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The advent of space borne precipitation radar has opened up the possibility of studying the
variability of global precipitation over huge ranges of scale while avoiding many of the calibration
and sparse network problems which plague ground based rain gage and radar networks. We
studied 1176 consecutive orbits of attenuation-corrected near surface reflectivity measurements
from the TRMM satellite PR instrument. We find that for well-measured statistical moments
(orders 0bqb2) corresponding to radar reflectivitieswithdBZb57 and probabilities N10−6, that the
residuals with respect to a pure scaling (power law) variability are remarkably low: ±6.4% over the
range 20,000 km down to 4.3 km. We argue that higher order moments are biased due to
inadequately corrected attenuation effects. When a stochastic three — parameter universal
multifractal cascade model is used to model both the reflectivity and the minimum detectable
signal of the radar (which was about twice the mean), we find that we can explain the same
statistics towithin ±4.6% over the same range. The effective outer scale of the variabilitywas found
tobe32,000±2000km. The fact that this is somewhat larger than theplanetaryscale (20,000km) is
a consequence of the residual variability of precipitation at the planetary scales. With the help of
numerical simulations we were able to estimate the three fundamental parameters as α≈1.5,
C1=0.63±0.02 and H=0.00±0.01 (the multifractal index, the codimension of the mean and the
nonconservation parameter respectively). There was no error estimate onα since although α=1.5
was roughly theoptimumvalue, this conclusion dependedon assumptions about the instrument at
both lowandhigh reflectivities. ThevalueH=0means that the reflectivity canbemodeled as a pure
multiplicative process, i.e. that the reflectivity is conserved from scale to scale. We show that by
extending themodel down to the inner “relaxation scale”where the turbulence and rain decouple
(in light rain, typically about 40 cm), that evenwithout an explicit threshold, the model gives quite
reasonable predictions about the frequency of occurrence of perceptible precipitation rates.
While our basic findings (the scaling, outer scale) are almost exactly as predicted twenty years
ago on the basis on ground based radar and the theory of anisotropic (stratified) cascades, they
are incompatible with classical turbulence approaches which require at least two isotropic
turbulence regimes separated by a meso-scale “gap”. They are also incompatible with classical
meteorological phenomenology which identifies morphology with mechanism and breaks up
the observed range 4 km–20 000 km into several subranges each dominated by different
mechanisms. Finally, since the model specifies the variability over huge ranges, it shows
promise for resolving long standing problems in rainmeasurement from both (typically sparse)
rain gage networks and radars.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Rain is highly turbulent and displays enormous variability
over huge ranges of space-time scales. Indeed, starting in the
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1980s, a large number of papers reported that over various
ranges rain displayed scaling properties; (Lovejoy, 1982; Love-
joy and Schertzer, 1985; Schertzer and Lovejoy, 1987; Hubert
and Carbonnel, 1988; Hubert and Carbonnel, 1989; Gupta and
Waymire,1990;Olsson et al.,1990;Hubert andCarbonnel,1991;
Gupta and Waymire, 1991; Hubert et al., 1993; Olsson et al.,
1993; Kumar and Foufoula-Georgiou, 1993; Tessier et al., 1993;
Hubert, 1995; Hubert and Carbonnel, 1988; Kumar and
Foufoula-Georgiou, 1993; Schertzer and Lovejoy, 1987; Olsson,
1995; Tessier et al., 1996; Harris et al., 1996; Over and Gupta,
1996c; Veneziano et al., 1996; Menabde et al., 1997; Bendjoudi
et al., 1997; Tessier et al., 1996; De Lima, 1998; Deidda, 2000;
Deidda et al., 2004; Lovejoy et al., 2003; Lovejoy and Schertzer,
2006a); for an early review see Lovejoy and Schertzer (1995). In
scaling processes, a scale invariant mechanism repeats scale
after scale, the generic model – first studied in turbulence –
being the cascade process. In turbulent cascades, starting at a
large outer scale the variability builds up scale by scale leading
to extreme small scale multifractal variability of roughly the
observed type. In order to demonstrate the cascade nature of
rain and to estimate the corresponding statistical exponents,
one can attempt to “invert” the cascade by successively
removing the variability by degrading the resolution. An early
analysis of this type from data taken from a 10 cmwavelength
radar over a three week period in Montreal at 1 km spatial
resolution is shown in Fig. 1. These high quality radar
reflectivities demonstrate the excellent multiscaling of rain
over the range 1 km to 128 km. As can be seen from the figure,
extrapolation of the lines to the scale where the variability
vanishes (where the lines cross at large scales) indicates that the

data is very accurately explained by a cascade with an
“effective” outer scale of ≈32,000 km. As explained in Lovejoy
and Schertzer (2006a) and Lovejoy et al. (2001) – where very
similar results were obtained for visible and infra red cloud
radiances – the fact that this scale is a bit larger than the largest
distance on the earth (20,000 km) is due to nonlinear
interactions with other fields, so that rain is variable even at
planetary scales. In a recent publication (Lovejoy et al.,
submitted for publication), these results have been extended
using TRMMvisible, infra red and passivemicrowave radiances
(ten channels in all) showing that the latter are accurately
scaling with outer scales in the range 5000–20,000 km
(depending somewhat on the wavelength). These results are
not too surprising when we recall that cascades were initially
developed as a model of fully developed turbulence and are
nowknown to be extremelygeneral. Recently (work inprogress
with J. Stolle), we have shown that numerical weather models
and re-analyses (ERA40) accurately follow cascade statistics
from nearly 20,000 km down to a small scale where they are
cut-off by (hyper) viscosity at ≈100 km. Therefore it now seems
that if the data fail to have cascade structures, then they are
likely to be incompatible with the numerical models.

Replacing the extrapolations in Fig. 1 with real large scale
data has proved to be very difficult. One reason is that for a
single radar at 1 km resolution, the upper limit of 128 km in
Fig. 1 is about the largest possible. However even at lower
resolutions, the curvature of the earth prevents single radars
from covering scales of more than a few hundred kilometers. In
principle, the large radar networks thatwere developed in both
North America and Europe in the 1990s could overcome this
problem, but inpractice, there aremanyobstacles in using them
for large scale studies. These include nontrivial intercalibration
problems, range dependencies, inter-radar “boundary” pro-
blems and others. Similarly, global in situ raingage networks are
sparselydistributed over fractal sets (Lovejoyet al.,1986; Tessier
et al., 1994). However, when this effect is statistically removed,
they are indeed found to show large scale scaling (Tessier et al.,
1993) althoughwith relativelypoor spatial resolution compared
to TRMM. Other indirect methods of inferring the type of large
scale statistical variability of rain include the study of the
nonlinearly related cloud radiances (e.g. Lovejoy et al., 2001).

In the1990s, anewtechnology– satelliteprecipitation radar–
for thefirst time yielded precipitationmeasurementswith near
uniform coverage from 4.3 km resolution to planetary scales
(250m in the vertical, swathwidth 220 km,13.8 GHz), covering
the region ±38° latitude: the Tropical Rainfall Measuring
Mission (TRMM). Due to the narrow swath the resolution is
quite uniform varying between a maximum of 4.8 km and
minimumof 4.1 km. Althoughmany problemsplague its use for
quantitative rain rate estimates, the reflectivity factor is quite
well estimated; the main problem being the difficulty in
correcting for beam attenuation at high rain rates (TRMM
Precipitation Radar Team, 2005), and the inability to detect low
reflectivities (roughly those below twice the mean, see below).
In this paper we use over 1100 orbits of the attenuation-
corrected, near-surface TRMM reflectivities (product 2A25), to
determine the statistical properties of reflectivity over a range
of factor N4000 in scale. With the help of stochastic cascade
models of rain and a simple threshold model for the minimum
detectable signal, we show that rain is remarkably scale in-
variant over the entire observed range.

Fig. 1. The normalized radar reflectivity from 70 Constant Altitude Z LOg
Range (CAZLOR) maps at 3 km altitude from the McGill weather radar (10 cm
wavelength, 0.96° angular resolution with, 1 km pulse length). All the 70
CAZLORs taken over a three week period were used. The maximum range
was determined by the requirement of keeping the resolution to 1 km and
the curvature of the earth. The straight lines indicate multiscaling behaviour,
the slopes are the K(q) function (c.f. Eq. (1)). The straight lines (added from
the original figure in Schertzer and Lovejoy, 1987) show that the variability
can be explained if the effective outer scale of the cascade is about 32,000 km
(this is not a fit, it is the value estimated on the TRMM data below). The
notation in the original figure is n=Log2 Lref/L with Lref =128 km and h=q and
the ordinate is the normalized moment Mq=bZlqN /bZ1Nq.
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2. Data analysis

The TRMM satellite was launched at the end of 1997 and
is still operational after over 54,000 orbits. In this paper we
primarily analyzed 1176 (near continuous) data spanning the
period Jan 1 1998–March 16 1998; i.e. 75 days; Fig. 2 shows
an example. The data quality was generally very high; only
50 orbits were put aside due to excessive fractions of missing
data. Perhaps the most striking feature of Fig. 2 is the
extreme sparseness of the raining regions. For example, over
this period, the mean reflectivity Z was 53±34 mm6/m3

(17.2±2.1 dBZ) while only 3.51±1.4% of the pixels were above
the minimum detectable signal; see Fig. 3A for a graphical
display (the standard deviations indicate the orbit-to-orbit
spread about the overall means). Although things are
complicated by the attenuation correction, to a first
approximation (discussed in more detail below), no signal
below about double the mean was detectable (≈20 dBZ; this
is close to the figure of 20.8 dBZ given in TRMM Precipitation
Radar Team, 2005). Applying the standard Marshall–Palmer
relation, Z=aRb with a=200, b=1.6, at 4.3 km resolution we
find this corresponds to a mean rain rate (R) of 0.085±
0.04 mm/h=2.49 mm/day in raining regions (see Fig. 3B).
Note that the values a=300, b=1.4 are used in the version 4
TRMM rain rate algorithm and the rain rate in the 2A25
algorithm uses variable a, b values depending on a complex
precipitation classification scheme (TRMM Precipitation
Radar Team, 2005); however these differences will not
change the following rough estimates by much.

We can already note an important consequence of scale:
if we convert the large (orbital/planetary scale) mean Z into
nominal R using the Marshall–Palmer relation, we obtain
the much larger value 0.44 mm/h. This large bias factor 0.44/
0.085=5.2 is purely a consequence of the different resolu-
tions (scale ratio N4000) coupled with the nonlinear Z–R

relation which is defined at the unique (subjective) radar
resolution. Since such deterministic mapping of reflectivities
onto rain rates can at most be valid at a single resolution, this
underlines the need for the development of resolution
independent radar calibration techniques (see the discus-
sion below; this statement is also true about the complex
TRMM rain rate retrieval algorithms which will also suffer
from the same problem). In comparison, Chiu and Shin
(2004) find 2.30 mm/day for the entire period Jan. 1998–Dec.
2003 for the calibrated TRMM radar rain estimates. This is
also very close to the radar estimated values for Montreal
(3.07, 2.46 mm/day in 1976, 1977 respectively) and for the
tropical Atlantic (GATE experiment 2.76 mm/day) so that the
results of Fig. 1 are apparently comparable to those of TRMM
(Lovejoy and Austin, 1979). Neglecting coherent scattering
effects and the effect of the attenuation corrections, the
radar measures the reflectivity factor Z which is the density
of V2 within the radar pulse volume (V is a drop volume). In
comparison, the rain rate R is the density of Vw where w is
the vertical drop fall speed. Therefore, we expect the Z–R
relation to be only statistical in nature and – due to the
spatial scaling of rain – it will be resolution dependent (see
e.g. Lovejoy et al., 1996). In this paper, we therefore avoid
converting Z to R taking the view that the TRMM Z is a well
estimated empirical field which is strongly nonlinearly
coupled with precipitation: while the scaling exponents of
Z and R will be different, the scaling ranges will be
essentially the same.

