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Abstract.

We produce climate projections through the 215 century using the fractional energy balance equation (FEBE) which is
a generalization of the standard EBE. The FEBE can be derived either from Budyko-Sellers models or phenomenologically
by applying the scaling symmetry to energy storage processes. It is easily implemented by changing the integer order of the
storage (derivative) term in the EBE to a fractional value near 1/2.

The FEBE has two shape parameters: a scaling exponent H and relaxation time 7; its amplitude parameter is the equilibrium
climate sensitivity (ECS). Two additional parameters were needed for the forcing: an aerosol re-calibration factor o to account
for the large aerosol uncertainty, and a volcanic intermittency correction exponent v. A Bayesian framework based on historical
temperatures and natural and anthropogenic forcing series was used for parameter estimation. Significantly, the error model
was not ad hoc, but was predicted by the model itself: the internal variability response to white noise internal forcing.

The 90% Confidence Interval (CI) of the shape parameters were H = [0.33,0.44] (median=0.38), 7 = [2.4,7.0] (median=4.7)
years compared to the usual EBE H = 1, and literature values 7 typically in the range 2-8 years. We found that aerosols were too
strong by an average factor v = [0.2,1.0] (median=0.6) and the volcanic intermittency correction exponent was v = [0.15,0.41]
(median=0.28) compared to standard values o = v = 1. The overpowered aerosols support a revision of the global modern
(2005) aerosol forcing 90% CI to a narrower range [-1.0,-0.2]Wm~2.The key parameter ECS = [1.6, 2.4] K (median = 2.0K)
compared with the [PCC ARS range [1.5, 4.5] K (median = 3.2K). Similarly, we found the transient climate sensitivity (TCR)
=[1.2, 1.8] K (median = 1.5K) compared to the AR5 range TCR =[1.0, 2.5] K (median =1.8K). As commonly seen in other
observational-based studies, the FEBE values are therefore somewhat lower but still consistent with those in IPCC ARS.

Using these parameters we made projections to 2100 using both the Representative Carbon Pathways (RCP) and Shared
Socioeconomic Pathways (SSP) scenarios and shown alongside the CMIP5/6 MME. The FEBE hindprojections (1880-2019)
closely follow observations (notably during the “hiatus”, 1998-2015). Overall the FEBE were 10-15% lower but due to their
smaller uncertainties, their 90% Cls lie completely within the GCM 90% CIs. The FEBE thus complements and supports the
GCMs.
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1 Introduction

The Earth is a complex, heterogenous system with turbulent atmospheric and oceanic processes operating over scales rang-
ing from millimeters up to planetary scales. When considered by time scale, there are three main regimes: the weather,
macroweather and climate ((Lovejoy and Schertzer, 2013), (Lovejoy, 2013)). From dissipation times up until scales of about
ten days - the lifetime of planetary structures - fluctuations in the temperature and other atmospheric quantities increase with
time scale: this is the weather regime. Beyond this - in macroweather - fluctuations generally decrease with scale: longer and
longer averages tend to converge. Eventually, in the industrial epoch at a scale of ~ 20 years, this is reversed and fluctuations
again tend to increase. This marks the beginning of the climate regime, in the pre-industrial epoch the transition is at centuries
or millennia and the regime continues up to Milankovitch scales ((Lovejoy, 2015), (Lovejoy, 2019b)).

A major challenge is determining the Earth’s decadal and centennial response to anthropogenic and natural perturbations.
At the moment projection uncertainties - famously exemplified in the range 1.5-4.5K for a COs doubling — are quite large
so that for many purposes, including the development of mitigation policies, the development of complementary approaches is
desirable. In considering alternatives, perhaps the most important point is that although perturbations to the Earth system can
be quite varied, when compared to the mean solar radiation, over the past and future decades, those of interest are of the order
of only a few percent. This allows diverse forcings to be conveniently approximated by their equivalent radiative forcings. It
also explains why — in spite of their highly nonlinear weather dynamics - that to a good approximation, GCM macroweather
and climate responses to external perturbations are typically linear (as quantified for CMIP5 models in (Hébert and Lovejoy,
2018) but with stochastic internal variability.

