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Abstract. It was recently found that spectral solar incident

flux (SIF) as a function of the ultraviolet wavelengths ex-

hibits 1/f -type power-law correlations. In this study, an at-

tempt was made to explore the residues of the SIF with re-

spect to the Planck law over a wider range of wavelengths,

from 115.5 to 629.5 nm. Using spectral, Haar and Detrended

Fluctuation analyses, we show that over the range from 10–

20 nm to the maximum lag (≈ 500 nm), the SIF residues

have a scaling regime with fluctuation exponent H ≈ 0.37

but with high intermittency (C1 ≈ 0.16, multifractal index

α ≈ 1.7) and spectral exponent ≈ 1.46. Over the shorter

wavelengths range we found on the contrary low intermit-

tency (C1 ≈ 0) with spectral exponent ≈ 1 and H ≈ 0.

1 Introduction

As is well known, electromagnetic radiation is continuously

emitted by every physical body. This radiation is described

by Planck’s law near thermodynamic equilibrium at a defi-

nite temperature. There is a positive correlation between the

temperature of an emitting body and the Planck radiation at

every wavelength. As the temperature of an emitting surface

increases, the maximum wavelength of the emitted radiation

increases too. Smith and Gottlieb (1974) re-examined the

subject of photon solar flux and its variations vs. wavelength

and showed that variations in the extreme ultraviolet (UV)

spectrum and in the X-ray of solar flux may reach high or-

ders of magnitude causing significant changes in the Earth’s

ionosphere, especially during major solar flares (Kondratyev

et al., 1995; Kondratyev and Varotsos, 1996; Ziemke et al.,

2000; Varotsos et al., 2001; Melnikova, 2009; Tzanis et al.,

2009; Xue et al., 2011; Cracknell et al., 2014).

Solanki and Unruh (1998) proposed simple models of the

total solar irradiance variations vs. wavelength showing that

variations on solar flux are mainly caused by magnetic fields

at the solar surface. Solar observations may be reproduced by

a model of three parameters: the quiet Sun, a facular compo-

nent and the temperature stratification of sunspots.

Tobiska et al. (2000) developed a forecasting solar irradi-

ance model, called SOLAR2000, covering the spectral range

of 1–1 000 000 nm. Using this tool, the authors attempted

to describe solar variation vs. wavelength and through time

from X-ray through infrared wavelengths, in order to predict

the solar radiation component of the space environment.

Very recently, Varotsos et al. (2013a, b) suggested the exis-

tence of strong persistent long-range correlations in spectral

space of the solar flux fluctuations for UV wavelengths in

the range 278–400 nm. More precisely, by applying the de-

trending fluctuation analysis (DFA) to the initial SIF vs. UV

wavelengths data set, power-law correlations of the type 1/f

were found pointing to a scaling feature in the UV spectral

domain.

However, Varotsos et al. (2013a) tried to formulate the

above-shown finding, i.e., that the solar spectral irradiance

obeys 1/f power-law as a function of UV wavelength, using

the well-known Planck’s law: I (λ,T )= 2hc2

λ5(e
hc
λkT −1)

which,

in the limit of small wavelengths tends to the Wien approx-

imation: I (λ,T )= 2hc2

λ5 e
−

hc
λkT , where I (λ,T ) is the amount

of energy emitted at a wavelength λ per unit surface area per

unit time per unit solid angle per unit wavelength, T is the
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temperature of the black body, h is Planck’s constant, c is the

speed of light, and k is Boltzmann’s constant. By applying

the DFA method on the various values of I (λ,T ), Varotsos

et al. (2013a) showed that the calculated I (λ,T ) values do

not obey the 1/f -type scaling vs. 1λ (i.e., for fluctuations in

I (λ,T ) over a range 1λ in wavelength). Thus, the latter may

reflect a scaling in its fluctuations which might be related to

the complex physical processes taking place at the solar at-

mosphere (e.g. see Avrett and Loeser, 2008, and references

therein).

In the present study, focusing on these fluctuations, we ex-

amine whether the 1/f scaling feature is apparent in a wider

spectrum of SIF including both UV and visible spectrum,

namely for wavelengths (WL) between 115.5 and 629.5 nm.

