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Generalized Scale Invariance in the Atmosphere 
and Fractal Models of Rain 
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In recent years there has been considerable interest in stochastic rain models. By developing new 
ideas about scale invariance and intermittency we argue that the scope of such models can be greatly 
extended. The notions of scale invariance, intermittency, and the associated idea of fractai dimension 
have lately gained considerable ground, particularly in the context of extremely variable phenomena 
such as those found in the mesoscale and in hydrodynamic turbulence. We review some relevant work 
and argue that the atmosphere respects a symmetry principle that we call generalized scale invariance 
in which the statistical properties of the small and large scale are related to each other by a 
magnification coupled with a differential stratification (due to gravity) and differential rotation (due to 
the Coriolis force). We further argue that the extremely erratic (intermittent) nature of the atmosphere 
is characterized by scale invariant (fractal) measures leading to hyperbolic (fat-tailed) probability 
distributions of the fluctuations. The standard statistical methods based on exponential fall offs in both 
correlations and probability distributions are inappropriate when the variability is of this type. We 
show how both the scaling and intermittency may be exploited to develop extremely variable 
stochastic models of rain. Although the models examined here are the simplest of a family of extremely 
variable processes (depending on only two radar-determined parameters), they lead to realizations 
possessing many realistic features of the rainfield including complexity of form, clustering and bands at 
all scales, as well as differential stratification and rotation. Finally, we point to weaknesses in the 
models (in particular, their monodimensional nature) and suggest possible improvements. 

1. INTRODUCTION 

One of the great successes of physics in the last decade 
has been in the understanding of phenomena with fluctua- 
tions over many scales. In high-energy physics, critical 
phenomena, and hydrodynamics it is often possible to estab- 
lish the existence of a scaling or scale invariant regime in 
which the fluctuations (zXX) in the field of interest (X) at 
small scale At and at large scale hat (X > 1) are amplified by 
the factor X H, where H is the scaling parameter. This may be 
written more concisely as 

zXX(XzXt) = 
where At = tl -- to, fi•¾(At) = X(tl) - X(to), t2 = to + •.(/I -- 
to), fi•¾(XAt) = X(t2) - X(t0), and equality is understood in 
the sense of probability distributions (that is, X - Y if Pr(X > 
q) = Pr(Y > q) for all q, Pr means "probability"). 

The amplification, or renormalization, of the fluctuations 
can be understood as a double zoom (both of physical space 
and the field) which leaves the phenomena invariant, hence 
the notion of scale invariance. 

The principle arguments and evidence for scale invariance 
in the atmosphere may be found in the works by Lovejoy 
[1981, 1982, 1983] and Lovejoy and Schertzer [1985a; 
Schertzer and Lovejoy, 1984a, b, 1985a, b, also unpublished 
manuscript, 1983] [see also Hentschel and Procaccia, 1984 
and Waymire, 1985]. In summary, they are, first, the rele- 
vant equations are almost certainly scale invariant. For 
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example, the basic equations of the atmosphere, those of 
Navier-Stokes, involve no characteristic lengths above a 
small viscous scale, which in the atmosphere is of the order 
of millimeters. Hence the equations admit scaling solutions. 
Second, the boundary conditions such as topography and 
solar forcing also appear to be scale invariant [see Schertzer 
and Lovejoy, 1985a]. Other arguments for scale invariance 
can be found: Waymire [1985] argues that if the rain field is 
regarded as being the sum of a large number of randomly 
distributed elementary pulses, scaling should result, since, in 
general, such sums tend to scaling limits. Empirically, a 
considerable body of evidence, mostly from the mesoscale 
(c.f. the excellent review by Lilly [1983]), shows (1) out to at 
least 1000 km, the energy spectrum of the horizontal wind in 
the horizontal is of the scaling form k -•j' (k is a wave 
number) and flh '-• 5/3 (i.e., there is apparently no mesoscale 
spectral gap) and (2) the corresponding spectrum in the 
vertical is of the same form but with a very different 
exponent (/30 of value roughly -•. These whole number 
fractions are used because they may be derived using 
dimensional arguments' the (Kolmogorov) • value by assum- 
ing energy transfer to dominate in the horizontal and .-r' see, 
for example, Bogliano [1959], Obukhov [1959], and 
Schertzer and Lovejoy [1985]) by assuming buoyancy force 
variance flux to dominate in the vertical. The other expo- 
nents used in this paper are also given in similar fractional 
form because eventually, similar kinds of arguments might 
enable them to be derived theoretically. It is worth noting 
that for finite variance, the spectral exponent /3 is simply 
related to the scaling exponent H by the formula/3 - 2H + 1 
which follows from the fact that the moment of order 2 (the 
variance) of the fluctuations can be expressed as an integral 
of the energy spectrum. 

Although the atmosphere exhibits fluctuations over scales 
differing by a factor of a billion or so (10 6 to 10-3m), it is 
manifestly not isotropic: gravity leads to stratification, and 

1233 



1234 LOVEJOY AND SCHERTZERi FRACTAL MODELS OF RAIN 

Fig. la. Family of two-dimensional balls in an isotropic metric 
(circles), indicating distances from the center increasing by factors 
of 1.28. The distance between two points is defined by the radius of 
the ball centered on one of the points and intersecting the other. The 
area of the balls increases as X 2 as the size (X) increases, hence the 
dimension =2. 

the Coriolis force leads to rotation. In general, the possibility 
of scale invariance has only been considered in isotropic 
systems, in which case the small scale is an exact copy of the 
large; hence the fluctuations are self-similar. The atmo- 
sphere cannot be self-similar; if it was, then we would expect 
to find clouds thousands of kilometers thick! Ever since 
Richardson [1922], the basic phenomenology of turbulence 
has consisted of an isotropic cascade of energy from large to 
small scales (for contemporary reviews see Orszag [1973] or 
Rose and Sulem [1978]). Schertzer and Lovejoy [1983, 
1985a] considered anisotropic cascades in order to account 
for differential vertical stratification. This natural idea leads 
to the surprising conclusion that the effective dimension 
(called an elliptical dimension, Der) of the atmosphere is -• = 
2.5555... rather than 2 or 3 as in the usual models. Figures l a 
and lb compare the shape of the average eddies in the 
isotropic and anisotropic cases. The new dimension Der is 
called an elliptical dimension because of these ellipsoids. 
However, the atmosphere exhibits not only differential strat- 
ification, but also differential rotation which lead Schertzer 
and Lovejoy [1985b] to propose a more general notion of 
scale invariance ("generalized scale invariance" (GSI)) 
which involves modifying the metric. 