In order to analyze the reflectivities and determine their
scaling exponents, we systematically degraded the data to
lower and lower resolutions by spatial averaging. This simple
“trace moment” technique is motivated by cascade models
that build up the variability from large to small scales; the
degrading can be viewed as an attempt to invert this process.
If the external scale of the cascade (the largest scale of the

Fig. 2. This shows a single orbit (49 pixels across, 9300 pixels long, broken into 10 segments and displayed consecutively one on top of the other) with false colors
according to log Z, blue indicating signal below the detection threshold. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

12 S. Lovejoy et al. / Atmospheric Research 90 (2008) 10–32



variability) is denoted by Leff, the (degraded) resolution by L
and the scale ratio by λ’ then we expect:

hZq
kVi ¼ kVK qð ÞhZ1iq; kV ¼ Leff=L ð1Þ

where bZ1N is the ensemble (i.e. climatological) mean (here
bZ1N=53 mm6/m3; the subscript “1” refers to the largest spatial
scale ratio k'=1, hence spatial scale Leff), K(q) is the moment
scaling exponent. The reason for using the prime for the scale
ratio is that in our case, Leff is a priori an unknown empirically
determined parameter; in practice, we use instead a reference
scale conveniently taken as the largest great circle distance on

the earth: Learth=20,000 km. We therefore introduce the
unprimed scale ratio:

k ¼ Learth
L

ð2Þ

and define:

keff ¼ Learth=Leff ¼ k=kV ð3Þ

For the normalized moments Mq we therefore expect:

Mq ¼
hZq

kVi
hZ1iq

¼ kVK qð Þ ¼ k
keff

! "K qð Þ
ð4Þ

Equivalently, rather than using (normalized, nondimen-
sional) statistical moments, the statistics of the process can be
specified by their probability distributions:

Pr ZkVNkVg# $
ckV$c gð Þ ð5Þ

where “≈” means equality to within slowly varying factors,
γ=log(Zk′ /bZ1N) / logk′ is the “order of singularity” corre-
sponding to the field value Zk′ and c(γ) is the codimension
function, the exponent that specifies the probabilities at each
scale. The moment and probability descriptions of the
statistics are equivalent; the exponents are related by the
following Legendre transformation:

c gð Þ ¼ max
q

qg$ K qð Þð Þ
K qð Þ ¼ max

q
qg$ c gð Þð Þ ð6Þ

(Parisi and Frisch, 1985). Eq. (6) implies that there are one-to-
one relations between the orders of singularity andmoments:

g ¼ K V qð Þ; q ¼ cV gð Þ ð7Þ

These relations imply that there is a unique field value that
gives the dominant contribution to each qth order moment.

Note that the above K(q), c(γ) framework is called the
“codimensionmultifractal formalism” (Schertzer and Lovejoy,
1987) and is particularly advantageous when applied to
stochastic multifractals. In comparison, there is a τ(q), f (α)
“dimension multifractal formalism” (Halsey et al., 1986)
which was developed for (deterministic) systems such as
strange attractors. While the former is based on the statistics
of densities of measures (the field values, here the reflectivity
per unit volume), the latter is based onmeasures (i.e. integrals
of the field values, here the total reflectivity in a volume). The
relation between the two notations is τ(q)=(q−1)D−K(q),
α=D−γ, f (α)=D−c(γ) where D is the dimension of the
observing space. The advantage of the codimension formal-
ism is that the basic exponents K, c are independent of D, in
particular, they are well defined (generally finite) as D
becomes infinite (such as for the stochastic cascade processes
discussed below). In the rain literature there is yet another
notation (Over and Gupta, 1996a; Gebremichael et al., 2006)
which uses a scale ratio kn equal to 1/k′ andwith an exponent
τOG(q)=−τ(q).

Due to technical reasons (essentially the slowly varying
prefactors in Eq. (5)), it turns out to be somewhat simpler to
analyze the moments (Eq. (1)) rather than the histograms (see
however Section 4.4.2). Fig. 4A shows the result for all the orbits
(January–March 15 1998) showing the excellent scaling for
0≤qb3 for the normalized moments Mq. The most striking

Fig. 3. A: This shows the mean reflectivity for each orbit (area/
orbit≈9×107 km2). B: This shows the nominal rain rate obtained by applying
the Marshall–Palmer relation Z=200R1.6 at the smallest resolution (4.3 km)
and then averaging over an entire orbit. C: This shows the mean fraction of
area above the minimum attenuation-corrected signal for each orbit.
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aspect of the figure is the remarkable straightness of the lines—
over a factor of N4000 in scale, this extends the land-based
results (Fig. 1) to planetary scales. It indicates that weak and
strong events (small and large q respectively) are indeed
accurately scaling over the range (we quantify these statements

below). To our knowledge, this is the first direct evidence that
the scaling of any atmospheric field extends to planetary scales
(the scale by scale deviations are quantified in Section 3.2). This
conclusion is reinforced by Fig. 4B which shows the same
analysis obtained by replacing the reflectivity by the absolute

Fig. 4. A: This shows the logarithm of the momentsM= 〈Zλq〉 / 〈Z1〉q of reflectivity normalized by the mean over all the orbits bZ1N). Each curve is for a different order
moment with q decreasing from 3 at the top to 0 at the bottom in steps of 0.1. The black lines are linear regressions. λ=Learth/L where L is the resolution,
Learth=20,000 km is the largest great circle distance between two points on the earth. We have placed reference lines forced to pass through the estimated effective
outer scale of 32,000 km. B: The same as panel A except that the field being analyzed is the absolute gradient of Z at the finest (4.3 km) resolution (δZλ). C: The
logarithmic derivative of the moments M of δZλ with respect to scale ratio λ. (i.e. the slopes of graphs in panel B). These were smoothed with a moving window
resolution log10λ=0.2. Each line corresponds to q increasing form 0 to 1.9 in steps of 0.1 (bottom to top). Themain deviations from constancy are at the extreme ends
and at low q. D: This shows the K(q) estimated from the slopes of the trace moment. The black line is from the mean all the orbits; the outside blue lines show the
spread of the K(q) calculated on single orbits, the green, calculated on single days (the spread indicates one standard deviation variations). For clarity the means for
the single orbit and daily averages are not shown; they are half way between the corresponding upper and lower bounds. From the slope at q=1 we obtain an
estimate of the codimension of the mean (C1=K'(1)). The zero rain areas appear to have a codimension of about Cs=−K(0)=0.42, although this is shown to be an
artifact of the minimum detectable signal (Section 3). E: The thick red line is the K(q) function estimated from the TRMM data reflectivities, the dots are from the
absolute gradient reflectivities (δZ), and the black line is from the land-based radar data (Fig. 1, replotted from analyses in Schertzer and Lovejoy, 1987). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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gradient of the reflectivity at the highest resolution (and then
degrading the latter to an intermediate scale ratio k the result
denoted δZk). Again, the power law form is extremely well
followed;we shall see that the result is almost identical, we also
return to this below. A rather sensitive way to check the
linearity of the graphs in Fig. 4A and B is to plot the logarithmic
derivative as a function of log10k. This is done in Fig. 4C for the
δZk analysis. We see that with the exception of the extreme low
and high k, the derivatives are very flat corresponding to pure
power law behaviour. For qN1 (the points above the axis withK
(q)N0), only when the resolution of the radar is approached—
or the size of the earth are thedeviations important. Forqb1we
see that the scaling is less good; we explain this below.

From the point of view of precipitation research, this highly
accurate wide range scaling is at odds with the assumptions of
the phenomenological approaches and models of rain and rain
systems. These approaches break the scale range into subranges
each with qualitatively different dynamics (some authors even
go to the extreme of subdividing the range into factors of 2 in
scale). However since the precipitation field is strongly non-
linearly coupled to the dynamics (particularly the convergence),
the implications of Fig. 4A and B go beyond precipitation: it is
hard to escape the conclusion that atmospheric dynamics are
also scaling over the same wide range. Indeed in a recent paper
we show that TRMM radiances similarly display wide range
scaling: the visible, thermal IR and TRMM data at 2.2 km also
have excellent scaling – as do the TRMM passive microwave
channels at somewhat lower resolutions – although with
different exponents and slightly smaller outer scales; 10 channels
in all (Lovejoy et al., submitted for publication). This is consistent
with the much smaller (29 scene) geostationary IR data set
analyzed in (Lovejoy et al., 2001) and (Lovejoy and Schertzer,
2006a) which covered a 5000×5000 km zone over the Pacific.
Over the range 10–5000 km, these TRMMsensors—which don't
suffer from the minimum detectable signal problem of the
radar—nor fromattenuation—havemeanabsolute residualwith
respect to pure power law scaling (i.e. Eq. (4)), moments qb2 of
around ±0.5% for the visible and Infra red and ±1.5% for the
passive microwave channels. Finally the analysis of a Canadian
global numerical weather model (GEMS) and the ERA40
reanalysis data shows that they also have remarkable cascade
structures, i.e. theyalso respect Eq. (4) for the temperature,wind
and other fields over planetary down to the model (hyper)
viscous scales of about 100 km (work in progress with J. Stolle).

To understand what is “being cascaded”, consider first the
visible and infra red radiances which have cascade parameters
very close to those of passive scalars (in particular, the H
parameter discussed below is near the theoretical value of 1/3
corresponding to a spectrumneark−βwherek is awavenumber;
ignoring intermittency the spectral exponentβ=1+2H−5/3). In
this case the basic cascaded quantity is likely to be the scale by
scale conserved liquid water variance flux which (with the
energyflux)determines the statistics of the liquidwaterdensity.
For the reflectivity factor (which unlike the rain rate, does not
dependon the vertical velocityfield), it seems likely that it is the
same basic cascade but highly thresholded i.e. only the extreme
high liquid water density contributes. In Lovejoy and Schertzer
(in press) it is argued that at large enough scales, this thresh-
olding effectively reduces the H value to zero. This type of
mechanism may explain the recent cloud reflectivity observa-
tions of Hogan and Kew (2005) where a transition was found

from roughly H≈1/3 (i.e. β≈5/3) at small scales to H≈0 (i.e.
β≈1) at large scales. This type of transition in the H (or more
or less equivalently, in the spectral exponentβ) is similar to that
found in high resolution rain gauge series analyzed in Fraedrich
and Larnder (1993).

We can use Fig. 4A to estimate the K(q) from the slopes of
linear regressions, Fig. 4D shows the result. In the figure, we
compare the K(q) for all the orbits with those calculated from
individual orbits (the blue lines show orbit to orbit varia-
bility), and from daily statistics (16 orbits) indicated by the
green lines. We see that the estimates of K(q) are very robust
although – and this is theoretically expected – the K(q)s are
slightly different for qN2 see Section 4.3 for more discussion,
and see Schertzer et al. (1993) for the theory of sample size
effect on the estimation ofmultifractal cascade exponents (via
both first and second order “multifractal phase transitions”).
In Fig. 4E, we compare the analysis of Zk and δZk showing that
they are nearly identical; the smallness of their difference is
significant and is discussed further in Section 4.2. Also shown
in Fig. 4E is the K(q) estimated from the land-based radar
(from Fig. 1); for qb1.2 K(q) is close to the TRMM values. As
we discuss below, the difference between the land-based
estimates and TRMM for qN1.2 is likely due to the effect of
attenuation on TRMM, but not on the ground based estimates
in Fig. 1 which use a 10 cm wavelength which is relatively
unaffected by attenuation.

