS data (for 
another popular method, double trace moments, see Lavallée et 
al., 1993). As long as /1(0) is fi nite, we may remove the linear part 
of /(q) by considering the power-law “residue” r(q):

( ) ( ) ( )0r q q q1= / "/  [16]

Applied to universal multifractals (as long as . > 1), we have

( ) 1
1

Cr q q.=
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 [17]

Hence we can estimate . by a linear regression of log10r(q) vs. 
log10q. We show this in Fig. 10a and 10b using q values from 0.1 
to 3 at intervals of 0.1 [/1(0) is estimated from a local quadratic 
fi t to /(q) with q = 0, 0.1, and 0.2]. As can be seen, the residue 
is accurately a power law; for the bands, we fi nd (Table 2) . = 
1.91 ± 0.03, while for the indices, we fi nd .VI = 2.02 and .SM = 
2.23, both of which are slightly outside the theoretically allowed 
range for universal processes (it can thus only be an approximate 
empirical characterization). ! is is presumably a further conse-
quence of the poor scaling of the indices (but not the radiances). 
Finally, we compare these results to those of a nonlinear regression 
on the trace moment estimate K(q) curve. Due to the presence 
of the linear term in the universal K(q) (Eq. [15]), the nonlinear 
regression is not as accurate. We might also note that a potential 
problem with it is that one must only make a fi t for q < min(qs, 
qD) [recall that for q > qs or q > qD, Kd(q) becomes linear and is 
spurious], and a priori, the appropriate values of qs and qD are 
unknown. Here we have seen that the most extreme q that can be 
used is on the order q ! 6 or greater and we made our nonlinear 
regressions using the relatively well estimated moments q 0 2.

Using these universal multifractal parameters, we can make 
multifractal simulations with the same statistics or resolution 
dependencies (Schertzer and Lovejoy, 1987; Wilson et al., 1991; 
Pecknold et al., 1993); see Fig. 11a and 11b for examples with 
roughly the same universal multifractal parameters as the radi-
ances. For more simulations, showing the eff ect not only of 

varying the H, C1, and . parameters but also of various scal-
ing anisotropies, see Lovejoy and Schertzer (2007) and also the 
multifractal explorer site: www.physics.mcgill.ca/~gang/multifrac/
index.htm (verifi ed 14 Feb. 2008).

Conclusions
Due to extreme variability across huge ranges of scale, it is 

often diffi  cult or impossible to obtain adequate quantities of in 
situ data; remotely sensed surrogates are attractive alternatives. 
! e classical approach combines remote data from judiciously 
chosen radiance bands using semiempirical algorithms that are 
calibrated at the best available resolutions. ! e problem is that 
such algorithms are predicated on the classical geostatistical 
assumption that the fi elds of interest are suffi  ciently regular and 
smooth so that they have no signifi cant resolution dependencies. 
In eff ect, they postulate a priori that the subpixel variability is 
not serious. In this study, we have argued that on the contrary, 
the fi elds are multifractal, having strong resolution dependen-
cies (they are singular with respect to Lebesgue measures). ! is 
implies that, at best, the surrogate fi elds derived in this manner 
can be correctly calibrated at only a single resolution; they will 
be incorrect at other resolutions. ! is shows that new, resolution-
independent algorithms must be developed.

In this study, we illustrated these ideas using soil moisture 
and vegetation indices and surrogates obtained from red and far 
red MODIS satellite imagery. We systematically reviewed the key 
notions and analysis methods that have emerged after more than 
20 yr of study of cascades and other multifractal processes. First, 

F"0. 10. The nonlinear part of the scaling exponent of the qth order 
moment of the  eld [r(q) = q/1(0) 4 /(q)] for: (a) the vegeta* on 
index (blue, bo+ om le1 ) and Band 1 (orange, top le1 ) and Band 2 
(green, middle le1 ); and (b) soil moisture (red, bo+ om) with Bands 
6 and 7 (pink and blue, respec* vely, top, nearly superposed).
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using the classical technique of Fourier analysis, we showed that 
the basic isotropic scaling was reasonably well obeyed across most 
of the available range of scales (here, a factor of 512). We then 
considered the statistics of fl uctuations, which can be systemati-
cally analyzed as functions of scale and intensity (by varying the 
order, q) using generalized structure functions /(q). ! is showed 
that the basic radiance bands had good multiscaling [i.e., scaling 
with concave /(q)], motivating the introduction of two diff erent 
surrogates: the fi rst, the classical sss, is defi ned by a nonlinear 
combination of radiances at the fi nest resolution; the second, the 
mss, is based on the same algorithm except that it is defi ned 