At the very least, a scale invariant model of the atmo- 
sphere must include the effects of differential rotation and 
stratification. This, however, is insufficient: the atmosphere 
is also known to be extremely intermittent (erratic) and to be 

characterized by a rich diversity of structures. One early 
attempt to account for intermittency was Kolmogorov's 
[1962] proposal that the energy flux was lognormally distrib- 
uted (i.e., that the probability distribution was long tailed, 
but not truely fattailed (hyperbolic)). Attempts to theoreti- 
cally model intermittency lead, via the work of Novikov and 
Stewart [1964] and Yaglom [1966], to Mandelbrot's [1974] 
very general cascade scheme. In such a cascade, Mandelbrot 
showed the transfer of energy flux was generally hyperboli- 
cally distributed. He also pointed out that lognormality 
involves several internal (theoretical) contradictions. 
Schertzer and Lovejoy [1983, 1985a] proposed that such 
"hyperbolic intermittency" is a general feature of atmo- 
spheric fluctuations. This means that the probability of a 
random fluctuation zL,Y' exceeding a fixed •XX is of the form 

P r( •Y ' > •D oc fiJ( - • 

for large •Y; a is the hyperbolic exponent associated with 

Fig. lb. Same family of balls in the anisotropic case (corre- 
sponding to G = (o I 0 . 5/9), see section 3). The shape of the balls model 
the average eddy shape; the flattening of the large balls models the 
fact that the atmosphere is increasingly stratified at large scale, and 
the small-scale vertically oriented balls corresponds to "convec- 
tive" type eddies. The area of the balls increases as XX 5/9 = h 1.5555 
(the product of the major and minor axes) as the size of the balls 
increases, thus the effective dimension is 1.5555... rather than 2. 
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intermittency. Note that the smaller a, the more extreme the 
fluctuations. Furthermore, high-order moments ( •ZY h ) with 
h •> a diverge (of course, empirical moments which are 
averages of empirical values are always finite: the diver- 
gence of moments simply means that the latter increase 
without limit as the sample size increases). Empirically, a = 
-• for the rainfield [Lovejoy, 1981] -•, lO , 7, 1, 5 for the rate of 
energy transfer, buoyancy, force variance, Richardson num- 
ber, and the velocity field, respectively [Schertzer and 
Lovejoy, 1985a, also unpublished manuscript, 1983], 5 for 
temperature fluctuations [Lovejoy and Schertzer, 1985a, b] 1 
for radar reflectivity [Lovejoy and Schertzer, 1985c], and 2 
for rain and cloud drop volumes (S. Lovejoy and D. 
Schertzer unpublished data, 1985). 

Another basic feature of the fluctuations in Mandelbrot's 
model is that the increasingly active (intense) regions of such 
a field are concentrated in sets of decreasing fractal dimen- 
sion [Mandelbrot, 1984; D. Schertzer and S. Lovejoy, 
unpublished manuscript, 1983]. In other words, for a field X, 
on average, the number of regions at scale L exceeding a 
given intensity threshold (T) is •L Dt• with D(T) < E (E is 
the euclidean dimension of space), and D(T) is a decreasing 
function of T. 

Lovejoy and Mandlebrot [1985] proposed a simple model 
of rain based on the fractal sums of pulses (FSP) process (B. 
Mandelbrot, unpublished manuscript, 1985) which is both 
scaling and hyperbolically intermittent [see also Waymire, 
this issue]. Although this model produced cloud and rain 
fields that were fairly realistic visually and statistically, they 
suffered from at least four limitations: (1) they are self- 
similar (isotropic); (2) the scaling parameter H cannot be 
varied independently of the intermittency parameter (a = •); 
(3) the physical interpretation is artificial; and (4) the inter- 
mittency of the rainfield it generates is characterized by a 
single fractal dimension. The object of the following paper is 
to attempt to overcome these limitations and thereby pro- 
duce more realistic cloud and rain simulations. It should be 
clear that these models are merely the simplest of a family of 
extremely variable anisotropic models with fluctuations over 
a wide range of space and time scales. Indeed, given the 
simplicity of these models, their visually realistic character 
is quite surprising (the reader is encouraged to survey the 
figures before continuing). Models of this type are probably 
indispensible in modeling in hydrology, meteorology, remote 
sensing, and statistics. 

This paper is structured as follows: first there is a summa- 
ry of previous work, in particular, a r6.sum6 of the simplest 
fractal models (section 2), and there is a summary of the 
formalism of generalized scale invariance (section 3). The 
two are then combined, yielding simulations of vertical rain 
and cloud cross sections and of the effect of the Coriolis 
force, including comparisons with satellite photographs (sec- 
tion 4). In section 5 the FSP process is generalized somewhat 
to the scaling cluster of pulses (SCP) process so as to allow 
H, a to be independently varied and to yield a more 
physically appealing process. The SCP process allows crude 
simulations of the cloud field associated with mid-latitude 
cyclones. In section 6 an efficient numerical algorithm is 
described which, by iterative "zooming" (numerical renor- 
malization), enables the fractal dimensions of these process- 
es to be calculated with high accuracy. In section 7 we 
examine the issue of intermittency and multidimensionality. 
Section 8 is devoted to conclusions. 

2. FRACTAL SUMS OF PULSES PROCESS 

2.1. Empirical Evidence 

The FSP process is described in the work by B. Mandel- 
brot (unpublished manuscript, 1985). It has two basic fea- 
tures: (1) hyperbolically distributed fluctuations and (2) scale 
invariance. Lovejoy and Mandelbrot [1985] summarize and 
augment the empirical evidence in favor of using such 
models for the rain field and describe and illustrate the 
implementation of this process in one, two, and three 
dimensions (time series and horizontal rain cross sections 
and their temporal evolution). The physical relevance of the 
various model assumptions will be discussed in section 5. 

The empirical evidence comes from radar and satellite 
data analyzed in the works by Lovejoy [1981, 1982, 1983] and 
Lovejoy et al. [1983]. Horizontal scaling was established by 
using the area (A)-perimeter (P) relationship [Mandelbrot, 
1977] which relates fractal areas to perimeters by the formula 
P•(X/•-) t¾, where D e is the dimension of the perimeter. 
Smooth perimeters satisfy PomA, hence D e - 1 and maximal- 
ly complicated perimeters that literally fill the plane satisfy 
pocA, hence D e - 2. Lovejoy [1982] found D e • 1.35 for rain 
and cloud areas between 1 km z and 1.2 x 10 6 km •, the lower 
limit being recently extended by R. Cahalan et al. (unpub- 
lished manuscript, 1984) to 2.6 x 10 -• km • with Landsat 
imagery. The scaling of perimeters over the range of length 
scales 0.16 to 1000 km is direct support for the horizontal 
scaling of the rain and cloud fields. Note that approximately 
the same value of D e was obtained over the Indian Ocean, 
Tropical Atlantic, France, and the Mediterannean. 

The horizontal scaling exponent H was determined from 
radar data in two ways. First, it was determined directly 
from the probability distributions of rainfall gradients over 
different distances of separation (•c) which yielded H - 0.50 
(specifically, it was shown that AR(h•Lr)o•h ø'5ø AR(fi•c) for 
various values of h•Lr, and •c). A precise determination (H 
- 0.48 ñ 0.02) was obtained using a robust measure of 
dependency called R/S analysis (Mandelbrot [1972]; for 
some of the difficulties involved with this method, which 
include a bias for short series, see Bhattacharya et al. [ 1983], 
and for another geophysical example of its application see 
Lovejoy and Schertzer [198561). 

