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Three years ago we discussed the question of scale in- 
variance in the atmosphere concentrating our attention on the 
empirically accessible rain field [Lovejoy and Schertzer, 1985]. 
The main point of the paper was that the atmosphere was 
likely to be scaling (scale invariant) but could not be "self- 
similar"; hence •the need for "generalized scale invariance" (as 
announced in the title and developed by Schertzer and Lovejoy 
[1985, 1987a, b-i. In a recent paper !'Kedern and Chiu, 1987] 
the authors equate scaling with self-similarity, in our opinion 
rendering the basic issues obscure. Furthermore, even within 
the framework of their definition of self-similarity, they con- 
fuse the properties of the rain field with those of its fluctu- 
ations in such a way that neither of their theorems are rele- 
vant to the problem of stochastic self-similar rain modeling. 
We would therefore like to take this opportunity for clarifi- 
cation. 

The notion of "self-similarity" indicates that some aspect of 
a process or set is invariant under isotropic scale changing 
transformations such as simple dilations ("zooms"). The fig- 
ures in Mandelbrot's [1982] book are examples of self-similar 
(or at least asymptotically self-similar) fractals. The equality 
between the large and small scales of the fractal can be ex- 
pressed in many ways. In the simplest case of geometric self- 
similar fractals, there is strict equality, in more interesting 
(random) cases, the equality is typically expressed in terms of 
probability distributions or via moments of different orders 
(e.g., "multiple scaling"; see below). Systematic study of scaling 
(fractal) systems (i.e., their quantitative rather than qualitative 
applications) is only just beginning and new forms will undou- 
btedly be discovered. The important point here is that the type 
of scaling has absolutely nothing to do with the (usual) scale 
change necessary to relate the small and large; it is to this 
latter element that the term self-similar naturally belongs. To 
be more precise, we will give examples of the two types of 
scaling most commonly encountered in physics, "simple" and 
"multiple" scaling [see Schertzer and Lovejoy [1987a, b] for 
more discussion), while simultaneously answering Kedern and 
Chiu's [ 1987] important point about "the atom at zero." 

The definition of scaling used by Kedern and Chiu [1987] 
(their equation (1); see below) if applied to the rain field itself 
(as assumed in their theorems) rather than to its fluctuations, 
might be called "very simple scaling"; it is simpler than the 
"simple scaling" discussed below, and we know of no appli- 
cations of such scaling in physics, geophysics, or elsewhere. 
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Indeed, their theorems show why this type of scaling is far too 
restrictive to be of interest in these contexts. However, if we 
apply their definition to fluctuations in the rain field (as in the 
works by Waymire [1985] and Waymire and Gupta [1989]), 
then it becomes equivalent to the following more interesting 
simple scaling or "scaling of the increments" (an example of 
which called the "fractal sums of pulses" process was used to 
illustrate nonself-similar scaling in the work by Lovejoy and 
Schertzer [1985]): 

AX(TxAr) • •l- "AX(Ar) (1) 

where Ar = r•- r x is a (large scale) vector separating the 
points r• and r e, and T• is an operator that reduces scales by a 
factor ;• (more on this below for the moment, consider the 
isotropic, self-similar case T• = •l-• 1, where I is the identity). 
T•Ar -- r3 -- r4 is therefore the (small scale) separation of the 
points r 3 and r4. Thus 

AX(Ar) = X(r•)- X(r2) 

AX(T•Ar) = X(r3)- X(r, 0 
and the equality • indicates equality of probability distri- 
butions (more precisely, the random variables a and b are 
equal in this sense if Pr(a > q) = Pr(b > q) for all q, where Pr 
indicates "probability"). H is the (unique) scaling parameter. 
Simple scaling is exemplified by a coordinate of the motion of 
a Brownian particle. Such Brownian motion corresponds to 
the special case where (1) the probability distributions are 
gaussian, (2) H = 1/2, and (this is usually not stated explicitly), 
(3) Tx = J.-•l. Note that very simple scaling is obtained by 
replacing AX by X and Ar by r in (1) above. 

Unfortunately for Kedem and Chiu E1987] if their scaling is 
applied to fluctuations in rain (hence that the rain rate follows 
simple scaling rather than very simple scaling), then neither of 
their theorems has much relevance. For example, theorem 1, 
which shows that scaling quantities cannot have probabilities 
of exceeding zero which grow with separation is easily satis- 
fied by fluctuations (although not the rainfield itself). Similarly, 
theorem 2 shows that scaling processes cannot have stationary 
increments and remain positive for all values, which again, is a 
constraint for rain, but not for its fluctuations. Kedem and 
Chiu do, however, raise the interesting problem of the "atom 
zero," i.e., the necessity in rainfall modelling of having finite 
probability of zero rain rates. In simple scaling, it is clear that 
the process must not only be give n a starting point (e.g., a 
value at the origin), but furthermore (as described by Lovejoy 
and Schertzer E1985]), negative values must be suppressed by 
some type of thresholding procedure. This thresholding is 
unphysical and constitutes a physical (not mathematical) criti- 
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cism of all forms of simple scaling models of rain, hence the 
need for the more physical multiple scaling discussed below. 

