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Abstract In the 1980s, there were numerous claims, based on estimates of the
correlation dimension, that the wvariability of various geophysical processes, in
particular rainfall, is generated by a low-dimensional deterministic chaos. Due to a
recent attempt (Sivakumar et al., 2001) 1o revive the same approach and with claims
of an analogous result for the rainfall-runoff process, we think it is necessary to
clarify why this approach can be easily misleading. At the same time, we ask which
chaos is involved in the rainfall-runoff process and what are the prospects for its
modelling?
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Quel chaos dans le processus pluie—débit?

Résumé Au cours des années 1980, il a été souvent annoncé, & partir d’estimations de
la dimension de corrélation, que la variabilité de différents processus géophysiques, en
particulier la pluie, était générée par un chaos déterministe de faible dimension. Du
fait d’une récente tentative (Sivakumar et al., 2001) de ressusciter cette approche el
I’annonce d’un résultat similaire sur le processus pluie-débit, nous pensons qu’il est
nécessaire de clarifier pourquoi cette approche peut étre facilement trompeuse. En
méme temps, nous indiquons quel chaos est en jeu dans le processus pluie-débit ct
quelles sont les perspectives pour sa modélisation.

Mots clefs modeles pluie—débit; (multi-) fractals; dynamique chaotique; processus
stochastiques; analyse nonlinéaire; analyse de séries temporelles; dimension de corrélation

INTRODUCTION

Without doubt the understanding of the dynamics of the rainfall-runoff process
constitutes one of the most important and challenging problems in hydrology. Its
importance has been emphasized in the prospective of the IAHS decade of “Prediction
of Ungauged Bassins”.

Unfortunately, in our opinion, the paper by Sivakumar et al. (2001) does not seem
to contribute to a clarification of these issues and may lead to erroneous conclusions.
This paper, as well as several similar ones written or co-authored by the same lead
author (Sivakumar ef al., 1999a,b; Sivakumar, 2000), tries to show with the help of the
correlation dimension that hydrological processes have a low-dimensionality (more
precisely of the order 6-7), and therefore should fall into the category of (low-
dimensional) “deterministic chaos”. One can recall that it has been known for the last
15 years that such an approach may be misleading.

Since Sivakumar ef al. (2001) repudiated this knowledge by calling it “belief”, we
will emphasize the well-known fact that an empirical low value of dimension can
easily be spurious. It can be an artefact of the finite size of the data set, rather than a
reliable estimate of the dimensionality of the process, or it can result from the
stochastic nature of the process.

With the help of a synthetic series generated by a stochastic process related to the
rainfall process, we give a concrete example. We conclude with a discussion on the
type of chaos that is involved in the rainfall-runoff process.

WHAT IS CHAOS?
Origin of the chaos concept

Chaos is one of the oldest concepts and paradigms. Its origin could be traced back at
least to Greek mythology. In this framework, Chaos was the disordered world that
preceded Cosmos that is our present ordered world. Therefore, in its wide sense, chaos
merely refers to some kind of disorder. And indeed, it has been used for rather distinct
types of disorder. For instance, Wiener (1938) called “pure chaos” the Brownian
motion, which he mathematically formalized. More recently, Kahane (1995) referred
to “Lévy chaos” as the extension of this pure chaos to motion, defined with the help of
the Lévy variables, which broadly generalize the Gaussian variables.
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Deterministic chaos

During the last 30 years, chaos took a much more a restrictive meaning, since it became
understood as a shorthand for “deterministic chaos”. The latter denotes the disorder
generated by deterministic dynamical systems. Here the adjective “deterministic” means
that the equations do not contain any noise source, and that, in general (but not always),
the existence and uniqueness of solutions are mathematically assured. The main defining
feature of such a chaotic system is the sensitive dependence of solutions on the initial
conditions (and/or boundary conditions for partial differential systems). The prototype
example is the celebrated Lorenz model (Lorenz, 1963), which was introduced as a
mathematical caricature of atmospheric convection and has the lowest possible dimen-
sionality, i.e. three, for chaotic differential systems.