Adopting the convention x0=1 for xN0, x0=0 for x=0, we
see that for the extreme q=0 value, the value K(0) corre-
sponds to the scaling of the regions with reflectivities
exceeding the minimum detectable threshold, i.e. the “sup-
port”. From the figure we can estimate the codimension Cs of
the nonzero regions, the “support” of the precipitation; Cs=
−K(0)≈0.42. This implies that the fractal dimension of the
support in 2-D sections is 2-Cs=1.58. We shall see below that
this value is an artifact of theminimum detectable signal, a fact
which explains the diversity of values reported in the literature
(demonstrated also in the land-based estimates where we find
Cs≈0.47; see Section 5.2.2 for a detailed discussion). From the
figure, we can also directly estimate the codimension of the
mean, C1 from the slopeK'(1); we obtain C1=0.63 implying that
the fractal dimension giving the dominant contribution to the
mean (c.f. Eq. (7)) on2-D cross-sections is 2–0.63=1.37which is
extremely sparse, a point to which we also return below. In
comparison, the highly intermittent turbulent wind field has
C1=0.07; see Schmitt et al. (1992) and the review in Anselmet
et al. (2001), and the TRMMvisible and thermal IR channels are
in the range C1=0.065 to 0.084, the TRMM TMI (passive
microwave) channels have C1 in the range 0.10 to 0.26 (Lovejoy
et al., submitted for publication). Using the value C1≈0.63, the
equation Zk=k'γ〈Z1〉with γ=C1 and the estimate (below) of the
external scale ≈32,000 km, we find that the main contribution
to the mean Z is (32,000/4.3)0.63=275 times the mean, i.e.
≈14,600 mm6/m3 (=41.6 dBZ).

From Fig. 4A and B, we can see that the most significant
persistent and wide ranging deviation from linearity is for the
low q values (see the small – barely perceptible – low q
curvature in Fig. 4A and B). Since thresholding is applied at a
fixed resolution (4.3 km), it breaks the scaling giving rise to the
curvature (see Larnder,1995 for a detailed study of the effect of
thresholds). There are also small deviations at higher q values
(reflecting the difficulty in obtaining robust high order
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statistics). Finally there is a small curvature at the extreme
factor of 4 or so in resolution (the far right of the graph ≈4–
15 km). This is partially due to small scale quantification
effects which were not taken into account in the analyses
(points on the graph are shown every 0.05 in log10k even
though for high k corresponding to resolutions of 2 pixels,
3 pixels etc., the k values are not so close together). In addition,
since the corresponding land-based reflectivity moments
(Fig. 1) show no curvature in the range 1–128 km, this small
effect is partly due to a slight degree of oversampling (the data
is slightly less variable than expected at the highest resolu-
tions, this is a natural consequence of the somewhat arbitrary
definition of radar resolution as the half beam power).

Without going further, we can quantify these deviations
by estimating the mean absolute residuals:

D ¼ P log10 hZq
k i=hZ1i

q# $
$ log 10 =keff ;q

# $K qð Þ
% &

: ð8Þ

For each q, Δ is determined by linear regression on Fig. 4A;
the slope yields the theoretical K(q) and the theoretical keff,q is
determined from the intercept (slightly different for each q,
hence the subscript). The overbar in Eq. (8) indicates
averaging over the different resolutions k over the full
range of scales 20,000–4.3 km. Fig. 5 shows the result; we
see that the scaling of both Z and δZ are within ±10% except
at the very low q values most affected by the minimum
detectable signal; the means for 0bqb2 are ±6.4, ±4.6%
respectively i.e. a little higher for Z than for δZ. This is
already an impressive vindication of the scaling approach to
atmospheric dynamics in general and rain models in
particular. However we can use cascade models which
include the threshold effect to give even more impressive
agreement with the predictions of wide range scaling; the
details are given in the next section. First, we can compare
the thin pink and green lines in Fig. 5 for the residues of the Z

statistics for the data and model respectively. We see that
the magnitudes of the deviations as functions of q from
perfect power law scaling are nearly identical, the effect of
the threshold and normal statistical variability can explain
almost all of the deviations. Second, we can compare the
residuals between the data and the cascade model. These
residuals are even smaller than the residuals with respect to
pure scaling even though neither the slopes nor the
intercepts are free parameters in the model. We should
note here that as shown in Section 4.4.2, qb2 corresponds to
γ=K'(2)b≈0.85 (Figs. 18, 19) and at the finest resolution to
reflectivities ≤57 dBZ, i.e. to all except the most extreme
(probability ≤10−6) events (Fig. 17).

3. Using multifractal simulations to test the cascade model

3.1. The cascade model

We have seen that the main deviations from the predic-
tions of a pure cascade process are the low q curvature of the
log of the moments with log of the scale and the fact that the
lines for different q do not intersect at exactly the same
effective outer scales. A priori, the simplest hypothesis for
explaining these deviations is that they are scale breaking
artifacts caused by the rather large minimum detectable
signal: recall that this is of the order of twice the mean
reflectivity (≈20 dBZ for the attenuation-corrected reflectiv-
ities; this corresponds to the minimum of the uncorrected
signal; see TRMMPrecipitation Radar Team, 2005). In order to
quantitatively demonstrate that the thresholding is respon-
sible for the breaks, we use an explicit multifractal cascade
model coupled with a simple model for the effect of the
minimum detectable signal; the signal below a minimum
threshold is simply put to zero. Thresholding is only a crude
model for the minimum detectable signal since the actual
surface Z involves consideration of the statistics of electronic
noise and attenuation corrections (see Section 4.4.2).

For the multifractal model, we exploit the fact that there
are stable attractive cascade processes – a kind of “multi-
plicative central limit theorem” (Schertzer and Lovejoy, 1987;
Schertzer and Lovejoy, 1997) – which leads to the following
two-parameter multifractal universality classes:

K qð Þ ¼ C1

a$ 1
qa $ qð Þ ð9Þ

the Levy index 0≤α≤2 quantifies the degree ofmultifractality;
α=2 corresponds to the “lognormalmultifractal” (which – due
to the divergence of high order statistical moments – is only
approximately log–normal, see Section 4.4). Note that forα=1,
we have K(q)=C1qlogq, and for αb2, K(q) diverges for qb0.
The “codimension of the mean” (0≤C1), quantifies the degree
of sparseness of the reflectivity levels that give the dominant
contribution to the mean; it turns out that this dominant
contribution is Zk / 〈Z1〉≈kC1. The extreme case α=0 (obtained
in the limit α→0 Eq. (4)) –where K(q) becomes linear – is the
monofractal “β model” (Frisch et al., 1978). This is the only
model where in the limit q→0, we obtain K(0) =−Cs

corresponding to a fractal support (for αN0, K(0)=0, the
multifractal is space filling). Note that K(q) is actually the
cumulant generating function of log Z; αb2 therefore

Fig. 5. This shows the absolute residuals D when the best fit to each line in
Fig. 4A, B is used to estimate the moments (Z and δZ statistics, upper, pink
and lower, blue respectively). Over the range of q values shown, the mean
residues are 0.027, 0.018 respectively, i.e. ±6.4%, ±4.3%. The green line shows
the residues from the model Z statistics (mean D=0.026 i.e. ±6.1%) which
nearly identical to the data (red). Also shown (thick bottom line) is the
residual of the Z analysis when compared to that of a multifractal cascade
model with a=1.5, and a threshold Zt =2bZ1N as discussed in the next
section. The mean D is =0.0196, corresponding to ±4.6%. D=0 for q=1 since
trivially K(1)=0. At the finest resolution, the range 0≤q≤2 roughly
corresponds to all events with probabilities ≥10–6. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)
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corresponds to cumulant generating functions which are
nonanalytic at the origin (i.e. at q=0), and therefore the
cumulants of order Nα diverge (in practice they will be very
sensitive to very small values of Z i.e. those most affected by
noise). These universal cascade processes are therefore out-
side of the restrictive framework considered by (Venugopal
et al., 2006) who limited their attention to processes with
strictly analytic cumulant generating functions.

We have already noted some exceptional universal multi-
fractals: the (misnamed)α=2 “log–normal”multifractal (which
has – exceptionally – an analytic K(q)) and the α=0 limit (the
monofractal special case). In fact, it is useful to make a further
qualitative distinction between the multifractals with
unbounded and with bounded singularities, the α≥1 and αb1
special cases respectively. The reason for this distinction is best
understood by considering the relation between singularities
and moments (Eq. (7)). Taking K'(q) for the universal form
(Eq. (9)), we see that for α≥1, as q→∞, γ=K'(q)→∞
(unbounded), whereas for αb1, K'(q)→C1/(1−α) so that the
singularities are bounded. As we shall see in more detail in
Section 4 this difference loosely corresponds to multifractals
dominated by high values or dominated by low values
respectively. These theoretical statistics are valid for infinite
sample sizes (and do not take into account the effect of cascade
“dressing”; see Section 4.3), the unbounded cascademodels are
particularly sensitive to the size of the sample (number of orbits
here), this is discussed in Section 4.3.

While the two-parameter form Eq. (9) is sufficient for a pure
cascade process in which the turbulent fluxes are conserved
from one scale to another, there is no compelling reason to
assume that rain is (scale by scale) conserved. In generalwemust
introduce a third universal multifractal parameter H; this is
discussed in Section 4.3. However, since we conclude that
empirically H≈0, we ignore this complication for the moment.

Before going further, we must consider a basic problem;
the nature of the zeroes, i.e. the value of the fractal
codimension/dimension of the support of rain. This is a basic
issue in the modeling of rain. One approach is to use two
separate processes; a β model (i.e. a universal multifractal
with α=0) for the support and another cascade process to
determine the distribution of rain rates on the support. Due to
the longstanding lognormal phenomenology of rain (e.g.
Lopez, 1979), a hybrid obtained as the product of (statistically
independent) α=2 and α=0 models has been popular (e.g.
Gupta and Waymire, 1993; Over and Gupta, 1996b; Gebre-
michael et al., 2006). An alternativewhich is both simpler and
also takes into account the correlations between the support
and the intensities, is to use a unique spacefillingmodelwith a
threshold at low rain rates below which we obtain truly zero
rain rates. While the latter (unique process) model is more
parsimonious, it has the disadvantage of yielding a scale break
caused by the thresholding. On the other hand the hybrid β/
log–normal model is perfectly scaling but yields a model with
all the rain on a fractal support i.e. horizontal sections of
raining regions cover a strictly zero area when the model is
taken to the small scale limit. Inpractice, themodelwill be cut-
off at a small decoupling scale where the turbulence and rain
decouple (for light rain around 30–50 cm, see Lilley et al.
(2006) and Lovejoy and Schertzer (in press) so that a finite
valuewill result. However, in Section 4we argue that given the
observed extreme sparsity implied by C1=0.63, that a thresh-

old may only be needed at extraordinarily low rates (perhaps
b1 mm/year) so that in practice the exact value of the
threshold may not be so important. Recently (Lovejoy and
Schertzer, in press), it has been argued that in actual fact the
rain rate should be modeled as a compound multifractal —
Poisson process whose mean (over the Poisson drop pro-
cesses) is R=ρ(w+ v) where ρ, w are the (multifractal,
turbulent) liquid water densities and vertical velocities
respectively, and v is an appropriate mean drop relaxation
(terminal velocity) field. Due to the Poisson conditioning,
whenever the particle number density is very low, the
probability of rain also becomes low; this acts as an effective
threshold. In other words, a cascade model with threshold
may be a theoretically justified approximation to real rain.