Temporal scaling (at least from 5-40 min) and hyperbolic 
intermittency were established by examining time histories 
of total rain flux from isolated storms in Montreal, Spain, 
and the tropical Atlantic; these were found to be charac- 
terized by the following probability distributions: Pr(AR > 
Ar)ocAr- • for large Ar, the value of a being estimated as 1.66 
ñ 0.05 in these three locations [Lovejoy, 1981;Lovejoy and 
Mandelbrot, 1985]. Note that distributions of this form with 
a < 2 occasionally yield such large values that the largest of 
a sample of random Ar is of the same order of magnitude as 
the sum of all the others in the sample. Mandelbrot and 
Wallis [1968] describe this as the "Noah" effect after the 
extreme fluctuation responsible for the Biblical flood. 

Other related evidence for scaling behavior comes from 
probability distributions of both rain areas and of straight 
line sections ["fronts";Lovejoy et al., 1983]. In both cases, 
we expect to find hyperbolic distributions because any other 
kind of distribution would involve a length scale and hence 
break the scaling. Radar data analyzed from the GATE 
experiment (tropical Atlantic) showed Pr(A > a)oca -B with B 
•0.75 [Lovejoy, 1981; Lovejoy and Mandelbrot, 1985]. The 
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probability distribution of straight-line sections of perimeters 
was also analyzed to determine whether an objective distinc- 
tion could be made between smooth, rounded rain and cloud 
perimeters, and long straight frontlike perimeters. An objec- 
tive method of performing such an analysis called "straight- 
line sampling" is described in the work by Lovejoy et al. 
[1983]. When the distribution of straight-line lengths (L) was 
measured by radar and satellite infrared imagery over 
France, the distribution Pr(L' > L)ocL-"' with w --- 3.6 was 
obtained showing that any distinction between long linelike 
perimeter sections ("fronts") and short rounded sections is 
arbitrary; the distribution of L is not bimodal but falls off 
gradually in a scale invariant manner. 

In summary, the basic scaling and intermittency parame- 
ters are Dp --- 1.35, H--- 0.50, and a --- 1.66, with the 
secondary parameters B --- 0.75 and w --- 3.6. Note that the 
secondary parameters are mainly of interest in calibrating 
the models. Unfortunately, they are not generally related to 
the basic parameters in a simple way (see section 6). 

2.2. Description of the FSP Process 
Consider a function R(t) formed as the sum an infinity of 

rectangular pulses of random heights representing a rainfall 
intensity increment AR, random widths representing the 
rainfall duration p, and random centers distributed uniformly 
along the t axis (by a Poisson process with rate v). If Pr(p' > 
p)ocp -1 and AR = _+ pl/a, then the resulting process is scaling 
parameter H = 1/a because increasing length scales by the 
factor h only changes the intensity by the factor h I/a. Note 
that this implies (p) ---> o•, which is quite different from the 
usual strongly scale-dependent processes obtained when 
Pr(p' > p) is an exponential or other scale-dependent func- 
tion (see, for example, Rodriguez-Iturbe et al. [1984] or 
Waymire and Gupta [1981a, b, c]). The scaling may be 
understood by the fact that the number of pulses over an 
interval length L, whose length exceeds p is LPr(p' > p) = 
Lp-l, which is invariant under the scale transformation L 
hL, p--> hp. By construction, the increments of the process 
are hyperbolic with exponent a. B. Mandelbrot (unpublished 
manuscript, 1985) studies this as well as other FSP processes 
obtained by modifying the relationship between p and AR. 

To produce rainfield simulations in two dimensions (x, y) 
the rectangular pulses are first replaced by upright cylinders 
with circular bases (area A), with height (AR) related to A by 
AR = _+ A1/a and with A chosen so that Pr(A > a)oca -1. 
Second, the circular bases of the cylinders are replaced by 
equal area annuli, such that the unit annulus (area = rr) has 
an outer radius A (hence inner radius = A* = (A 2-1) l/2), and 
third, the sharp pulse edges are replaced by a smoother 
function. The final pulse shape used for pulse size p(p = 
radius here) was AR exp (- ((tt2/p'2)--•J2)/o2)2•; tt is the 
distance from the pulse center; AR - _+ pl/, the amplitude; 
is the annulus center (=« (A* + A); cris the width (= « (A* - 
A)); and s is a parameter that was introduced to vary the 
pulse smoothness (s --> • yields sharp-edged rectangular 
pulses). In practice, we generally took s - 2. Furthermore, 
only pulses between some outer and inner cutoff (P0 and 
respectively) were used. In the simulations shown here, P0 
was taken to be equal to 3 times the size of the simulation 
"window," and pi was taken to be 1 pixel. We also take v = 
1. 

The parameter A was introduced to allow for varying 
degrees of "lacunarity" [Mandelbrot, 1982]. Although this 

concept needs mathematical development, the basic idea is 
straightforward. As the term suggests, a highly lacunar 
fractal is characterized by large lacunar (empty) regions. 
When A= 1, the cylinders have circular bases, and simulated 
rain fields are dominated by one or two large rain areas with 
large rain-free zones. When A is increased, the lacunarity 
decreases; i.e., the larger areas break up into clusters of 
smaller ones and rain areas appear in what were previously 
rain-free zones. Rainbands also apear; they are produced by 
the nearly straight sections of enormous annuli. A value of A 
= 1.2 was found to be visually the most realistic. Note that 
the importance of clustering phenomena in rainfall is widely 
recognized and is an essential feature of stochastic rain 
models [see Waymire et al. 1984]. Here the clustering is 
produced intrinsically by the model. We see later that it 
seems desirable to enhance the clustering somewhat (section 
5). 

Figure 2 shows an example of the implementation of this 
process on an 800 x 800 grid. Note that the field R(x, y) 
cannot be immediately interpreted in terms of rain rate 
because the value of R(x, y) is almost surely negative at some 
points. In practice, a threshold Rr is set, and the rain rate is 
measured as the difference R - Rr, and the remaining 
negative values are reset to zero (here shown as a black 
background). The logarithm of the resulting rainfall intensity 
is then shown on a grey scale with white being the most 
intense. 

If we implement the FSP process in three dimensions (x, y, 
t) by replacing the annuli by spherical shells (see Lovejoy 
and Mandelbrot [ 1985] for details), we obtain a model for the 
temporal evolution. This method of generating temporal 
evolution is justified by Taylor's hypothesis of "frozen 
turbulence" which states that temporal statistics are the 
same as spatial statistics when the latter are dimensionalized 
by an appropriate velocity factor. Brown and Robinson 

ß 

[1979] find Taylor's hypothesis valid up to at least 1000 km 
distances (for wind spectra; see, however, Zawadzki [1973] 
and Waymire et al. [1984] for a discussion of the possibility 
that the limits of its validity are considerably lower in the 
rain field). In any case, the comparison between the model 
and reality will be illuminating. Figures 3a-3c show an 
example of the temporal evolution (here black on white 
background to simulate a radar scope). Note that realistic 
features of the series are (1) the largest structures "live" 
longest, (2) they are the most intense, and (3) structures 
occasionally appear and disappear in a abrupt (intermittent) 
manner. 

For a detailed discussion of the statistical properties of 
these processes, as well as a large number of samples of the 
process in both two and a generalization to three dimen- 
sions, readers are urged to consult the work by Lovejoy and 
Mandelbrot [ 1985]. 