This chaos was initially viewed as a mathematical curiosity, e.g. the Lorenz model
attracted little attentior until the development of nonlinear time series analysis, about
20 years ago, with the pioneering work by Packard ef al. (1980) and the seminal paper
by Takens (1980). The core of this approach corresponds to the possible
“reconstruction” of the phase space from (discrete) time series X, = h[x(nAn)] for a
given scalar observable / of a (vector-valued) trajectory x(#).

This can be achieved with the help of the m-dimensional “embedding space”, £,
which is spanned by delay vectors ¥, = (X, Xty Xp2t, s Xigr13e), for any given
(integer) time delay 1. More precisely, a very interesting extension of the classical
Witney embedding theorem (for integer dimensional manifolds) was obtained. Indeed,
Takens (1980) and Sauer ef al. (1991) demonstrated that if the trajectory x(7) is
confined on an invariant set 4, with box dimension D, then there is a unique and
invertible smooth map from 4 to the delay embedding space E,,, for m > 2D. As a
consequence, the dynamics can be represented in the m-dimensional delay embedding
space E,, i.e. with m independent variables.

On the theoretical level, this theorem is extremely appealing, since one needs only
a given scalar observable /# at discrete times (#Ar) in order to get the dynamics of a
vector-valued process x(¢) for continuous time (7). However, the underlying hypothesis
is rather demanding (see comment below). Furthermore, for practical reasons
(discussed below), its applications were primarily restricted to very low-dimensional
systems, say a dimension not much higher than 5, whereas the mathematical theory
does not face such a limitation. Indeed, the main mathematical difficulties are related
to the transition from finite dimensional systems to infinite systems, e.g. partial
differential systems, and the corresponding disorder is often called “spatially extended
chaos”, which is a rather new field.

This practical restriction to a very narrow range of (low) dimensions had the con-
sequence that many practitioners believed not only that low dimensionality is a
requisite of deterministic chaos, but also that its empirical evidence is “an indication of
the possible existence of chaos”. This corresponds to a misinterpretation of the
embedding theorem that is discussed below in more detail. Furthermore, it turns out
that nonlinear time series analysis techniques are inherently incapable of distinguishing
between low-dimensional deterministic systems and high-dimensional stochastic sys-
tems (see “stochastic chaos” below).
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Stochastic chaos

Fortunately, in spite of the big impetus of the deterministic chaos theories, there have
also been important developments in stochastic modelling. Some of the reasons need
to be reviewed, since Sivakumar ef al. (2001) seem to rule out a possible relevance of
stochastic modelling to hydrological processes.

Firstly, contrary to deterministic chaos, stochastic models can easily simulate
gpatially extended systems. In particular, this is notable for turbulent fields. Indeed, it
has become widely recognized that models with a small number of degrees of freedom
are inadequate to model turbulence, except in the low Reynolds number regime below
the transition to turbulence. For instance, Ruelle (1989) pointed out “the gap dividing
simple chaotic systems and fully developed turbulence”. Indeed, a qualitative new
understanding of the fundamental problem of the intermittency of turbulence, i.e. the
fact that only a relatively small fraction of the enormous number of degrees of freedom
are effectively active, was obtained with the help of a rather new type of stochastic
process. Inspired by the cascade paradigm, the latter are multiplicative rather than
additive, as for the classical random walks (and associated diffusive processes). The
term “multiplicative chaos” was indeed proposed by Kahane (1995), although the
name “multifractal” became much more widely used. In any event, stochastic
multifractal processes have been increasingly considered in geophysics (Schertzer &
Lovejoy, 1991; Schertzer ef al., 1997), in particular in hydrology (Lovejoy &
Schertzer, 1995).

Secondly, the deterministic features of a low-dimensional process can be easily
concealed by contamination by a weak noise. The origin of this contamination is not
only measurement noise (which could be handled in most cases by specific noise
reduction procedures), but also interactions with other scales of the same process or
with other processes. In other words, deterministic chaos has the very serious
drawback of not being “robust”!

There has therefore been a renewed interest in stochastic differential equations, i.e.
dynamic equations that include a noise source term. For instance, it has been known
for decades that a local Gaussian perturbation leads to the classical Fokker-Planck
equation (e.g. Van Kampen, 1981). But it was only recently demonstrated that strongly
non-Gaussian perturbations lead to a broad “fractional” generalization of the Fokker-
Planck equation (e.g. Schertzer ef al., 2001), i.e. a kinematic equation for the
probability, which involves fractional derivatives. Furthermore, there are expectations
that this type of equation can generate multifractal fields.