In order to construct macroweather and climate models, beyond linearity and stochasticity, we require additional model con-
straints, the classical one being energy balance. Starting with the first Energy Balance Models (EBMs) proposed by (Budyko,
1969) and (Sellers, 1969), EBMs have been extensively used for understanding the climate ((North, 1975), (North et al., 1981,
Review)). In this paper, we will only consider EBMs for the globally averaged temperature that can be obtained by latitudi-
nally averaging Budyko-Sellers models. The resulting “zero dimensional” energy balance equation (EBE) is a first order linear
differential equation, it can alternatively be obtained by considering the Earth to be a uniform slab of material (“box”) radia-
tively exchanging heat with outer space. Such box models usually involve at least two boxes and they assume Newton’s law of
cooling as well as ad hoc assumptions relating surface temperature gradients to the rate of heat exchange.

Energy conservation is an important symmetry principle, yet when implemented in box type models, it violates another
symmetry: scale invariance. This is because box models are integer ordered differential equations whose response functions
(Green’s functions) are exponentials. In order to respect the scaling, these “climate response functions” (CRFs) have therefore
been postulated to be scaling (power laws). However the use of pure power law CRFs (e.g. (Rypdal, 2012), (Myrvoll-Nilsen
et al., 2020) leads to divergences: the "runaway Green’s function effect” (Hébert and Lovejoy, 2015) so that if the Earth
is perturbed by even an infinitesimal step function forcing, its temperature monotonically increases without ever attaining

thermodynamic equilibrium: its equilibrium climate sensitivity (ECS) is infinite. Whereas the classical EBMs conserve energy
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but violate scaling, the pure scaling CRF models are scaling but violate energy conservation. Such models can only make
projections by using forcings that start and then return to zero.

(Hébert et al., 2020) proposed taming the divergences by cutting off the power law CRFs at small scales. The resulting model
was scaling at long times and when forced by step functions, it reaches thermodynamic equilibrium. With this truncated power
law CRF and using Bayesian techniques (Hébert et al., 2020) were able to make climate projections through 2100 with the
IPCC RCP scenario forcings that were coherent with the MME 90% confidence interval. Furthermore, using the historical part
of each GCM simulation, they were able to accurately reproduce the corresponding GCM climate projection: for the Earth’s
globally averaged temperature, both models were thus effectively equivalent. The main drawback was that the CRF model
truncation was somewhat ad hoc. In addition, due to the truncation, it was only useful at decadal or longer scales.

To make more realistic models, the key issue is energy storage. Storage is a consequence of imbalances in incoming short
wave and outgoing long wave radiation and it must be accounted for in applications of the energy balance principle. As pointed
out in ((Lovejoy, 2019b), (Lovejoy, 2019a)) and developed in (Lovejoy et al., 2020) it is sufficient that the scaling principle not
be applied to the CREF, but rather to the storage term in the EBE. Rather than energy being stored by uniformly heating a box,
energy is instead stored in a hierarchy of structures from small to large, each with time constants that are power laws of their
sizes. This conceptual shift can be implemented simply by changing the integer order of the storage (derivative) term in the
EBE to a fractional value: the Fractional Energy Balance Equation (FEBE). While (Lovejoy et al., 2020) derived the FEBE in
a phenomenological manner, ((Lovejoy, 2020b), (Lovejoy, 2020c), (Lovejoy, 2020a)) showed how it could instead be derived
from the continuum mechanics heat equation used in the Budyko-Sellers models. Indeed, by extending Budyko-Sellers models
from 2D to 3D (i.e. to include the vertical) and imposing the (correct) conductive — radiative surface boundary conditions, one
immediately obtains fractional order equations for the surface temperature. In other words, nonclassical fractional equations
turn out to be necessary consequences of the standard Budyko-Sellers approach.

To understand the FEBE’s key new features, recall that linear differential equations can be solved with Green’s functions; in
the classical integer ordered case, these are based on exponentials. However in the general case where one or more terms are of
fractional order, they are instead based on “generalized exponentials”, themselves based on power laws. In the FEBE, there are
two distinct power law regimes with a transition at the relaxation time (estimated to be of the order of a few years, see below).
While the low frequency Green’s function can be very close to Hébert’s truncated power law, the high frequency regime is
able to produce internal variability coherent with the observed scaling and fractional Gaussian noise used by ((Lovejoy et al.,
2015), (Del Rio Amador and Lovejoy, 2019), (Del Rio Amador and Lovejoy, 2020)) for skillfully forecasting the stochastic
(internal) variability at monthly, seasonal, interannual (macroweather) scales. In short, there are theoretical arguments as well
as empirical evidence that the FEBE accurately models the Earth’s temperature response to both internal and external forcing
over macroweather and climate time scales.