For the purposes of modeling the TRMM reflectivities, we
can therefore exploit the extreme sparseness implied by
C1=0.63 and use space fillingmodels (αN0), with no additional
model for the support. Because of the anticipated strong effect
of the largeminimumdetectable signal on the loworder (lowq)
statistics, and the potential effect of attenuation on the high
order statistics, choosing the parameters of the model is
somewhat delicate. For example, we must already verify on
simulations that the naïve estimate C1=K'(1) is not biased by
the minimum detectable signal; we find a change of only 0.02
which – according to simulations – is about the accuracy with
which we can estimate C1 with the given scale range and
number of simulated orbits (10 here). In this way we estimate
C1=0.63±0.02 (in effect, we are not simply performing
regressions but rather testing a family of stochastic models).
However, if we attempt to use the second derivative K″(1) to
characterize the degree of multifractality of the process (as for
example in Gebremichael et al., 2006), we find that the value is
badly biased: the empirical K″(1)≈0.260 is nearly the same as
the (thresholded) model value ≈0.234, but it is much smaller
than the unthresholded value ≈0.94). In otherwords, due to the
spurious effect of the minimum detectable signal, K″(1) is a
factor 0.94/0.235≈2.65 too small; using Z=aRb with b=1.4 as in
Gebremichael et al. (2006), we find the biased value KR″(1)=
0.14 which is indeed close to the values found in their Fig. 7. To
determine the optimum parameters of the model, we use a
“bootstrap” approach in which the parameters are first naively
estimated, and then adjustedwith thehelp of stochasticmodels
which include the minimum detectable signal as well as the
finite data sample effect.

Parameters which are fairly straightforward to estimate are
C1=K'(1)=0.63 and the mean bZ1N=53 mm6/m3; these were
determined in advance. The fundamental universalmultifractal
parameter α as well as the external scale Leff (and to some
extent the minimum detectable signal Zt) was determined by
comparing the model to the results of simulations. In this
context, it is relevant to note that the empirical values of (C1, α)
for Z reported in the literature are about (0.6, 0.5–0.6) in time,
but are about (0.1–0.2, 1.4) in space (see Lovejoy and Schertzer,
1995; Lilley et al., 2006 for reviews). Although there is no
necessity for the spatial and temporal parameters to be the
same, the simplest space-time models predict the same α but
possibly differentC1's and it is possible that the disagreement in
the α values is an artifact due to the sensitivity of estimates to
both poorly estimated low reflectivity levels and poorly
estimated extremes (see Section 4.4). Finally we should note
that if a Marshall–Palmer type power law relation exists
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between reflectivities and rain rates (Z=aRb), then αR=αZ and
C1R=C1Zb−α so that C1Z=0.63 implies C1R=0.3, 0.5 for α=1.5, 0.5
respectively (using b=1.6). Using the temporal values (αZ, C1Z)=
(0.5, 0.6) we find (αR, C1R)=(0.5, 0.5) which is in rough
agreementwith those in the literature from rain gaugeswhere-
as the spatial values (αZ, C1Z)=(1.5, 0.6) lead to (αR, C1R)=(1.5,
0.3) which have C1 a little too large (c.f. 0.1–0.2), see Lilley et al.
(2006).

For the TRMM data, aside from bZ1N and C1, the optimum
parameters were estimated to beα=1.5,H=0.00±0.01, Zt≈2bZ1N,
Leff=32,000±2000 km. In Sections 4.1 and4.2wediscuss in detail
the justification for these H, and Leff values including error
estimates. However, we shall see that estimating α is not at all
straightforward; and different α values imply slightly different

thresholds Zt so that for example α=0.5 implies the larger
optimum Zt≈3 bZ1N. Due to the nontrivial attenuation
correction and electronic noise, we shall see that the
threshold model is not very precise so that from the data
we may only conclude that Zt≈2bZ1N. Hence, rather than
attempting classical regression type analyses we will instead
show that multifractal models with the basic exponents
C1=0.63, α=1.5, and subsidiary parameters Leff =32,000 km,
Zt=2bZ1N, bZ1N=53 mm6/m3 yield very good fits to the
empirical statistics, for all scales and moments qb2. We
quantify the resulting deviations from the model (we discuss
qN2 in Section 4.4.3); we also take the third basic exponent
H=0, see below. Since the parameters have not been
optimally fit, the quality (goodness of fit) of the underlying

Fig. 6. A: A multifractal reflectivity simulation with the parameters C1=0.63, a=1.5 with minimum detectable signal (blue background)=one half the mean
showing a single strip 49 pixels wide and 213 long divided into 8 consecutive pieces each 210 long. To add realism, the model is of an anisotropic multifractal (using
Generalized Scale Invariance, Lovejoy and Schertzer, 1985), hence the preferred directions. B: same but a=0.5, C1=0.63. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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model will therefore be somewhat higher than that with the
stated parameters. We shall see that the only parameter
which is poorly estimated isα, and this is due to instrumental

problems at both low and high Z values. This problem is
probably best addressed with the help of the compound
multifractal–Poisson drop model mentioned earlier which

Fig. 7. This is a 1-D subsatellite section, one full orbit x coordinate in pixels (multiply by 4.3 for distances in km), y coordinate reflectivity factors in mm6/m3.

Fig. 8. A typical line 8192 pixels long through a simulationwith α=1.5, C1=0.63, the simulation is adjusted to have the same mean as the data (53 mm6/m3), same
axes as Fig. 7. Note the extraordinary sparseness, variability. B: Same as A, but for α=0.5, C1=0.63.
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models the volumes and positions of individual drops yet at
scales above the decoupling scale has cascade statistics.

3.2. Stochastic simulations— data inter-comparison, accuracy of
the scaling

Fig. 6A and B shows a typical orbit simulation with the
above-mentioned parameters, and Figs. 7,8A, B, compares
typical 1-D (sub satellite) series and 1-D sections of a simulated
orbits. The latter shows the extreme variability of the data and
simulation. In Fig. 11 we compare the scaling of the normalized
moments from 10 simulated orbits with those of the data (from
Fig. 4A), with Zt=2bZ1N, bZ1N=53 mm6/m3, Leff=32,000 km,
C1=0.63, α=1.5.

We can see that the statistics of the simulation are very
close to those of the data; there are various ways to quantify
the small deviations. One way to do this is to consider the
exponent scaling function defined in a scale by scale manner,
i.e.

KkV qð Þ ¼ Log kV hZq
k Vi=hZ1i

q# $
: ð10Þ

If the reflectivities are scaling (if they obey Eq. (1)), then
Kk'(q)=K(q) i.e. it is independent of k′. Here, we anticipate
deviations particularly for small q, although we can verify
how well the model reproduces the empirical behaviour; see
Fig. 9.

We see that the main deviations are at the highest q
values and the smallest and largest scales; the key point is
that the low q deviations have been quite well reproduced
(we quantify this below). High q deviations occur because of
the high statistical variability of the processes; the data is
also affected by attenuation (and the attenuation corrections
are imperfect, especially at the high reflectivity levels which
dominate the high q statistics, see Section 4.4.2). Since the
simulation does not take this into account, it is not surprising
that there are deviations here; three dimensional multi-
fractal models (incorporating the scaling stratification of the
reflectivity fields Lovejoy et al., 1987) could be used for
simulating the attenuation and the attenuation correction

procedure. Finally, the deviations from perfect power law
scaling and the differences between the simulations and the
data can also be displayed on contour plots of the scale by
scale Kk'(q), see Fig. 10. Since perfect scaling means Kk'(q) is
independent of k′, it leads to horizontal (flat) contours in
Fig.10.We see that as expected, the deviations are essentially
for qb1 but are very similar for the simulations and data. We
can also see that at q≈1.5, the scaling is least affected by the
low q and high q deviations.

Alternatively, we can directly compare the scale by scale
moments for model and data, this is done in Fig. 11. We see
that the curvature of the moments for low q is quite well
reproduced. In order to quantify the residual data/model
deviations, we calculate the residuals averaged over all scales
as a function of q (Fig. 5). The figure shows that the model
captures much of the low q curvature (we return to this in
Section 4.4.1). For the moments qb1.5, and over the range of
planetary down to 4.3 km, we see that the model reproduces

Fig. 9. Scale by scale comparison of the estimate of the exponent function K('(q) at scale k' (Eq. (10)). The data is shown by the solid lines, the simulation by the
dashed lines. Each curve is for increasing factors of two in resolution, and are offset by 0.2 in the vertical for clarity.

Fig. 10. This displays the scale k estimated exponent Kk(q) shown here on a
contour plot for the data (left) and simulation (right). Perfect power law
scaling leads to Kk(q) independent of k so that the contours are horizontal.
Although the thresholding breaks the scaling it does so in nearly the same
way for the simulation and data. The horizontal axis is log2k while the
vertical axis is 10 (q+0.1); i.e. it ranges linearly from q=0 to q=1.9.
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the data to within ±4.6%. This means that to within this
accuracy we can theoretically predict these moments at any
scale over this range of a factor N4000 in scale.

4. Model parameter estimation

4.1. Discussion

Because of its far-reaching consequences for meteorology,
the finding that rain can be accurately modeled by a scale
invariant cascade over large ranges of scale is certainly themost
important conclusion to be drawn from this study. However it
would be a shame to leave things there; the TRMMdata set also
gives us a unique opportunity to resolve several longstanding
qualitative problems inprecipitation research, these include the
nature of the zero rain rates (Section 5), andwhether or not rain
can adequately be modeled as a conserved (purely multi-
plicative) process (is H exactly zero?). It also allows us to
quantitatively – and with unprecedented accuracy – estimate
the external scale Leff as well as the fundamental multifractal
exponents α, C1, H. In this section we therefore attempt to
quantify these estimates. Readers not interested in these
relatively technical details may skip to Section 5.

4.2. The external scale Leff

A significant deviation from perfect cascade behaviour is
the failure of the lines in Fig. 4A to intersect the abscissa at
exactly the same scale i.e. the external scales apparently
depend on q. Fig. 12A shows the comparison of the external
scale as a function of statistical moments obtained for the data
and the simulation (with Leff =32,000 km). We see that the
tendency of the data to have an external scale systematically
smaller than 20,000 km for the qb1 and systematically larger
than 20,000 km for qN1 is reproduced fairly accurately by
the threshold model; note that the pure multifractal model
(without threshold) shows a straight line at the level log10keff =
log10(20,000/32,000)≈−0.2. We can exploit the fact that the
scaling is very good for the q=1.5 moment in order to get a
more accurate estimate of the external scale and to study its
variability as we average over more andmore orbits (Fig. 12B).
We see that while the external scale varies greatly over single
orbits with the mean Leff for single orbits being somewhat

below 20,000 km increasing to an asymptotic value of
≈32,000 km after ≈2 days. Since this is roughly the time it
takes for the satellite to fully cover the globe between ±38°,
this may explainwhy Leff is underestimated for periods of only
a few orbits. From this figure, we see that due to the large
number of orbits, the statistical error in Leff is very small,
ultimately the error is a systematic one due to the effect of the
threshold. From Fig. 12A, we can judge the systematic error
from the slight slope in log10keff in the vicinity of q=1.5 (for
both the data and simulation); it is about ±0.03 in log10keff i.e.
about ±7% or ±2000 km.We can also see that the Leff estimated
by the gradients (Fig. 4B and C) is almost identical. Fig.12B also
shows that the random error in Leff is much smaller than the
systematic error found using the simulation Fig. 12A; we
therefore conclude that Leff≈32,000±2000 km.