3. GENERALIZED SCALE INVARIANCE 

Before discussing anisotropic generalizations of FSP pro- 
cesses it is necessary to explain the formalism of generalized 
scale invariance as developed in the work by Schertzer and 
Lovejoy [ 1985b]. 

Consider the operator Tx that increases scales by a factor 
h. We are interested in those Tx which leave invariant 
certain basic physical quantities such as energy flux. Obvi- 
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Fig. 2. Example of an isotropic FSP process on an 800 x 800 point grid. The threshold Rr was set so that 70% of the 
area is rain free (shown in black), and the logarithm of the rain rate is proportional to the whiteness. Here, A = 1.2, a = 
•. Note the fairly straight "front" going diagonally from the upper left to lower right-hand corner, which was generated 
by the edge of an enormous annulus. 

ously, the Tx must satisfy certain properties. They form a 
group: 

Vh • R +, TxTx' = Txx' 

They define balls Bx increasing with h such that Bx = 
Tx(Bl) with a corresponding metric r: 

Vx • Bx, r(x)<X 

In the case of isotropic scaling, Tx reduces to hi (a pure 
dilation). 

Schertzer and Lovejoy [1985b] were able to obtain an 
exact result: if G is an operator (called the generator of the 
group) and T• = exp (G log 2)= 2 a, then, a necessary and 
sufficient condition that Tx is a (linear) generalized scaling 
operator, is that all the eigenvalues of the linear transforma- 
tion G (i.e., G is a matrix) have strictly positive real parts (if, 
in addition, we require the balls to define a true metric, then 
the real pans must be strictly greater than 1; see D. 
Schertzer and S. Lovejoy for the full discussion). If, in order 
to simplify the discussion we restrict B l to be a sphere, then 
the above conditions apply to the symmetric part of G. Note 
that nonlinear transformations are also possible (these are 
necessary when the anisotropy is position dependent). Re- 
call that physically we expect the metric to be modified, 
because in a cascade process, the most natural metric to use 
is the one in which the balls it defines coincide with the 
average eddies. In the isotropic case, the balls are self- 

similar spheres, but when there is a privileged direction we 
expect these to be replaced by ellipsoids or other convex 
shapes (the balls BD. 

In GSI, conserved quantities are measures (/x) (which are 
not necessarily probability measures) which are invariant 
under Ts. The simplest case satisfies the following invari- 
ance equation: 

¾h • R +, /• = h-ø/xTx 
with Dd? + being the dimension of the support of/•. In the 
case of the usual volume (Lebesgue) measure of the space, D 
is the elliptical dimension introduced in the works by 
Schertzer and Lovejoy [1985a, b]: 

De! = Trace G = log det (Tx) 

The invariance equation involves a single fractal dimen- 
sion D and therefore in this case, ta is a monodimensional 
measure. In order to deal with multidimensional measures 
such as those involved in Mandelbrot's cascade model, a 
more general invariance equation is necessary. Although 
further formal discussion of this point is outside the scope of 
this paper, the relevant phenomenonology is discussed in 
section 7. In the atmosphere experimental and theoretical 
results for the dynamical (wind) field suggest De! = 2 + • = 
-• = 2.5555 .... the • being the ratio of the horizontal scaling 
exponent H• = -• (which, recalling that /3 = 2H + 1, 
corresponds to the usual Kolmogorov k -•/3 spectrum) and 
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Fig. 3a. First of a time series of the FSP process obtained as an 
x, y section of the three-dimensional (x, y, t) process. The log rain 
rate is shown on a grey scale on white background on a 400 x 400 
grid' a = •, A = 1.2. Here, t = 0. 

the vertical exponent H,, = • (corresponding to a k -•/5 
spectrum). Figure 1, which illustrates a vertical cross section 
with Der = 1 + '• = 1.555 .... was obtained by transforming 
a unit circle by the operator Tx = ha with G = (o • 5•9) for 
various values of •. For • > 1, the ellipses "flatten" 
horizontally, eventually resembling "Hadley" type cells; for 
• < 1, they flatten vertically, resembling "convective" type 
cells. Note that the ellipses represent the shape of average 
cells. As D•t is decreased from 3 to 2, the metric changes 
from an isotropic three-dimensional metric, through greater 
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Fig. 3b. Same as Figure 3a except for t = 25 pixels. 
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Fig. 3c. Same as Figure 3a except for t = 50 pixels. 

and greater degrees of stratification, to an isotropic two- 
dimensional one. 

In order to effect differential rotation, off-diagonal ele- 
ments are necessary. In this case, the effect of the operator 
T• = h c is best understood (and most easily calculated) by 
decomposing G into elementary matrices. In two dimensions 
this can be easily achieved either by a matrix representation 
of quaternions [-see Schertzer and Lovejoy, 1985b]. 

Take 

notelJ=-JI=-K, JK=-KJ=I, KI=-IK=-J, and 
1 = --I 2= j2 = K 2. 

G can then be written as a linear combination of the 1, I, J, 
K: , 

G =dl + cK+ eI+fJ 

writing a 2 = c 2 + f2 _ e 2 and u = log X, then 
Tx = X c = X't(1 cosh (au) + (G -dl) sinh (au)/a) 

The effect of I is to rotate, while that of J, K is to stratify, 
the values of d, c, e, f determining which effect is predomi- 
nant; Figures l a, lb, 4a, and 4b are examples. When the 
stratification effect dominates (a 2 > 0), the axes of the 
ellipsoids rotate only by 2 tan -• e/a as X goes from 0-• •o. 
Note that at X -- 1, the major axis becomes the minor axis, 
and visa versa. The apparent rotation is thus rr/2 greater 
(therefore yielding a total rotation of rr/2 + tan -• e/a). 

This maximum rotation property leads to a prediction 
about the horizontal structure of rain of cloud fields: when 
stratification and rotation nearly balance (a --- 0, or when it is 
negligible: e --- 0), the largest scale structures will be oriented 
perpendicularly to the smallest scale structures. Figure 5 
shows an example of this effect in satellite cloud pictures. 
When the scale of the transition between large and small 
(corresponding to X = 1, the circles in Figures 1 and 4) are 
small enough to be perceived by the naked eye, the phenom- 
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Fig. 4a. Same as Figure 1 except for G (2!6 lj4), rotation dominates (a 2 = -3.64). Since D,,• = trace G, here =2 
(equals the apparent dimension of the horizontal cross sections of the atmosphere); the balls of the metric could be 
regarded as defining the anisotropy due to the Coriolis force. 

enon may, for example, be responsible for the appearance of 
"cirrus fibratus vertibratus" clouds (see Figure 6a). 

In the limit case where the symmetric part of G has a zero 
eigenvalue (d 2 = c 2 + f2; see Figure 4b), the ellipses 
"touch" along two (scale invariant) logarithmic spirals, each 
of which goes through an infinite number of rotations (but in 
opposite directions) as X goes from 0--> •c. Incidentally, log- 
spirals have played a prominent role in meteorological 
literature since at least Guldberg and Mohn [1877] (see also 
Figure 6b). 