on successively lower resolution satellite radiances. Although the 
basic algorithm is identical (the surrogates are equal to the dif-
ference in radiances at two bands divided by their sums), their 
resolution dependencies were found to be diff erent. ! is is a 
consequence of the scale dependence of the radiances and the 
nonlinear operation defi ning the surrogates. ! e fact that the 
scale-by-scale properties of the sss and mss surrogates are dif-
ferent (a fact quantifi ed further with the parameters H and C1) 
shows that unless the fi nest resolution of the satellite data just 
happens to coincide with the inner scale of the soil moisture and 
vegetation indices, the surrogates cannot be more than rough 
approximations to the indices, valid only near the resolutions 
at which they were calibrated. In particular, across the MODIS 
range of scales (a factor 512), we showed that the amplitude of 
the mean statistics fl uctuation in mss and sss was !1.54.

We then went on to make a more complete scale-by-scale 
statistical characterization of the data and surrogates, showing 
how to obtain and analyze the underlying conserved fl uxes using 
a technique called trace moments, as well as a scale-invariant char-
acterization of the probability distributions, called the probability 
distribution multiple scaling technique. ! ese analysis techniques 
were originally developed to quantify multifractal turbulent pro-
cesses and we reviewed the relevant theory while explaining the 
various techniques. At this level, the intercomparison of the scal-
ing involves two exponent functions, one for the moments [K(q)], 
one for the probabilities [c(9)]. Although these are related by a 
Legendre transform—so that they contain essentially the same 
information—they still eff ectively involve an infi nite number of 
parameters (e.g., a diff erent exponent for each K or c value). To 
make the problem manageable, we argued that in the real world, 
multifractal processes are likely to be in the basin of attraction of 
the three parameter “universal” multifractal processes so that anal-
ysis requires the estimation of just three parameters: in addition to 
H and C1 mentioned above, the Levy index ., which characterizes 
the degree of multifractality. We then estimated the remaining 
. index. Overall (Table 2), we found the scaling parameters (H, 
C1, and .) were not too diff erent for the diff erent bands but were 
signifi cantly diff erent for the surrogates (which also had scaling 
that was less accurately followed, a consequence of the nonlinear 
transformation at the smallest scale). Even though the exponents 
H and C1 seem small, because they act across wide ranges of scale 
they lead to large eff ects. For example, we pointed out that the 
diff erence in the mean intensity fl uctuation across the MODIS 
image scale range (factor of 512) was about 1.47 depending on 
whether the indices are defi ned scale by scale or at a fi xed scale. In 
contrast, there is another multifractal approach to remote sensing 
(Lévy-Vehel and Mignot, 1994; Lévy-Vehel, 1995) that is agnos-
tic about the existence of wide-range scaling; in practice it only 
considers very small ranges of scale (e.g., factors of 2–4) so that 
it leads to applications that are not too diff erent from classical 
remote sensing techniques.

! e similitude of the scaling properties of the diff erent 
radiance bands does not mean that overall they have the same 
statistics; the analysis techniques applied in this study are essen-
tially isotropic. Even though by spectral analysis we showed that 
the anisotropy is not too large, the (unanalyzed) deviations from 
isotropic scaling can nevertheless lead to signifi cant variations 
in the morphologies of structures. ! is is perhaps most graphi-
cally shown in the simulations (Fig. 11). Systematic analysis of 

F"0. 11. Two simula* ons to illustrate the e2 ect of a small amount 
of anisotropy with universal mul* fractal parameters of basic 
 uctua* on exponent (H) = 0.18, codimension characterizing pure 
resolu* on dependence near the mean (C1) = 0.05, and Levy index 
(.) = 1.9: (a) the same anisotropy at all scales, so that the scale-
changing operator is a standard “zoom” but on an anisotropic 
ini* al structure, the degree and type of anisotropy is indepen-
dent of scale; and (b) di2 eren* al anisotropy with the direc* on 
and elonga* on of structures slowly changing with scale and the 
scale-changing operator itself anisotropic so that the degree of 
anisotropy changes with scale. 
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the scaling anisotropy is not easy, however, and is outside our 
present scope.

