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1. Introduction

Contrary to standard deterministic modeling (Israel et al., 1990a,b) for handling extreme
variability in geophysics we apply approaches which recognize that the scale invariance is
a (widely respected) dynamical symmetry principle and that nonlinear scale invariant
processes generally lead to multifractal fields. Much evidence now exists (e.g. Lovejoy and
Schertzer, 1990, 1995) showing that the wind, rain and other atmospheric fields are multi-
fractal over most of the meteorologically significant range of space and time scales.
Furthermore, multifractality is generally associated (see below) with a qualitatively distinct
“Self-Organized Critical” (Schertzer et al. 1993, Schertzer and Lovejoy, 1994, 1997)
extreme behaviour.

In this paper we discuss the influence of geophysical turbulence transport on the com-
plexity of the Chernobyl radio nuclides contamination distribution. By proceeding to an
empirical estimate of the universal multifractal exponents and corresponding critical expo-
nents of /37Cs soil contamination we show that the distribution of Chernobyl fallout is
indeed both multifractal and displays SOC structures. We argue that this complex structure
of “hot spots™ at all scales and all intensities displayed by the Chernoby] fall-out plays a fun-
damental role for its understanding, especially for risk assessment and monitoring.

2. Chernobyl accident data base

The data base analyzed in this paper was available in the framework of INTAS grant
collaboration and it consists the mean values of /37Cs cumulative soil deposition. The data
were collected in 1986 by more than 31 different Organizations of former Soviet Union, in
order (o constitute a public data bank. The final database contains 11605 points in Ukraine
with the geographical coordinates (e.g., longitude and latitude), for every point of measure-
ment the archived data values were averaged over the number of individual measurements,

On the Fig. 1 we present a map display of this /37Cs cumulative soil deposition data set
with values range from 0.9 to 6*105 KBq/m2. One must note the fractal/multifractal nature
of the measurement points and the need to take it into account, as done by Salvadori et al,
(1994) for dioxin measurements around Seveso and by Tessier et al (1994) for in-situ rain
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Fig. 1. Distribution of 11605 points of 1%Cs cumulative soil deposition mea-
surements on the territory of Ukraine. The values range from 0.9 fo 6*1(»
kBqg/m2.

measurements. The source corresponding to Chernobyl has been decreased by a factor 3 in
order to enhance the “intermittent” features of the radioactive concentration around it.
“Leopard’s skin” distribution of fallout “hot spots”, also observed for other data sets dis-
played in table 1 (Salvadori et al. (1994b) and Schertzer et al. (1995)), undoubtedly results
from the extreme variability of the various geophysical processes, especially the nonlinear
transport and scavenging processes (associated with the wind and rain fields).

3. Universal multifractal approach

The multifractal approach to turbulent transport is based on the fundamental scale
symmetry property of the nonlinear (e.g. Navier Stokes and passive advection) equations.
The simplest way of understanding how transport variability occurs over a very large range
of scales is to suppose that the same type of elementary process acts at each relevant scale
(from the large scale down to the small viscous scale): this generically yields a multifractal
cascade process.

In the case of a stochastic multifractal field €; observed at different scale ratios A=L//,
where L is the outer scale and ! is the scale of observation, the statistics of the field can be
described in the framework of the codimension multifractal formalism (Schertzer and
Lovejoy 1987, 1989, 1992, Oono 1989, Mandelbrot 1991) either in terms of probability dis-
tributions or statistical moments, involving respectively the codimension function (c(y)) of
the order of singularities v and scaling function (K(q)) of the moments order q:
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c(y) and K(q) are dual for the Legendre transform (Parisi and Frisch, 1985):
c(y)=max(qy - K(q)); Kig)= mgxtq?—f:(l/)) @)

The only constraints that must be respected by the two functions c(y) and K(q) are that
they should be both convex, and c(y) should be an increasing function.

Due to the existence of stable and attractive multifractal processes under rather general
circumstances, mixing of different multifractal processes may lead to universal processes
(Schertzer and Lovejoy, 1987, 1997) which depend on very few relevant aspects of the ini-
tial processes. Indeed -up to a critical order discussed below- these universal multifractal
processes have codimension and moments scaling functions ruled by only three exponents,
e.g. for the moments scaling function:

K(g)+qH = G (" —q)
o—1 3)

the three basic universal exponents being:

- the Hurst exponent H: it corresponds to the order of fractional integration over a con-
servative flux and is related the degree of non conservation.

- the mean singularity C,, i.e. those contributing to the mean field, measures the fractali-
ty/sparseness of the mean field, it corresponds at the same time to the codimension of
the mean field.

- the Lévy index o determine the extent of multifractality, it is indeed the Levy index a of
the generator of the process and is proportional to curvature radius of the codimension
function around the mean singularities, R.(C,-H) =232 Co.
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Fig. 2. The power spectrum of subset (9836 points) of sparsely distributed
137Cs soil deposition measurements displayed on Fig. 1. The straight line indi-
cates scaling regime with slope 3=1.2.
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4. An empirical estimate of the universal multifractal exponents

The spectrum of fluctuations of /37Cs soil deposition resulting from Chernobyl acci-
dent (Fig. 2) was first computed in order to have an estimate of the range of the scaling
regime, and its slope B = 1.2 will be used in order to estimate the exponent H.

Universal multifractal exponents C, and o where estimated with the help of (Lavallée et
al. 1992, 1993) the Double Trace Moment technique (DTM). Indeed, we may first consider
the normalized n powers of the field ;. Obviously, e will have a moment scaling function
K((fsn)'

E{J”j, g :lkw.m; Kta.m =K —g-K
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The DTM indeed will be ruled by the scaling exponent K(g,n) (Eq.4) until a critical
moment order ¢p,.