4. GENERALIZED SCALE INVARIANCE ILLUSTRATED 
BY THE FRACTAL SUMS OF PULSES PROCESS 

4.1. Modeling Vertical Rain and Cloud Cross Sections 
In this section we outline how linear scaling matrices of 

the form 

lb 0 

G= • 1 0 

can be used to model both differential stratification and 
rotation. 

We have argued that the differential stratification of mete- 
orological fields may be accounted for in the context of GSI 
by assuming that the ratio of horizontal and vertical scaling 
exponents (Hh/Hv) is • and hence that the effective dimen- 
sion of space is Del = 2 + -• = 2.5555 ..... instead of 3. 

By ignoring for the moment the rotation in the horizontal 
(studied in the next section) we can investigate the stratifica- 
tion effect along the vertical with G = (0 l 0 •,) (i.e., De! = 
1.5555 with Ht = -59). Note this is equivalent to studying the 
vertical structure after averaging along the different horizon- 
tal directions. 

The simplest way of implementing the FSP process in a 
space with an elliptical metric is to associate the pulses with 
the balls (Be) defined by the metric. Starting with an initial 
pulse base (B1, e.g., a circle) at X = 1, the pulse bases at 
larger and smaller scales are obtained by the equation Be = 
TeBl. 

The implementation of the FSP process with GSI there- 
fore requires knowledge of (1) the operator Te (here we take 



1240 LOVEJOy AND SCHERTZER: FRACTAL MODELS OF RAIN 

Fig. 4b. Same as Figure 1 except for G = 3 -• = -3, and the ellipses 'touch' along a scale invariant spiral (the 
symmetric part of G has a zero eigenvalue: d 2 = c 2 + f2). 

Tx = X G, G = (• 5•9) and (2) the "pulse base" B•. When D,,t < 
E (the euclidan dimension of space), a convenient way of 
defining B• exists. At very small scales, the horizontal 
fluctuations are greater than the vertical fluctuations. How- 
ever, as the scale is increased, the amplitude of the vertical 
fluctuations grows rapidly (because H,, > Hh), and at some 
scale (called the "spheroscale" in the works by Schertzer 
and Lovejoy [1985a, b, also unpublished manuscript, 1983], 
the two have the same amplitude. On physical grounds we 
expect that the exact value of this distance may vary 
considerably, since it will depend on the relative intensities 
of the energy transfer (which determines the horizontal 
amplitudes) and the buoyancy force (which determines the 
vertical amplitudes). A proper treatment of this variability 
(which implies that the metric varies from place to place) 
requires the use of the nonlinear scaling described in the 
work by Schertzer and Lovejoy [1985a]. The shape of the 
average eddy at this scale may be used to define the ball B•. 
In the work by Schertzer and Lovejoy [1985a] this scale was 
called the spheroscale because it was assumed that B• would 
be the simplest possible shape (a sphere). On purely mathe- 
matical grounds, the ball at the spheroscale is not necessarily 
a sphere. However, we shall continue to use this expression 
since it is the simplest and most physically appealing choice 

(unless it can be shown to be incompatible with some 
supplementary physical requirements). 

Figure 7 shows the effect of varying the spheroscale from 1 
pixel through 10,100,1000 pixels on a 400 x 400 point grid. 

The shape at X = I was a circle (these distances therefore 
correspond to isotropy) and the sequence may be regarded 
as a zoom by factors of 10 showing random vertical cross- 
sections at progressively higher resolution. At first, the field 
is very horizontally stratified reminiscent of stratus cloud 
decks (Figure 7, top left; spheroscale = 1 pixel); as the sphero- 
scale is increased, we first notice the appearance of small 
"dangling" structures perpendicular to the overall stratifi- 
cation (Figure 7, top right; spheroscale = 10 pixels). When the 
spheroscale = 100 pixels (Figure 7, bottom left) it is com- 
parable in size to that of our entire field of view. The very 
large scale horizontal stratification is still visible, but it is not 
very pronounced, and vertically oriented "streaks" are quite 
noticeable. Finally, at very high resolution (Figure 7, bottom 
right; spheroscale - 1000 pixels) the horizontal stratification 
disappears from view, and the streaks take on the appearance 
of vertically aligned rain shafts or intense cores. 

Although this model is by no means perfect, it is encourag- 
ing that such realistic results can be obtained from such a 
simple process. Recall that the basic elements are (l) the 
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Fig. 5. Meteosat IR cloud photograph over north Africa showing a 3000-km-long east-west band composed of small- 
scale (---10 km wide) "fibers" aligned nearly north to south. 

extreme intermittency (characterized by a --- ½) and the 
differential stratification characterized by Der = -•. Much 
further study is required to determine the exact scaling and 
intermittency parameters and to suggest more realistic mod- 
els (see, however, sections 5 and 6). It is also necessary to 
confirm that D•t is the same in the rain and wind field. As a 
final example of vertical stratification, see Figure 8 with a 
nondiagonal G. As expected, the diagonal elements yield a 
large-scale stratification, although at a somewhat oblique 
angle. 

4.2. Modeling the Ef/[kcts of the Coriolis Force: 
DijJkrential Rotation 

It is well known that atmospheric structures become 
increasingly "zonal" (i.e., east to west) at larger scales. At 
the same time, there is no obvious reason to expect atmo- 
spheric fields to scale differently (e.g., to have different 
values of/3) in the north to south as compared to the east- 
west direction. For example, in the wind field, we expect 
energy transfer from large to small scales to be the dominant 
process determining the scaling of horizontal wind fluctua- 

.•-::r 
%,; 

•;•:.•: 

.... 

Fig. 6a. Cirrus fibratus vertibratus reproduced from plate 115 of the World Meteorological Organization interna- 
tional cloud atlas (volume 2). The scale is --- 1000 times smaller than in Figure 5, and again, clearly shows perpendicular 
large- and small-scale structures. 
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Fig. 6b. Satellite picture of a mid-latitude cyclone; compare with the spiral in Figure 4b 
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Fig. 7. Examples of random cross sections of an FSP process on a 400 x 400 grid with rain intensities as in Figure 2, 
with an anisotropic metric. G = (• o _s/9) (hence D,.• = 1.5555). See text for discussion. 

tions in both north-south and east-west directions. This idea 
is well confirmed by studies of wind spectra: one obtains 
approximately H• = « along both horizontal axes. Recently 
obtained spectra analyzed in the work by Lilly and Petersen 
[1983] show a difference which is so small that it is probably 
not statistically significant. In the case where the north- 
south and east-west scaling exponents are identical we have 
D• = 2 for the elliptical dimension of horizontal cross 
sections. The matrix G associated with the horizontal metric 
must therefore have the form G = (•, •') (hence d = 1 and c = 
0). The differential rotation is determined by the values of a, 
b. 

In this case, the ratio of the north-south and east-west 
fluctuation amplitudes is constant, and the only convenient 
way to select B i is as a horizontal section of the ball at the 

spheroscale discussed earlier. Note that B• and the values of 
a,b are latitude dependent, since the Coriolis force varies 
with latitude. The use of fixed values of a,b (linear GSI) thus 
corresponds to the "f plane" approximation. 