Furthermore, multifractal processes help to combine stochastics with dynamics,
since they are based on both physics and statistics. This is particularly the case for
hydrology, since, as emphasized by Hubert et al. (1993), it reconciles two opposing
views on extreme precipitation, the “extreme maximum precipitation” (PMP) and
probability approaches (based on frequency analyses). Indeed, multiplicative cascades
account for turbulent processes resulting from nonlinear interactions between different
scales and fields and respect a basic symmetry of the nonlinear generating equations,
i.e. scale invariance. Furthermore, the details of a multifractal process are theoretically
defined by the statistical distribution of the singularities of the generating equations.
For applications, there are various reliable techniques to extract this distribution from
empirical time and/or space series.
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Finally, there is no obvious reason that processes should be run by deterministic
equations rather than by stochastic equations, since the former are merely particular
cases of the latter. Therefore, one can question the deterministic reductionism that is
rather ubiquitous in the natural sciences, i.e. a tendency to look at deterministic systems
as if they were the only ones providing causality. 1t is rather important to appreciate that
this tendency corresponds to philosophical bias, rather than to an objective rationality
and that, behind the notion of deterministic chaos, there could be a possible resurgence

of some former restrictive notions of determinism (see Lovejoy & Schertzer, 1998).

THE INTEREST, LIMITATIONS AND PITFALLS OF THE CORRELATION
DIMENSION

A straightforward method

Grassberger & Procaccia (1983) introduced a rather efficient algorithm for dimension
estimation, which became extremely popular and therefore available in several
numerical packages (e.g. Press e/ al., 1986). One fundamental reason of its popularity
is that, in contrast to a box counting algorithm, the embedding delay space is only
implicit rather than explicit, since only the distance between pairs of delay vectors is
required. As a consequence, much larger embedding dimensions m can be numerically
explored than for a box counting dimension algorithm. Indeed, the correlation
dimension D, is defined as the scaling exponent of the average number of delay
vectors in a sphere of radius r centred on one of them, Le.:

<N(myr)> ocr’™ (1)
and this average number is precisely defined with the help of the correlation sum:
2
< N(m,r)>=C(m,r)= H({—|s; —5; 2
(mr)>=C0n) == o ) &

where N is the number of data points, H is the Heaviside function
(x>0:H(x)=1;x<0: H(x)=0)and 7 =0 is the Theiler window parameter (Theiler,
1986), which is optionally introduced to suppress trivial pairs having too close time
indices.

For large embedding dimension m, the estimates D-(m) should converge towards
the theoretical value Da. In other words, the curves C(m,r) vs rin a log-log plot
should lie on the same straight line (having a slope Ds), at least over a given range of 1.
This is fairly straightforward and it has been extensively used for many different data
sets in physics and geophysics. In this respect, Fig. 3(a) and (b) of the paper by
Sivakumar ef al. (2001) is very suggestive. This is much the same for our Fig. 1, which
is discussed below.

Theoretical limitations

In fact the correlation dimension D2 and the box dimension Dy are two special cases of
the infinite hierarchy of so-called Renyi dimensions (Grassberger, 1983) that
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characterize the multifractal behaviour of a strange attractor. They are in general
distinct and only related by the following inequality:

D,z D, (3)

Therefore, D, yields only a lower bound of the box dimension, whereas the latter is the
dimension required for the embedding theorem. Therefore, even for deterministic
systems, D, may largely underestimate the dimensionality of the dynamics.

Contrary to a frequent misinterpretation of this theorem, it is important to note that
the theorem Aypothesizes that the dynamics are deterministic. Therefore it does not draw
any conclusion from the mere determination of a low dimensionality. There are obvious
reasons for this. Indeed, there are well known stochastic processes having a low
dimensionality. The most celebrated one is Brownian motion (Osborne & Provenzale,
1989; Theiler, 1991), since this additive process is known to have a box-counting
dimension Da(»1) = 2 for any m!