2 Data and analysis

As mentioned above, the solar incident flux data for WL

ranging from 115.5 to 629.5 nm with a step of 1 nm were an-

alyzed. The spectrophotometric data of spectral extraterres-

trial solar flux have been taken from the book by Makarova

et al. (1991) (see also Makarova et al., 1994; Melnikova

and Vasilyev, 2005). Figure 1a depicts SIF values for the

wavelength range of 115.5–629.5 nm. The principal fea-

ture shown in this figure is the existence of apparent non-

stationarities vs. WL into the solar spectral distribution

and the strong upward trend up to about 450 nm. The

detrending of this data set was accomplished (Fig. 1a)

by applying the Planck formula B1

(
b1

λ

)5

/
[
exp

(
b1

λ

)
− 1

]
with b1 = 2486.4 nm based on the Sun’s effective tem-

perature (T sun= 5778 K) reported by NASA (http://nssdc.

gsfc.nasa.gov/planetary/factsheet/sunfact.html) and the de-

rived parameter was found to be B1 = 85.8± 0.7 (0.82 %)

mWm−2 nm−1. Hereafter, we focus on these detrended SIF

data (i.e. the residuals with respect to the Planck function)

which are shown with the blue line in Fig. 1a; these are

the deviations from a pure black body spectrum. To estimate

the scaling exponents, we first applied the well-known DFA

method (Peng et al., 1994; Weber and Talkner, 2001; Varot-

sos, 2005; Varotsos et al., 2008, 2009, 2011, 2012; Sarlis

et al., 2010; Skordas et al., 2010; Efstathiou and Varotsos,

2010, 2013; Efstathiou et al., 2011; Chattopadhyay and Chat-

topadhyay, 2014).

Furthermore, we calculated the power spectrum for the de-

trended SIF data set using the Fast Fourier Transform (FFT)

algorithm as well as the maximum entropy method (MEM)

(Hegger et al., 1999).

A brief description of DFA-n tool may be given as follows:

1. Consider the SIF data set x(i) of lengthN which is inte-

grated over WL. Therefore, the integrated data set, y(i),

consists of the following points:
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Figure 1. (a) SIF values (red, left scale) on the top of the atmosphere

vs. WL from 115.5 to 629.5 nm together with the fitting employed

(green, left scale). The detrended SIF data (blue, right scale) are

also shown. (b) Log-log plot of the root mean square fluctuation

function Fd (τ ) of the detrended SIF vs. the WL segment size τ ,

for the wavelengths between 115.5 and 629.5 nm. The a values for

DFA-1, DFA-2, DFA-3, DFA-4 are 1.09 (±0.04), 1.00 (±0.03), 1.01

(±0.03), 0.98 (±0.03), respectively.

y(1)= x(1), y(2)= x(1)+ x(2). . .,

y(i)=

i∑
k=1

x(k). (1)

2. We split the integrated data set into non-overlapping

boxes of equal length, τ . In each box, a best polyno-

mial local trend (of order n) is fitted in order to detrend

the integrated profile (by subtracting the locally fitted

trend).

3. The root mean square fluctuations Fd(τ ) of this inte-

grated and detrended profile is calculated over all scales

(box sizes). For each interval, the detrended fluctuation

Fk within the kth box (Kantelhardt et al., 2002) is de-

fined by:

F 2
k (τ )=

1

τ

(k+1)τ∑
i=kτ+1

[y(i)− z(i)]2,

k = 0,1,2, . . .,

(
N

τ
− 1

)
, (2)

where z(i) is the corresponding polynomial least-square

fit to the τ data contained and (Peng et al., 1994):

F 2
d =

1

(N/τ)

(N/τ)−1∑
k=0

F 2
k (τ ). (3)

In case the signals involve scaling, a power-law behavior

for the root mean square fluctuation function Fd(τ ) is ob-

served:
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Fd(τ )∼ τ
a, (4)

where a is the scaling exponent, a self-affinity parameter

that represents the long-range power-law correlation (Aus-

loos and Ivanova, 2001).

The above is fine for the nonintermittent, quasi-Gaussian

case, but in the general (multifractal) case – which is of

interest here – it is more convenient to define the mean

fluctuation of the running sum F ′d using the mean F ′d =
1

(N/τ)