4.3. The degree of scale by scale conservation: the exponent H

Up until now we have assumed that the reflectivity is the
direct result of a pure multiplicative cascade process. In as
much as the puremultiplicative cascade simulations analyzed

Fig. 11. This shows a scale by scale comparison of the normalized momentsM=
〈Z k

q
〉 /〈Z1〉q as estimated by the simulation (a=1.5, C1=0.63, Zt=2bZ1N, Leff=

32,000 km (thick lines) and the data (thin lines) for q=0, 0.3, 0.6, 0.9, 1.2, 1.5.
Note in particular that the low q curvature due to the thresholding is reasonably
well reproduced.

Fig. 12. A: This shows the effective outer scale as a function of q for the data
(green) in Fig. 4A and for the simulation Fig. 8 (blue) keff =Leff/Learth with
Learth=20,000 km. This is estimated by making a linear regression of the log
of the normalized moments (M) versus log scale and determining the
intercept with the line Log10M=0 (Eq. (4)). Since the slope K(q) is exactly zero
for q=1, for q near 1, the estimates are poor (in the above we simply put a
straight line through the estimates for q=0.9 and q=1.1). Without threshold,
the model outer scale 32,000 km corresponds to log10keff≈−0.2. The
agreement of the blue and green curves shows that the low q behaviour is
well modeled by the threshold. B: the effective outer scale as estimated by
increasing numbers of orbits: blue is the mean, the pink are the one standard
deviation error bars. The purple is the corresponding curve for the mean
external scale as estimated by gradients (δZ). (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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in Section 3 accurately reproduce the observed statistical
properties of the reflectivity, this assumption must be fairly
realistic. Nevertheless, the mere existence of a scale invariant
dynamical mechanism does not imply that the observable field
is purely multiplicative, and this assumption must be quantita-
tively analyzed. To put this issue into perspective recall that the
prototypical turbulent field – the wind field (v) – is not the
direct result of a multiplicative cascade, that role is reserved for
the energy flux (ɛ) which according to the dynamical (Navier
Stokes) equations is (scale by scale) conserved by the nonlinear
terms. On the contrary, the velocityfield has fluctuationswhich
follow:

Dv ¼ e fDxH; f ¼ 1=3; H ¼ 1=3 ð11Þ

where Δv is the fluctuation over a distance Δx and f, H are
exponents determined in this case essentially by dimensional
analysis. The exponent f is not so fundamental since if ε is a pure
multiplicative cascade, then so is ε f (this implies that if Z is a
pure multiplicative process, and Z=aRb, then the rain rate R is
also a pure multiplicative cascade, although with different
parameters). Since ɛ f=k'γ and taking Δx=L=Leff /k' we see that
the effect of the extra ΔxH term is to shift the singularities:
γ→γ−H. The parameter H is called the “nonconservation
parameter” since the ensemble average statistics follow
〈Δv〉≈ΔxH which – unless H=0 – implies that bΔvN depends
on the scaleΔx.H=0 is thus a quantitative statement of scale by
scale ensemble average conservation. Surveying the geophysi-
cal and turbulence literature, we find that empirically it is
almost always the case that the observables have H≠0, indeed
theyare almost always in the range 0bHb1 (notable exceptions
are the temperature and pressure in the verticalwhichhaveH N
1, and H≈−0.35 for rain rate in time on (climate) scales of one
month and higher (Tessier et al., 1996).

Although there is no compelling theoretical reason for
H=0 in rain (see however Lovejoy and Schertzer, in press for
arguments to this effect), there have been surprisingly few
attempts to estimate it empirically; the main exceptions are
Tessier et al. (1993) who found H=0.2±0.3 in space (from
sparse global raingage networks), Tessier et al. (1996) who
found H=−0.1±0.1 in (daily, temporal) French rain gage rain
rate estimates and De Lima (1998) who found −0.02 and −0.12

in time for various data sets with 15 min resolutions. These
estimates have low accuracy due to the problems of sparse
networks, accuracy of low rain rates, the annual cycle and
other problems, however, they are apparently compatible
with H=0. Note however that if there is a Marshall–Palmer
type relation and H=0 for Z, then HR=0 for the rain rate.
However, it would be premature to conclude from our
analysis that HR=0.

The most direct way to estimate H is to directly determine
the scalingof thefluctuationsΔZ. In the casewhere 0bHb1, it is
sufficient to use the standard structure function approach, i.e. to
define the fluctuations by: ΔZ= |Z(x+Δx)−Z(x)|, Fig. 13 shows
the result S(λ)=bΔZ(Δx)N with λ=Learth/Δx (these are the first
order structure functions; the more usual second order ones –
variogrammes – could also be used but they would be much
more intermittent). In the figure, we see a small deviation from
the flat H=0 scaling for large k (small Δx); however the
comparison with the same analysis on the simulations shows
that this small Δx effect is at least partially an artifact and that
the spatialH is indeed very nearly 0— probably towithin about
±0.03, so that the reflectivity is nearly a pure multiplicative
process. Since H was close to the lower limit of the structure
function method, we also applied the Detrended Multifractal
Fluctuation Analysis (DMFA) method (Kantelhart et al., 2002)
which is valid for −1bHb1;we obtained nearly the same result.

Perhaps themost sensitive check that the value ofH is near
zero comes from comparing theK(q) functions estimated from
Zdirectly and fromΔZ at thefinest resolutionΔx=Lres(denoted
δZ; see Fig. 4E). To understand this, note that the effect of
taking the absolute differences at the finest resolution is to
remove the ΔxH term in Eq. (11) so that the singularities in δZ
are shifted with respect to those of Z by an amount H.
Therefore, the slopes K' (q) of KZ and KδZ differ by H. Fig. 14
shows the singularities estimated in the two different ways
showing that except for the low q mostly affected by the
minimum signal problem, that the difference is small; Fig. 14
shows that indeed, for 0.5bq b2, H=Δγ=0.00±0.01; it also
shows – using simulations – that at least in this range of q
values which is notmuch affected by theminimumdetectable
signal – that with 10 simulated orbits – themethod is accurate
to about ±0.01. We thus conclude that H=0.00±0.01.

Fig. 13. The first order structure function for all the orbits, the absolute slope
is an estimate of the nonconservation parameter H; k=Learth /Δx. Black is the
data, green is the simulation (a=1.5, C1=0.63, Zt=2 bZ1N, Leff =32,000 km,
only 10 orbits, hence it is noisier at low k). The lines have absolute slopes
H=0.034, 0.027 respectively. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. The difference Δγ in γ(q)=K'(q) estimated from directly degrading
the resolution of Z and by degrading the resolution of the absolute first
differences in Z estimated at the finest resolution (δZ). The red is simulation
with H=0 and threshold and black is the data. The orange line is the Δγ
obtained on a simulation with H=0.09, also thresholded. The flat black
reference line is at the theoretical value 0.09 (all simulations had a=1.5,
C1=0.63, Zt=2bZ1N). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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4.4. The multifractal index α

4.4.1. Low q, small Z behaviour and the minimum threshold
Using relatively straightforward estimation techniques, we

have estimated the basic cascade sparseness parameter C1 and
the nonconservation parameter H. In addition the subsidiary
parameters Leff and bZ1Nwere also estimated, the formerwith
some insight from simulations indicating that the q=1.5
moment is expected to be relatively well estimated. However,
the index of multifractality αwhich determines the curvature
of theK(q) function (the rate atwhich the sparseness increases
with intensity level), was “guesstimated” and the accuracy
checked by simulation. Once α is given, then the minimum
threshold Zt is determined by the constraint that the apparent
codimension of support Cs=−K(0) gives the observed value
0.42, although – unsurprisingly – the value was always found
to be about 20 dBZ i.e. the minimum detectable signal before
the attenuation correction i.e. Zt≈2bZ1N. In Section 3.2, using
the value α=1.5 and Zt=2bZ1N, and simulating for 10 orbits,
we saw that the small q curvaturewith scale is reasonablywell
reproduced, as well as themoments up to at least q=2, andwe
quantified the small deviations at about ±5% (Figs. 5, 9–11).
However, until now,wedid not attempt to justify this choice of
α, and since we mentioned that the literature favors α≈0.5 in
time, but ≈1.3–1.5 in space (corresponding to multifractal
processes with bounded or unbounded singularities respec-
tively), it is necessary to examine this issue more closely.

Before turning to the large q, large Z statistics, we can already
check that the low q statistics are indeed best reproduced by a
model with α≈1.5 combined with threshold such that K(0)
when estimated over the same range as the data ≈−0.42. Fig. 15
shows the q=0 scaling of simulations for α=0.5, 0.8, 1.5, 2
compared to the data. The left–right shift is fixed by the
constraint that the q=1.5 moment have an external scale of
32,000 km.One sees that unlike the data and theα=1.5, 2 values,
the low α values are relatively straight and the curves are too
low. On the contrary, theα=2 curve is too high.More confidence
in the estimateα≈1.5 can be gained by considering the residuals
over the entire range ofq; this is shown in Fig.16. Considering for
themoment only the residuals forqb1, we see that the best fit is
indeed obtained for α=1.5. Since the smallness of the qb1
residuals will be affected by the details of the model used to
reproduce theminimumdetectable signal, it was not considered
worthwhile to attempt to tune the α value any further.

4.4.2. The large q, extreme Z behaviour
While we have seen that the α=1.5 model combined with

the threshold model of theminimum detectable signal gives a
reasonable approximation to the low q scaling, we have
barely mentioned the large q behaviour which characterizes
the statistics of the extreme reflectivities. This was partly
justified by the fact that whereas ground and space based
reflectivity statistics agreed quite well for moments qb1–1.2,
(Fig. 4E) the ground based values had significantly higher
exponents (K(q)) for qN1.2, possibly due to the relative
absence of attenuation in the ground based data: in other
words the high q TRMM statistics may not be so trustworthy.

In order to understand the large Z, large q TRMM
statistics, recall that two attenuation correction methods
are used, one based on a semi-empirical Z — attenuation
coefficient relation (Hitschfeld and Bordan, 1954) and
another method based on the surface reflection coefficient
(Iguchi et al., 2000; Meneghini et al., 2000; Chiu and Shin,
2004). There is also a “beam filling” correction (Kozu and
Iguchi, 1999) which attempts to partially account for the
subpixel heterogeneity/fractality. These techniques have
their limitations; for example in the large attenuation
limit there will be no signal at all from the lower atmo-
spheric layers, hence no signal to correct. Efforts to validate
the TRMM data by comparing it to ground based radar have

Fig. 15. This shows the q=0 curves for α=0.5 (bottom), 0.8 (next up), data, (blue), α=1.5 (close to the data) and then α=2 (top). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 16. Residuals of simulations with a=0.5 (black), 0.8 (blue), 1.5 (thick,
purple), and 2 (orange). The simulations were constrained so that Cs=−K(0)=
0.42 and the external scale for q=1.5 was 32,000 km. The corresponding
percentages (obtained from 10Δ−1) are also shown. (For interpretation of the
references to color in this figure legend, the reader is referred to the web
version of this article.)
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systematically concluded on the contrary that the tendency
is for the algorithm to slightly over-correct for attenuation
at the highest reflectivity levels: (Liao et al., 2001; Amitai
et al., 2004; Amitai et al., 2005). From graphs presented in
Liao et al. (2001) it appears that this effect is mostly present
for dBZN45. While proper investigation of this effect may
require the development of stratified 3D multifractal rain
models, we can nevertheless study the statistics of the
extremes in a bit more depth here.