This paper has 3 sections: methods and materials, results, and conclusions. In methods and materials section, we introduce
the standard EBE and generalize it to the FEBE, describe the radiative forcing, temperature and GCM simulations that will be
used, and finally we introduce Bayesian inference for determining the model and forcing parameters. In the results section, we

present the probability distribution functions for the parameters, estimate Equilibrium Climate Sensitivity (ECS) and Transient
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Climate Response (TCR), and finally we produce global projections to 2100 using the Representative Carbon Pathways (RCPs)
and Shared Socioeconomic Pathways (SSPs) which are a little cooler than the CMIPS GCMs Multi-Model Ensemble (MME)
and the currently available CMIP6 GCMs with which they are compared.

2 Methods and Material

2.1 The FEBE

The zero-dimensional FEBE may be written:

T DET+T=)\F, 0<H<1 (1)

((Lovejoy, 2019a)), (Lovejoy et al., 2020)) Where T'(¢) is the Earth temperature anomaly with respect to a reference temperature
(T'(—o00) = 0), 7 is the relaxation time, A the climate sensitivity, F'(¢) the anomalous external radiative forcing, and H the order

of the ("Weyl") fractional derivative:

ﬁ / (' — )BT (¢')ds, T'(S)Z% o)

— 00

DT =

(T is the Gamma function). If this derivative is integrated by parts and the limit H — 1 is taken, using (7'(—o0) = 0),
—woDHET = % so that we recover the standard box EBE. The FEBE thus generalizes the EBE and the power law FEBE
relaxation time 7 generalizes the exponential EBE relaxation time. Physically T/ A corresponds to the linearized energy flux
(rate per area) of long wave black body surface emission and since F' is the flux of shortwave forcing, we see that the imbal-
ance F' — T/ X represents the flux of energy conducted into storage, it is proportional to the derivative term. At any instant, the
storage is thus proportional to the power law weighted integral of past imbalances. The exception is the box model with H =1

where the relationship is instantaneous.

If we solve the FEBE using Green’s functions, we obtain:

T(t)=\ / Gsu(t—s)F(s)ds 3)

Where G5, g is the impulse (Dirac) response Green’s function, for the FEBE it is given by:

O Egg (-(H)7); t=0
S O o (=(4)") > “
0; t<0



115

120

125

130

135

https://doi.org/10.5194/esd-2020-48 Earth System
Preprint. Discussion started: 4 August 2020 Dynamics
(© Author(s) 2020. CC BY 4.0 License.

Discussions
Where:
Eop(2) = ; T(ak+5) )

is the ", 0 order Mittag-Leffler function” (these and most of the following results are in the notation of (Podlubny, 1999)).
The condition G = 0 for ¢ < 0 is needed to respect causality. The Mittag-Leffler functions are often called “generalized expo-
nentials”, the classical H = 1 box model is the (exceptional) ordinary exponential: Eq 1(z) = €.

Mathematically when 0 < H < 1, the FEBE is a “fractional relaxation equation”, 7 quantifies the slow, power law approach
to a new thermodynamic equilibrium. Rather than express solutions in terms of the impulse response G5, i, it is more physical

and often more convenient to use the step response G fr:

Go,u(t) = /tGa,H(S)dS = (i)HEH,HH <— <i)H> (6)
0

(O(t) is the step or Heaviside function, the integral of the Dirac function), and:

t

dF
T(t)=A\ / Go,u(t—s)F'(s)ds, F'(s)= a5 @)
s
At high frequencies (¢ < 7), important for modelling and predicting the internal variability we have:
G =L (Y. ¢ ) L (Y« ®)
i =——n | = ; i == ; T
OIS (H) \ 7 M T D H + 1) \ 7

If we consider the response to Gaussian white noise forcing, then G5 gy o< =1

implies that T'(¢) is approximately a fractional
Gaussian noise (fGn) with statistical scaling exponent Hy = H — 1/2 (when forced by a Gaussian white noise, the FEBE
response is exactly a fractional Relaxation noise, see (Lovejoy, 2020a)). By applying global scale Haar fluctuation analyses
(Del Rio Amador and Lovejoy, 2019) found H; ~ —0.1 corresponding to H ~ 0.4.