∑(N/τ)−1

k=0 Fk(τ ) in Eq. (3) rather than Fd which is the

RMS fluctuation of the running sum. Defining the mean fluc-

tuation exponent a′ by: F ′d ∼ τ
a′ , we find that in the quasi

Gaussian case, a′ = a = the usual Hurst exponent H , al-

though if we want the H of the process (rather than its

sum), we must subtract unity: a = a′ = 1+H . In the gen-

eral multifractal case, we can define the fluctuations of the

process by F ′d/τ and we can quantify the statistics via the

qth order structure function Sq(τ )= 〈(F
′

d/τ)
q
〉 ∼ τ ξ(q). We

see that a = 1+ ξ(2)/2 whereas a′ = 1+ ξ(1). Finally, we

can decompose ξ(q) into linear and convex parts: ξ(q)=

qH−K(q)whereK(q) characterizes the intermittent, multi-

fractal contribution. With this, we obtain a = 1+H−ξ(2)/2,

a′ = 1+H ; the two are equal when K(q)= 0. In this spe-

cial case where the process is quasi-Gaussian – unlike the

general multifractal case – a single exponent is sufficient

to characterize the scaling of the process. If the process is

exactly Gaussian, when 0< a < 1, (−1<H < 0), the pro-

cess is a fractional Gaussian noise (fGn) and when 1< a < 2

(0<H < 1), it is a fractional Brownian motion (fBm).

For uncorrelated quasi Gaussian data, the scaling exponent

is a = 1/2, (H =−1/2). Scaling generally implies the exis-

tence of long range statistical dependencies. However in the

special Gaussian case, when a = 1/2, then one has a Gaus-

sian white noise and there are no long range dependencies.

However, the fact that a = 1/2 can only be used to infer an

absence of long range dependencies if it can be shown that

the process is indeed quasi-Gaussian (in practice it has to be

shown that it is not significantly intermittent, i.e. multifrac-

tal) in a certain range of τ values. If 0< a < 0.5 (and if the

data set is nonintermittent), power-law anticorrelations are

present (antipersistence). When 0.5< a ≤ 1.0 (and if again

the data set is nonintermittent), then persistent long-range

power-law correlations prevail (the case a = 1 corresponds

to the so-called 1/f noise) (Weber and Talkner, 2001).

Finally, the scaling properties of SIF-WL data set were

also studied using Haar fluctuation analysis (Lovejoy and

Schertzer, 2012a, b). In the DFA method above, fluctua-

tions are defined by the standard deviation of the residues

of the polynomial regressions of the integrated process (the

Fk; to obtain the fluctuation of the series rather than its

sum, we must divide by τ : Fk(τ )/τ ). In the more gen-

eral framework of wavelets, they are defined by convo-

lutions with respect to (almost) arbitrarily shaped mother

wavelets. While both DFA and wavelet based fluctuations

give essentially the same accuracy when used for estimat-

ing scaling exponents (such as H , see e.g., Lovejoy and

Schertzer, 2012a), if the wavelet is appropriately chosen,

then the interpretation of the fluctuations becomes very sim-

ple so that the analysis can be used much more generally

(i.e. when there is more than a single scaling regime, or

even if there is no scaling at all). The difficulty in inter-

preting the DFA fluctuations is the reason why in published

plots, units are typically not even provided for the fluctu-

ation axes. In contrast, for the series x(t) the simple (and

indeed first wavelet) Haar fluctuations 1x(1t) are defined

simply as the difference between the averages of a series over

the first and second halves of an interval τ =1t : 1x(1t)=

2[
∑
t+1t/2<t ′<t+1tx(t

′)−
∑
t<t ′<t+1t/2x(t

′)]/1t (1t is the

time scale, time lag, it is the same as the τ in the DFA

method). They have the property that in regions where −1<

H < 0, they can be interpreted simply as resolution 1t

anomalies. Whereas in regions where 0<H < 1, they can

be interpreted as differences: 1x(1t)= [x(t +1t)− x(t)].

Once the Haar fluctuations have been determined one can

characterize them statistically by taking averages of vari-

ous powers q; the generalized qth order structure function

Sq(1t)= 〈1x(1t)
q
〉, where the symbol 〈.〉 stands for en-

semble averaging. In a scaling regime, Sq(1t)≈1t
ξ(q),

where the exponent ξ(q)= qH −K(q) and K(q) is in gen-

eral non-linear and convex and characterizes the intermit-

tency (satisfying K(1)= 0). In the previous DFA discus-

sion, the process was assumed to be quasi-Gaussian, this im-

plies the assumption K(q)= 0 (the DFA fluctuations are of

course valid without this restriction). For universal multifrac-

tals (e.g. Schertzer and Lovejoy, 1987),

K(q)= C1

(qα − q)

(α− 1)
, (5)

where C1(≥ 0) indicates the scaling intermittency and

α (0≤ α ≤ 2) – not to be confused with the DFA exponent

– is the multifractality index (the Lévy index of the genera-

tor). Note that in the DFA literature, sometimes the exponent

h(q)= 1+ ξ(q)/q is introduced, the motivation being that

in quasi Gaussian process, K(q)= 0 so that h(q)= con-

stant (independent of q). However, when C1 6= 0 this leads

to h(q)→∞ as q→ 0 for all α ≤ 1. Since α = 0 is the

monofractal limit, we obtain h(0)=∞ which is neither in-

tuitive nor convenient.