Let us now consider the large q behaviour which is
determined by the large singularities (γ, hence large Z values)
corresponding to the extreme tail of the probability distribu-
tion of Z (hence large c(γ), see Eqs. (7–9)). Fig. 17 shows the
probability distribution of Z at the highest (4.3 km) resolution.
Since q=c'(γ), and c'(γ) is proportional to the (negative)
logarithmic derivative of the probability distribution, we find
that the moment of order q is determined by the part of the
curve in Fig.17with slope=−q. The reference lines in thefigure
show that the nearly linear regionwith slope roughly −2 starts
at about 45 dBZ and extends to about 57 dBZ. This means that
moments of order 2bqb5 are predominantly determined by
the rare Z values with probability b10−6 (corresponding to a
single reflectivity value every two orbits andwith reflectivities
N57 dBZ). According to the intercomparisons in Liao et al.
(2001) these statistics may be significantly affected by the
limitations of the attenuation correction technique; by its
tendency to over correct.

To put this extreme behaviour in a scaling framework, we
can calculate the codimension function c(γ) which is a scale
invariant probability distribution exponent. In Fig. 18 we
estimate this two ways — directly from the probability
distribution at the highest resolution (c(γ)≈− logZk / logk)),
and also from the Legendre transform of K(q) (which is
estimated over the full range of k).We see that up until c(γ)≈1,
the two methods agree very well as expected if the scaling
holds over thewhole range. This implies that the scaling of the
corresponding q's is good up to the same value. In order to
make the correspondence, we display Fig. 19 which uses the
Legendre transform to estimate γ(q)=K'(q) and plots the
corresponding c(γ(q)). We see that cb1 corresponds to
moments qb2; we further see that c peaks at around 1.22
and then declines. Since theoretically for a pure scaling

process, c must increase monotonically, this decrease is an
artifact of the imperfect scaling of the high order moments
(qN2–3) controlled by the very rare (and very large) Z values.
This is a further indication that the moments qN2 may not be
trustworthy. This spurious double valued-ness also explains
the double valued-ness of the large γ behaviour in Fig. 18.

We can also use Fig. 19 to help understand the effect of
sample size on the K(q) function. For example we noted in
Fig. 4D that as the sample size increases (one orbit, to one day
(16 orbits) to the full set of orbits), that the K(q) changes only
very slightly. To understand the general effect of sample size,
we note that in a space of dimension D, we cannot detect
events with cND since that would imply impossible negative
dimensions (recall d(γ)=D− c (γ); d (γ) is the fractal dimen-
sion corresponding to γ). Denoting the maximum order of
singularity in the sample by γs, for a singleD=1 section of the
orbit, we expect c (γs)=D=1, (the swath width is small
compared to the along track distance), this is roughly the
effective dimension of a single orbit and provides another
confirmation that only the corresponding moments qb2 are
well determined from a single orbit. In order to understand
what happens as we increase the sample size to 1 day and
then to 21/2months, denote byNs the number of statistically
independent realizations of the process over a range of

Fig. 17. The probability distribution from all the orbits (cumulated from Z to infinity: Pr(Z'NZ) where Z' is a randomly chosen reflectivity and Z is a threshold),
reference slopes 2, 5, including zeroes.

Fig. 18. c(γ) calculated from probability distribution at the highest resolution
(from Fig. 17, shown in blue) and from Legendre transform of K(q), black. Note
the double valued nature of the latter at large γ which is due to poor scaling
at large q.
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scales k, and introduce the “sampling dimension” Ds. The
precise result for the maximum singularity (Schertzer and
Lovejoy, 1992) is:

c gsð Þ ¼ Dþ Ds; Ds ¼
log Ns

log kV
ð12Þ

Since γs is the largest singularity in the sample (but not in
the generating process which has Ns= infinity), to calculate
the observed, finite sample K(q), we must use the restricted
Legendre transform:

K qð Þ ¼ max
gbgs

qg$ c gð Þð Þ ¼ K qð Þ; qbqs
qgs $ c gsð Þ; qNqs

ð13Þ

where qs=c′(γs) is the moment corresponding to γs i.e. K(q)
becomes spuriously linear for qNqs, a “multifractal phase
transition” (second order since K″(qs) is discontinuous).

From Fig. 19 we see that for DsN0.22 (corresponding to
Ns≈7 orbits here) that we do not expect any increase in γs,
hence none in qs; applying the above formulae for qs allows
us to explain the small change in K(q) as we increase Ns. We
conclude that K(q) for qb3 will not change as Ns increases.

4.4.3. A possible explanation for the large q behaviour:
divergence of moments and attenuation

We have argued that that the poor scaling implied by Fig.19
for qN2–3 is probably due to inadequacies in the attenuation
corrections at high rain rates applied to the TRMM data. We
will now consider further the salient feature of Fig. 17
mentioned above: the relatively wide region with Pr≈Z −2

behaviour extending roughly over the range 45–57 dBZ down to
Pr≈10−6, implying that the second order moment barely
converges if determined from a single orbit (which
has≈0.5×106 pixels). Estimating the absolute logarithmic
derivative (qD) for the probability tail ZN104 mm6/m3 for each
orbit yields qD=2.09±0.39 which is indeed close to 2. The
existence of such hyperbolic/algebraic probability tails is a
generic consequence of multifractal cascade processes and
arises from the singular small scale cascade limits. In order to
understand this, one must distinguish “bare” and “dressed”
cascade properties. The former refer to the statistics over
cascades developed down to a given scale and stopped at that
scale; thevariability is purely due to the effects of the large scale.
For the bare processes, all themoments arefinite, Eq. (9) forK(q)

applies for all q≥0. However in the case where the cascade is
continued down to infinitely small scales and then averaged at a
finite intermediate scale, both the large and small scale
variability are important. For these dressed properties, Eq. (9)
only applies up to a critical moment order qD after which the
moments diverge. This implies that for theextremefluctuations,
the measured reflectivities (at scales much larger than the
relaxation scale) follow the following hyperbolic form:

Pr ZNsð Þcs$qD ; sNNN1: ð14Þ

In the case of the TRMM data, it is possible that the
unattentuated Zwould continue the Pr≈Z−2 behaviour asymp-
totically. Note that the fact that TRMM moments of order
greater than about 2 depend on the extreme Z values indicates
that the spectra – which is a second order moment – of Z will
not converge well.

4.4.4. Consequences for K(q), and estimates of α
We may now compare the K(q) functions obtained theore-

tically (infinite Ns, the bare process), with the actual numerical
simulation of K(q) (including the threshold effect); Fig. 20
shows this for α=0.5, 0.8, 1.5, 2. We first note that for qb1 the
theoretical K(q) are quite different from each other (and from
the data), but that the simulations (which include the effect of
thresholding) are very close to the data. Indeed, in Section 4.4.1
we saw that the chief difference between the differentα values
at the low q regime, were in the quality of the scaling after the
thresholding: at low q, the low α values had quite good scaling
whereas the largerα values had poor low q scaling (hence they
were much closer to the data, Fig. 15). However, for large q the
theoretical (bare) and simulated (dressed, finite sample) K(q)
are quite different from each other (see the thin lines in Fig. 20).
This difference is because the simulationswere over 10 orbits so
that we expect the actual K(q) to become linear as indicated.
Indeed, because of this multifractal phase transition, even at
large q, we do not see much difference between the empirical
and the simulated K(q) (for example using the theory Eqs. (12),
(13)withDs≈0.3 for the simulationswefindthat theasymptotic
slope (K'(qs)=γs) varies only a little: from 0.95 to 1.1 asα varies
from 0.5 to 1.5; hence the simulated large q behaviour is not too
different). In the absence of attenuation problems, we would
expect the K(q) for α=1.5 to become progressively steeper for

Fig. 19. This shows the c(γ(q)) showing how the qth order moment depends
on the sample size. Since the sample size directly determines the maximum c
which can be estimated (Eqs. (12), (13)), we can use this curve to understand
how increasing the number of orbits will affect K(q).

Fig. 20. The theoretical K(q) for a=0.5 (thin orange line) and a=1.5 (thin red
line). This is compared to the corresponding numerical simulations with
threshold and only 10 orbits simulated (solid lines with the same color), as
well as to the data (blue line). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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larger and larger sample sizes (increasing Ns, Ds, hence qs, γs),
so that to distinguish large and smallα by considering the large
q behaviour requires hypotheses about the latter (in particular,
we must explain why c(γ(q)) reaches a spurious maximum,
Fig. 19). The closeness of the simulations withα=0.5 and α=1.5
up to q=2 explainswhy the errors indicated in Fig.16 are in fact
quite comparable for both α=0.5 and α=1.5 (they are however
substantially larger for α=2).

Overall, considering both the small and large q behaviour
andusing the residuals (Fig.16) as a criterion,we conclude that
α≈1.5 is the optimumestimate. However, it should be borne in
mind that this conclusion assumes a) that the thresholdmodel
is a good approximation to the actual minimum detectable
signal, b) that the behaviour for qN2–3 is indeed an artifact
(otherwise it turns out that the value α≈0.6 gives the best
large q approximation to the observed K(q)).

5. The nature and modeling of the low and zero rain rates

5.1. Thresholding a pure cascade model, or a separate model for
the support?

We have already mentioned the question of the zero rain
rates: the fact that there are two simple models: the product
of two processes (one of which determines the support, the
other the rate) and a single process but with a physically
determined threshold (the latter being an approximation to a
more realistic compound multifractal–Poisson drop process).
The fact that a strictly nonzero model coupled with a crude
model of the minimum detectable signal leads to very close
agreement with the empirical statistics shows that any
physical threshold must be small. Let us therefore consider
the implications of extrapolating the (unthresholded) model
down to the small scale limit. Since the cascade clustering of
the rain is largely the result of turbulent processes, we
anticipate that the inner limit of the cascade is the scale at
which the drops decouple from the turbulence due to their

inertia; the decoupling scale where the turbulent Stokes
number (the ratio of the inertial time of the drops to the
turbulent eddy lifetimes) is unity (see Lovejoy and Schertzer,
in press). This is indeed the conclusion that was reached in
Lovejoy et al. (2003) and Lilley et al. (2006) on the basis of
multifractal analyses of stereo photography of individual rain-
drops. More refined (spectral) analyses (Lovejoy and Schertzer,
2006b, in press) confirm that the transition decoupling scale Lc
is in the range 30–50 cm (depending somewhat on the storm,
rain rate), and that at scales smaller than this the rain follows a
white noise spectrumwhile at larger scales, it follows a Corrsin–
Obukhov (passive scalar, k−5/3 spectrum, k is the wavenumber).
Although the actual inner scale is in fact likely to be quite
variable (determined by the local values of the particle number
density, itself found to follow a k−2 spectrum) let us ignore this
complication andconsider for themoment that the inner scale is
well defined and equal to 40 cm. In this case, in round numbers
the relevant ranges of scale are: Leff=40,000 km, LTRMM≈4 km,
Lc≈0.4m.We therefore have a range of scale k=104 down to the
TRMM resolution; and another 104 down to Lc. Since themodel
is multiplicative, in order to extrapolate it over a range of scales
of 104, (to obtain a model over a total range 108), we need only
multiplyeach lowresolution (4km)pixel byan identical cascade
reduced in size by 104.