Figure 9 shows a series of FSP simulation with different 
values of a,b. For simplicity, B• was arbitrarily chosen to be a 
circle at the spheroscale. Note the perpendicularity between 
the largest and smallest scales (particularly in F•gure 9, top 
left) which may be compared to the real cloud pictures shown 
in Figures 5 and 6a. The resemblance of these FSP simula- 
tions and real clouds is striking especially considering that no 
effort has been made to take into account the multiple scatter- 
ing processes which determine the appearance of real clouds. 
It is possible, that at least to first order, the light scattered by 
clouds depends on the logarithm of the total water substance 
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Fig. 8. Similar to Figure 7 with spheroscale = 100 units and D,,t = 
1.555, but here, there is some rotation. 

(the optical depth), which is closely related to the rain rate 
integrated along a given direction. 

5. SCALING CLUSTERS OF PULSES PROCESS 

The FSP process models the rain field by superposing a 
large number of basic shapes (the pulses). The fact that the 
resulting process has many of the same statistical properties 
as the real rain field poses the question as to whether the 
pulses have a physical counterpart or if they are simple 
mathematical artifacts. This question is real because unlike 
the case of Gaussian fluctuations where the shapes of the 
pulses would not matter, here, the biggest pulses are strong 
enough to dominate the sum of the others (the "Noah 
effect"), and thus the pulse shape is important. Since 
atmospheric eddies are likely to be complicated, twisted 
vortex tubes, the limitation to rather artificially simple pulse 
shapes (such as the circles and ellipses used in sections 2 and 
4) is unfortunate. 

Another problem with the FSP process used in sections 2 
and 4 is that H = l/a, whereas radar data suggests H--- 0.50 
and 1/a --- 0.60. B. Mandelbrot (unpublished manuscript, 
1985) suggests a way of allowing H < l/a by modifying the 
relationship between p and R. We do not follow this ap- 
proach but suggest an alternative which allows for a physi- 
cally appealing interpretation of the basic pulse shape. 

Consider pulse intensities (AR) and durations (p) as be- 
fore, in a space of euclidian dimension E. Rather than 
distributing the pulse centers uniformly over this space as 
was done in the FSP process, distribute them over a set of 
points with fractal dimension D < E. Such a set of points 
forms clusters at all scales (see for example, Figure 9). If the 
basic pulses are the same as those used previously, then the 
field resulting from all pulses associated with a given cluster 
of pulse centers, rather than individual pulses, may be 
considered as the basic model shape. By judicious choice of 
the distribution of pulse durations (see below), each of these 

clusters can be made to be scaling (a fractal) and the sum of 
all the clusters to itself be scaling. The cluster of pulses 
might plausibly correspond to a true eddy in the rain field. 

We now show that the distribution of pulse durations may 
be chosen to ensure that the overall process is scaling. 

Consider the one-dimensional SCP process. Denote by 
n(L) the number of pulse centers within a distance L of a 
randomly chosen point on the line. If these centers form a set 
of dimension D (<1), then n(L)ocL ø. Next, choose pulse 
durations (sizes) such that Pr(p' • p)ocp-• and intensities 
such that AR = ___ pV•. Now, change scales by the factor h: L 
--• hL, p---• hp. The process is scale invariant if the number of 
pulses exceeding size p in a region of size (= n(L)Pr(p' • p) 
= LOp -c) is invariant under this transformation. We there- 
fore require D = •. This scale transformation changes the 
amplitudes by hl/• AR • h i/•AR. The scaling parameter H 
therefore = 1/7. The amplitudes are distributed as Pr(AR • 
ADocAr-•. Thus our intermittency exponent is given by a = 
• = D/H or D = cxH. If we generalize our simulation to the 
plane, then the corresponding formulae are Pr(A • a)oca -•/2, 
n(L)ocL ø, R = *- A •/•, and we obtain D = 2all. Similarly, 
for simulations in a space with dimension D•t, we obtain D = 
D•?cH. Note that for the FSP process, D = D•t, and the 
formulae reduce to the familiar a = 1/H. 

If we consider the horizontal rainfield, we have D•t--- 2, a 
--- -•, H --- «; thus we require D ---•. Therefore if the pulse 
centers are distributed on a set of dimension D --- -•, (e.g., 
Figure 10) and the pulse areas are distributed as Pr(A > a) 
oc a-s/6, then we may obtain a process with parameters • = • 
and H = «. 

In practice, there are many ways of producing a set of 
points with dimension D. Mandelbrot [1982] calls sets with 
topological dimension zero "dusts"). When D < 2, the 
simplest is to use a "Levy Flight." One starts at the origin 
and chooses a randomly oriented vector with length (L) 
distributed according to Pr(L > L)•I -ø. The tip of this 
vector marks the second point of the set: the process is 
repeated from the new starting point until a sufficient num- 
ber of pulse centers have been generated. If this process is 
repeated for an infinity of points and the length of each 
vector is diminished to zero, the resulting set has dimension 
D. This process produces scaling clusters of points because 
the distribution L -ø occasionally produces enormous jumps 
(the "Noah effect" again). However, any other construction 
mechanism (e.g., Mandelbrot's [1982] trema construction 
for the distribution of galaxies) will generate clusters at all 
scales; clustering is an intrinsic property of such sets. These 
other construction mechanisms will differ from the Levy 
flight in that their lacunarity may be quite different. Indeed, 
the set shown in Figure 10 probably has too many large, 
vacant lacunar regions' a less inhomogeneous SCP process 
should result if a less lacunar construction mechanism is 
used. 

Figure 11 shows an example of the SCP process on a 400 x 
400 point grid. Two key differences with the FSP process 
may be noted. First, the pulses associated with one particu- 
lar cluster of centers stands out: it is roughly circular at the 
spheroscale, with a long band trailing away from it. The G 
matrix was chosen so that rotation would predominate; the 
clustering of centers gives us a defthate feeling of rotation 
which was absent in the FSP process, since there, pulses 
with different orientations were superposed uniformly, and 
only the extreme (large- and small-scale orientations) stood 
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Fig. 9. Examples of FSP processes on 400 x 400 grids modeling the effect of the Coriolis force with H•. = I for 
varying degrees of rotation and stratification. (a) Spheroscale = 400; (b) spheroscale = 100; (c) spheroscale = 50; (d) 
spheroscale = 1200 pixels. 

out. The SCP process can therefore produce a crude model 
of the clouds associated with mid-latitude cyclones. 

The second key difference with the FSP process is the high 
degree of nonuniformity resulting from the clustering: some 
regions have fairly smooth shapes, while others are extreme- 
ly complicated. At first sight it would seem that the dimen- 
sion of the perimeters (Dp) has been reduced in comparison 
with the FSP process. Actually, the opposite is the case; as 
we show in the next section, the dimension of the perimeter 
is • = 1.5 (compared to -• = 1.4 for the simulations in sections 
2 and 4). This increase occurs because over small regions, 
the perimeter is extremely complex; in the formula 
Pc•/•øP we could say that most of the "length" of P 
comes from very small regions of A, the rest being relatively 

smooth. This variation of smoothness corresponds to our 
intuitive feeling about real cloud and rain areas. 