3 Discussion and results

Varotsos et al. (2013a) studying the high-resolution obser-

vations of SIF reaching the ground and the top of the at-

mosphere, suggested that SIF vs. UV WL exhibits 1/f -type

power-law correlations. This result was derived by applying

the DFA method on the SIF data set obtained from the Villard

St. Pancrace station of the Lille University of Sciences and

www.atmos-chem-phys.net/15/7301/2015/ Atmos. Chem. Phys., 15, 7301–7306, 2015
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Figure 2. Power spectral density of the detrended SIF data set to-

gether with the least squares fit with power-law exponent β = 0.99

(±0.08) (blue line) and the β = 1.46 as determined with the Haar

analysis (green line) vs. (a) the wavenumber, and (b) the wave-

length.

Technology and was based on the slope (i.e., a = 1.02±0.02,

hence H = 0.02± 0.02) of the log–log plot of the root mean

square fluctuation function of SIF vs. the WL segment size

τ≡1t =1λ.

In the present study, the scaling dynamics of a wider spec-

trum of SIF vs. WL data set was studied, for wavelengths

between 115.5 and 629.5 nm. Firstly, DFA-n seemed to take

care of the trends revealing a DFA-exponent close to unity

(after DFA-1), as shown in Fig. 1b.

In the following we plotted the power spectral density (us-

ing FFT) of the detrended SIF data set. The derived power

spectral density showed that the power-law fitting gives an

exponent β = 0.99 (±0.08) (see also below and Fig. 2). We

can see that the slope inferred from the Haar analysis (be-

low, β = 1.46) also fits quite well, this is discussed below. In

terms of the structure function exponent, we have the rela-

tion β = 1+ξ (2) which follows from the Wiener–Khintchin

theorem (the spectrum is the Fourier transform of the auto-

correlation function, which is a second order statistic, hence

the q = 2). On the other hand, the DFA-1 exponent was 1.09

(±0.04), while by applying the DFA-n with n > 1 on the de-

trended SIF data, the derived exponents ranged from 0.98 to

1.01.

Next, to summarize our results we analyzed the de-

trended SIF-WL data set by using Haar analysis (Love-

joy and Schertzer, 2012a, b) using the software avail-

able at http://www.physics.mcgill.ca/~gang/software/doc/

haarpack.zip. According to Haar analysis, as also mentioned

in Sect. 2, the variation of the SIF fluctuations vs. wave-

length τ can be defined using the generalized qth order

structure function Sq(τ )= 〈1SIF(τ )q〉, for which it holds

that in a scaling regime Sq(τ )≈ τ
ξ(q), where the exponent

ξ(q)= qH −K(q) andK(q) illustrates the scaling intermit-

tency (satisfying K(1)= 0 and ξ(1)=H). Figure 3b shows

thatH=0.37 and that the intermittency of SIF data set is very

high (C1 = 0.16, also, α ≈ 1.7), hence the RMS exponent
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Figure 3. (a) Haar analysis on the detrended SIF data set for mo-

ments q = 1 (red) and RMS (blue). ξ(1)= ξ(2)≈ 0 at scales below

10–20 nm, whereas for larger scales up to 500 nm we have slopes

ξ(2)/2= 0.23 (green) and ξ(1)=H = 0.37 (magenta). (b) Red:

log-log plot of E1 = S1/(S1+δq/S1−δq )
1

2δq vs. τ whose slope is

K ′(1)(= C1), blue: log-log plot ofE2 = (S1+2δqS1−2δq/S
2
1
)
−

1

4δq2

vs. τ whose slope is K ′′(1)(= αC1) for δq = 0.1 (see Lovejoy and

Schertzer, 2013, Ch. 10 for these estimators). The first yields an es-

timate C1 ≈ 0.16 indicating high intermittency, the ratio yields an

estimate α = 1.7. For smaller scales (up to 10–20 nm), the corre-

sponding slopes are close to 0 indicating Gaussianity. With these

parameters and Eq. (5) (i.e., the universal multifractal equation for

K(q) in Sect. 2), we find ξ(2)/2=H −K(2)/2≈ 0.37− 0.14=

0.23 in agreement with the direct estimate in Panel (a).