Before doing this, let us examine a little more closely how
accurately the thresholding reproduces the observed distribu-
tion of reflectivities. Fig. 21 shows the fraction of the area
covered by rain as a function of theZ level for both a single orbit
and for all the orbits. As expected, below about 20mm6/m3, the
data is (nearly) discontinuous whereas the simulation is
continuous. The latter shows that even with a reflectivity
sensitivity 1000 times lower than the mean (about 2000 times
lower than at present), the TRMMradarwould still only see rain
over 29% of the region above this new minimum detectable
level. To get a feel for the numbers, we can use the standard
Marshall–Palmer Z−R relation (i.e. Z=200 R1.6), so that while the
mean (53 mm6/m3) corresponds to 0.085 mm/h (at 4.3 km;

Fig. 21. The black is for all orbits, the pink for a single orbit, the blue for the simulations, all are normalized to have the same mean and the simulation has the same
areal coverage at the mean (3.1% above the mean). At the far left we see that the simulation predicts that at a reflectivity level 1000 times lower than the mean
(corresponding to 0.006 mm/h), there is still only 29% coverage by nonzero reflectivities.
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0.44mm/h if the Z−R relation is applied at 20,000 km), the 2000
times more sensitive radar (at 4.3 km resolution) would “see”
rain down to 0.006mm/h. It's hard to know if this is realistic, but
it underlines the fact that even in the absence of an additional
threshold process themodel predicts that almost all of the areas
would have very low reflectivities/rain rates.

Let us now extrapolate this down to the decoupling scale.
Using stereophotography of drops over roughly 10 m3 regions,
(Lovejoy et al., 2003; Lilleyet al., 2006; Lovejoy and Schertzer, in
press) showed that the scaling breaks down at a sub-metric
decoupling scale where the drop inertia decouples them from
the turbulence; they also estimated the universal multifractal
parameters for Z as C1≈0.21, α=1.5. This estimate was not
considered too accurate since it was over a very small range of
scales (about an octave) so that although the C1 estimate is low,
it is indeed possible that the scaling continues down to these
small scales.

First consider the mean: since the cascade process is
apparently conservative (H=0), if rainwas measured at 40 cm
scales, the mean would still be (53 mm6/m3); however,

the fraction of the area exceeding the mean would be
0.031×0.031≈0.0009, i.e. about 0.1% of the 40 cm×40 cm
“pixels”. However to extrapolate the values for a threshold
2000 times below the reflectivity mean, we must use the
following:

Zk ¼ hZ1ikg ð15Þ

so that the threshold at k=104with Zk / 〈Z1〉=2000 corresponds
to a singularity of γ≈−3/4. Using this value with k=108 leads
to Zk,t =5.3×10−5 mm6/m3 and a corresponding rain rate Rk,t=
8×10−5 mm/h i.e. about 0.7 mm/year (see Table 1 for sum-
mary, Fig. 22 for a schematic). However this low rain rate
would be exceeded over a fraction of the area =0.292≈0.08.
The rate 0.7 mm/yr is so low that it corresponds to a single
1 mm diameter drop falling at ≈2 m/s in a volume of about
100 m3. This may be close to the rain threshold we
subjectively feel when walking outside at the “beginning”
of a rain “event”. It would mean that – even without a
threshold – we would only subjectively “feel” rain 8% of the
time, a number which seems surprisingly reasonable (recall
that this is an average value over the TRMM region, i.e.
±38° latitude). If this is true, then the need for a minimum
rain threshold becomes somewhat academic since it would
only apply at these very low rain rates.

To put this in perspective, we have already noted that since
C1=0.63, themain contribution to themeanZ is at 14,600mm6/
m3; with the above numbers, using C1R=0.31 (i.e. b=1.6,
α=1.5), we find that at 4.3 km resolution, themain contribution
to the mean rain rate is 15.8 times the mean, i.e. 1.35 mm/h; at
40 cm resolution the corresponding rate is 24 mm/h.

5.2. Explaining various empirical features of radar estimates of
rain

5.2.1. The area times constant technique for estimating areal
rainfall

Over the past thirty years, there have been many
techniques proposed for estimating areal rainfall. Many of
these work by using ground based radar to estimate the
areas of rain above the radar minimum threshold and then
multiplying the result by a constant rate for raining areas.

Table 1
This table accompanies the schematic Fig. 22 and compares the reflectivities
and (Marshall–Palmer Z–R inferred rain rates) at the TRMM scale (4.3 km)
and the inner decoupling scale (take here as 40 cm)

TRMM
mean

Threshold
10−3 Z1
(TRMM scale)

Decoupling
scale

Threshold 10−3 Z1
(decoupling scale)

Scale 4 km 4 km 0.4 m 0.4 m
Scale ratio λTRRM=104 λTRRM=104 λc=104=

(λTRRM=104)2=
108

λc=108

Reflectivity
(mm6/m3)

〈Z1〉=53 ZTRMM,t=
5.3×10−2

〈Z1〉=53 ZTRMM,t=5.3×10−5

Rain rate
mm/h

〈R1〉=0.44 RTRMM,t=
0.006

〈R1〉=0.44 Rc,t=10−4≈
0.7 mm/year

Fraction
area
exceeded

F(N〈Z1〉)=
F(N〈R1〉)=
0.031

0.29
(simulation)

0.0312=0.001 0.292=0.08

Note that the mean rain rate (R1(used here is obtained directly from (Z1(; as
pointed out in Section 1, it is 5.2 times larger than the mean obtained by
converting Z to R at the finest resolution.

Fig. 22. This schematic indicates the implications of the model at inner “relaxation” scales and for very low reflectivities. The Z–R conversion uses the Marshall–
Palmer relation which itself is only valid at most at a single scale so the R estimates are rough.
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The “area times constant” technique (Lovejoy and Austin,
1979) and the “area-time integral” (Doneaud et al., 1984)
technique are early examples of this (see also Krajewski
et al., 1992). The GOES Precipitation Index (GPI; Arkin and
Meisner, 1987) uses this basic idea to infer rain from areas
defined by infra red radiance thresholds and the more
sophisticated Adjusted GPI technique (AGPI, Huffman and
Coauthors, 1997) is used with TRMM data to effectively
extend the range of the TRMM radar with the help of visible
and infra red instruments on the TRMM satellite (Adler
et al., 2000).

To understand how area times constant type techniques
work, we recall that the dominant contribution to the mean
occurs at values of the field whose singularities are C1. Using
a Z–R relation we find that C1R=C1Zb−α so that with b=1.4−
1.6 and C1Z=0.63 we find that C1R=0.38−0.31; this quantifies
the sparseness of the regions giving the dominant contribu-
tion to the mean rain rate. A necessary (but not sufficient)
condition for an area times constant technique to work is
thus that the area should have a codimension as close as
possible to C1R — otherwise the estimates of areal precipita-
tion from the surrogate could not agree with the true rain
field over any significant range of scales. We now note that
with typical minimum detectable reflectivities that C1R is
close to the codimension of the support Cs; for the TRMM
minimum detectable signal we found Cs≈0.42. This proxi-
mity of exponents (0.38, 0.42) shows that multiplying the
support by a constant rate will give a rain rate estimate with
the same scaling properties as the areal mean precipitation.
More generallywe see that the success of area times constant
techniques depend on finding precipitation surrogates with
supports Cs close to C1R.

5.2.2. Spurious correlations between the dimensions of support
and rain rates

Over and Gupta (1996a) and Gebremichael et al. (2006)
have combined the area times constant idea with the scaling
of the support of rain. They found empirically that the mean
rain at 64–128 km scales is strongly correlated with the
dimension of the support of rain Ds estimated over the range
defined by this intermediate scale down to 4 km (in their
notation τOG(0)=Ds=2−Cs):

sOG 0ð Þ ¼ 2$ Cs ¼ s log
Rki

hR1i

! "
þ i ð16Þ

where i is a constant, s is an empirical slope and ki is the ratio
corresponding to the intermediate scale atwhich they calculate
the local mean rain rate Rkι. Taking Leff=32,000≈215 km, we
find that ki=28 corresponds to about 128 km or 32 TRMM
pixels.

If τOG(0) (or equivalently Cs) was indeed a basic physically
significant exponent, then the existence of a relation such as
Eq. (16) would imply that the scaling could not hold at the
larger scales (128 km and up, i.e. with ratio bki). This is because
in a scale invariant regime, the basic scaling exponents are
independent of the rain rate; they simply determine the
statistics of the latter. Indeed, in Gebremichael et al. (2006) the
authors affirm – on the basis of regressions validating Eq. (16)–
that indeed the TRMM scaling does not go to scales larger than
about 128 km. However — in spite of the numerous scaling

exponents they display, they do not show a single graph
demonstrating any scaling whatsoever so that their conclu-
sions about scaling are at best indirect.

However, we have seen that Cs is not a basic precipitation
quantity at all; it is rather an artifact of theminimumdetectable
signal so that if Eq. (16) roughly holds, it must have a totally
different explanation. Indeed, it is not hard to see how a rough
relation of the type Eq. (16) might arise: whenever the
intermediate scale mean Rki is particularly large, only a small
fraction of the sub 128 km pixels will have rain below the
detection limit and Cs will tend to be small. On the contrary,
whenever Rki is particularly small there will be many sub
128 km pixels below the detectable level and Cs will tend to be
large.

Using the model with parameters α=1.5, C1Z=0.63, H=0,
Leff≈215 km, it is easy to numerically simulate the (Gebre-
michael et al., 2006) results and show that they are in fact a
necessary consequence of the wide range scaling coupled
with an instrumental minimum detectable signal. Since
they use a Z–R exponent b=1.4, we took the 1/b power of
the Z used previously (equivalent to C1R=0.38) as a model
for R, and normalized it for their specific locations and
times using their mean R which was about 0.7 mm/h,
(about double the minimum detectable signal Rt at 4 km/
pixel). Fig. 23 shows typical results for simulations of 256
regions, each with 32×32 pixels (4 km/pixel). We see that
(similarly to their results) there is a lot of scatter but that the
relationship is roughly linear. Quantitatively, we find the slope
s=0.24±0.04 where the error indicates the region to region
variation due to stochastic cascade variability. This it is very close
to the results of (Gebremichael et al., 2006) who find for six
regions s=0.22±0.03.

To have a rough understanding of this result, denote
the minimum detectable signal Rt at highest scale ratio k;
take this as 213, corresponding to about 4 km. There is thus
a minimum detectable singularity γt= log(Rt /bR1N) / logk,
an intermediate scale singularity γi= log(Rkι /bR1N) / logki
and — over the remaining range of factor k /ki=ks =25

(down to 4 km), γs= log(Rks /bR1N) / logks. If the intermedi-
ate (ki scale) rain rate Rkι is given, then at a scale ks times

Fig. 23. This shows a simulation of the relation (for 256 regions) between the
mean 128 km rain rate and the fractal dimension of the regions exceeding
one half the mean rain rate (taken as 0.7 mm/h, roughly the same as in
(Gebremichael et al., 2006). The straight line has slope corresponding to
s=0.23, the curved lines are the rough bounds estimated theoretically
below (note that following Gebremichael et al., 2006, s is defined using
natural logs whereas the graph uses logs to base 10).
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smaller (4 km) there will be a critical small scale singularity
γst which will be at the detection limit. Due to the multipli-
cative nature of the cascade, these ratios and singularities
satisfy:

K ¼ kks
Kgt ¼ kgii k

gst
s

ð17Þ

for the scale ratios and singularities respectively. For a fixed
intermediate scale ki rain rate singularity γi and detection
limit singularity γt, we have from Eq. (17)

gst ¼ gt
LogK
Logks

$ gi
Logki
Logks

ð18Þ

It is now easy to obtain bounds on the variation of Cs (=2−
τOG(0)) as a function of γi (Rki). We can do this by exploiting
the multiplicative nature of the cascade:

Pck$c gstð Þ
s k$c gið Þ

i ð19Þ

this equation just states that the probability P (fraction) of
rain at the smallest scales at the detection limit is equal to the
product of the probability (fraction) down to the intermediate
scale (ki−c(γi)) multiplied by the probability (fraction) over the
last factor ks (=ks−c(γst) ). When the singularities are related by
Eq. (17) this is true because of the statistical independence of
the different levels of the cascade. A simple approximation to
the behaviour in Fig. 23 is now obtained by taking P≈ks−Cs

over the small scale range ks so that:

Cs gið Þcc gt
Log K
Log ks

$ gi
Log ki
Log ks

! "
þ c gið Þ log ki

log ks
ð20Þ

In Fig. 23 we show Ds=2−Cs=τOG(0); we see that it tends to
under-estimate the correct behaviour, but follows it quite well.
Also shown in the figure is an upper bound obtained by
considering that the intermediate scale is space filling (c(γi)≈0)
so that Cs≈(γst) (i.e. ignoring the second term in Eq. (20)). We
can also see that the value of s is apparently well approximated
by the derivative — Cs'(0) i.e. when evaluated at the mean rain
rate.