To see if this is compatible with the value estimated from the low frequency response to external forcings consider the low

frequency behaviour (¢ > 7), important for modelling and projecting the multidecadal responses to external forcing:

1 N\ TH 1 N\ H
G511, 10w (t) = m (T> i Go,Hlow(t) =1— m (T> ;t>T 9)

(note I'(—H) < 0 for 0 < H < 1). In the box, H =1, case we have exactly Go 1(t) =1— e~t/7 so that when H < 1, the
exponential approach to thermodynamic equilibrium is replaced by a power law. (Hébert et al., 2020) used Go = 1— (1 + %) e
with Hr = —0.5 corresponding to H = —Hp = 0.5 which is thus the same as that corresponding to the internal forcing. It is

thus plausible that the FEBE models both regimes with the exponent H ~ 0.4. We discuss this further below.
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2.2 Data
2.2.1 Radiative Forcing Data

We consider natural and anthropogenic sources of external forcing: solar and volcanic, and anthropogenic forcing. We use the

approximate carbon dioxide concentration to forcing relationship (Myhre et al., 1998):

Feo,(p) = 3.71Wm’21092pﬁ. (10)
0

Where Fco, is the forcing due to carbon dioxide, p is the concentration of carbon dioxide and py is the preindustrial concen-
tration of carbon dioxide which we take to be 277ppm.
We follow the CMIP5 recommendations for anthropogenic and solar forcing, while volcanic forcing is unprescribed (Taylor

et al., 2012). The anthropogenic CMIP6 radiative forcings follow (Smith et al., 2018a).
2.2.2 Greenhouse Gas Forcing

The global climate is warming and most of the observed changes are due to increases in the concentration of anthropogenic
greenhouse gases (GHGs) (IPCC, 2013). Future anthropogenic forcing is prescribed in the Representative Concentration Path-
ways (RCPs), established by the IPCC for CMIP5 simulations: we considered RCP 2.6, RCP 4.5, and RCP 8.5 (Meinshausen
et al., 2011b). RCP 6.0 was omitted in this study since fewer CMIP5 modelling groups performed the associated run. In the
CMIP6 simulations the anthropogenic forcings are prescribed in the Shared Socioeconomic Pathways (SSPs) we investigate
SSP 126 (strong mitigation) and SSP 585 (strong emission) scenarios, the counterparts to the most distinct previous scenarios
RCP 2.6 and 8.5.

The RCP scenarios are derived from estimates of emissions computed by a set of Integrated Assessment Models (IAM), these
emissions are converted to concentrations using the Model for the Assessment of Greenhouse-gas Induced Climate Change
(MAGICC, (Meinshausen et al., 2011a)), while for the SSP scenarios the emissions are converted to forcings using the Finite
Amplitude Impulse Response (FAIR) model ((Smith et al., 2018a)). These scenarios will allow us to compare our results from
the FEBE with CMIP5/6 simulations.

The wide spread of the scenarios allows for the investigation of the consequences of various future policies, from strong
mitigation (RCP 2.6, SSP 126) to business as usual (RCP 8.5, SSP 585) shown in fig. 1 (bottom). For RCP2.6 and SSP 126,
the strongest mitigation scenarios, the total radiative forcing has a peak at approximately 3WWm =2 around the year 2050 and
declines thereafter due to large scale deployment of negative emission technologies. RCP4.5 is a stabilization scenario, with
the total radiative forcing rising until the year 2070 and with stable concentrations after the year 2070. While RCP8.5 and SSP
585 is a continuously rising radiative forcing pathway, “business as usual”, in which the radiative forcing levels by the end of
the 21st century at approximately 8.57Wm =2, and most closely follows current emissions.