Figure 1 corresponds to a correlation-dimension analysis of a synthetic series
(displayed in Fig.2) simulated with the help of a stochastic cascade process. This
nonlinear type of process was chosen, because it has been often invoked for rainfall data
analysis and simulation, as discussed above. However, to keep this process as simple as
possible, so that any curious reader could reproduce it, a discrete (in scale) “lognormal™
cascade was chosen, whereas numerous studies show that the rainfall cascade is
continuous in scale and rather “log-Lévy”. Nevertheless, independently of the details of
such a cascade process, it has a very large dimensional phase space (infinite dimensional
if the cascade process proceeds down to an infinitesimal “inner” scale) and an infinite
dimensional probability space. In spite of the large dimension of the space, the
correlation dimension yields a low finite estimate D. In our precise example, there are
12 cascade steps, the number of data points is N = 4096 and the mean fractality of the
cascade is C, = 0.03, and D, = 2.7 was obtained numerically.

- -0.5 i 3
A A5

Fig. 1 Log C(rsm) vs logr for the synthetic time series displayed in Fig. 2, for

embedding dimensions m = 1, 2, ..., 20 (top to bottom). The corresponding exponent

D,(m) (estimated in the scaling range) converges towards a low dimension D, = 2.7,
whereas the stochastic process has an infinite dimensional probability space and a
very large dimensional phase space.
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Fig. 2 Time series (4096 data points) generated by 12 steps of a lognormal cascade,
which is defined by its mean fractality C, = 0.03

Pitfalls

The ease of the correlation-dimension method is also a source of pitfalls. Indeed, the
fact that the embedding space is only implicit may lead one to forget an apparently
straightforward, but essential, question: What is really being estimated when the
embedding dimension becomes larger and larger?

The absence of problems with numerics should not hide the fact that there could be
another obvious problem. Indeed, any empirical analysis is performed on a finitely
sized sample, and the confinement of empirical points measured by Da(m) to a small
fraction of the embedding space could be due to the limited number of points rather
than the dynamics! In other words, instead of measuring an effect of the dynamics, one
is merely evaluating an artefact of the finite sample size! One simple way (e.g.
Grassberger, 1986) of estimating the latter is to come back to the box counting
dimension. Indeed, according to this notion, the number of points spread homo-
geneously over a fractal set of dimension D and on a scale ratio A scales like:

N(L) o< AP 4)

Assuming that a decade in scales is a minimum to demonstrate a scaling
behaviour, one obtains the celebrated rule of thumb that the minimal number of points
to estimate a dimension D is:

N, = 10" (5)

This rule explained many of the unusual results obtained with the help of the
correlation dimension. In their pioneering and influential paper, Nicolis & Nicolis (1984)
used 500 values from the isotope record of a deep-sea core to conclude that D, = 3.1.
According to this estimate, one might be able to create a model predicting climatic
changes of the last million years with only 7-8 independent variables. Grassberger
(1986) discussed these results. In fact, the 500 values were obtained by interpolation of
only 184 actual measurements. Applying the rule of thumb (equation (5)), one obtains
that the maximal dimension, which could be safely estimated, is of the order D = 2.3.
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Grassberger (1986) concluded that it is difficult to distinguish these data from those of a
random signal series.

Nerenberg & Essex (1990) and Essex (1991) refined somewhat the rule of thumb
and obtained a slightly more optimistic estimate of the number points required to obtain
a reliable dimension:

N_, P 102+ [[EF] (6)

L

which corresponds to the introduction of an explicit prefactor in equation (5), and to
considering a smaller range of scale (A = 2.5).

Let us note that in the case of the (stochastic) multiplicative cascade displayed in
Fig. 2, the numerical estimate of the corresponding correlation dimension (Fig. 1)
Ds = 2.7 is rather reliable, since 107 = 500, whereas we have 4096 = 10>° points.

Chaos and the rainfall-runoff process

To come back to the question of chaos and of the rainfall-runoff process: no-one will
question the erratic nature of this process, and therefore its chaotic nature in the wide
sense. However, many objections will be raised if chaos should be understood in the
narrow sense of deterministic chaos, furthermore with a low dimensionality, say 5-06.
Indeed, it flies in the face of common sense that rainfall could be predicted with twelve
independent variables. At the very least, one would rather think that some set of partial
differential equations is required!