Since our conclusions are based on an analysis of a single 
scene (albeit at seven wavelengths with nearly 2 × 106 pixels in 
all), we expect to fi nd diff erences when data from other sites are 
analyzed. Since the qualitative (multiscaling) behavior that we 
found is theoretically expected, and the corresponding exponents 
are very fundamental, we anticipate that diff erences will be pri-
marily in the (possibly large, but “normal”) sample-to-sample 
variability of multifractal fi elds coupled with possible diff erences 
in the scale-by-scale anisotropy mentioned above.

Although we criticized classical scale-bound remote sensing 
algorithms, we did not propose a specifi c alternative. ! e general 
problem is to obtain a scale-invariant characterization of the sta-
tistical interrelation between the various radiances or fi elds. ! e 
basic approach is to consider a “state vector,” with each relevant 
fi eld represented by a diff erent component. We are thus led to 
scale-invariant vectors (Lie cascades, Schertzer and Lovejoy, 1995), 
an approach that has been discussed to some extent in Lovejoy et 
al. (2001); however, very little is known about vector multifractals 
or about the appropriate analysis techniques. 

Appendix: Symbol De ni! ons
Ii  Intensity in band i (Eq. [1])
#VI, #SM Vegetation index (VI), soil moisture index (SM) (Eq. [2])
P  Spectral density (Eq. [2])
E  Spectrum (angle integral of P; Eq. [3])
k  Wave vector (Eq. [2])
r  Position vector (Eq. [2])
'  Spectral exponent (Eq. [4])
L  Largest scale in the system, here typically the image scale
l  Smallest scale in the system, here typically the pixel scale
+  Scale ratio: largest/resolution scale
2  Maximum scale ratio: L/l, 2 ) +
,+  Conserved fl ux associated with an observable, such as an 

intensity, at resolution + (Eq. [5])
,+, b ! e “bare” ,+, i.e., the result of a cascade over a ratio + that 

stops at scale +
,+, d ! e “dressed” ,+, i.e., the result of a cascade down to infi -

nitely small scales that is then averaged to resolution +
K(q) Scaling exponent of the qth order moment of fi eld quan-

tifying how the qth order statistics change with resolution 
+ (Eq. [5])

q  Order of statistical moments (e.g., Eq. [5])
qs  Highest order statistic that can be reliably estimated with 

Ns samples at dimension d.
qD  Critical dimension for the divergence of statistical moments, 

equal to the asymptotic (absolute) probability distribution 
exponent

-v+ ! e velocity radiance across a distance -x =L/+ (Eq. [6])
-I+ The velocity radiance across a distance -x =L/+
-x Horizontal distance
a  Exponent of the fl ux (Eq. [6])
H  Scaling exponent of the fl uctuations with respect to the fl ux 

(Eq. [6]), scale-by-scale conservation exponent
/(q) Exponent of the qth order structure function (Eq. [7])
c(9) (Statistical) codimension of the set of points with singulari-

ties 9 (Eq. [12])

9  Order of singularity corresponding to a fi eld level ,+ (9 = 
log,+/log+; Eq. [12])

d  Dimension of space, here (for images) d = 2
d(9) Dimension of the set with singularity 9 [ = d − c(9)]
Ds  Sampling dimension = logNs/log+
Ns  Number of independent fi elds of dimension d, resolution 

+, here it = 1
Pr  Probability
s  Dummy (threshold) variable (Eq. [14])
C1  Codimension corresponding to the mean (i.e., q = 1)
.  Levy index quantifying how quickly the higher and lower 

order statistics depart from the mean (q = 1) behavior
.1  Auxiliary variable (Eq. [15])
9D  Critical singularity corresponding to qD
9s  Critical singularity corresponding to qs
r(q) Pure nonlinear part of K(q) (Eq. [17])
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