At the same time, as the clustering of centers tends to 
produce regions of high complexity, it tends to break up 
cloud or rain areas into many smaller ones; in other words, 
the exponent B in the rain area distribution increases (there 
are more small areas compared to large ones). This visual 
impression is correct: numerical simulations yield B --- 0.75 
-+ 0.05 for the SCP process (with a = -• and H = «), while the 
corresponding value for FSP (with a = -• and H = 
0.5 _+ 0.05 [Lovejoy and Mandelbrot, 1985]. Since the 
empirical value is B --- 0.75, the SCP process is in this respect 
statistically more realistic than the FSP process. It is possi- 
ble that variations on the SCP theme (many of which we 
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Fig. 10. Example of a Levy flight with D = .•, with 20,000 points. 
See text for details. 

tried and abandoned) could yield even more realistic cloud 
and rain simulations. However, in the next sections we argue 
that both FSP and SCP suffer from what may be a fundamen- 
tal limitation: they are characterized by a single dimension. 
Probably much more experimental and theoretical work is 
needed before more complicated models should be used. 

Table 1 shows a comparison of the data with the FSP and 
SCP processes. The latter yields a better fit for all the fractal 
parameters except the dimension of the perimeters. 

6. NUMERICAL RENORMALIZATION METHOD FOR 
CALCULATING FRACTAL DIMENSIONS 

IN FSP AND SCP PROCESSES 

6.1. Zero-Crossings and Perimeters 
From the preceding discussion it is clear that the selection 

of a realistic rain model depends at least partly on an 
accurate determination of the fractal parameters gp, gel, w, 
H, B, etc from both the data and the models. Empirical 
determination of these parameters is, in general, difficult 
because the parameters depend on the logarithm of physical 
or model quantities: the latter must therefore span many 
orders of magnitude in scale. 

It is thus of considerable importance that as many model 
parameters as possible be determined theoretically. In par- 
ticular, we would like to answer the following two questions: 
first, what is the dimension of model perimeters, and second, 

does the dimension depend on the threshold Rr or is i{ 
constant? In other words, are the very intense regions of the 
model concentrated in a set with a smaller fractal dimension 
than the less intense regions? (Is the field multidimension- 
al?). 

The rain area perimeters defined in the FSP and SCP 
process are the curves defined by R(x, y) = const (with 
dimension De, which we temporarily denote D?2). If the 
process is isotropic in x, y the dimension of R(x, 0) (a one- 
dimensional section) has dimension Del - D?2 - 1 (this is 
the fractal analogy of the usual geometric theorem on the 
dimension of intersections of lines, planes etc.). It is there- 
fore only necessary to determine Del. In the case of fraction- 
al brownian motion (the increments of this process are 
gaussian), the formula H + De = 2 is known to hold (or H + 
De• = 1), and Hentschel and Procaccia [1984] use this 
formula to theoretically calculate De from H (they obtain De 
= 1.38 for passive scalar clouds). Although there is reason to 
suspect this formula to be valid for many processes, it is 
clearly not valid for all: Mandelbrot's [1974] cascade model 
(see next section) is stationary and can be adjusted to allow 
the value of De to vary (there, De also depends on the 
threshold; it is multidimensional) (see, for example, Mandel- 
brot [1984] and Schertzer and Lovejoy [1985b]. Further- 
more, the data for rain suggests H + De '" 0.50 + 1.35 = 
1.85. It is therefore of interest to be able to determine De by 
numerical simulation. The calculation described in the fol- 
lowing subsection confirms H + De = 2 for both the FSP and 
SCP processes. 

6.2. Numerical Renormalization Method 

Chorin [1982] describes a numerical renormalization meth- 
od that can be used to accurately determine the dimension of 
the zero-crossings of Brownian motion. His method is very 
specialized: it depends on the existence of interpolation 
formulae for BrownJan motion. In essence, rather than 
estimating the dimension from the number of zero-crossings 
of an enormous sample function R(t), only values of R(t) 
near zero-crossings are calculated. By zooming in on areas 
of R(t) near the t axis, Chorin was able to stimulate a 
Brownian motion function 10 400 pixels long, obtaining esti- 
mates of Dpl within 0.1% of the theoretical value (= «). 

In order to generalize Chorin's method so as to apply it to 
FSP and SCP processes, we calculated a sample function 
over a fairly short length (L typically 500 pixels long). Pulses 
were taken to be rectangularly shaped, and all pulses be- 
tween the outer scale L and 1 grid length were added (this is 
the minimum resolution). Next, all sections such that IR(t)l 
>tr, where tr is a threshold, were deleted, resulting in a 
number of short segments (representing a fraction f of the 
total length L) within a distance cr of the t axis. If cr is taken 
to be sufficiently large, then there is a very small chance that 
bellow grid scale fluctuations in R(t) would have produced 
one or more zero-crossings on the deleted sections and the 
sections retained therefore contain virtually all the zeroes in 
the segment (in practice, tr = 3 yielded satisfactory results; 
this corresponds to three times the largest fluctuation likely 
to occur at subgrid scales). 

The next step in the process is the "zoom" or renormali- 
zation in which we attempt to discern the number of subreso- 
lution zero-crossings. We enlarge the collection of segments 
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Fig. 11. Example of an SCP process on a 400 x 400 grid, with a = ½ and H = « (and A= 1.1); the spheroscale is 100 
pixels. The differential rotation, coupled with the clustering of echo centers, yields a crude model of a mid-latitude 
cyclone (see the structure concentrated in the upper right-hand corner). Note the highly nonuniform perimeters 
(dimension = 1.5). 

(of total length Lf, f < 1) by the factor • so that they fit 
exactly into the array R(t) which now contains the enlarged 
segments. Finally, the renormalization process is completed 
by multiplying the R(t) values by (l/J) n and then adding in 
small-scale random fluctuations between the old enlarged 
inner scale• and the new inner scale = 1. 

The new series contains virtually all the zero-crossings 
that would have occurred in a function of length •. In 
practice,f--- 0.6 - 0.2 so that each "renormalization" gains 
a factor of---1.5 - 5 in effective length. If we repeat the 
process several times, eventually we obtain a number of 
zeroes (N) comparable to the number of grid points used 
(e.g., N --- 0.2L). Empirically, saturation with zeroes actual- 

ly occurs when N --- 0.2L because each segment must be at 
least three elements long: two end points and a center with 
one or two zero-crossings. 

1 With L = 500 and H = 7• = •, saturation occurred when 
the effective length was about 107 (yielding Dp• = 0.38 _ 
0.08), so that even without going further we have achieved a 

1 gain in effective length of factor --- 104 (when H = 7• = • 
we obtained Dp• •- 0.17 + - 0.07 with an effective length of 
1013: the gain is larger because the set of zero-crossings is 
sparser). In order to exceed these limits, we must "prune" 
the segments further. This can be accomplished by eliminat- 
ing at random half of the R(t) function and renormalizing the 
remaining half by the factor 2. On average, this process 
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TABLE 1. Various Fractal Parameters Estimated From Both the 
Data and FSP and SCP Simulations 

Data 1.66 ___ 0.05* 0.50 ___ 0.02? 0.75 ___ 0.055 1.35õ 
FSP 5_ 3_ 0.50 + 0.05 7/511 3 5 -- 
SCP 5_ i 0.75 + 0.05 3/211 3 2 -- 

* Data for GATE, Montreal, and for Spain. 
? GATE data yield 0.48 ___ 0.02 and Montreal data yield 0.50 ___ 

0.05. 
$ GATE data only. 
õ GATE and Indian Ocean data yield Dp = 1.35 [Lovejoy, 1982], 

data over France yield Dp = 1.38 [Lo•,ejoy et al., 1983], and data 
over the Mediterranean yield Dp= 1.345 (R. Cahalan et al., 
unpublished manuscript, 1984). Note that these dimensions are for 
warm, low clouds, and low rain rates-intense regions may be 
expected to have smaller values. 