The rule of thumb (equation (5)) yields an upper bound for a maximal reliable
estimate of the order D = 3.2, whereas Sivakumar ef a/. (2001) claim to have reliable
estimates of D = 5-6. In other words, they have only 1% of the necessary data set.
Nevertheless, the authors are aware of the “optimistic” evaluation (equation (6)) by
Nerenberg & Essex (1990) of the necessary number of data points in order to obtain
their estimates in a reliable manner. Corresponding to this estimate, their data contain
only about 10% of what would be necessary. They merely repudiate any evaluation
of this type, by calling it a “belief”! They claim that “for a particular size, the
number of reconstructed vectors may not differ much whether an embedding
dimension of, for example, 4 or 10 is used, and, therefore the dimension estimate
may not be influenced much”. This statement reflects a misunderstanding of the
arguments discussed in the previous section. Indeed, the estimate of the necessary
number of points (equation (4)) is related to the expected dimension of the attractor
as well as to the scale ratio of the scaling range, and not directly to the embedding
dimension! Furthermore, they claim that the only important question is to obtain *a
large scaling region”, which indeed corresponds to the second factor, but not the only
one, of these arguments. Unfortunately, they forget to evaluate how narrow is their
scaling region. For instance, their Fig. 3(a) displays a scaling range that seems to be
of the order of A = 3. Let us add that we do not understand why they drop a factor of
2 in the estimate of the necessary number of independent variables, i.e. considering it
as D instead of 2D. In any case, Sivakumar ef al. (2001) were unable to substantiate
their claim of “an indication of low-dimensional chaotic behaviour” in the rainfall-
runoff process.
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CONCLUSIONS

Some time ago, low-dimensional deterministic chaos had been very helpful in order to
better understand the limitations of classical methods in analysing and modelling
complex systems, in particular in hydrology. This was achieved with the help of an
apparently simple caricature of a complex system (e.g. the Lorenz model corresponds
to the truncation of the convection of the first three Fourier modes of convection)
leading nevertheless to nontrivial behaviours.

However, in the name of a mathematical theorem—in fact a fundamental
misinterpretation of this theorem—there had been an awkward tendency to attempt to
reduce complex systems to their low-dimensional caricatures. This tendency was
reinforced by the apparent success of a fairly straightforward algorithm to estimate
rather low dimensionality for various complex systems. However, many of these
estimates may easily turn out to be spurious, either because of sample size limitation or
of the stochastic nature of the process. The paper by Sivakumar ef al. (2001) rather
corresponds to a late confirmation of this dead end.

In this discussion it has been pointed out that the chaos of spatially extended
systems, which include hydrological systems, may require approaches dealing with a
very large degree of freedom and that some asymptotic behaviours correspond to
infinite numbers. It has also been pointed out that progress in that direction might
result from an original blending of stochastics and dynamics.

REFERENCES

Essex, C. (1991) Correlation dimension and data sample size. In: Non-Linear Variability in Geoplysics, Scaling and
Fractals (ed. by D. Schertzer & S. Lovejoy). Kluwer, Dordrecht, The Netherlands.

Grassberger, P. (1983) Generalized dimensions of strange attractors. Phys. Rev, Lent. A 97,2217

Grassberger, P. (1986) Are there really climate attractors? Nerure 322, 609-612.

Grassberger P. & Procaccia, L. (1983) Characterization of strange attractors Phys. Rev. Leit. 50(5), 346-349,

Hubert, P., Tessier, Y_, Ladoy, Ph., Lovejoy, S., Schertzer, D., Carbonnel, J. P., Violette, S., Desurosne, [. & Schmitt, F.
(1993) Multifractals and extreme rainfall events. Geophiys. Res. Letr, 20010), 931-934,

Kahane, J. P. (1995) Definition of stable laws, infinitely divisible laws, and Lévy processes. In: Lévy F tights and Related
Phenomena in Physics (ed. by M. Shlesinger, G. Zaslavsky & U. Frisch), 99—109. Springer-Verlag, Berlin, Germany.