In this paper we use the forcing due to carbon dioxide equivalent, Fooz,,,, as the measure of our anthropogenic forcing,

Fant, given in the RCP and SSP scenarios. The anthropogenic forcing corresponds to the effective radiative forcing produced
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by Long Lived Greenhouse Gases (GHGs) Fpg: carbon dioxide, methane, nitrous oxide and fluorinated gases, controlled
under the Kyoto protocol, ozone depleting substances, controlled under the Montreal Protocol. We show the anthropogenic

forcings for each RCP and SSP scenario in figure 1.
2.2.3 Aerosol Forcing

Aerosols are a strong component of radiative forcing associated with anthropogenic emissions, resulting from a combination
of direct and indirect aerosol effects. There exists high uncertainty of the aerosol forcing, arising from a poor understanding
of how clouds respond to aerosol perturbations, compared to the fairly well constrained GHG forcing, thus following ((Padilla
etal., 2011), (Hébert et al., 2020)) we introduce the aerosol linear scaling factor « to account for our poor knowledge of aerosol
forcing.

We obtained the CMIPS aerosol forcing by subtracting from the total C'Oy,,, forcing the combined effective radiative forcing
from the gases controlled by the Kyoto protocol, F'x;, and from those controlled under the Montreal protocol, Fis. Fare is
given in CFC-12 equivalent concentration and we use the relation from (Ramaswamy et al., 2001) to convert this to Wm 2.

The total amount of aerosol forcing in 2005 given at the 90% confidence interval (CI) in the IPCC ARS is [—1.9, —0.1]Wm =2,
but since then attempts have been made to better constrain this value; (Stevens, 2015) demonstrates that an aerosol forcing more
negative than —1Wm =2 is implausible. Using results from (Murphy et al., 2009), Stevens supports tightening the upper and
lower bounds of the aerosol forcing, revising it to be [—1.0,—0.3]Wm 2.

The prescribed CMIP6 SSP aerosol forcing, Flaergs,, contain contributions from aerosol-radiation interactions and from
cloud interactions: Fy,; and F.; (Smith et al., 2018a). F},,; includes the direct radiative effect of aerosols, in addition to rapid
adjustments due to changes in the atmospheric temperature, humidity and cloud profile (formerly the semi-direct effect), and
is calculated using multi-model results from Aerocom (Myhre et al., 2013). F,.; describes how aerosols affect clouds in the
radiation budget and is calculated from the aerosol model of (Stevens, 2015), which includes a logarithmic dependence of Fy,.;

on sulphates, black carbon and organic carbon emissions.
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Figure 1. (top) The total anthropogenic forcing series, the sum of the greenhouse gas forcing Fo e and respective aerosol forcing series
Faerpop (black) or Flaer g4 (blue) are shown over the historical period and projection period until 2100 for RCP 2.6/SSP 126 (solid), RCP
4.5 (dashed), and RCP 8.5/SSP 585 (dotted). (bottom) The anthropogenic aerosol forcing series used, Flaer . (blue) and Faerggp (black).
Updated from (Hébert et al., 2020).

2.2.4 Solar Forcing

The other external forcings considered are solar and volcanic; there exist other natural forcings such as mineral dust and sea
salt, but they are small and will be implicitly included with the internal variability. We use the CMIP5 recommendation for
solar forcing, Fls,;, a reconstruction obtained by regressing sunspot and faculae time series with total solar irradiance (TSI)
(Wang et al., 2005), shown in fig. 2. Following (Meinshausen et al., 2011b), solar forcing anomaly is calculated as the change in
solar constant over the average value of the two year 11-year solar cycles from 1882 to 1904 divided by 4 (average insolation)
and multiplied by 0.7 (representing planetary co-albedo). To extend solar forcing to the future we reproduce solar cycle 23 (the

last one prior to 2008) as a proxy for future solar forcing.
2.2.5 Volcanic Forcing

The volcanic forcings series, Fy ., used in this study was generated from the volcanic optical depths, 7. Over the 1850 to

2012 period we use the approximate relation: Fy o =~ —27Wm ™27y, obtained from the Goddard Institute for Space Science



205

210

215

220

225

230

https://doi.org/10.5194/esd-2020-48 Earth System
Preprint. Discussion started: 4 August 2020 Dynamics
(© Author(s) 2020. CC BY 4.0 License.

Discussions

(GISS) website (Sato, 2012). We follow (Hébert et al., 2020), extending the series to 1765 using the optical depth reconstruction
(Crowley et al., 2008), and setting volcanic forcing to zero for the future.