On the Fig. 3 we present the DTM curves for the order of moments q=1.5 and 2.0 from
which one can estimate o = 1.67 (as a clop of corresponding straight lines) and C,=0.42.

Due to the Fourier transform 2H + K(2) = -1, which with the help of Eq. 3 and the esti-
maltes of a and C|, yields the following estimate; H = .47.

5. Multifractal phase transition: the high order moment
behaviour is dominated by the rare high concentrations

For high threshold (s>>1) of intensity, which due to the Legendre transform (Eq. 2) cor-
respond to high order statistics (g>>1), multifractals generically (Schertzer et al. 1993,
Schertzer and Lovejoy, 1994, 1997) have a power law probability distribution function
which has been taken (Bak et al., 1987) as a basic feature of Self Organized Criticality
(SOC):
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Fig. 3.The Double Trace Moment curves for 137Cs soil deposition measure-
ments with g=2.0 (top) and q=1.5 (bottom). Corresponding estimate of uni-
versal multifractal parameters is: a =1.67 and C,=0.42
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where Pr denotes the probability of a multifractal field X, ¢, is a critical exponent which
depends on the dimension of space (D) over which the multifractal is averaged. Fluctuations
of the field (amplitudes of avalanches in the original model of S.0.C. ) following Eq. 5 can
be extremely large; they have no characteristic value. As indicated, this “hyperbolic™ (alge-
braic) fall-off of the probability distribution is equivalent to divergence of statistical
moments of order greater than gp,.

The analogy (e.g. Tel, 1988; Schuster, 1988) between multifractal exponents and ther-
modynamic variables was made using the following correspondences (Schertzer et al,
1993): the singularity order (y, C(y)) is the analogue of (energy, entropy), whereas (¢, K(g))
is the analogue of (inverse of temperature, thermodynamic potential), the scale ratio is the
analogue of the correlation length. And indeed, the first order multifractal transition corre-
sponds to the fact that for a finite g;, and corresponding ¥p, the effective scale ratio will
diverge as the correlation length for thermodynamic phase transitions. Indeed, the scale of
observation becomes irrelevant since the spatial averaging (necessary to obtain coarse
grained observables) is no longer able to smooth out these singularities. These apparently
macroscopic observables will therefore be microscopically determined, depending crucial-
ly on the small scale details (e.g. hot spots). The observed singularities in fact correspond to
the huge ratio of scale of activity of the multifractal processes, rather than the (much small-
er) ratio corresponding to the scale of observation. As a consequence, it can be shown that
K(q) becomes linear, but with a slope determined by the maximal observed singularity (y, >
vp) (hence a first order discontinuity/phase transition, see Schertzer and Lovejoy 1992, 1994
and Schertzer et al. 1993).

On the Fig. 4 we presented c(y) calculated from the probability distribution, the slope of
the asymptote (Y = yp) of the resulting curves gives us gp=1.7. One may note (see Table 1)
that this determination of gp is rather consistent with observed algebraic fall-off of the prob-
ability distribution for previously analyzed Chernobyl fall-out data base.
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Fig. 4. The codimension of the 137Cs soil contamination on 9836 pixels cov-
ering territory of Ukraine around Chernobyl. The linear asymptotic behavior
corresponds to qp=1.7. The bisectrix yields the estimate C;=0.42, which is in
good agreement with previous results, see table 1.
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6. Discussion and perspectives: risk assessment and monitoring

Since the radioactivity of the Chernobyl cloud is transported by aerosols, which are
advected by atmospheric dynamics, it was then of interest to study the influence of atmos-
pheric turbulence on the dispersion of the Chernobyl cloud.

Data base Number of points Universal  Critical
multifractal parameters  moment
o Cy 4n
R.E.M. Chernobyl fallout
(Salvadori et al, 1994) 4000 2 - 2.15
300 km radius around Chernobyl
(Schertzer et al, 1995) 16384 1.5 0.43 2.7
100 km radius around Chernobyl
(Schertzer et al, 1995) 148 1.55 0.4 2.2
This paper 9836 1.67 0.42

Tab. 1. The characteristics of different Chernobyl fallout data base analyzed
in the framework of universal multifractals and multifractal phase transition.

The empirical estimates of the universal multifractal and corresponding critical expo-
nents confirm that the highly intermittent field of 137Cs soil contamination is the result of a
non classical SOC transport mechanism. We therefore have a clear framework in order to
study the structures of distribution of fallout “hot spots” as stochastic self organized critical
structures. Indeed, we first define structures by the order of the singularity of their flux
(scale by scale and intensity by intensity), i.e. filteri ng out the rest of the field having flux
singularities smaller than a given order of singularity. Self organized critical structures are
then those having avalanche-like fluxes, i.e. corresponding to singularities higher than the
critical yp,. Such critical structures (“*hot spots™) at all scales and at all intensities displayed
by the Chernobyl fall-out play a fundamental role for risk assessment and monitoring.
Indeed, the probability distribution of the doses accumulated by random walkers traveling
within a multifractal distribution of contamination can not be characterized by the usual
mean dose. One has to consider that the random walk dimension D,, and the moment scal-
ing function K(g) of contaminated area defines a critical moment 4qp,. after which the prob-
ability distribution function of accumulated doses will have an algebraic falloff: the proba-
bility of having the dose 10 times larger than given dose will by only 104" times smaller.
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