Returning to our discussion of scaling and self-similarity, we 
briefly indicate how simple scaling can be generalised by vary- 
ing any (or each) of its three basic elements. For example in 
fractional Brownian motion, only 2 is modified (H :/: «) while 
in "stable Levy motion" 1 and (usually) 2 are modified. The 
variants (including their possible nonlinear transformations) 
are all produced by (weighted) sums of random variables, in 
accord with the single parameter H they are characterized by 
a single fractal dimension (D). In the works by Lovejoy and 
$chertzer [1985], $chertzer and Lovejoy [1984, 1985, unpub- 
lished manuscript, 1983], we explored generalizations which 
involve relaxing the self-similarity condition and allowing 
T• - 4 -ø (generalized scale invariance) where G is the gener- 
ator of the (semi) group of scale cha•nging operators. It is only 
in the very special case when G--1, that we obtain self- 
similarity. When G :/: I but is linear (a matrix), then differ- 
ential stratification and/or rotation follow (in the atmosphere 
this is necessary to account for respectively gravity and the 
Coriolis force). Nonlinear G are also possible and lead to even 
more general scale changing operators. 

Two of the (many) drawbacks in using simple scaling 
models for rain are (1) they involve only a single fractal di- 
mension and are thus very special (even empirically this is also 
too restrictive; see Lovejoy et al. [1987]) and (2) the in- 
crements rather than the process itself are stationary. The 
latter point is directly related to Kedern and Chiu's [1987] 
basic point about the "atom at zero," or the fact that at any 
point, the rain process has positive probability of having no 
rain. This constraint, coupled with scaling implies stationarity 
of the process and is therefore incompatible with scaling in- 
crements. 

A physically appealing way of simultaneously overcoming 
both drawbacks is to model rain using a totally different type 
of scaling called "multiple scaling," "multifractals," or "multi- 
plicative chaos" (see the comments in section 7 of Lovejoy and 
Schertzer [1985] on the limits of monodimensional modeling 
based on additive processes and particularly Schertzer and 
Lovejoy ['1987a, b] which includes a detailed discussion of the 
physical basis of multiplicative processes). (In the last few 
years, this type of scaling has generated considerable interest 
as well as a large literature (particularly in physics)). Rather 
than adding random elements at different scales, such pro- 
cesses involve multiplicative modulation of the small scales by 
the large and are exemplified by cascade processes. In this 
case, we require an entire scaling function rather than the 
single exponent H; we obtain an infinite hierarchy of fractal 
dimensions. 

Once again, we define the resulting multiple scaling in a 
general manner which explicitly shows how self-similarity 
arises only as a very special case. Such multiple scaling can be 
expressed as 

where A is a (large scale) integration set of dimension D(A) 

[Obukhov, 1962; Kolrno•lorov, 1962]' Mandelbrot ['1974] as- 
sociated it with only a single fractal dimension (the dimension 
of the "carrier"). It was not until recently [Hentschel and Pro- 
caccia, 1983' Grassberger, 1983' Schertzer and Lovejoy, un- 
published manuscript, 1983) that fractal dimensions (D(h)) 
were associated with each moment (h). This may be done via 
the equation 

D(h) = d - • (3) h--1 

where d = trace G ( = the dimension of the underlying space 
when G = 1) and is the "elliptical dimension" charcterizing the 
stratification when G -• 1. 

Unlike additive scaling processes, the limiting behavior of 
multiplicative processes is very singular. This singular behav- 
ior solves the "atom at zero" problem in a somewhat unex- 
pected but fundamental manner (rather than in the ad hoc 
way proposed by Bell [-1987]), since in the limit, such pro- 
cesses are everywhere almost surely zero (see section 4.1 of 
Schertzer and Lovejoy [1987b] for details). Indeed, in the limit, 
all the rain is concentrated into singularities of various orders, 
each distributed over sparse fractal sets (the everywhere 
almost surely zero property is expressed by the fact that the 
corresponding dimensions are less than that of the embedding 
space). In such processes all observable quantities are spatial 
and/or temporal averages. Although, in reality, the cascade is 
eventually terminated at scales of the order of millimeters by 
viscosity, the properties of these observables (which are typi- 
cally averages over scales much larger) will be approximated 
by the limiting behaviour. This singular behavior is therefore 
responsible for a fundamental difference between the physical 
quantities of interest (those involved at each step of the cas- 
cade), and the observables, and has important consequences 
for measurements (such as the divergence of high order statis- 
tical moments). See Schertzer and Lovejoy ['1987a, b] for a 
complete discussion. 