It has been shown by (Lewis and Curry, 2015) that volcanic forcing must be scaled down by 40-50% in order to produce a
comparable effect on surface temperature, and thus most EBMs linearly scale volcanic forcing. However the amplitude of the
volcanic forcing is not the only issue, volcanic forcings are highly intermittent (spiky). The intermittency can be quantified in
a multi-fractal framework ((Lovejoy and Schertzer, 2013), and (Lovejoy and Varotsos, 2016)). Since linear response models
do not alter the intermittency, the volcanic series must first be non-linearly transformed before being introduced into a linear
response framework. With the effective volcanic forcing Fy ., , the volcanic intermittency correction exponent v and the mean
of the whole volcanic series (Fy ), we follow (Hébert et al., 2020) using a non-linear relation to change the intermittency so

that the transformed signal can be linearly related to the temperature:

Fyo v,
v — VO (11)
<FVol> <FVol>

The normalization is such that the mean is unchanged: (Fy ;) = (Fy;). The volcanic intermittency correction exponent,

v, required to reduce the intermittency parameter of the volcanic forcing, C r, , to equal the corresponding parameter of the

temperature response, C1 1., can be calculated theoretically using:

Cip V™" =Chiry, 12)

where ajrr is the multifractality index of the volcanic forcing (Lovejoy and Schertzer, 2013), C is the codimension of
the mean. For the volcanic forcing intermittency, C; , ~ 0.16, the temperature response intermittency, C1 1, ~ 0.03, and
ay r ~ 1.5, we find an approximate but plausible theoretical estimate of the volcanic intermittency correction exponent v ~ 0.3
((Lovejoy and Schertzer, 2013) table 11.8, (Lovejoy and Varotsos, 2016)).

Working in a linear framework we write the forcing series as the sum of anthropogenic and natural forcings:

F(o,vit) = Faua(t) + aFaer(t) + Fsor + Fvo, (13)

2.2.6 Surface Air Temperature Data and CMIP5/6 Simulations

We used five historical records of surface air temperature for our analysis each spanning the period 1880-2019, with median
monthly temperature anomalies in relation to the reference period of 1880-1910: HadCRUT4 (Morice et al., 2012), the Cowtan
& Way reconstruction version 2.0 (C&W) (Cowtan and Way, 2014), GISS Surface Temperature Analysis (GISTEMP) (Hansen
et al., 2010), NOAA Merged Land Ocean Global Surface Temperature Analysis Dataset (NOAAGlobalTemp) ((Smith et al.,
2008), (Zhang et al., 2019)) and Berkley Earth Surface Temperature (BEST) (Rohde et al., 2013).

The HadCRUT4 dataset is a combination of the sea-surface temperature records: HadSST3 compiled by the Hadley Centre
of the UK Met Office along with land surface station records: CRUTEM4 from the Climate Research Unit in East Anglia;
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Figure 2. Volcanic forcing Fy,;, (blue) is shown alongside two non-linearly transformed versions. Linearly damped by a constant 0.5
coefficient (black), and non-linearly transformed using equation with v = 0.3 (red). The solar forcing Fls,; (orange) has been shifted down

by -9 and amplified by a factor of 10 for clarity. Adapted from (Hébert et al., 2020)

the Cowtan and Way dataset uses HadCRUT4 as raw data, but address missing data that would lead to bias especially at
high latitudes by infilling missing data using an optimal interpolation algorithm (kriging); we use the dataset with land air
temperature anomalies interpolated over sea-ice. The GISTEMP dataset combines the Global Historical Climate Network
version 3 (GHCNv3) land surface air temperature records with the Extended Reconstructed Sea Surface Temperature version
4 (ERSST) along with the temperature dataset from the Scientific Community on Antarctic Research (SCAR) and is compiled
by the Goddard Institute for Space Studies; the NOAA National Climate Data Center uses GHCNv3 and ERSST but applies
different quality controls and bias adjustments. The final data, BEST, makes use of its own land surface air temperature product
along with a modified version of HadSST.