Lovejoy, S. & Schertzer, D. (1995) Multifractals and rain. In: New Uncertainiy Concepis in Hydrology and Water
Resources (ed, by Z. W. Kundzewicz), 62-103, Cambridge University Press, Cambridge, UK.

Lovejoy, S. & Schertzer, D. (1998) Stochastic chaos, scale invariance, multifractals and our turbulent atmosphere, [n:
ECO-TEC: Architecture of the In-between (ed. by A. Marras), 80-99. Storefront Book Series, copublished with
Princeton Architectural Press, Princeton, USA.

Lorenz, E. N. (1963) Deterministic nonperiodic flow, J, Ammos. Sci. 20, 130-141.

Nerenberg, M. A. H, & Essex, C. (1990) Correlation dimension and systematic geometric effects, Phys. Rev. Len.
A42(12), 7065-7074.

Nicolis, C. & Nicolis, G. (1984} [s there a climate attractor? Nature 311, 529-533.

Osborne, A. R. & Provenzale, A. (1989) Finite correlation dimension for stochastic systems with power-law spectra.
Physica D 35, 357-381.

Packard, N. H., Crutchfield, J. P., Farmer, J. D. & Shaw, R. S. (1980} Geometry from a time series. Phys. Rev. Lett. 45(9),
712-716.

Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. (1986) Numerical Recipes, The Art of Scientific
Computing. Cambridge University Press, Cambridge, UK.

Ruelle, D. (1989) Chaotic Evolution and Strange Attractors, Cambridge University Press, Cambridge, UK.

Sauer, T., Yorke, J. & Casdagli, M. (1991) Embedology. J. Statist. Phys. 65, 579.

Schertzer, D. & Lovejoy, S. (eds) (1991) Non-Linear Variability in Geophysics. Scating and Fractals. Kluwer, Dordrecht,
The Netherlands.

Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y. & Marsan, D. (1997) Multifractal cascade dynamics and
turbulent intermiltency. Fractals 5(3), 427471,

Schertzer, D., Larchevéque, M., Duar, )., Yanovsky, V. V. & Lovejoy, 5. (2001) Fractional Fokker—Planck equation for
nonlinear stochastic differential equations driven by non-Gaussian Lévy stable noises. J. Maih. Phys. 41, 12.



148 Daniel Schertzer et al.

Sivakumar, B. (2000) Chaos theory in hydrology: important issues and interpretations. J. Hydrol. 227(1,E4), 1-20.

Sivakumar, B., Liong, 8. Y., Liaw, C. Y. & Phoon, K. K. (1999a) Singapore rainfall behaviour: chaotic? .J. Hydrel. Engng
ASCE 4(1), 38-48.

Sivakumar, B., Phoon, K. K., Liong, S. Y. & Liaw, C. Y. (1999b) A systematic approach to noise reduction in chaotic
hydrological time series. J. Hydrol. 219(3/4), 103-135.

Sivakumar, B., Berndtsson, R., Olsson, J. & Jinno, K. (2001) Evidence of chaos in the rainfall-runoff process. Hydrol. Sci.
Jo46(1), 131-146.

Takens, F. (1980} Detecting strange attractors in turbulence. In: Dywamical Systems ond Turbulence, Lecture Notes in
Mathematics 898 (ed. by D. A, Rand & L. S. Young), 366-381. Springer-Verlag, Berlin, Gennany.

Theiler, J. (1986} Spurious dimensions from correlation algorithms applied to a limited time-series data. Phys. Rev. Leit. A

Theiler, J. (1991) Some comments on the correlation dimension of a 1/f-alpha noise. Phys.Rev. Leit. 4 155, 480,

Van Kampen, N. G. (1981) Stochastic Processes in Physics and Chemistry. North-Holland Physics Publishing,
Amsterdam, The Netherlands.

Wiener, N. (1938) The homogeneous chaos. Am. J. Math, 60, 887-936.




	which.chaos001.pdf
	which.chaos002.pdf
	which.chaos003.pdf
	which.chaos004.pdf
	which.chaos005.pdf
	which.chaos006.pdf
	which.chaos007.pdf
	which.chaos008.pdf
	which.chaos009.pdf
	which.chaos010.pdf