Using a variety of new analysis techniques (trace moments, 
functional box counting, elliptical dimensional sampling 
[Schertzer and Lovejoy, 1987a, b' Lovejoy et al., 1987' Gabriel 
et al., 1988-] we have not only confirmed (2), over a wide range 
of scales in both radar rain data, and satellite ground and 
cloud radiance fields, but we have also shown (in rain) that 
G •: 1 and have estimated its trace (its "elliptical dimen- 
sion") = 2.22 + 0.07 which is considerably less than the value 
3 that would hold in a self-similar (e.g., nonstratified) field. 

REFERENCES 

Bell, T. L., A space-time stochastic model of rainfall for satellite 
remote sensing studies, J. Geophys. Res., 92, 9631-9644, 1987. 

Gabriel, P., S. Lovejoy, D. Schertzer, and G. L. Austin, Multifractal 
analysis of resolution dependence in satellite imagery, Geophys. Res. 
Lett., 15, 1373-1376, 1988. 

Grassberger, P., Generalised dimensions of strange attractors, Phys. 
Lett. Set. A, 97, 227-230, 1983. 

Hentschel, H. G. E., and I. Proccacia, The infinite number of gener- 
alised dimensions of fractals and strange attractors, Physica, 8D, 
435-444, 1983. 

Kedem, B., and L. S. Chiu, Are rain rate processes self-similar?, 
Water Resour. Res., 23, 1816-1818, 1987. 

Kolmogorov, A. N., Refined description on the local structure of 
turbulence in an incompressible viscous fluid at high Reynolds 

(which can be a fractal); T•A is a (small scale, reduced by number, J. Fluid Mech., 13, 82-85, 1962. 
Lovejoy S and D Schertzer Generahzed factor • •'•) redu•ed•seti angle b•aCketS indicate statistical ' ; •; • ;• ß scale invariance and fractaI 

models of rain, Water Resour. Res., 21, 1233-1250, 1985. 
(ensemble) averages; and p(h) is a (generally) nonlinear func- Lovejoy, S., D. Schertzer, and A. A. Tsonis, Functional box-counting 
tion characterizing the scaling of the various moments. A1- and multiple elliptical dimensions in rain, Science, 235, 1036-1038, 
though multiple scaling was first discussed in the early 1960s 1987. 



LOVE JOY AND SCHERTZER: COMMENTARY 579 

Mandelbrot, B., Intermittent turbulence in self-similar cascades: Di- 
vergence of high moments and dimension of the carrier, J. Fluid 
Mech., 62, 331-350, 1974. 

Mandelbrot, B., The Fractal Geometry of Nature, 365 pp., W. H. 
Freeman, New York, 1982. 

Obukhov, A.M., Some specific features of atmospheric turbulence, J. 
Geophys. Res., 67, 3011-3014, 1962. 

Schertzer, D., and S. Lovejoy, Turbulence and Chaotic Phenomena in 
Fluids, pp. 505-508, edited by T. Tatsumi, North-Holland, Amster- 
dam, 1984. 

Schertzer, D., and S. Lovejoy, Generalised scale invariance in turbu- 
lent phenomena, Phys. Chem. Hydrodyn. J., 6, 623-635, 1985. 

Schertzer, D., and S. Lovejoy, Singulariti6s anisotropes, et divergence 
de moments en cascades multiplicatifs, Ann. Math. du Que, 11, 139- 
181, 1987a. 

Schertzer, D., and S. Lovejoy, Physically based rain and cloud mod- 

eling by anisotropic, multiplicative turbulent cascades, J. Geophys. 
Res., 92, 9692-9714, 1987b. 

Waymire, E., Scaling limits and self-similarity in precipitation fields, 
Water Resour. Res., 21, 1271-1281, 1985. 

Waymire, E., and V. K. Gupta, On lognormality and scaling in rain- 
fall?, in Scaling, Fractals, and Nonlinear Variability in Geophysics, 
vol. 1, edited by D. Schertzer and S. Lovejoy, Kluwer, Dordrecht, 
Holland, in press, 1989. 

S. Lovejoy, Department of Physics, McGill University, 3600 Uni- 
versity Street, Montreal, Quebec, Canada H3A 2T8. 

D. Shertzer, EERM/CRMD, M6t6orologie-Nationale, 2 Ave. Rapp, 
Paris 75007, France. 

(Received February 8, 1988; 
accepted October 21, 1988.) 