The CMIP5 models selected have monthly historical simulation outputs available over the 1860 to 2005 period along with
outputs of scenario runs from 2005 to 2100 for RCP 2.6, RCP 4.5, and RCP 8.5, summarized in table Al. The available CMIP6
model outputs for the historical and SSP scenarios are provided in (Forster et al., 2020), and climate sensitivity of models is

taken from (Flynn and Mauritsen, 2020), summarized in table A2.
2.3 Bayesian Parameter Estimation

In this section we establish a procedure to estimate the probability distribution associated with the climate sensitivity: A, model
parameters: 7, H and the forcing parameters: «,v. To estimate them, we relate the forcing to surface air temperature data
using the FEBE in a multi-parameter Bayesian technique. To apply Bayesian inference we require temperature observations, a
statistical model that relates forcing data to temperature, and prior information about the model parameters (priors). Bayesian
inference is chosen due to its ability to better constrain model parameters by using information from different sources including

data and models.

10
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In this framework, each parameter combination (H, 7 for Gs i and «, v for F' as well as \) produces a time-dependent
forced response which is associated with a likelihood that depends on how well the corresponding model output matches
the observational temperature records over the historic period. To see how this works, recall that the FEBE describes the

temperature response to the total external deterministic forcing F'(t) and internal stochastic forcing ~(¢):

Tewt = AG t) x F(t
T(t) = Temt +/Tznt(t)7 ¢ 6’H( ) ( ) ) (14)
Ting = >\G57H(t) *(t)

Where T+, T;yn: are the responses. Any given set of parameters (H, 7 for Gs pr and a, v for F' as well as A) implies a series

Te+(t); and hence when compared to observation temperature series, it implies a series of residuals:

Tres(t) =T(t) — Tewt(t) = Tint (t) = AGs 1 (£) *y(1). (15)

The residuals are thus equal to the internal temperature variability, i.e. the response to the internal forcing ~y(¢). Here we make
the usual assumption that v(¢) is a Gaussian white noise so that T;..s(t) = T, (t) is a fractional Relaxation noise process (fRn,
(Lovejoy, 2019a)). However, for scales shorter than the relaxation time 7 (of the order of years), the fRn process is very close to
a fractional Gaussian noise (fGn) process (due to the approximation Gs i = G5 high, 1 (t), €q. 8). The fGn approximation takes
into account the strong power law correlations induced by the fractional derivative term in the FEBE and it is valid except at
the low frequencies that only weakly influence the likelihood function. It is already a much more accurate residual model than
the standard Auto Regressive order one (AR(1)) assumption which models temporal correlation as a (short range) exponential
function. Rather than making an ad hoc assumption about the statistics of the residuals, in our approach the statistics are given
by the model itself. It should be noted that if the residuals are fGn, then the uncertainties are larger than for AR(1) (or other
exponential decorrelation models) in spite of the fact that our residuals are more realistic.

We therefore estimate the likelihood of any parameter set from the maximum likelihood function that the residuals are an

fGn process:

LN H,7,a,v|T(t)) = Pr(T )|\ H,7,a,v). (16)

The likelihood function (£) corresponds to the probability (" Pr") of observing the series 7'(t) conditioned on the parameters:
A, H, 7, o, v (right hand side), assuming the residuals are a fGn process with parameter H, and zero mean.
The fGn likelihood function is a posterior probability; using Bayes’ rule, we can obtain the a priori probability distribution

function (PDF) for our parameters:

Pr(T®)|\\H,7,a,v)r(\, H,7,0,v)
Pr(T(t))

Pr(\H,7,a,v|T(t)) = (17)

where 7(\, H, 7,,v) is the prior distribution for the parameters.
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Discussions

The priors chosen here are intended to reflect knowledge about the historical climate system. Following (Del Rio Amador
and Lovejoy, 2019) who estimated H from the statistics of the response of the internal forcing, the prior distribution for the
scaling parameter is taken to be a normal distribution centered around 0.4 with a standard deviation of 0.1 (twice that of the
original work), N(0.4,0.1). For the relaxation time, 7, we use the normal distribution of the fast time response of the “two-box”
exponential model that corresponds to H = 1, found by (Geoffroy et al., 2013) for a suite of 12 CMIP5 GCMs: N(4yrs,2yrs),
with the standard deviation doubled of the original work so as to be a weakly informative prior. When considering the aerosol
scaling parameter, «, we take the prior distribution to be a normal distribution, N(1.00,0.55) which has a 90% CI and mean
coherent with the IPCC AR5 best range for the modern value of aerosol forcing, Flae, =~ —1 .0Wm 2, in the series we used. For
the remaining two parameters, A and v, we assume non-informati<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>