5.2.3. Deviations from scale invariance
Wementioned that Gebremichael et al. (2006) interpreted

the relation between Cs, Rki as a breakdown in the scaling —
rather than as a consequence of it. However, rather than
directly testing the scaling as we have done here, they
hypothesized the following ad hoc form for possible devia-
tions from the scaling:

log
hRq

2ki
hRq

ki

 !
¼ K qð Þlog2þ v qð Þlogk ð21Þ

where χ(q) logk is their ad hoc nonscaling term. Using a
cascade model which was taken to be a product of the α=0
and α=2 universal multifractals, (but with the parameters
estimated without taking into account the large biases due to
the minimum detectable signal: their σ2 parameter is 2.65
times too small, see Section 3.1), they were able to sometimes
statistically reject the hypothesis that χ(0) and χ(2) are
nonzero. However, it is important to realize that – as usual in
statistical hypothesis testing – rejecting the hypothesis that

χ≠0 in no way requires us to accept the converse (i.e. that
χ=0, and hence that scaling is respected). The fact that
authors are frequently unable to reject the hypothesis that
χ(0) and χ(2) are nonzero may simply indicate that they
have made a poor choice of the ad hoc nonscaling ansatz. We
conclude that failure to reject the hypothesis that χ≠0 says
nothing about either the scaling or the nonscaling ansatz: no
matter what the outcome of their statistical tests, we are none
the wiser about the quality of the pure scaling form Eq. (1).

Finally it is also worth mentioning that the scale
invariance of the precipitation process could lead to scaling
corrections to the pure power law form (Eq. (1)) e.g. involving
logarithms, iterated logarithms etc. This is investigated in
satellite radiances in Lovejoy and Schertzer (2006a).

6. Conclusions

In the absence of direct information, the scale by scale
nature of atmospheric dynamics in general – and rain in
particular – has been the subject of competing theories and
approaches. On the one hand, the dynamical meteorology
approach has attempted to phenomenologically distinguish
different dynamical mechanisms each postulated to dominate
over narrow ranges of scale. This view identifies form with
mechanism and treats atmospheric dynamics as a hierarchy
of different phenomena each dominating a different range of
scales. In comparison, the classical turbulence based model—
which postulates isotropic three dimensional turbulence at
small scales and isotropic two dimensional turbulence at
large scales (with the two separated by “meso-scale gap” in
the spectrum) is more parsimonious, but makes its own
strong a priori assumptions; in this case that the turbulence is
isotropic. State of the art drop sonde (Lovejoy et al., 2007) and
lidar analyses (Lilley et al., 2004) show that on the contrary
the turbulence is strongly anisotropic (with different scaling
exponents in the horizontal and vertical directions implying
that the atmospheric stratification is scaling. If the atmo-
sphere is indeed an anisotropic scaling system then the small
roundish structures correspond – when anisotropically
“blown up” in scale – to large flattened structures. Contrary
to the phenomenological assumptions, the appearance of
structures changes with scale even though the underlying
mechanism does not. This illustrates the “phenomenological
fallacy” (Lovejoy and Schertzer, 2007) of identifying appear-
ance with mechanism. Since the large scale “blowups” of
small roundish eddies (in rain, “cells”) can be flat and
stratified (in rain, “stratiform”), scaling stratification allows
the possibility of wide range scaling of atmospheric processes
in general, and of rain in particular.

While the anisotropic turbulent approach was verified
twenty years ago in rain up to ≈100 km (Lovejoy et al., 1987;
Schertzer and Lovejoy, 1987) direct confirmation that it
extended up to planetary scales has been lacking. The closest
evidence to date – up to scales of 5000 km – were from
geostationary visible and infra red satellite radiances (which
are correlated with the rain) (Lovejoy et al., 2001; Lovejoy and
Schertzer, 2006a). In this paper, we exploit space borne
(TRMM) radar to directly confirm that reflectivities from rain
are scaling up to planetary scales. The TRMM radar gives a
relatively uniform high quality attenuation-corrected reflec-
tivity map, whose main limitation is the relatively large
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minimum detectable signal and the limitations of the
attenuation corrections at very high reflectivities. We delib-
erately avoided consideration of the more problematic rain
rate estimates. Statistical moments with order q in the range
0bqb2 (corresponding to all reflectivities except the
extremes with probabilities b10−6) give remarkably good
scaling: ±6.4%, for the reflectivity and ±4.3% for the
reflectivity increments over the directly observed entire
range 20,000 down to 4.3 km (Fig. 4A, B, N1100 consecutive
orbits ≈75 days). Nonetheless, there are small but systematic
deviations, particularly for the low order moments which are
sensitive to the presence of reflectivities below the detection
limit (which is about twice the mean i.e. about 20 dBZ).

Imposing a threshold on a rain process at a fixed scale
breaks the scaling. In order to see howwell this might explain
the remaining small deviations from scaling at small q values,
a simple threshold model for the minimum detectable signal
was used in conjunction with a stochastic (multifractal)
cascade model of the reflectivity. Since we fit a stochastic
model (not simply determine regression parameters), the
model parameters were estimated using a “bootstrap” pro-
cedure;we concluded that a universalmultifractalmodelwith
fundamental parameters α=1.5, C1=0.63±0.02, H=0.00±0.01
was reasonable. Although the value α=1.5 had significantly
lower residuals than α=0.5, 0.8 or α=2, we did not attempt a
precise error estimate since such an estimate would be
sensitive to both the small Zmodeling of the minimum signal
and the large Z modeling of the attenuation correction. In
addition, there were three secondary parameters: the mean
(climatological) reflectivity bZ1N=53 mm6/m3 (17 dBZ), the
detection threshold Zt, =2bZ1N (20 dBZ) and the effective outer
scale of the cascade, Leff =32,000±2000 km. With this model,
we found the mean residual between the model and data was
less than ±4.6% for the entire range down to 4.3 km and for the
moments q≤2. Since the bootstrap was somewhat crude, this
residual is an upper bound on the true residual. The smallness
of these deviations from universal multifractal scale invar-
iance shows that the latter is one of the most accurately
obeyed laws in atmospheric science, comparable in accuracy
to the routinely used hydrostatic approximation (±≈2%) and
close to the exponential decay law for atmospheric pressure
(±≈1%). Indeed, it is remarkable that the strong long range
statistical dependencies that it implies have not yet been
exploited either for rain rate estimation or for meteorological
forecasting (see however Schertzer and Lovejoy, 2004 for
stochastic forecasting; the TRMM temporal scaling will be
studied in future publications). The reason for this may be the
increasing tendency for new sources of data to be exclusively
used for making “products” rather than for answering
fundamental scientific problems, or for developing ad hoc
algorithms before their theoretical and empirical bases have
been examined.

Two salient points need additional comment. First, we
directly estimated the scale by scale conservation parameter
H which quantifies the deviation of the process from a pure
multiplicative one; we found it was very near zero (the small
deviations could be explained by the model). AlthoughH=0 is
almost always assumed for rain, it has never been accurately
estimated before (note that if Marshall–Palmer type relations
hold, the value H=0 for the reflectivity would imply HR=0 for
the rain rate). A second comment concerns the fact that the

effective outer scale Leff is somewhat larger than the planetary
scale. The ratio Leff /Learth≈1.6 is a measure of the variability of
planetary size rain structures. This value is compatible with
those obtained by extrapolations of ground based radar (by a
factor of 300 or so in scale). Finally, the most difficult
parameter to estimate, the multifractal index was estimated
at α≈1.5 by comparing simulations with higher and lower α's
and considering small q deviations due to thresholding, and
large q deviations due to (presumably) attenuation effects.

A remarkable feature of the agreement between the
stochastic cascade model and the reflectivity data is that the
pure cascade (unthresholded) model implies a nonzero rain
rate everywhere. This is brings up the longstanding “zero rain
rate” problem (Larnder, 1995; Marsan et al., 1996): which has
most often been resolved in an ad hoc manner by simply
postulating separate (and independent) processes for the
support of rain and for the rain rate on the support. The
alternative is simply to put a low threshold on the rain process
(this is in fact an approximation to a compound multifractal
Poisson process). While our findings do not fully resolve the
issue, they do show that the debate may be fairly academic: if
the model is extrapolated down to the inner decoupling scale
(where the drops and turbulence decouple—where the Strokes
number is unity— typically about 40 cm), then it predicts that
for data at 40 cm scales, that rates above ≈1 mm/year will only
occur about 8% of the time. Since this low rate is probably close
to the subjective rain/no rain threshold, this indicates that even
without a physical threshold, we would only subjectively
experience rain about 8% of the time (this is an average over
all the TRMM region, ±38° latitude). In any case, if a physical
rain/no rain threshold exists, it must be very small and
neglecting it may not lead to significant error.

The model also explains several features of rain statistics,
including the relative success of area times constant techni-
ques for estimating areal rainfall. We saw that the key is to
choose a surrogate for rain whose support has codimension
Cs≈C1R. If this condition is not satisfied then the scaling of the
surrogate and the areal rainfall will be different so that
agreement will necessarily be poor. The requirement that Cs
for a surrogate=C1R could potentially lead to improvements in
GPI, AGPI and related visible/IR techniques. This is an
application of the idea of stochastic calibration which could
also be applied to rain gauge/radar calibration: i.e. the fact
that radar rain and rain gauge rain must have the same scale
by scale statistics (i.e. same scaling exponents). We also saw
how instrumental minimum detectable signals combined
with wide range scaling leads to roughly log linear rain rate—
Cs relations at intermediate (e.g. 128 km) scales. The existence
of such spurious (instrument induced) relations therefore
supports the wide range scaling of rain contrary to (Gebre-
michael et al., 2006) who interpreted it as a breakdown in the
scaling.

The confirmation that cascade processes can accurately
explain rain reflectivity statistics down to 4 km scales has
implications for the way we convert reflectivities into rain
rate estimates. First, it implies that any Z–R relation must be
statistical — not one-to-one as is usually assumed. This is
because while the reflectivity is the integral of the drop
volumes squared, the rain rate is the integral of the volumes
multiplied by the vertical fall speeds, the latter depending
notably on the wind field (and hence on the wind–rain
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coupling). Second, the statistical relation will be scale
dependent: due to the scaling it will vary in a power law
way with the space-time resolution of the radar. Indeed, one
will probably need detailed stochastic coupled turbulence–
drop models (perhaps of the compound multifractal/Poisson
type proposed in Lovejoy and Schertzer, 2006b) in order to
fully clarify the relation. The development of suchmodels will
undoubtedly help to settle longstanding debates about “radar
calibration” including those surrounding TRMM validation.
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