II These values are obtained by using the formula H + Dp = 2. 

eliminates half the zero-crossings, so we obtain an "effec- 
tive" Nef which is twice the previous value. 

In practice, a threshold fr "' 0.15 set, so that "pruning" 
occurs each time N > Lfr. The entire process of renormali- 
zation and pruning is repeated until Lef and Neff are suffi- 
ciently large (typically 150 iterations yield Lef '" 1032 and 

• 3) De is estimated by a regression of NeflO 13 for H = 7• = 5 ß 1 
log Left versus log Neff. The table below shows the result of 
several runs on a CDC 175 computer, each requiring ---30 s of 
CPU time. The determination of Dp• for H = & = • with 
o- - 3, each run consisting of 150 iterations, is given below. 
The effective sample length (Left) was --- 1032, and the 
effective number of zeroes (Neff was --- 1013). This yields an 
estimate of D e - 1.3993 for perimeters of the two dimension- 
al process (thus H + Dp = 1.993). The average value of Dpl 
equals 0.3993 + 0.0251. 

0.3874 0.4026 0.4081 
0.3589 0.4351 0.4036 

The results of this renormalization scheme clearly support 
the use of the formula H + D e = 2 for both FSP and SCP 
processes. Note, however, that the clustering of pulses in 
the SCP process leads to a much wider dispersion in the 
estimates of Dp• in that case. They also show that D e, and 
Dp• are independent of the threshold (i.e., the value of Dp• 
for the set of zero-crossings of the line R(t) = Rr is indepen- 
dent of R r). FSP and SCP processes are therefore monodi- 
mensional. 

Note that this method does not lend itself easily to the 
calculation of the area distribution exponent B. In particular, 
the formula B = Dp/2 applicable to Gaussian processes [s.ee 
Mandelbrot, 1982] seems to be definitely ruled out by the 
numerical calculations performed in the work by Lovejoy 
and Mandelbrot [1985]. 

7. BEYOND FSP AND SCP' SOME ELEMENTS 
OF MULTIDIMENSIoNALITY 

A fractal set or measure which is not "homogeneous" in 
the sense of Hentschel and Procaccia [1983] has multiple 
fractal dimensions. The possibility of such nonhomogeneity 
was first raised by Hentschel and Procaccia [1983] and 
Grassberger [1983] in the context of strange attractors. 

7'hese authors observed that in strange attractors, two-point 
correlation functions (which depend on the clustering of 
point pairs) do not in general scale in the same manner (they 
have a lower dimension, D2) as compared to the overall 
density of points (D or as, in general, the analagous n point 
correlation functions which have dimension, D,). As one 
goes to smaller and smaller scales, the structure of the set is 
increasingly dominated by dense clumps of points which are 
themselves increasingly sparsely distributed (eventually one 
reaches a minimum D•). 

At about the same time, and independently [Mandelbrot, 
1984; Schertzer and Lovejoy, 1985b; D. Schertzer and S. 
Lovejoy, unpublished manuscript, 1983] it was shown that a 
process first introduced by Mandelbrot [1974] to study 
cascade processes yields a measure characterized by an 
infinite hierarchy of dimensions of support. Parisi and 
Frisch [1985] have coined the term "multifractals" for a 
model of possible solutions of the Navier-Stokes equations 
based on essentially the same ingredients but presented in 
different terms. They also showed how the multiple fractal 
dimensions in turbulence could be measured from high-order 
structure functions. 

It now seems that multidimensionality is quite natural: a 
priori, it would seem to be much more so than the homoge- 
neous monodimensional case. In particular, Schertzer and 
Lovejoy [1985a, b, also unpublished manuscript, 1983] 
showed that in curdling, divergence of high moments and 
multidimensionality occurs in every case, except in the 
trivial "/• model" [Frisch et al., 1978]. The realization that 
multidimensionality may be the rule rather than the excep- 
tion suggests on the one hand that the data should be 
reanalyzed more carefully (e.g., the range of thresholds used 
to define cloud and rain areas in Lovejoy [1982] should be 
greatly extended, especially to isolate small active regions) 
and on the other hand, that realistic multidimensional rain 
models should be developed. 

For the purposes of rain modeling, Mandelbrot's [1974] 
cascade model suffers from two weaknesses. First, the 
process itself rather than its increments is stationary, and 
second, it suffers from strong dependence on an initial grid 
which makes simulations look quite artificial. This paper is 
not the place for a detailed exploration of these and related 
issues. Undoubtedly, both these problems are soluable (for 
instance, more general scaling measures than the one result- 
ing from Mandelbrot's cascade model are indicated in the 
work by Schertzer and Lovejoy [1985b], and will be the 
subject of considerable development in the near future. 

8. CONCLUSIONS 

In this paper we have tried to synthesize and develop 
previous work on scaling and intermittency in the atmo- 
sphere. We have argued that while the atmosphere cannot be 
self-similar (the small scales a carbon copy of the large), that 
it does obey a related symmetry principle called generalized 
scale invariance in which the relationship between small- 
and large-scale structures involves not only magnification 
but also differential rotation and stratification. On the other 
hand, the richness of atmospheric structures and the phe- 
nomenology of sudden changes (intermittency)require that 
fluctuations be very strong; specifically, be hyperbolic in 
form. 

These ideas were illustrated with various models of the 
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rain and cloud fields. The first model studied, the fractal 
sums of pulses process, models the rain field by a hierarchy 
of simple "pulse" shapes. In a second model (the scaling 
cluster of pulses process) the pulse centers are clustered so 
that the basic element maybe regarded as a complex (fractal) 
pulse. This model gave closer agreement with the measured 
fractal parameters of rain. The FSP process was used to 
illustrate both the horizontal stratification of rain and the 
differential rotation associated with the Coriolis force. In 
spite of its simplicity, simulations were visually realistic; for 
example, they could display the perpendicularity of the 
large- and small-scale structures visible in many real cloud 
photographs. The SCP process was apparently more realis- 
tic: it was possible to use it as a crude model of mid-latitude 
cyclones, and the simulated shapes were far less homoge- 
nous than in the FSP process. 

These models may prove to be useful in hydrology and 
elsewhere, since they capture the extreme variability and 
anisotropy of rain over a very wide range of scales in a very 
simple way. They have the further advantage of depending 
on clear physical principles. 

A numerical procedure was described which enable fractal 
dimensions to be accurately calculated. A final section 
discussed the question of multidimensionality and pointed 
toward future developments. 
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