= ξ(2)/2= 0.23 is quite different from the q = 1 exponent

(H ) and the data are far from Gaussian. In the classical quasi-

Gaussian case, K(q)= 0 so that ξ(q) is linear. More gener-

ally, if the field is intermittent – for example if it is the result

of a multifractal process – then the exponent K(q) is gen-

erally non-linear and convex and characterizes the intermit-

tency, as already mentioned. The physical significance of H

is thus that it determines the rate at which mean fluctuations

grow (H > 0) or decrease (H < 0) with scale τ . According

to Fig. 3a and b, the exponent ξ(2) of the structure function

equals to zero (at scales below 20 nm), a fact which means

that the power spectrum exponent β = 1+ ξ(2) equals to 1

(1/f structure). On the other hand, at larger scales, the expo-

nents ξ(2) and β seem to equal to 0.46 and 1.46, respectively.

To clarify this aspect, we revisited the results of DFA-

1 (see Fig. 4a) and calculated the power spectrum for the

detrended SIF-WL data set, using the MEM (see Fig. 4b).

In Fig. 4a, we plot the root mean square fluctuation func-

tion Fd(τ ) of DFA-1 together with the corresponding least-

squares fits for τ up to 15 nm (blue) – leading to a = 0.91

(±0.08) – and above 20 nm (green) with a = 1.20 (±0.09).

We observe a crossover approximately at τ = 23 nm, leading

to β values (cf., β = 2a−1, Talkner and Weber, 2000) above

and below this crossover scale which are comparable to those

found in the previous paragraph. In order to complement this

finding, we plotted in Fig. 4b the MEM power spectral den-

sity vs. WL together with the aforementioned algebraic be-

haviors for WL above and below 20 nm. Interestingly, the

results show that the β = 1.46 exponent better describes the

Atmos. Chem. Phys., 15, 7301–7306, 2015 www.atmos-chem-phys.net/15/7301/2015/
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Figure 4. (a) Log-log plot of the root mean square fluctuation func-

tion Fd (τ ) of the detrended SIF vs. the WL segment size τ for

DFA-1 together with corresponding least-squares fits for τ ≤ 15 nm

(blue) and τ > 20 nm (green). (b) Power spectrum using the MEM

for the detrended SIF data set with the two power-law behaviors

fits β = 1 (blue) – from a least squares fit up to 20 nm – and

β = 1.46 (green) for the 1/f and 1/f 1.46 structure, respectively,

vs. the wavelength.

long WL body of the spectrum while the β = 1 the short WL

part of it.

We observe that the DFA method gives results similar to

those of the Haar analysis, but obscures the break that is

clearly seen in the Haar analysis (Fig. 3). Finally, we have

to recall that the 1/f scaling dynamics observed in SIF con-

cerns not Planck’s law but the fluctuations about the law.

4 Conclusions

The main conclusions of the present survey were:

1. DFA-n applied on the detrended SIF data set revealed

DFA-exponents close to unity. In other words, the SIF

fluctuations around the Planck’s law obey the 1/f scal-

ing dynamics.

2. Power spectral density for the detrended SIF data

set showed that the power-law fitting gives β = 0.99

(±0.08) while DFA-1 exponent was a = 1.09 (±0.04)

and DFA-n exponents ranged from 0.98 to 1.01.

3. To better understand our results we analyzed the de-

trended SIF-WL data set by using Haar analysis. As it

was derived, the intermittency of SIF data set was very

high and the data were far from Gaussian. Specifically,

the parameter characterizing the intermittency near the

mean C1 was ≈ 0.16 and α ≈ 1.7. In comparison, in

atmospheric turbulence, the wind field has C1 ≈ 0.07

(also with α ≈ 1.7). At scales below 20 nm, the power

spectrum exponent β was almost 1 (1/f structure),

while at larger scales, the exponents ξ(2) and β are

equal to 0.46 and 1.46, respectively. This prompted us

to revisit DFA-1 and search for such a crossover. In-

deed a crossover at 20 nm can be observed leading to

compatible β exponents. The DFA method analyzed the

running sum rather than the process directly; this made

the scale break (crossover) very difficult to discern.

4. The results of the power spectral density for the de-

trended SIF-WL data set (using the MEM) vs. fre-

quency are compatible with the aforementioned two β

exponents.
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